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Abstract

This paper shows that many of the empirical biases of the Black and Scholes option

pricing model can be explained by Bayesian learning effects. In the context of an equilibrium

model where dividend news evolve on a binomial lattice with unknown but recursively

updated probabilities we derive closed-form pricing formulas for European options. Learning

is found to generate asymmetric skews in the implied volatility surface and systematic

patterns in the term structure of option prices. Data on S&P 500 index option prices

is used to back out the parameters of the underlying learning process and to predict the

evolution in the cross-section of option prices. The proposed model leads to lower out-of-

sample forecast errors and smaller hedging errors than a variety of alternative option pricing

models, including Black-Scholes and a GARCH model.
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the paper. We also thank Alexander David, José Campa, Bernard Dumas, Wake Epps, Stewart Hodges, Claudio

Michelacci, Enrique Sentana and seminar participants at Bocconi University, CEMFI, University of Copenhagen,

Econometric Society World Congress in Seattle, August 2000, the North American Summer meetings of the

Econometric Society in College Park, June 2001, the European Finance Association meetings in Barcelona,

August 2001, Federal Reserve Bank of St. Louis, INSEAD, McGill, UCSD, Université de Montreal, and University
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1. Introduction

Although Black and Scholes’ (1973) formula remains the most commonly used option pricing

model in financial markets, a large literature has documented its strong empirical biases. Most

commonly, such biases are associated with the appearance of systematic patterns (smiles or

skews) in the implied volatility surface produced by inverting market prices and solving for the

unknown volatility parameter (e.g. Rubinstein (1985, 1994) and Dumas, Fleming and Whaley

(1998)). Implied volatility also appears to be systematically related to the term structure of

option contracts (Das and Sundaram (1999)).

Several pricing models have been proposed to overcome these problems. These include

stochastic volatility (Hull and White (1987), Wiggins (1987), Melino and Turnbull (1990),

Heston (1993)) and GARCH models (Duan (1995), Heston and Nandi (2000)); models with

jumps in the underlying price process (Merton (1976)); jump-diffusion models (Ball and Torous

(1985), Amin (1993)); and models incorporating transaction costs (Leland (1985)). Bakshi, Cao

and Chen (1997) summarize the empirical performance of these models. Most option pricing

models fail to improve significantly on the empirical fit of the Black-Scholes (BS) model and, by

modifying the stochastic process followed by the underlying asset price, do not provide a direct

economic explanation for the systematic shortcomings of BS. Nevertheless, this literature has

contributed significantly to our understanding of the requirements of an option pricing model

that can fit observed data.

In this paper we relax the key assumption underlying the BS model of full information about

the stochastic process that drives fundamentals. More specifically, we assume that fundamentals

evolve on a binomial lattice with ‘up’ and ‘down’ probabilities that are unknown to investors

who update their probability estimates using Bayes’ rule. The underlying asset price process

is determined by embedding the learning mechanism in an equilibrium model. In equilibrium,

asset prices reflect all possible future probability distributions of the parameter estimates and

there are no expected gains from implementing trading strategies based on the unfolding of

estimation uncertainty.

While there are now many papers studying the asset pricing effects of learning,1 the only

other studies that explicitly consider its derivative pricing implications appear to be David and

Veronesi (1999) and Yan (2000). In an important contribution, David and Veronesi (1999)

have investors facing a filtering problem which leads them to update the probability of which

of two states fundamentals are currently in. In their model, shocks to fundamentals are drawn

from a non-Gaussian mixture distribution and hence the BS model is not obtained in the limit

even when there is full information about the state. In contrast, we assume that fundamentals

follow a binomial process, whose limit is Gaussian. This allows us to isolate the effect of

1E.g., Bossaerts (1995, 1999) and Timmermann (1993).
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investors’ recursive estimation of parameter values in a model that converges asymptotically

to BS. Another difference is that we study the ability of the learning model to predict out-of-

sample the evolution in the entire cross-section of option prices and to generate lower hedging

errors than BS. The importance of such exercises for evaluating different option pricing models

has recently been emphasized by Dumas et al. (1998). In Yan (2000) the unobservable rate of

growth of dividends follows a mean-reverting diffusion process. Again shocks to fundamentals

are drawn from a non-Gaussian mixture distribution, so that BS does not obtain under full

information,2 which makes it more difficult to extract the effects of recursive learning on option

prices. Yan presents calibrations which indicate that the model can generate a wide variety of

implied volatility surfaces but presents no empirical estimates of the model’s fit and does not

explore the possibility of implying beliefs from observed asset prices.

Our approach is also related to a large literature that infers the market’s probability beliefs

from asset prices (Rubinstein (1994), Jackwerth and Rubinstein (1996), Äit-Sahalia and Lo

(1998)) although our results explicitly incorporate the effect of investors’ beliefs on equilibrium

prices. The assumption that the market updates its beliefs through Bayes rule adds a new

aspect to this exercise and provides an understanding of the time-series dynamics of implied

volatility surfaces.

Simply replacing the assumption in the BS model of known ’up’ and ’down’ probabilities

with Bayesian learning is found to generate biases similar to those observed in option prices.

Consistent with recent empirical evidence (Äit-Sahalia and Lo (1998)), learning alters the shape

of the state price density perceived by investors by adding to tail probabilities. Furthermore,

learning effects can generate implied volatility smiles as well as a variety of non-constant term

structures of implied volatility.3 By inverting the resulting model, we can infer the dynamics

of the parameters of the Bayesian learning scheme from data on S&P 500 index option prices.

Independently of the time period over which theoretical option prices are matched with observed

prices, we find that estimated parameters are remarkably stable over time and that our model

provides a good in-sample fit, and especially an excellent out-of-sample performance in addition

to generating smaller out-of-sample hedging errors than the BS model and various alternatives

proposed in the literature (Dumas et al.’s (1998) ad hoc strawman and Heston and Nandi’s

(2000) option NGARCH).

The outline of the paper is as follows. Section 2 introduces the data set and briefly describes

systematic biases in the BS option pricing model. Section 3 presents the binomial lattice model

under full information and Bayesian learning is introduced in Section 4 which also derives

2However Yan (2000, p. 22) shows that under log-utility a special version of BS that incorporates stochastic

interest rates and volatility obtains.
3Das and Sundaram (1999) show that the most popular alternatives to BS – jump-diffusion and stochastic

volatility models – fail to simultaneously generate implied volatility smiles and term structures that match the

complex features of the data.
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explicit formulae for European option prices. Section 5 characterizes the equilibrium effect of

learning on option prices and calibrates the option pricing model under learning so it can be

compared to the data from Section 2. The parameters characterizing the maintained recursive

learning process are inferred from option prices in Section 6 and used to predict option prices

out-of-sample. Section 7 concludes.

2. Biases in the Black-Scholes Model

This section briefly outlines the systematic pricing biases in the BS option pricing model and

thus serves as a benchmark for the empirical analysis. Our data set of option prices from the

CBOE consists of weekly S&P 500 index option prices4 covering a five and a half year period

from June 1988 through December 1993 (a total of 30,461 observations) and is identical to the

one used in Dumas et al. (1998).5 We explicitly take into account that the index pays out

daily dividends and adjust the reported index level by subtracting the present value of the cash

dividends to be paid during the life of the option. We follow the same procedures for filtering

the data as in Äit-Sahalia and Lo (1998) and thus differ slightly from Dumas et al. (1998) in

the application of some exclusion criteria. First, we eliminate options with fewer than 6 and

more than 200 days to expiration.6 Second, since it is well known that in-the-money options

are thinly traded, their prices are notoriously unreliable and are thus discarded from the data

set. Out-of-the-money and near-at-the-money put prices are translated into call prices using

put-call parity. All information contained in liquid put option prices has thus been extracted

and converted into call prices. The remaining put options are discarded from the data set

without loss of information. The application of these criteria reduces the size of the sample to

a total of 9,679 observations.7

2.1. Implied Volatility Surfaces

Initially we confirm the existence of a systematic skew in the relationship between BS implied

volatility and moneyness. Figure 1 plots the implied volatility surface against moneyness for

4As stressed by Rubinstein (1994), the market for S&P 500 index options on the CBOE provides a case study

where the conditions required by BS seem to be well approximated in terms of volumes, continuity of the trading

process and hedging opportunities.
5We thank Bernard Dumas for making this data set available to us. Data are sampled on Wednesdays and

only options with bid/ask price quotes between 2:45 and 3:15 p.m. (CST) are used. Wednesdays are chosen in

order to minimize the incidence of the number of holidays. Option prices correspond to bid/ask midpoints. The

risk-free rate is proxied by the average of bid and ask discounts reported in the Wall Street Journal. Daily cash

dividends are collected from the S&P 500 Information Bulletin.
6Dumas et al. (1998) exclude all contracts with more than 100 days to expiration.
7One observation had to be excluded since it violated the lower bound condition and led to a negative implied

volatility.

3



the six December maturities represented in our data sample.8 For most days in the sample

period, the curve relating BS implied volatilities to the strike price is skewed. This is of course

inconsistent with the maintained assumption of a constant diffusion in the BS model.

2.2. Term Structure of Implied Volatility

The data also reveals a systematic term structure in implied volatilities. Using three alternative

values of moneyness over the period Jan. 18, 1993 to Jan. 25, 1993, Figure 2 shows that the

implied volatilities of at-the-money options and options with moneyness less than one increase

with time to expiration. For in-the-money options the pattern is somewhat weaker: some days

implied volatility is an increasing and convex function of time to expiration; other days implied

volatility is a concave function of moneyness and occasionally the pattern is constant or even

declining.

2.3. State Price Densities

Recently Rubinstein (1994) and Jackwerth and Rubinstein (1996) proposed to extract state

price densities (SPD) from implied binomial trees. This is another powerful procedure for

demonstrating biases in the BS model whose assumption is that the state price density is log-

normal. Figure 3 shows the SPD inferred from option contracts with at least 7 calendar days to

expiration and averaged across calendar days and maturities (a total of 765 estimated SPDs).

To ensure that SPDs on different days are comparable, all plots use standardized logarithmic

returns. Particularly important in economic terms is the tail behavior of the SPD since this

may provide information about the jump risk expected by markets, cf. Bates (1991). Therefore

we plot in the bottom of Figure 3 the estimated tail behavior of the average SPD.

Compared to the lognormal benchmark, the SPD is clearly leptokurtic. Market participants

assign high value to future ‘extreme’ outcomes that under a lognormal SPD would receive a

much smaller state price. To demonstrate this point, Table 1 compares the no-arbitrage prices

of a state-contingent asset paying off one dollar when the S&P 500 returns exceed (in absolute

value) a certain number of standard deviations of returns under the estimated SPDs versus

under a lognormal benchmark. Higher prices for tail-contingent securities reflect the fact that

under the estimated SPDs the market assigns a much higher risk-neutral price to a dollar paid

out in either crash or strongly bullish states of the world.

8The finding of skews in implied volatility is generic and holds across different maturities.
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3. Asset Prices under Full Information

The empirical findings reported in Section 2 confirm the presence of systematic biases in the

BS model and suggest that a more general option pricing model is required. This section

characterizes option prices in a full information equilibrium model which has the BS model as

a limiting case and sets up a benchmark from which to evaluate option pricing biases. Learning

is introduced in Section 4.

3.1. Fundamentals on a Binomial Lattice

Our starting point is a version of the infinite horizon, representative agent endowment economy

studied by Lucas (1978). There are three assets: A one-period default-free, zero-coupon bond

in zero net supply trading at a price of Pt and earning interest of rt = (1/Pt−1); a stock traded
at a price of St whose net supply is normalized at 1; and a European call option written on the

stock with τ ≡ T − t periods to expiration, strike price K and current price Ct.

The stock pays out an infinite stream of real dividends {Dt+k}∞k=1 .9 Dividends are perishable
and are consumed in the period when they are received. Dividend growth rates, gt+k =

Dt+k
Dt+k−1−

1, follow a Bernoulli process that is subject to change m times in each unit interval. Within

the interval [t, t + τ ] dividends thus follow a v = τm-step binomial process. For each interval

the dividend growth rate is gh with probability π or gl with probability 1− π:

gt+k+1 =

(
gh with prob. π

gl with prob. 1− π
∀k ≥ 0, π ∈ (0, 1) (1)

Without loss of generality we assume that gh > gl > −1 so that dividends are non-negative
provided Dt > 0. This gives a standard recombining binomial tree similar to the one adopted by

Cox, Ross and Rubinstein (1979) for the underlying asset price process. We follow the literature

in normalizing the parameters by the incremental time unit: 1+gh = e
σ
q

dt
v , 1+gl = (1+gh)

−1,

and π = 1
2 +

1
2
µ
σ

q
dt
v . As

dt
v → 0, the distribution of dividends converges weakly to a geometric

Brownian motion with constant drift and diffusion (µ,σ).

To price assets we assume a perfect capital market. There are unlimited short sales possibil-

ities, perfect liquidity, no taxes, no transaction costs or borrowing and lending constraints and

markets are open at all the nodes of the binomial lattice where news on dividends are generated.

9Dividends in our model really refer to all information on (cash and non cash) earnings produced by companies

in the stock index. David and Veronesi (2000) compare beliefs implicit in observed option prices and beliefs filtered

out by a sensible definition of fundamentals (real earnings). They find that the two series are quite different,

a sign that a much more complex notion of fundamentals than earnings or dividends is likely to be used by

investors.
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The representative investor has power utility

u(Zt) =

½Z1−γt −1
1−γ γ < 1

lnZt γ = 1
(2)

where Zt is real consumption at time t. We focus on the case where γ ≤ 1; models with γ > 1

have the counter-intuitive property that stock prices decline when the probability of high growth

of the fundamentals increases, see Abel (1988).10 The representative agent chooses bond, stock,

and call option holdings to maximize the discounted value of expected future utilities derived

from consumption subject to a budget constraint:

max
{Zt+k,wst+k ,wbt+k}∞k=0

Et

" ∞X
k=0

βku(Zt+k)

#
(3)

s.t. Zt+k +w
s
t+kSt+k +w

b
t+kPt+k = w

s
t+k−1(St+k−1 +Dt+k−1) +w

b
t+k−1,

where β = 1
1+ρ , ρ is the rate of impatience and w

s
t+k and w

b
t+k represent the number of stocks

and bonds in the agent’s portfolio as of period t+ k.11

Standard dynamic programming methods yield the following Euler equations for stock and

bond prices:

St = Et [Qt+1(St+1 +Dt+1)]

Pt = Et [Qt+1] (4)

whereQt+1 = β u
0(Zt+1)
u0(Zt) = β

³
Zt+1
Zt

´−γ
is the pricing kernel defined as the product of the discount

factor and the intertemporal marginal rate of substitution in consumption.

Guidolin and Timmermann (2001) price the underlying stock and risk-free bond in this

setting subject to a transversality condition.12 For convenience, we state asset prices using the

10The restriction γ ≤ 1 is not as implausible as it might appear in the light of the voluminous literature that has
either estimated or used values of γ well above 1 in order to match known stylized facts concerning asset prices

and returns. The existing literature has in general performed these empirical exercises under the assumption

of full information rational expectations. Guidolin and Timmermann (2000) show that on a Bayesian learning

path, many stylized facts concerning asset prices (such as high volatility and serial correlation) can easily be

rationalized for γ ≤ 1. A referee also pointed out that in the framework of Abel (1999), an economy with leverage
can be well approximated by our endowment economy with the coefficient of relative risk aversion replaced by

the ratio between γ and the leverage index.
11Since the call is a redundant asset which does not expand the set of attainable consumption patterns,

option holdings do not enter into the program and the equilibrium stock and bond prices can be determined

independently of the option price.
12The transversality condition is:

`im
T→∞

Et

"Ã
TY
k=1

Qt+k

!
St+T

#
= 0.
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transformed parameters g∗l = (1 + gl)
1−γ − 1 and g∗h = (1 + gh)1−γ − 1.

Proposition 1 (Guidolin and Timmermann (2001)) The full information rational expec-

tations stock price is given by

St =
1 + g∗l + π(g∗h − g∗l )
ρ− g∗l − π(g∗h − g∗l )

Dt,

while the full information bond price is

Pt =
(1 + gl)

−γ + π [(1 + gh)
−γ − (1 + gl)−γ ]

1 + ρ
.

A property of the solution is that the stock price is homogeneous of first order in divi-

dends and that the ex-dividend stock price follows the same binomial lattice {gh, gl,π,m} as
dividends.13 This means that dividends and stock prices follow a stationary Markov chain.

3.2. Option Prices under Full Information

Pricing European calls and establishing the link to Black-Scholes is straightforward under full

information. This follows from noting that in our model (i) arbitrage opportunities are ruled

out; (ii) markets are complete; (iii) ex-dividend stock prices inherit the binomial lattice structure

{gh, gl,π,m} from dividends; (iv) although the underlying asset pays out cash dividends, the

option is European and early exercise is not possible. Therefore we can draw on the result

of Cox et al. (1979) that the price of a European option converges to the BS value provided

the parameters are suitably adjusted as the number of increments to the lattice per unit of

calendar time goes to infinity. Let r be the risk-free rate, δ the dividend yield, and µ and σ

respectively the (annual) mean and volatility of the dividend growth rate, while dt is an interval

of fixed calendar time (typically τ/252, supposing there are 252 trading days). The following

proposition restates this result and shows the mapping between the deep parameters of our

model and the BS inputs.

Proposition 2 Suppose that the parameters have been scaled as follows:

g
(m)
h = eσ

√
dt/v − 1, 1 + g(m)l =

³
1 + g

(m)
h

´−1
,π(m) =

1

2
+
1

2

µ

σ

r
dt

v

ρ(m) = (1 + r)
dt
v

n
(1 + g

(m)
l )−γ + π(m)

h
(1 + g

(m)
h )−γ − (1 + g(m)l )−γ

io
− 1 > 0

δ(m) =
(1 + r)

n
(1 + g

(m)
l )−γ + π(m)

h
(1 + g

(m)
h )−γ − (1 + g(m)l )−γ

io v
dtn

(1 + gl)1−γ + π(m)
h
(1 + g

(m)
h )1−γ − (1 + g(m)l )1−γ

io v
dt

− 1.

13When combined with the result in Pliska (1997) that a multiperiod security markets model is complete if and

only if all possible sequences of single period models obtained by decomposing the binomial lattice are formed

by complete models, it follows that the asset market in our model is complete and the call option is a redundant

asset, as conjectured.
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Then as m→∞, the price of the European call converges to its BS value:

CBSt = StΦ(d1)e
−δ(m)dt − e−rdtKΦ (d2)

d1 =
ln
¡
St
K

¢
+
³
r − δ(m)

´
v + 1

2v
h
ln(1 + g

(m)
h )

i2
√
v ln(1 + g

(m)
h )

d2 = d1 −
√
v ln (1 + gh)

where v = τm and Φ(·) is the c.d.f. of the standard normal distribution.

Proof. See Appendix A.

As m→∞, dtv goes to zero, and the binomial lattice converges weakly to a geometric Brow-
nian motion with parameters (µ,σ), the distributional assumption required by BS in continuous

time.14 This proposition shows that the results of Cox et al. fully extend to our framework

where dividends rather than stock prices are assumed to follow a binomial lattice. Notice, how-

ever, that while Cox et al. take the process for the underlying price as exogenous, we derive the

underlying stock price in an equilibrium model in which preferences matter. This result can

also be related to Stapleton and Subrahmanyam (1984) who value options in a general equilib-

rium model when markets are incomplete and the stock price evolves on a binomial lattice. In

contrast to Stapleton and Subrahmanyam, our model assumes that markets are complete, but

the exogenous binomial lattice process applies to dividends. Obviously in both cases preferences

affect the equilibrium price of stocks as well as options. Since the BS option price is obtained in

the limit under full information, this model is ideally suited to discuss the origin of BS pricing

biases.

4. Option Prices on a Learning Path

It is common in the option pricing literature to assume a given process for the underlying

asset price and then price the option as a redundant asset whose payoffs can be replicated in a

dynamic hedging strategy invested in the risky asset and a riskfree bond. The standard setup

assumes that the asset price process is stationary and hence that there are no learning effects.

Once learning is introduced, an equilibrium model for the underlying asset price is required.

Suppose that the proportion of times dividends move up on the binomial lattice, π, is

unknown to investors who recursively estimate it through the simple maximum likelihood esti-

14This point can also be shown by noting that as m, v → ∞ the discrete state price density converges to a

transformation of the lognormal:

ef(St+T ) = e−rτ 1√
2πσ

√
τ

1

St+T
exp

(
−
£
ln (St)−

¡
r − δ + 1

2 [ln(1+gh)]
2¢ v¤2

2v [ln(1 + gh)]
2

)
.
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mator:

bπt+k,j = Pm(t+k)+j
i=1 I{m(t+k)+i=gh}

m(t+ k) + j
=
nm(t+k)+j

Nm(t+k)+j
j = 0, 1, ...,m− 1 (5)

where I{m(t+k)+i=gh} is an indicator function which is one when at the m(t + k) + i−th step
of the lattice dividend growth is high, and is zero otherwise. ni denotes the number of high

growth states recorded up to node i, while Ni is the total number of nodes since time t. The

indices m(t+k)+j (j = 0, 1, ...,m−1) take into account that learning happens on the binomial
tree and not over calendar time. Investors are assumed to start out with prior beliefs {n0,N0}
and update these through Bayes rule.

Despite the presence of learning effects, the same features that simplified the solution of asset

prices under full information are still in place: (i) consumption and dividends must coincide

in general equilibrium; (ii) if markets are complete, investors form portfolio choices based only

on the stock index and the bond; (iii) being redundant assets, options can be priced by no-

arbitrage, using the unique risk neutral probability measure. This can be used to prove the

following result:

Proposition 3 Suppose that the stock price is homogeneous of degree one in the level of real

dividends, that a transversality condition holds, and that ρ > g∗h. Then the stock price under
Bayesian learning (BL) is

SBLt = Dtv →∞`im


vX
i=1

βi
iX
j=0

(1 + g∗h)
j(1 + g∗l )

i−j PrBLt
³
Djt+i|nt,Nt

´
≡ DtΨ

BL
t (nt, Nt)

where the posterior distribution PrBLt

³
Djt+i = (1 + gh)

j(1 + gl)
i−jDt|nt,Nt

´
is given by

PrBLt

n
Djt+i|nt, Nt

o
=

µ
i

j

¶Qj−1
k=0(nt + k)

Qi−j−1
k=0 (Nt − nt + k)Qi−1

k=0(Nt + k)
.

The bond price under Bayesian learning is

PBLt (bπt) = bEt £β(1 + gt+1)−γ¤ = (1 + gl)
−γ + bπt [(1 + gh)−γ − (1 + gl)−γ]

1 + ρ
.

Proof. See Appendix A.

Proposition 3 has several implications. First, the price-dividend ratio is no longer constant

and depends (through nt and Nt) on the current estimate bπt. Dividend changes acquire a self-
enforcing nature: Positive dividend shocks lead to an increase in the stock price not only through

the standard proportional effect, but also through the revision of the dividend multiplier.
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Although dividend yields are now time-varying, in principle binomial methods could still

be used to obtain the no-arbitrage price of European options on flexible trees (see, e.g., Chriss

(1997)). However, risk-free rates in our equilibrium model are not only time-varying, but also

a function of the state variable bπt+k. Furthermore, the interest rate process cannot be charac-
terized as a recombining lattice. The value today of one dollar in the future depends not only

on the number of high and low growth states occurring between today and the future, but also

on their sequence.15 In other words, the appropriate discount factors become path-dependent.

Since risk-free rates show up in the general risk-neutral valuation formula proved by Harrison

and Kreps (1979), the induced lattice for the call option also becomes non-recombining.16

This path dependence means that no-arbitrage methods are more complicated in an equi-

librium model with learning. Nevertheless, European call options on a stock index can still be

priced by employing a change of measure based on the perceived probabilities:

Proposition 4 On a Bayesian learning path, the no-arbitrage price of a European call with

time-to-expiration τ and strike price K is

CBLt (K,T, SBLt ) =
vX
j=0

max
n
0, SBL,jt+v −K

o ePBLt n
Sjt+v|nt,Nt

o
where v = τm, SBL,jt+v = (1 + gh)

j(1 + gl)
v−jSBLt = (1 + gh)

j(1 + gl)
v−jΨBLt+v(nt + j,Nt + v)Dt,

15This can most easily be seen by comparing the value as of period t + 1 of one dollar in period t + 3 when

both the high and low dividend growth rates occur. When high growth is followed by low growth we haveh
1 + rBLt+1(bπut+1)i−1 h1 + rBLt+2(bπudt+2)i−1

=
1 + ρ

(1 + gl)−γ +
(nt+1)
(Nt+1)

[(1 + gh)−γ − (1 + gl)−γ ]
× 1 + ρ

(1 + gl)−γ +
(nt+1)
(Nt+2)

[(1 + gh)−γ − (1 + gl)−γ ]
,

where bπudt+2 = nt+1
Nt+2

= bπdut+2.
When the sequence is reversed and low growth is followed by high growth, we geth

1 + rBLt+1(bπdt+1)i−1 h1 + rBLt+2(bπdut+2)i−1 =
=

1 + ρ

(1 + gl)−γ + nt
Nt+1

[(1 + gh)−γ − (1 + gl)−γ ] ×
1 + ρ

(1 + gl)−γ + nt+1
Nt+2

[(1 + gh)−γ − (1 + gl)−γ ] .

Taking the ratio of these two expressions and letting G ≡ £(1 + gh)−γ − (1 + gl)−γ¤, we have
(1 + gl)

−2γ + nt(nt+1)
(Nt+1)(Nt+2)

G2 + nt(Nt+2)+(nt+1)(Nt+1)
(Nt+1)(Nt+2)

(1 + gl)
−γG

(1 + gl)−2γ +
(nt+1)2

(Nt+1)(Nt+2)
G2 + (nt+1)(2Nt+3)

(Nt+1)(Nt+2)
(1 + gl)−γG

which in general differs from unity. For discounting purposes, the exact sequence of dividend realizations matters.
16This is another important difference between our model and that of David and Veronesi (2000) which assumes

multiple states for dividends. In a Lucas-type general equilibrim model this will result in a state-dependent

consumption and risk-free rate process. However, David and Veronesi assume that the interest rate is fixed,

suggesting that their results are of a partial equilibrium nature.

10



Djt+v = (1 + gh)
j(1 + gl)

v−jDt (j = 0, 1, ..., v), and

ePBLt n
Sjt+v|nt,Nt

o
= eP nDjt+v|nt,Nto = βv

Ã
Djt+v
Dt

!−γ
×

×
µ
v

j

¶Qj−1
k=0(nt + k)

Qv−j−1
k=0 (Nt − nt + k)Qv−1

k=0(Nt + k)

Proof. See Appendix A.

Under learning stock prices and beliefs no longer follow a stationary Markov chain, since

both the possible rates of change of the stock index and the (perceived) probabilities of these

changes follow heterogenous Markov chains. The time-varying transition matrix that determines

how the risk-neutral distribution is updated is given byh ePBL {Xt+k+1 = nt + j|Xt+k = nt + i}i = fMt+k(i+ 1, j + 1) (6)

=β


Rlt+k(1 + gl)

−γ Nt+k−nt
Nt+k

Rht+k(1 + gh)
−γ nt

Nt+k
0 ... 0

0 Rlt+k(1 + gl)
−γ Nt+k−nt−1

Nt+k
Rht+k(1 + gh)

−γ nt+1
Nt+k

... 0

.... ... ...
...

0 0 0 ... 1


where Rlt+k ≡ 1+rlt+k is the gross interest rate factor that applies to the low growth state at t+k
etc. Computation of the risk neutral probabilities now requires keeping track of the risk-free

rate as we move along the dividend tree, reflecting the path-dependence in this variable.

5. BS anomalies and learning effects

To better understand the sense in which Bayesian learning can explain the biases in the BS model

we establish conditions under which learning systematically affects option prices. Estimation

uncertainty reduces the underlying asset price when investors are risk averse, but also increases

the asset price through the positive covariance between future asset payoffs and beliefs (bπt).
When risk aversion is not ‘too high’ (γ < 1) the second effect dominates. A similar ranking

across asset prices can be established by comparing option prices under learning to BS option

prices:

Proposition 5 If the mean dividend growth rate is nonnegative and investors have optimistic

beliefs (bπt ≥ π) then

CBLt (K) ≥ CBSt (K) ∀K.

11



Proof. See Appendix A.

One can show that the difference between the call option price under Bayesian learning and

under full information is positive for a zero strike price, increases over some interval of strike

prices and then decreases towards zero. Figure 4 provides an example. Optimistic beliefs (bπt >
π) are sufficient for the difference between option prices CBLt (K)−CBSt (K) to be monotonically

increasing for low strike prices. For unrestricted beliefs bπt, there will be intervals for the strike
price over which CBLt (K) ≥ CBSt (K) and others over which this inequality is reversed. For

instance, pessimism makes it more likely that out of the money calls be underpriced under BL

relative to BS; however, the mean preserving spread caused by the presence of learning effects

keeps assigning positive valuation to deep out of the money calls that otherwise receive near-zero

prices under BS. Furthermore, although optimistic beliefs are sufficient, they are not a necessary

condition for learning to systematically affect option prices. Numerical results confirm that even

when bπt ≤ π, provided that π − bπt is not too large, it is possible to obtain CBLt (K) ≥ CBSt (K)

for many configurations of the remaining parameters.

Guidolin and Timmermann (2001) show that in this setup the price-dividend ratio is a

monotonically increasing and convex function of beliefs, bπt. The intuition is that the presence
of learning effects shifts risk-neutral probability mass towards the tails relative to the lognormal

benchmark underlying BS. In general, this could either depress or increase the equilibrium price

of a call option. However, optimistic beliefs are sufficient to guarantee that the mass shifted

towards the right tail dominates the mass shifted towards the left tail. Also, because of the self-

enforcing effects of dividend changes, learning in a lattice framework widens (in both directions)

the support of the perceived risk-neutral distribution of time t + τ stock prices relative to

the lognormal case. Convexity of the pricing kernel guarantees that this effect increases the

equilibrium option price.

Effectively the cross-section of option prices allows us to infer the market’s perception of

fundamentals once the model is tested on option data. For instance, market prices for European

calls systematically above BS predictions and a ’smiling’ implied volatility shape would suggest

strong learning effects and that investors are somewhat optimistic.

Ultimately an analysis must consider whether the Bayesian option pricing model can repli-

cate the data in Section 2. To investigate this, we set the parameters of the dividend process

and the risk-free rate at plausible levels. Dividends are assumed to be paid out daily (m = 1).

For a wide market index such as the S&P 500 this provides a fairly good approximation. The

annual dividend growth rate (µ) is set to 3%, to match the average dividend growth rate around

our sample period (June 1992 - June 1995). Volatility (σ) is set at 5%, slightly lower than the



ally.17 Finally the annualized risk-free rate (r) is set to 4%, while the dividend yield is fixed at



Figures 5 and 6 plot implied volatilities as a function of moneyness for the April 1993

maturity. These are representative of what we have found in other sub-periods of our sample.

Comparing the left and right windows, the resemblance between the implied volatility under

learning and observed market values is striking. The lattice model under Bayesian learning

appears to price options far more accurately than the BS model.

To further underline this point, Figure 7 compares observed option prices on February 22,

1993 and BL prices assuming nt = 43, Nt = 80 (π̂t = 0.538). The fit is even more striking than

in Figure 6 and is indicative of the ability of the model to fit implied volatility skews. Assuming

that the markets really were on a Bayesian learning path on that day, the estimate bπt = 0.538
with a precision of Nt = 80 seems to accurately characterize investors’ beliefs.

5.2. State Price Densities

Systematic differences between BS and BL European option prices must reflect differences in the

underlying equivalent martingale measures employed by the market under the two alternative

models or, equivalently, in the SPDs (cf. Harrison and Kreps (1979)). Learning affects state

price densities in two distinct ways: (i) the SPD perceived by investors changes; (ii) the support

of the set of time t+T equilibrium stock prices is widened. If the initial beliefs on π are unbiased,

extreme events drawn from either end of the tail are perceived as more likely on a Bayesian

learning path than under a lognormal distribution. Likewise, a wider support for the SPD also

means that more extreme events now become possible.

When bπt decreases towards π from above, BL continues to inflate the tails of the SPD per-

ceived by the investors relative to the lognormal benchmark thus creating an implied volatility

skew. This matches the stylized facts of the S&P 500 option data that densities are located

more to the right than the lognormal benchmark but also attach positive probability mass to

some crash events. Figure 8 shows that, consistent with the data in Section 2, Bayesian learning

produces SPDs that are skewed to the right and have fatter tails than a lognormal.

5.3. Term Structure of Implied Volatilities

Next we vary the time to maturity (τ) from 10 to 150 days in steps of 10 days to study the implied

volatility term structure resulting from Bayesian learning. Figure 9 shows the outcome of this

exercise for three sets of strike prices: K = 420 (moneyness 1.04), K = 435 (moneyness 1), and

K = 455 (moneyness of 0.96). Bayesian learning generates an upward sloping term structure

for at-the-money and out-of-the money call options, while the term structure at first decreases

and then increases for in-the-money call options. These patterns are broadly consistent with

what was found in the data, cf. Figure 2. The increase of about 2 percentage points in implied
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volatility between close-to-expiration options and long-term options is also plausible.20 Figure

10 presents both dimensions of the implied volatility surface under BL. Skews dominate at all

maturities, with exception of very short term options, for which an asymmetric smile obtains.

While for OTM and ATM contracts the term structure is upward sloping, a richer variety of

shapes obtains for ITM contracts.

5.4. Vanishing learning effects

In our setup investors use a consistent estimator of π, and as Nt → ∞, π̂t → π and learning

effects vanish. To study the consequence of this, we double the precision of investors’ beliefs

with respect to the experiments performed in section 5, keeping the mean constant, i.e. nt = 182

and Nt = 350. The representative agent now brings experience of over 16 months of trading

and dividend realizations. Figure 11 shows the resulting option prices.

When learning effects are weak and investors have a more accurate estimate of π, BL option

prices converge to BS prices. This is not surprising since learning is the only source of non-

stationarity in our model. The first panel of Figure 11 shows that differences previously of the

order of 1-2 dollars, now decline to a quarter of that range. Panels two and three show that

BL implied volatilities continue to display a systematic pattern over moneyness, although the

implied volatility surface is flatter than the one exhibited in Figure 6. As Nt →∞ and π̂t → π

(from above) a smile is obtained instead of the smirk in figure 6. This indicates that at times

when option markets are characterized by smiles, learning effects are weak in the sense that

investors attach high precision to their initial beliefs. Smirks, on the other hand, are indicative

of markets with strong learning effects and uncertain beliefs. Finally, the fourth panel shows

that the SPD converges to the log-normal distribution.21

To ensure that learning effects do not disappear asymptotically, one can simplify the learn-

ing model to assume that the markets use a rolling window of the data to estimate π. This

guarantees that the markets will not obtain an infinite precision of the fundamentals param-

eters as the sample grows. This is also consistent with widespread market practice and is a

way of robustifying the estimate of π with respect to slowly moving non-stationarities in the

fundamentals process. An additional benefit from this assumption is that we can deduce from

the options price data the effective memory (or window length, Nt) applied by the market,

which is of separate interest. In practice, the use of a rolling window of observations has two

consequences. The first is obvious: agents now form an estimate of the unknown parameter

20See Campa and Chang (1995).
21We omit the discussion of the impact of a large Nt on the volatility term structure. Though the patterns are

unchanged, the implied volatility curves get flatter and their level moves down towards the BS value. Nevertheless,

a precision, Nt, in excess of 16 months of observations implies effects that are still close to those observed in the

data.
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π based only on the most recent R observations, where R is the length of the rolling window,

bπRt = Pt
j=t−R+1 I{gt+j=gh}

R =
nRt
R (assuming R < t). There is a second and subtler implication:

When agents form perceptions of the probability distribution of future dividend levels on the

binomial lattice, they have to integrate over all the possible future perceptions of bπRt , accounting
for the fact that moving into the future they will have to keep rolling the window of observa-

tions used in the estimation, replacing past observations with future realizations. The resulting

formula to calculate the perceived probability distribution over future dividend levels is:

PrRWt

n
Djt+i|nRt , R

o
=
1

Ri

(ij)X
l=1

nh
I{glt+1=gh}n

R
t +

³
1− I{glt+1=gh}

´
(R− nRt )

i
×

×
iY

k=2

I{glt+k=gh}
Ã
nRt +

k−1X
s=1

I{gt+s=gh}-fk

!
+
³
1-I{glt+k=gh}

´Ã
R− nRt −

k−1X
s=1

I{gt+s=gh} + fk

!#)
(7)

where fk =
Pk−2
s=0 I{gt−N+s=gh} is a ‘forget factor’ that counts the number of times in which

dividends grew at a high rate between t − R and t − R + k − 1. Notice that the summationP(ij)
l=1 iterates over all of the

¡i
j

¢
independent paths leading to the same final dividend level Djt+i,

0 ≤ j ≤ i, with l indexing each of these paths. Indeed, the simple binomial coefficient ¡ij¢ in
Proposition 3 is now replaced by

P(ij)
l=1 . However, although its theoretical limiting properties

are interestingly different, as long as the rolling window is not too small, the Bayesian model

described in Section 4 will provide a good approximation to an exact solution which explicitly

incorporates investors’ use of a rolling window.22

6. Option price dynamics and learning effects

Thus far we have studied the ability of the BL model to match typical cross-sections of option

prices at a point in time. However, the Bayesian updating algorithm implies a set of dynamic

restrictions on how implied volatility surfaces and term structures evolve over time as investors

update bπt. Such testable restrictions do not have a counterpart in the BS model which does
not consider the effect of changing probability beliefs. By tracking option prices on several

consecutive days, not only do we get insights into how investors change their beliefs but we also

get a more precise estimate of the initial beliefs.

Estimating the dynamics of beliefs from observed option prices is a new exercise that needs to

be put in perspective. When asset markets are (dynamically) complete, equilibrium asset prices

22Simulation experiments (approximating rolling window option prices with Monte Carlo techniques) confirmed

that for the values of Nt typically encountered in our sample, namely around 300 observations, the Bayesian price

under an expanding and a rolling window were quite similar.
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contain information about preferences and beliefs. Rubinstein (1985) observes that any pair of

the following implies the third: (1) the preferences of a representative agent; (2) agents’ beliefs;

and (3) the state-price density (SPD). A vast literature has attempted to use the observed prices

of risky assets to infer preferences, the stochastic process of prices, or both. For instance, Bick

(1990) and He and Leland (1993) impose parametric restrictions on the generating process of

asset prices and infer the preferences of a representative agent. Rosenberg and Engle (1997)

develop a nonparametric estimator of the empirical pricing kernel which is based on the ratio of

the estimated state prices and the estimated physical (objective) probability beliefs defined on

a discrete grid of possible future returns. They use their pricing kernel estimates to document

time-variation in the risk attitudes of the market. Furthermore, Bates (1991), Jackwerth and

Rubinstein (1996), and Äit-Sahalia and Lo (1998) back out the perceived risk neutral stochastic

process of asset prices from observed option prices.

Bayesian learning provides an as far unexplored possibility to expand Rubinstein’s list to

a fourth and separate item: the dynamics of the learning process followed by a representative

agent in an equilibrium model. As in Rubinstein (1994) and Jackwerth and Rubinstein (1996),

we fix preferences and infer a vector of unknown parameters from observed option prices. Since

the dynamics of beliefs on a learning path determine the evolution in the SPD and therefore also

option prices, the parameters on the entire learning path can be backed out from the following

general program23

min
{πt}Tt=1,N,m

TX
t=1

τ̄ tX
τ=τ t

KτtX
Kτt=Kτt

g
¡
CBL(ft,πt,N,m; γ,β), C(ft)

¢
s.t.

πtN

N +m
≤ πt+1 ≤ πtN +m

N +m

0 ≤ πt ≤ 1 t = 1, ..., T

N > 0, m > 0 (8)

where ft = [τ t Kτ t St r
f
t ]
0 denotes the option contract features and the underlying asset price,

St, which we condition on, CBL(ft,N,m; γ,β) is the theoretical price of the call option on

a learning path and C(ft) is the observed call price at time t for an option with strike Kτ t

expiring in τ t days. The indexes appended to τ t and Kτ t reflect the fact that maturities and

strike prices change over time, following the dynamics of the underlying price and the financial

cycle. The first constraint arises from the fact that when dividends change m times in a unit

interval, πt can be updated to any value between
πtN
N+m (when dividends grow m times at the

rate gl) and
πtN+m
N+m (when dividends grow m times at the rate gh). Finally, g(·) is a function

23Our approach is similar to Bates (1991), who imposes CRRA preferences to estimate by NLS the parameters

of an asymmetric jump diffusion model with systematic jump risk.
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that measures the distance between the observed and theoretical option price. For instance, we

might minimize the sum of squared pricing errors across days, strikes or maturities.

Again we assume that the annual volatility of the fundamentals, σ, is 5%. Given σ, gh and

gl can be determined from Proposition 3. We set γ = 0.9 and β = 1
1.02 ' 0.98 on an annual

basis. These choices are based either on the features of our data on the S&P 500 index and

index options, or on what seems a priori plausible.

The estimation procedure provides an estimate N̂ which represents how much precision the

market assigns to its initial beliefs, an estimate m̂ of the frequency with which these beliefs are

updated over the sample period,24 and a T×1 vector π̂ whose dynamics is constrained by Bayes
rule. N̂/m̂ can also be interpreted as an estimate of the length of the time window investors use

to form their beliefs about fundamentals. For instance, if news on fundamentals arrive every

three days (m̂ = 1
3) and N̂ = 300, this implies that agents are using a data window of 900 days.

6.1. Inferring learning from daily cross-sections

The objective of our first exercise is to infer from option prices the belief, πt, its precision level,

Nt, and the frequency with which beliefs are updated and new information arrives, mt, for each

week in the sample:

min
πt,Nt,mt

τ tX
τ=τ t

KτtX
Kτt=Kτt

£
CBL(ft,πt,mt,Nt)−C(ft)

¤2
(9)

for t = 1, 2, ..., T. This amounts to minimizing the in-sample squared pricing errors produced

by the model for each weekly cross-section of option prices. π̂t, N̂t, and m̂t can be viewed as

non-standard NLS estimates.25 The problem is solved by a combination of grid search and a

polytope method, details of which are provided in Appendix B.

This exercise ignores the intertemporal restrictions imposed by our model on the updating

of investors’ beliefs and therefore does not provide the strongest possible test. We do not rule

out large changes across days in the estimated belief π̂t or unbounded variation in the estimated

precision level N̂t. On the other hand, the exercise is quite simple, requiring the estimation of

24The perceived frequency of dividend news, m, is another structural parameter that agents are unlikely to

know. In reality investors will probably use an estimate of its most likely value, m̂. Also, we refer to m as a

number of the form m = 1
d
, d ∈ N, i.e. a rational number and not necessarily an integer. m < 1 (d > 1) would

then imply that news are perceived to hit the market every d periods, on average. For instance m̂ = 1
2
implies

that news on fundamentals are perceived to arrive every two days.
25The problem is nonstandard both because of the presence of constraints on the parameters and because Nt

is a positive integer while mt has structure
1
d
, where d ∈ N. As far as the metric g(·) is concerned, we tried

to estimate the six competing models listed below by minimizing instead the sum of squared implied volatility

errors, i.e. deviation of theoretical implied volatilities from the empirical implied volatilities underlying observed

prices. We obtain in-sample results roughly similar to the one presented below.
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only three parameters on a data set with a cross-sectional size equal to the number of traded

contracts on week t. Furthermore, this setup is fully consistent with the presence of infrequent

and unpredictable structural breaks in the distribution of the fundamentals (cf. Section 5.4).

N̂t then represents an estimate of the size of the window used by the market at time t to form

its estimate of π̂t. When structural breaks are assessed to occur more frequently, the optimal

reaction is to shorten the time window of observations used for estimation purposes, and vice

versa. This is also our rationale for allowing sizeable ‘jumps’ in π̂t, since changing the size of the

observation window can have quite a strong impact on the resulting estimate of π, especially

when beliefs on the frequency of breaks are drastically revised.

To better gauge the plausibility of the learning path implied by S&P 500 option prices, our

empirical tests compare the relative performance of the BL model to the following alternatives:

(i) BS : CBS(ft; σ̂t),

where σ̂t is the implied volatility that minimizes the sum of the squared deviations

τ̄ tX
τ t=τ t

KτtX
Kτt=Kτt

£
CBS(ft; σ̂t)−C(ft)

¤2
s.t. σ̂t > 0, t = 1, ..., T (10)

σ̂t is the implied volatility estimated from the cross-section of option prices at t.

The second model is Black-Scholes generalized to allow the volatility input to depend on the

moneyness of the priced option, that is, a BS with a step-wise modification to accommodate

the ‘smile’ bias along moneyness:

(ii) BS(m) : CBS(ft; σ̂Kτt
)

where σ̂Kτt
=
n
σ̂KITM

τt
, σ̂KATM

τt
, σ̂KOTM

τt

o
is a volatility index function of moneyness.26 We allow

σ̂Kτt
to take three separate values depending on the moneyness of the option. A contract is

ITM if moneyness is above +2%, it is ATM is moneyness is between -2 and +2%, and it is

OTM if moneyness is below -2%. The three volatility indices are chosen to minimize the sum

of squared deviations

τ tX
τ t=τ t

KτtX
Kτt=Kτt

h
CBS(ft; σ̂KMon

τt
)−C(ft)

i2
s.t. σ̂KMon

τt
> 0 (11)

σ̂KMon
τt

=
n
σ̂KITM

τt
, σ̂KATM

τt
, σ̂KOTM

τt

o
.

26Moneyness is defined as 100
³
Ft,τ
K
− 1

´
, where K is the strike price and Ft,τ is the price of a futures contract

expiring at τ .
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The third model is a Black-Scholes formula generalized to allow the volatility input to depend

on the time-to-maturity of the priced option:

(iii) BS(τ) : CBS(ft; σ̂τMat
t
),

where σ̂τMat
t

=
n
σ̂τshortt

, σ̂τmedt
, σ̂

τ longt

o
is a volatility index function of time-to-maturity which

reflects whether the option is close-to-expiration (less than 40 calendar days to expiration),

medium term (between 40 and 70 days to maturity), or has a long (more than 70 days to

expiration) time-to-expiration. The parameters are chosen to minimize the sum of squared

deviations

τ tX
τ t=τ t

KτtX
Kτt=Kτt

h
CBS(ft; σ̂τMat

t
)−C(ft)

i2
s.t. σ̂τMat

t
> 0 (12)

σ̂τMat
t

=
n
σ̂τshortt

, σ̂τmedt
, σ̂

τ longt

o
.

The fourth model we consider is a deterministic volatility BS model modified to allow σ to be

quadratic in strikes (to obtain smile shapes) and linear in time-to-maturity:27

(iv) BS-spline: Cspline(ft) = C
BS(ft;σ

spline(τ t,Kτ t))

σspline(τ t,Kτ t) = max
©
.01,α0 + α1Kτ t + α2K

2
τ t + α3τ t + α4K

2
τ tτ t

ª
(13)

For each sample day we fit a model for the volatility surface σspline(τ t,Kτ t) by solving:

min
αt
SSR(αt) ≡

τ tX
τ t=τ t

KτtX
Kτt=Kτt

h
σspline(ft;αt)− σI(ft)

i2
(14)

where σI denotes observed market implied volatilities (calculated by inverting the BS formula).

We then plug the estimated α̂t into BS to obtain option prices. Notice that although similar

in spirit, (13) differs from models two and three because it is fitted to the implied volatility

surface and not to observed option prices.

Finally, we estimate Heston and Nandi’s (2000) NGARCH(1,1) model on the sequence of

weekly cross sections of option prices. Assume that the continuously compounded returns on

the underlying asset follow a nonlinear asymmetric GARCH (1,1)-in-mean process over time

steps of fixed length equal to one day:

r(t) = rf + λh(t) +
p
h(t)z(t) (15)

h(t) = ω + α
h
z(t− 1)− ξ

p
h(t− 1)

i2
+ φh(t− 1), (16)

27This echoes the “ad hoc strawman” model of Dumas et al. (1998, pp. 2085-2087) who argue that market

makers simply smooth the implied volatility surface using polynomials and predict option prices by using a BS

in which σ is a function of the strike and maturity.
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where r(t) ≡ lnS(t) − lnS(t −∆), rf is the continuously compounded and constant risk-free
interest rate, z(t) ∼ N(0, 1), and h(t) is the volatility of the underlying daily returns for the
time interval [t− 1, t) conditional on the information available at time t− 1. Let

z∗(t) = z(t) +
µ
λ+

1

2

¶p
h(t) and ξ∗ = ξ + λ+

1

2
. (17)

Substituting these definitions into (15) - (16) we obtain:

r(t) = rf − 1
2

p
h(t) +

p
h(t)z∗(t) (18)

h(t) = ω + α
h
z∗(t− 1)− ξ∗

p
h(t− 1)

i2
+ φh(t− 1). (19)

Under the transformed measure z∗(t), rt has conditional mean rf − 1
2

p
h(t) and conditional

variance ht. Under assumptions ensuring that a call option with one period to expiration satisfies

the Black-Scholes formula (see, e.g., Duan (1995)), Heston and Nandi (2000) show that a local

risk neutral probability measure Q exists, that it is unique and that it is characterized by

another NGARCH (1,1) process with EQ [rt|Φt−1] = rf − 1
2ht. They also show how to solve for

the conditional generating function ft(φ) of the final spot price ST under the process in (15) -

(16) using the method of undetermined coefficients.28 The current equilibrium price of a call

option with strike K and τ periods to maturity can be calculated by inverting the risk neutral

conditional characteristic function f∗t (iφ) according to the formula:

P ∗K = F
∗(lnK) =

1

2
+
1

π

Z ∞

0
Re

·
e−iφ lnKf∗t (iφ)

iφ

¸
dφ, (20)

We can therefore write our final benchmark model as follows:

(v) NGARCH(1, 1) : C (St, τ ,K;ω,α,φ, ξ, θ) = StP
∗
S − e−r

f τKP ∗K

where P ∗S =
1
2 +

1
π

R∞
0 Re

h
e−iφ lnKf∗t (iφ+1)

iφf∗t (1)

i
dφ.29

28ft(φ) is log-linear with coefficients that depend on the parameters θ, ω, α, φ, and ξ. These coefficients can

be calculated in a recursive fashion starting from the terminal conditions where all of the coefficients must equal

zero so that fT (φ) = S
φ
T .

29Our implementation follows the same procedures detailed in the paper by Heston and Nandi. We (i) use

daily S&P 500 index returns to model the evolution of volatility; (ii) update the variance h(t+ 1) each week by

using the time series of index returns over the previous 252 days.
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6.2. Goodness-of-fit Measures

To measure the fit of any given option pricing model, bC(ft), we adopt four indicators. The first
is the average root mean squared valuation error (RMSVE),

RMSV E = T−1
TX
t=1

W−1
t

τ tX
τ t=τ t

K̄τtX
Kτt=Kτt

h bC(ft)−C(ft)i2

1/2

= T−1
TX
t=1

n
W−1
t
dSSRMt o1/2 (21)

where Wt measures the total number of contracts for which prices were available as of week t.

Likewise, we consider the average mean absolute valuation error (MAVE),

MAVE = T−1
TX
t=1

W−1
t

τ tX
τ t=τ t

K̄τtX
Kτt=Kτt

¯̄̄ bC(ft)−C(ft)¯̄̄ . (22)

To assess the potential for overfitting, we report Akaike’s information criterion (AIC),30

AIC = T−1
TX
t=1

h
−2 lnL(θ̂t) + 2p

i
, (23)

where p is the number of parameters estimated for a given model and L(θ̂t) is its likelihood.

This criterion trades off fit, as measured by L(θ̂t), against parsimony.

Finally, we follow Dumas et al. (1998) and calculate the mean absolute error outside the

bid-ask spread (MOE):31

MOE = max
n
max[ bC(ft)−Ca(ft), 0],max[Cb(ft)− bC(ft), 0], 0o . (24)

According to this definition, MOE > 0 if and only if either the theoretical option price exceeds

the ask price (Ca(ft)) or the theoretical option price is below the bid quote (C
b(ft)).

To compare the results across models, we also report the proportion of weeks in the sample

for which a given model displays the lowest value of a particular performance measure. This is

also done to avoid situations where a certain model dominates most of the time, although its

average performance is very poor as a result of a few days with extreme performance.

30For simplicity, we call θ the vector of parameters to be estimated with reference to any possible pricing model

M. For instance, in the case of model 4, θ = α, for the BL model θ = [πt Nt mt]
0, and for the variants on the

BS model θ collects the contract-specific volatility parameters.
31Our definition differs from that in Dumas et al. (1998, p. 2072) since our MOE ≥ 0, while their measure

can be either positive or negative. We want MOE to be able to detect all situations where the theoretical option

price falls outside the bid-ask spread and thus do not distinguish between cases where the price is too low and

cases where it is too high.
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Table 2 contains the in-sample averages of RMSVE, AIC, and MAVE across the 292 weeks

during the period June 1988 - December 1993. On average, and across the different measures

of goodness-of-fit, the BS − spline model seems to outperform all alternatives, followed by

the NGARCH model and the BL model.32 Although the average distance between the BL

model and BS-spline is not excessive (less than 10 cents when measured by the RMSVE), the

AIC estimates suggest that the larger number of parameters of the BS-spline model does not

completely explain its superior performance. At the same time, our weekly implementation of

the BL model leads to an improvement of 78 cents over Black-Scholes. Though far from being

the best fitting model in-sample, the BL approach provides quite precise estimates of option

prices, often inside the bid-ask spread. Indeed the MOE of the BL model (35 cents on average)

is quite close to the BS-spline minimum of 30 cents and better than any of the other competing

models.

Following Dumas et al. (1998), these performance indicators are broken down according to

both moneyness and the time-to-expiration of each traded contract. Interesting information can

be extracted when the goodness-of-fit indicators are decomposed according to either moneyness

or time-to-maturity (Panels B and C). The BL model fits as well as the BS-spline for ATM

contracts. For these contracts, BL has a much lower MOE than BS-spline, signalling that the

latter – although surely superior on average – can also lead to gross mispricings outside the

bid-ask spread for these options. While the NGARCH model is particularly effective at pricing

ITM contracts, BS and its variants BS(τ) and BS(m) only provide good in-sample fits for

short-term options.

Table 3 presents summary statistics for the parameter estimates obtained for the five models.

While BS and BS(m) are characterized by estimated volatilities that are quite stable over time,

the same cannot be said for the estimates under BS(τ) and BS − spline. For the latter two
models the SPD implied by the estimates also shows significant instability. In the case of the

BL model, while the πt and Nt estimates are quite stable, there is more variation in the estimate

of the rate of information arrival mt.

To get a better impression of parameter stability for the different models, Figure 12 shows

the time series of the estimated parameters for BS, BS − spline, and BL. The constant

volatility assumption underlying BS is clearly rejected as volatility varies systematically over

time. On some days σ̂t changes by several percentage points. Likewise, the intercept and

coefficients associated with K and K2 in the BS − spline model fluctuate widely from one

week to the next. The case of highest instability concerns the NGARCH model, as already

reported by Heston and Nandi (2000, p. 605). In particular, the estimates of ξ and φ oscillate

32This finding differs slightly from Heston and Nandi’s (2000) result that the NGARCH(1,1) model outperforms

the BS-spline by a few cents in-sample. This difference is likely to reflect the different sample periods and data

selection procedures.
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dramatically: while φ̂ is frequently observed to approach extreme values such as 0 and 1, ξ̂ even

switches sign, thus implying the occasional presence of a negative leverage effect that could

be associated with atypical shapes of the implied volatility surface. This instability must be

carefully considered when evaluating the out-of-sample performance of the NGARCH model.

In all cases, such sharp revisions in the parameter estimates suggest significant instability in

the implied volatility surface. The BL model generates relatively stable parameter estimates,

with π̂t steadily in the range of [.52, .65], N̂t normally around 300 observations, and m̂t most of

the time in the narrow interval [.3, .5]. The speed of flow of information seems to peak in the

first months of 1991 in correspondence with the recovery of the US economy from the recession

of 1990.33 In general option markets display weak optimism (π̂t ≥ 1
2). The stability of the

parameter estimates suggests a relatively smooth evolution in the market’s learning.

6.3. Out-of-sample predictions

The true economic and statistical value of a good option pricing model depends not on its in-

sample fit, which will uniformly improve as more parameters are introduced, but on the precision

with which the model predicts future option prices out-of-sample. Moreover, despite the superior

in-sample fit of the BS-spline and NGARCH models uncovered in the previous subsection, we

also found some results that are potentially problematic for their empirical performance, such as

the instability of the parameter estimates and the large MOEs. We therefore extend the previous

analysis and report statistical measures of out-of-sample prediction performance. Subsequently

we report the hedging performance to measure the economic tracking errors of the models.

For each week t in the sample we estimate the relevant vector of parameters θ̂t in the manner

described above and then use this to forecast the cross-section of option prices on the following

trading week.34

Table 4 provides summary statistics for the one-step-ahead prediction errors. Unsurpris-

ingly, these are somewhat larger than the errors in Table 2. Out-of-sample, the BL model

outperforms the proposed alternatives in the aggregate (Panel A), albeit only marginally in the

case of the BS-spline model. The root mean squared prediction error of the BL model is 1 dollar

against 1.68 dollar for Black-Scholes and 1.06 dollars or higher for the empirical modifications

to BS. The NGARCH does relatively poorly, outperforming Black-Scholes (by 42 cents) but also

predicting with average errors 16 cents larger than BL. In relative RMSPE terms, BL is the

33Since m̂ is on average around 0.3, N̂ = 300 corresponds to about 1000 trading days, i.e. 4 years. N̂t and

m̂t also have a high positive correlation (0.55) so the actual size of the data window implied by the estimates

displays low volatility and for most of the sample period lies between 800 and 1,100 observations.
34When forecasting option prices one-step ahead, we follow Dumas et al. (1998) and condition on the stock

index level and the risk-free rate at close of the following week. This way we test the predictive properties of the

option pricing models independently of the ability to predict the future stock price.
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best model out-of-sample in 35% of the sample weeks. The superior forecasting performance

of the BL model suggests that this model does not provide an accurate fit purely as a result

of weekly variation in the learning parameters. On the other hand, it is natural to attribute

the relatively weaker predictive performance of the BS-spline and NGARCH models to their

parameter instability. When the forecast indicators are decomposed according to either money-

ness or time-to-maturity (Panels B and C), we get a better picture of the relative strengths of

the BL model: It outperforms the other benchmarks for OTM contracts and always compares

closely with the best performing alternative models across moneyness and maturity levels.

6.4. Hedging performance

A common economic measure of the precision of an option pricing model is its ability to assist

in setting up a hedge against changes in the value of the underlying asset. Such a delta hedge

is attained by selling short an amount b∆(ft; θ̂t) of the stock index, where ∆ measures the

sensitivity of the option price to the value of the underlying asset. b∆(ft; θ̂t) is model dependent
and an option pricing model performs well if it allows accurate calculation of b∆(ft; θ̂t) over
time. Allowing for possible misspecification in the option model, the dollar return on the delta

neutral position in excess of the risk-free rate can be shown to be:

ηt+1(θ̂t) = ∆Ct+1 − b∆Ct+1(θ̂t) (25)

which is the difference between the change in the actual price of the call minus the change

predicted by the model based on the estimated vector of parameters θ̂t. A good model should

reduce the excess returns from hedging to zero since ηt(θ̂t) 6= 0 can result from misspecification.
This is the same concept of error from a delta-hedging strategy used by Dumas et al. (1998,

2088-2089).

Table 5 reports statistics on hedging errors. Results are quite similar to the out-of-sample

prediction experiments, in the sense that the BL model still outperforms all the proposed



and (ii) the risk-free interest rate (from proposition 3). Figure 13 reports the two time series.

Overall, the implied path for these variables is quite plausible and consistent with an economy

moving through a slow learning path.

The expected rate of growth of fundamentals is 5% per annum on average. This is higher

than the average rate of growth of real dividends (2.2%) reported by Shiller (2000) for the period

1988-1993. However the dynamics over time of the implied expected fundamental growth fits the

NBER business cycles dates quite well. For instance, the average expected growth rate is 7.4%

for the period June 1988 - July 1990 and then declines to a modest 3.5% for the period August

1990 - December 1993, which contains the last recorded recession of 1990-1991.35 Moreover,

the high average might be related to the high growth rates observed by agents on a learning

path over the expansion period 1983-1989 (3.9%), in the sense that agents’ beliefs might have

adjusted slowly to the incipient recession and the exogenous uncertainty related to the Gulf

War. Although the expected growth rate implied by the BL model is never negative, consistent

with beliefs that the US economy is growing in real terms, annualized growth rates of real

dividends as high as 9% appear in Shiller’s data.

Another implied series that gives positive indications on the robustness of the BL model

is the riskfree interest rate. Its average is 6.4% vs. a sample value of 5.6% for the 1988-1993

period. The implied interest rate appears to decline over time, consistent with the evidence

and with the evolution in the US business cycle during our sample. The model also produces a

time-series standard deviation of the risk-free rate (2.3%) that fits well with the sample value

of 2.1%.

6.6. Learning dynamics with an expanding window

The empirical exercise of the previous subsections ignores the intertemporal restrictions imposed

by our model on the updating of investors’ beliefs and therefore does not provide the strongest

possible test. Therefore we try next to infer the dynamics of learning from observed option

prices by imposing these restrictions on bπt. The model in section 4 assumes that beliefs evolve
as follows:

bπm(t+k)+j = bπm(t+k)+j−1 + I{m(t+k)+j=gh} − bπm(t+k)+j−1Nm(t+k)+j
. (26)

If only one piece of news arrives every period, this intertemporal structure rules out large

revisions in the belief parameters.

We impose these restrictions on blocks of time each of which lasts for two months, and thus

consider a panel of option prices comprising July and August 1988, followed by a panel of the

September and October 1988 prices, and so on, up to December 1993. For each block we solve

35Of course, the identification of fundamentals with real dividends is problematic at best.
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the program:

min
{πt}Tt=1,N

TX
t=1

τ̄ tX
τ=τt

KτtX
Kτt=Kτt

£
CBL(ft,πt,N ; γ,β)−C(ft)

¤2
s.t.

πtN

N + 1
≤ πt+1 ≤ πtN + 1

N + 1

0 ≤ πt ≤ 1 t = 1, ..., T − 1 N > 0 (27)

The program is limited to blocks of 8-9 weeks to avoid the curse of dimensionality implicit in this

NLS estimation program: as T →∞, the dimension of the parameter vector θ = [{πt}Tt=1 , N ]0
tends to infinity which makes a solution practically impossible. Limiting ourselves to a bi-

monthly period means estimating a vector with 9-10 parameters to fit a sample of well over

300 observations on average. This setup therefore imposes much stronger restrictions on our

model than in the previous sub-section and narrowly constrains the temporal dynamics of

investors’ beliefs with regard to the probability of good states. We make the same assumptions

on preferences as in Section 6.3 and to simplify the estimation task also impose m = 1/7, i.e.

fundamentals change at weekly frequency.

Figure 14 reports results over the period July 1988 - June 1991. We limit ourselves to this

interval of time for computational reasons. The figure suggests that the estimated sequence

of beliefs {π̂t}Tt=1 is roughly consistent with our results above, as π̂t varies in the interval [0.3,
0.7]. We notice the same phenomena that were identified above: During 1990 agents drastically

revised downwards their average beliefs on the likelihood of a high growth rate. This is consistent

with a rational reaction to an incipient recession as well as to the additional uncertainty created

by the Gulf War. While other even more restrictive tests can be designed, we consider these

findings prima facie evidence that the BL model is indeed capable of extracting measures of

agents’ beliefs that are economically meaningful.

7. Conclusion

This paper has proposed a simple stylized equilibrium model for asset prices under Bayesian

learning and investigated its ability to explain a variety of empirical biases in the Black-Scholes

option pricing model.

Despite its simplicity, the model with Bayesian learning proved to be able to match both

skews in implied volatilities and a non-constant term-structure in implied volatility. Thus the

model offers a new economic explanation of BS biases. This is important because standard

models in the literature that incorporate jump-diffusion and stochastic volatility effects, have

been found by Das and Sundaram (1999) to be unable to correctly fit both stylized facts for

plausible parameters values.
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The parameters of the learning process implied by the cross-section of option prices appear

reasonably stable over time. Episodes of sharp revisions in the beliefs implied by options prices

are rare and tend to involve the precision of these beliefs rather than their level, which we

find plausible. When we impose the intertemporal restrictions built in through our maintained

Bayesian learning scheme, we find again that the estimated parameters are stable across time

and do not deviate much from the results obtained through the daily cross-sections. This

stability means that the model performs well in out-of-sample prediction and delta hedging

experiments. It also provides a very different learning model than that recently proposed by

David and Veronesi (1999). In their filtering algorithm the updated state probabilities have

frequent discrete jumps from near zero to near one. Our results suggest that a smoother learning

process may be well suited for out-of-sample predictions of the evolution in the cross-section of

option prices.
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Appendix A

Proof. [Proposition 2] We first show that adjusting g
(m)
h , g

(m)
l , π(m), ρ(m) as a function of the

number of steps per period m, and choosing an appropriate coefficient of relative risk aversion γ

gives the assumed annual risk-free rate r and dividend yield δ, as well as the correct annual mean

and standard deviation of the dividend growth rate. g
(m)
h , g

(m)
l , π(m), and ρ(m) are functions

of m,µ,σ, the risk-free rate r and the dividend yield δ. The restrictions on the process for

dividend growth involving g
(m)
h , g

(m)
l , and π(m) are the same as in Cox et al. (1979, 246-251).

ρ(m) and γ jointly depend on r and δ. A subjective discount rate and a coefficient of relative

risk aversion can be found to keep the period [t, t+ τ ] risk-free and dividend rates constant per

unit of calendar time and independent of m:

1 + r(m) =
1 + ρ(m)

(1 + g
(m)
l )−γ + π(m)

h
(1 + g

(m)
h )−γ − (1 + g(m)l )−γ

i .
As m → ∞, ρ(m) decreases since (1 + r)dtv goes to zero and {(1 + g(m)l )−γ + π[(1 + g

(m)
h )−γ −

(1 + g
(m)
l )−γ]} goes to one. The decrease in r(m) cancels out against the increase in v so the

annual risk-free rate is constant as assumed. As for the dividend yield,

1 + δ(m) =
(1 + r)

dt
v

n
(1 + g

(m)
l )−γ+π(m)

h
(1 + g

(m)
h )−γ−(1 + g(m)l )−γ

io
(1 + gl)

1−γ+π(m)
h
(1 + g

(m)
h )1−γ−(1 + g(m)l )1−γ

i = (1 + δ)
dt
v

which over the period [t, t+ τ ], is [(1 + δ)
dt
v ]v = (1 + δ)dt, or (1 + δ) per year (dt = 1). Notice

that γ does not need adjustment as a function of m since this parameters does not depend on

time. For the proof of convergence of this model to BS, we refer to Cox et al. (1979, 246-251).

Proof. [Proposition 3.] Start from the first of the two Euler equations in (4). Taking the limit

as T →∞, assuming that the sum converges, using the transversality condition, and dividing

and multiplying all the terms in the summation by the current dividend level, we obtain:

SBLt = Dt

(bEt [Qt+1(1 + gt+1)] + ∞X
s=2

bEt hQt+1(... bEt+s−1(Qt+sDt+s)...)i)

= Dt

(bEt £β(1 + gt+1)1−γ¤+ bEt "β(1 + gt+1)1−γ bEt+1ÃβµDt+2
Dt+1

¶−γ
×

+
∞X
s=3

bEt hQt+1(... bEt+s−1(Qt+sDt+s)...)i)

= ... = Dt

β
1X
j=0

(1 + g∗h)
j(1 + g∗l )

1−jPBLt
³
Djt+1|nt,Nt

´
+�

t+1



×(1 + g∗l )2−jPBLt
³
Djt+1|nt, Nt

´
+ ...+

∞X
s=3

bEt hQt+1( bEt+s−1(Qt+sDt+s). . .)i)

= Dt`imv→∞


vX
i=1

βj
jX
j=0

(1 + g∗h)
j(1 + g∗l )

i−jPBLt
³
Djt+i|nt,Nt

´
= DtΨ

BL
t (gh, gl, γ, ρ, nt,Nt)

where we have used the fact that in equilibrium Qt+s = β
³

Dt+s
Dt+s−1

´−γ
. Notice that ΨBLt > 0

ensures positive stock prices if dividends are always positive. For this to happen it suffices

that (1 + g∗h)
j(1 + g∗l )

i−j > 0 ∀i, j. These conditions follow on their turn from the fact that

gh > gl > −1 and ρ > −1.
As for the bond price, the second Euler equation in (4) directly gives the result by evaluating the

conditional expectation taking PrBLt

³
Djt+i|nt,Nt

´
as the relevant probability measure. Since

rBLt (bπt) = 1

BBLt (bπt) − 1 = 1 + ρ

(1 + gl)−γ + bπt £(1 + gh)−γ−(1 + gl)−γ¤ − 1
it is immediate to verify that ρ > −1 is sufficient for rBLt > −1 ∀t as the denominator is always
positive from gh > gl > −1.
A last aspect of the result is the convergence of the infinite sum in the equilibirum stock price,

or equivalently the existence of the BL equilibrium. Since γ ≤ 1, ρ > g∗h is necessary and
sufficient for the equilibrium to exist. In this case g∗h > g∗l so that the worst possible case is
PrBLt

¡
Dit+i|nt,Nt

¢
= 1. Then:

ΨBLt =

( ∞X
i=1

µ
1 + g∗h
1 + ρ

¶i)

converges to
1+g∗h
ρ−g∗h if and only if ρ > g

∗
h. By a backward induction reasoning similar to the one

made above ρ > g∗h is necessary and sufficient for existence of the equilibrium when γ ≤ 1.

Given ρ this imposes a lower bound on γ or, conversely, given γ this implies an upper bound

on ρ. 36

Proof. [Proposition 4] The equations follow from the expression for the no-arbitrage price

of a contingent claim that pays off max
n
0, SBL,jt+v −K

o
once the probabilities perceived on

36Since γ = 1 implies g∗h = g
∗
l = 0, in this case the BL pricing kernel simplifies to:

ΨBL =

∞X
i=1

βj
iX

j=0

PrBLt

³
Dj
t+i|nt, Nt

´
=

∞X
i=1

βj =
1

ρ
= ΨFIRE,

i.e. the FI kernel. Then a ρ > 0 is sufficient for the equilibrium to exist.
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a learning path are used. We only need to check that the probabilities in the expression

for the SPD are risk-neutralized in all the underlying single period models associated with

the information structure. From the Euler equations under Bayesian learning, we know that

St+k = E {Qt+k+1(Dt+k+1 + St+k+1)|π̂t+k}. Dividing through by the price of the one-period
zero coupon bond issued at time t+ k we have:

(1 + ρ)St+k
(1 + gl)−γ + bπt [(1 + gh)−γ − (1 + gl)−γ ]

= E

(
Qt+k+1(Dt+k+1 + St+k+1)

(1 + ρ)

(1 + gl)
−γ+bπt+k £(1 + gh)−γ−(1 + gl)−γ¤ |π̂t+k

)
,

where we have used that a zero coupon bond has unit price at expiration. Let the discounted

price and the discounted cumulative dividend process be

S∗t+k =
(1 + ρ)St+k

(1 + gl)−γ + bπt+k [(1 + gh)−γ − (1 + gl)−γ ] ,
D∗t+k =

kX
s=0

Dt+s
(1 + ρ)

(1 + gl)−γ + bπt+s [(1 + gh)−γ − (1 + gl)−γ ] .
Adding D∗t+k to both sides and using that

E

½
Qt+k+1

(1 + ρ)

(1 + gl)−γ + bπt+k [(1 + gh)−γ − (1 + gl)−γ] |π̂t+k
¾
= 1,

we obtain:

S∗t+k +D
∗
t+k = E

£
Qt+k+1(S

∗
t+k+1 +D

∗
t+k+1)

× (1 + ρ)

(1 + gl)−γ + bπt+k [(1 + gh)−γ − (1 + gl)−γ] |bπt+k
¾
,

which demonstrates that the process S∗t+k+D
∗
t+k is a martingale under the (conditional) prob-

ability measure

bP nSjt+k+1|bπt+ko = Qt+k+1 (1 + ρ)

(1 + gl)−γ + bπt+k [(1 + gh)−γ − (1 + gl)−γ ] × P
n
Djt+k+1|bπt+ko

= β

Ã
Djt+k+1
Dt+k

!−γ
[1 + rBLt+k(bπt+k)]P nDjt+k+1|bπt+ko .

This represents the one-period risk neutral density. The corresponding state-price density is

simply

eP nSjt+k+1|bπt+ko = 1

1 + rBLt+k(bπt+k) bP
n
Sjt+k+1|bπt+ko

= β

Ã
Djt+k+1
Dt+k

!−γ £
I{j=1}bπt+k + (1− I{j=1})(1− bπt+k)¤ .

34



Well-known results in, e.g., Pliska (1997) guarantee that the existence and uniqueness of the

risk neutral measure in the underlying single-period models is sufficient for the existence and

uniqueness of the risk neutral measure in the infinite horizon model. This risk-neutral measure

can be found by ’pasting’ together all the paths leading to a certain state t+ v periods ahead

and exploiting the independence of the realizations of the dividend growth rate. For instance,fPrnSjt+v|nt,Nto corresponds to the product of the state-price densities that a high dividend
growth occurs j out of v times multiplied by the number of sample paths that can lead to this

final outcome,
¡v
j

¢
:

fPrt nSjt+vo = µvj
¶ vY
k=1

β

Ã
Djt+k+1
Dt+k

!−γ £
I{jk=1}bπt+k + (1− I{jk=1})(1− bπt+k)¤

=

µ
v

j

¶
βv
nt...(nt + j − 1)(Nt − nt)...(Nt + v − j − nt + 1)

Nt(Nt + 1)...(Nt + j − 1)...(Nt + v)
vY
k=1

Ã
Djt+k+1
Dt+k

!−γ

= βv

Ã
Djt+v
Dt

!−γ µ
v

j

¶Qj−1
k=0(nt + k)

Qv−j−1
k=0 (Nt − nt + k)Qv−1

k=0(Nt + k)
.

It is easily shown thatQj−1
k=0(nt + k)

Qv−j−1
k=0 (Nt − nt + k)Qv−1

k=0(Nt + k)
=

nt...(nt + j − 1)(Nt − nt)...(Nt + v − j − nt + 1)
Nt(Nt + 1)...(Nt + v)

.

This is the desired multiperiod risk neutral measure. Notice that the time t risk-neutral distri-

bution of the time t+v stock prices depends on the entire sequence of possible future probability

beliefs.

Proof. [Proposition 5] Let ∇BLBS(K) ≡ CBLt+k(K) − CBSt+k(K), ΨBLt+k+v(s) ≡ ΨBLt+k+v(nt+k +
s,Nt+k+v), and P

BL
t+k(s) ≡ PBLt+k

©
Dst+k+v|nt+k, Nt+k

ª
.We start by observing that conditioning

on a common, current stock price St+k has implications for the array of possible future stock

prices in t+k+v. In fact SBLt+k+v(0) = Ψ
BL
t+k+v(0)(1+gl)

vDt =
ΨBLt+k+v
ΨBLt+k

(1+gl)
vSt+k < S

BS
t+k+v(0)

= ΨBS(1+gl)
vDt = (1+gl)

vSt+k holds if and only if
ΨBLt+k+v
ΨBLt+k

< 1 as SBSt+k = S
BL
t+k by assumption.

It is easy to show that this is guaranteed by the fact that bπt+k+v(0) = nt+k
Nt+k+v

< bπt+k = nt+k
Nt+k

so

that ΨBLt+k+v(0) < Ψ
BL
t+k(nt+k, Nt+k). Similarly, S

BL
t+k+v(v) =

ΨBLt+k+v
ΨBLt+k

(1+gh)
vSt+k > S

BS
t+k+v(v) =

(1 + gh)
vSt+k holds if and only if

ΨBLt+k+v
ΨBLt+k

> 1,.

We study ∇BLBS(K) in five disjoint intervals for the strike price: [0, SBLt+k+v(0)), [SBLt+k+v(0),
SBSt+k+v(0)), [S

BS
t+k+v(0), S

BS
t+k+v(v)), [S

BS
t+k+v(v), S

BL
t+k+v(v)), and [S

BL
t+k+v(v),+∞). As for the
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first interval, observe that when K = 0

∇BLBS(0) =
vX
s=0

βv
µ
Dst+k+v
Dt+k

¶−γ
SBLt+k+v(s)P

BL
t+k(s)-

vX
s=0

βv
µ
Dst+k+v
Dt+k

¶−γ
SBSt+k+v

µ
v

s

¶
πs(1-π)v−s

= St+kβ
v bEt+k(bEt+k+1 "...ÃΨBLt+k+v µDt+k+vDt+k

¶1−γ!#)
-St+kβ

vEt+k

"µ
Dt+k+v
Dt+k

¶1−γ#

is positive as ΨBLt+k+v

³
Ds
t+k+v

Dt+k

´1−γ
is a non-decreasing, convex function of bπt+k+v. Indeed both

ΨBLt+k+v and
³
Ds
t+k+v

Dt+k

´1−γ
are positive, non-decreasing and convex functions of bπt+k+v, and it is

straightforward to check that their product possesses the same properties. Then, for bπt+k = π,

Jensen’s inequality implies that

ΨBLt+k
bEt+k(ΨBLt+k+1

ΨBLt+k

µ
Dt+k+1
Dt

¶1−γ bEt+k+1 "ΨBLt+k+2
ΨBLt+k+1

µ
Dt+k+2
Dt+k+1

¶1−γ
...

... bEt+k+v−1Ã ΨBLt+k+v
ΨBLt+k+v−1

µ
Dt+k+v
Dt+k+v−1

¶1−γ
| π
!
...|π

#
|π
)

≥ ΨBLt+kEt+k
"
ΨBLt+k+1
ΨBLt+k

µ
Dt+k+1
Dt+k

¶1−γ ΨBLt+k+2
ΨBLt+k+1

µ
Dt+k+2
Dt+k+1

¶1−γ
...
ΨBLt+k+v
ΨBLt+k+v−1

µ
Dt+k+v
Dt+k+v−1

¶1−γ#

= ΨBLt+kEt+k

"
ΨBLt+k+v
ΨBLt+k

µ
Dt+k+v
Dt+k

¶1−γ#
= ΨBLt+kEt+k

"µ
Dt+k+v
Dt+k

¶1−γ#
since when π is known ΨBLt+k+v = Ψ

BL
t+k. For bπt+k > π, CBLt+k(0)−CBSt+k(0) ≥ 0 holds as

bEt+k(bEt+k+1 "... bEt+k+v−1ÃΨBLt+k+v µDt+k+vDt+k

¶1−γ
|bπt+k! ...|bπt+k# |bπt+k)

is always bigger than the first line of the previous expression since for bπt+k > π probability

beliefs under Bayesian learning are no longer a pure mean-preserving spread of full information

beliefs, but for γ < 1 probability mass is transferred from bad to good states of the world in

which
³
Dst+k+v
Dt+k

´1−γ
ΨBLt+k+v takes higher values.

Next consider any K ∈ (0, SBLt+k+v(0)) :

∇BLBS(K)=
vX
s=0

βv
µ
Dst+k+v
Dt+k

¶−γ
SBLt+k+v(s)P

BL
t+k(s)-

vX
s=0

βv
µ
Dst+k+v
Dt+k

¶−γ
SBSt+k+v

µ
v

s

¶
πs(1-π)v−s+

+Kβv
vX
s=0

µ
Dst+k+v
Dt+k

¶−γ ·µv
s

¶
πs(1− π)v−s − PBLt+k(s)

¸
>

> Kβv
vX
s=0

µ
Dst+k+v
Dt+k

¶−γ ·µv
s

¶
πs(1− π)v−s − PBLt+k(s)

¸
> 0
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where we have used that the first two terms of ∇BLBS(K) correspond to ∇BLBS(0) > 0. The last
inequality obtains if and only if bπt+k > π, as assumed.

It is convenient to proceed backwards for the rest of the proof. Suppose K ≥ SBLt+k+v(v).

Since max{0, SBLt+k+v(v)−K} = 0 =⇒ max{0, SBSt+k+v(v)−K} = 0 as SBLt+k+v(v) > SBSt+k+v(v),
the two call prices are both trivially zero and their difference is therefore nonnegative. Hence

∇BLBS(K) = 0 in the [SBLt+k+v(v),+∞) interval.
Consider now the interval K ∈ [SBSt+k+v(v), SBLt+k+v(v)). Since max{0, SBSt+k+v(v)−K} = 0 while
max{0, SBLt+k+v(v)−K} ≥ 0 it follows that while CBSt+k(K) = 0 everywhere, CBLt+k(K) > 0. Hence
∇BLBS(K) > 0. Also, ∇BLBS(K) is decreasing in K ∈ [SBSt+k+v(v), SBLt+k+v(v)) as CBLt+k(K) is obvi-
ously decreasing in the strike price.

We can gain some insight by splitting the third interval for the strike price, [SBSt+k+v(0), S
BS
t+k+v(v)),

into two sub-intervals. Define aBS(K) as the smallest natural number s.t. (1 + gh)
a(1 +

gl)
v−aSt > K and aBL(K) as the smallest natural number s.t.

ΨBLt+k+v(a)

ΨBLt+k(nt+k,Nt+k)
(1 + gh)

a(1 +

gl)
v−aSt > K. Observe that as for

s0 = int(vbπt+k) + I{vbπt+k−int(vbπt+k)>0} ≥ vbπt+kbπt+k+v =
=

Nt+k
Nt+k + v

bπt+k + 1

Nt+k + v
s ≥ Nt+k

Nt+k + v
bπt+k + 1

Nt+k + v
vbπt+k = bπt+k,

so
ΨBLt+k+v
ΨBLt+k

≥ 1. Therefore, aBL(K) ≥ int(vbπt+k) + I{vbπt+k−int(vbπt+k)>0} implies that aBS(K) ≥
aBL(K), while for aBL(K) < int(vbπt+k)+I{vbπt+k−int(vbπt+k)>0} aBS(K) < aBL(K) as ΨBLt+k+v

ΨBLt+k
< 1.

In other words, ∃K ∈ [SBSt+k+v(0), SBSt+k+v(v)) s.t. aBL(K) ≥ int(vbπt+k)+ I{vbπt+k−int(vbπt+k)>0}
so that ∀K ≥ K aBS(K) ≥ aBL(K) and ∀s ≥ aBL(K) SBLt+k+v(s) ≥ SBSt+k+v(s), while ∀K < K

aBS(K) < aBL(K). Suppose first that K ∈ [K,SBSt+k+v(v)). Then

∇BLBS(K) =
vX

s=aBL(K)

βv
µ
Dst+k+v
Dt

¶−γ
[SBLt+k+v −K]PBLt+k(s) +

−
vX

s=aBL(K)

βv
µ
Dst+k+v
Dt

¶−γ
max

©
0, SBSt+k+v −K

ªµv
s

¶
πs(1− π)v)sispositie as[

, SBS
t+ + v−K



over [s2, v] at least compensate the negative values between [vbπt+k, s2) For bπt+k > π, the two

values of s such that f(s) > 0 move ‘right’, to s01 > s1 and s
0
2 > s2 as increasing probability

mass is shifted from states with low final dividends to states with high final dividends. For

the same reason, for π ≥ f(s) contains an even larger (positive) weighting mass in the interval
[vbπt+k, v]. Since the summation in the expression for ∇BLBS(K) runs from aBL(K) to v, for K

s.t. aBL(K) ≥ s02 > vbπt+k, PBLt+k(s) > ¡vs¢πs(1− π)v−s ∀s ≥ aBL(K), the result obtains.
Suppose instead that K ∈ [SBSt+k+v(0),K). This implies aBS(K) < aBL(K) while ∀s < aBL(K)
SBSt+k+v(s) > SBLt+k+v(s). By the same argument made above, C

BL
t+k(K) − CBSt+k(K) can be ei-

ther increasing or decreasing in K over this interval. First, note that aBL(SBSt+k+v(0)) is s.t.

SBLt+k+v(a
BL(SBSt+k+v(0))) ≥ SBSt+k+v(0), while ∀s < aBL(SBSt+k+v(0)) SBLt+k+v(s) < SBSt+k+v(0).Given

this, we check that ∇BLBS(SBSt+k+v(0)) is nonnegative:

∇BLBS(SFREt+k+v(0)) = ∇BLBS(SBLt+k+v(0))−
aBL(SBSt+k+v(0))−1X

s=0

βv
µ
Dst+k+v
Dt

¶−γ
SBLt+k+vP

BL
t+k(s) +

SBLt+k+v(0)
vX
s=0

βv
µ
Dst+k+v
Dt

¶−γ
PBLt+k(s)− SBSt+k+v(0)

vX
s=aBL(SBSt+k+v(0))

βv
µ
Dst+k+v
Dt

¶−γ
PBLt+k(s) +

-SBLt+k+v(0)
vX
s=0

βv
µ
Dst+k+v
Dt

¶−γ µv
s

¶
πs(1-π)v−s+SBSt+k+v(0)

vX
s=0

βv
µ
Dst+k+v
Dt

¶−γ µv
s

¶
πs(1-π)v−s>

> [SBSt+k+v(0)− SBLt+k+v(0)]
vX
s=0

βv
µ
Dst+k+v
Dt

¶−γ ·µv
s

¶
πs(1− π)v−s − PBLt+k(s)

¸
+

+

aBL(SBSt+k+v(0))−1X
s=0

βv
µ
Dst+k+v
Dt

¶−γ
[SBSt+k+v(0)− SBLt+k+v]PBLt+k(s) > 0

where the first inequality follows from ∇BLBS(0) > 0 and the second from the [SBSt+k+v(0) −
SBLt+k+v] > 0 for every term in the summation, plus

Pv
s=0

³
Ds
t+k+v

Dt+k

´−γ
[
¡v
s

¢
πs(1−π)v−s−PBLt+k(s)]

> 0. Consider now a strike K = SBSt+k+v(0) + δ, δ > 0 such that aBL(SBSt+k+v(0) + δ) =

aBL(SBSt+k+v(0)). Then ∇BLBS(K) equals

∇BLBS(SBSt+k+v(0)) + δ

aBL(K)−1X
s=1

βv
µ
Dst+k+v
Dt+k

¶−γ µv
s

¶
πs(1− π)v−s +

+δ
vX

s=aBL(K)

βv
µ
Dst+k+v
Dt+k

¶−γ ½µv
s

¶
πs(1− π)v−s − PBLt+k(s)

¾

which is positive and increasing inK since
Pv
s=aBL(K)

³
Ds
t+k+v

Dt+k

´−γ ©¡2
s

¢
πs(1− π)v−s − PBLt (s)

ª
>

0 from the fact that with aBL(K) < vbπt+k −Pv
s=aBL(K) f(s) contains a nonnegative proba-

bility mass. Repeating the same argument for all the subintervals of [SBSt+k+v(0),K) formed
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by increasing the strike without letting aBL(K) change and exploiting the continuity in K of

∇BLBS(K), we conclude that this function is everywhere positive and increasing in [SBSt+k+v(0),K).
Finally, we are left with the interval [SBLt+k+v(0), S

BS
t+k+v(0)). However, ∇BLBS(K) is a continuous

function and we have already proven that ∇BLBS(SBLt+k+v(0)) > 0. By a similar reasoning it is pos-
sibile to show that if δ > 0 is a small number such that aBL(SBLt+k+v(0)) = a

BL(SBLt+k+v(0)+δ) = 1

and K 0 = SBLt+k+v(0) + δ, ∇BLBS(K 0) > ∇BLBS(SBLt+k+v(0)) > 0 follows. Therefore ∇BLBS(K) is in-
creasing and positive in [SBLt+k+v(0), S

BL
t+k+v(0)+δ].We can repeat the same argument for all the

subintervals of [SBLt+k+v(0), S
BS
t+k+v(0)) in which although the strike price increases, a

BL(K) does

not change. Since ∇BLBS(K) is a continuous function this implies that it is everywhere increasing
over [SBLt+k+v(0), S

BS
t+k+v(0)). Since ∇BLBS(SBLt+k+v(0)) > 0 positivity everywhere obtains.

Appendix B
Estimating learning parameters using the polytope method

Suppose we are interested in minimizing the sum of squared pricing errors computed across

strikes, Kτ t , and maturities, τ t:

min
πt,Nt,mt

SSR(θt) ≡
τ̄ tX

τ t=τ t

KτtX
Kτt=Kτt

[²(τ t,Kτ t)]
2

0 ≤ πt ≤ 1 Nt > 0 Nt ∈ N , mt > 0.

Here the pricing error is defined as

²(τ t,Kτ t) ≡ CBL(τ t,Kτ t , St,πt,mt, Nt)−C(τ t,Kτ t , St).

We accomplish this by a combination of the polytope method and a grid search over a restricted

region of the parameter space:

0 ≤ πt ≤ 1 Nt > 0 Nt ∈ N , mt > 0

The polytope method is a multidimensional comparison method that first constructs a sim-

plex in Rn(in our case n = 3,the dimension of θt).37 The simplex comprises four vertices©
θa θb θc θd

ª
...38 The initial simplex is composed of four vectors that lie on a three-dimensional

37A more complete treatment of polytope methods can be found in Judd (1998) and Walters et al. (1991).
38We choose

©
θa θb θc θd

ª
such that:

θa = [(π̂t−1 − .05) (N̂t−1 − 50) (m̂t−1 + 0.3)]
0

θb = [(π̂t−1 − .05) (N̂t−1 + 50) (m̂t−1 − 0.3)]0

θc = [(π̂t−1 + .05) (N̂t−1 − 50) (m̂t−1 + 0.3)]
0

θd = [(π̂t−1 + .05) (N̂t−1 + 50) (m̂t−1 − 0.3)]0

and thus make the starting values a function of the results obtained the day before.
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plane. At each iteration the vertex that gives the highest value of the objective function is re-

placed with a new vertex that is likely to give a lower value.

A reason for the adoption of this comparison method is that one of the parameters, Nt, can

only take positive, integer values. Furthermore, the layered objective function has systematic

flats and kinks since the total number of forward steps vτ on the lattice is given by the integer

part of τm. Gradient methods are not useful since there exists an infinite number of points in

the parameter space where the objective function is not differentiable. Polytope methods do not

impose smoothness conditions on the objective function and can handle simple discontinuities.

Two additional tests are conducted to see if the polytope search uncovers a local as opposed

to a global minimum of the objective function. First, each day the polytope is started from

a different initial simplex which is not a function of the estimation results from day t − 1and
is chosen to be particularly wide.39 Second, we supplement the combined polytope and grid

search with a rough grid search and require that the minimum sum of squared residuals over

the grid exceeds the polytope solution.

If any of these conditions is not met, we resort to extensive grid search in order to obtain

an optimal estimate of the parameters. Specifically, we implement a two-stage, three-layer grid

search over the following wide region of the parameter space:

Θgrid = {θ : π ∈ [.4, .6] , N ∈ [100, 240], m ∈ [.2, 1.2]}

We limit ourselves to values of πin the interval [.4, .6]since we found that π̂tnever falls outside

this region. N ≥ 250corresponds more or less to a constant volatility Black-Scholes model so we
concentrate on cases where N < 250. N < 100,on the other hand, results in too strong skews

and such values are therefore not considered. The first stage of the grid search involves 825 grid

points, from which the three best estimates are selected prior to a more extensive neighborhood

search around θ̂
(1)
:n

θ : π ∈
h
π̂(1) − .02, π̂(1) + .02

i
, N ∈ [N̂ (1) − 15, N̂ (1) + 15], m ∈ [m̂(1) − .15, m̂(1) + .15]

o

In the second stage each search involves 3,225 grid points. This procedure thus searches over

more than 10,000 distinct points in the parameter space. Up to this point we have performed

two polytope optimizations (from two alternative starting simplices), and two grid searches (the

second in two steps and two layers), so we have considerable confidence in the results.

39We use the following values for
©
θa θb θc θd

ª
:

θa = [.40 20 1]0, θb = [.40 300 .50]0

θc = [.60 20 1]0, and θd = [.60 300 0.50]0.
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Figure 1
Implied Volatility Surface vs. Moneyness

Implied volatility as a function of moneyness for S&P 500 index options maturing in December of each year covered by
our data set (1988 fi 1993). Each symbol in the plots corresponds to a particular day in the sample where a given maturity
was traded. Moneyness is defined as the ratio between the level of the S&P 500 index (less the dividends paid by the index
up to maturity of the option contract) and the strike price.
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Figure 2
Implied Volatility Surface vs. Term Structure

The three graphs plot implied volatility as a function of maturity for S&P 500 index options over the period Jan. 18 -  Jan.
25, 1993. Three different moneyness levels are used: 0.96 (in the money), 1 (at the money), and 1.04 (out of the money).
Moneyness is defined as the ratio between the level of the S&P 500 index (less the dividends paid by the index up to
maturity of the option contract) in the moment of the trade and the strike price.
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Figure 3
State Price Density Implied by S&P 500 Index Options

The three graphs plot the average state-price density estimated from S&P 500 index options and the S&P 500 cash index
over the period June 1988 fi December 1993 compared to a lognormal SPD. The estimated SPD is the average of 765
SPDs obtained from options data with more than 6 calendar days to expiration using the nonparametric, implied
binomial trees method of Rubinstein (1994) and Jackwerth and Rubinstein (1996). The objective function is the
maximum smoothness function:
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For every week in the sample and for each cross section of contracts, we minimize the objective function subject to
martingale constraints on the option prices and the underlying index. The constraints are imposed by a penalty method
that progressively raises the penalty parameter over various steps of the numerical optimization (see Judd (1998, 123-125)).
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Figure 4
Option Prices under Full Information and Bayesian Learning

Difference between the price of a European call with 50 days to expiration (τ= 50) calculated under full information and
Bayesian learning. The assumed parameters are: m=1, gh=0.00315, gl= -0.00314, π= 0.519, ρ= 0.02 (annual), γ= 0.999. For BL

prices, we take nt=42 and Nt=80, implying a marginally biased initial belief tπ̂ = 0.525. The current price of the S&P 500 is

assumed to be $436.38, the closing price on Feb. 22, 1993.
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Figure 5
The Implied Volatility Surface under Full Information

Implied Black-Scholes volatilities as a function of moneyness for a European call with 50 days to expiration (τ= 50)
calculated under full information. The parameters are set as follows: m= 1, gh= 0.00315, gl= -0.00314, π= 0.519, ρ= 0.02
(annual), and γ=0.999. The price of the S&P 500 is assumed to be $436.38, the closing price on Feb. 22, 1993. For
comparison, the left panel reports implied volatilities as a function of moneyness for options expiring in April 1993.
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Figure 6
The Implied Volatility Surface under Bayesian Learning

Implied Black-Scholes volatilities as a function of moneyness for a European call with 50 days to expiration (τ= 50)
calculated on a Bayesian learning path. The parameters are set as follows: m= 1, gh= 0.00315, gl= -0.00314, π= 0.519, ρ= 0.02

(annual), γ=0.999, nt=42, and Nt=80, implying a marginally biased initial belief tπ̂ = 0.525. The price of the S&P 500 is

assumed to be $436.38, the closing price on Feb. 22, 1993. For comparison, the left panel reports implied volatilities as a
function of moneyness for options expiring in April 1993.
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Figure 7
The Implied Volatility Surface under Bayesian Learning

Implied Black-Scholes volatilities as a function of moneyness for a European call with 50 days to expiration (τ= 50)
calculated on a Bayesian learning path and using actual market data on February 22, 1993. The parameters are: m= 1,

gh=0.00315, gl=-0.00314, π=0.519, ρ=0.02 (annual), γ=0.999, nt= 43, and Nt= 80, implying an initial belief tπ̂ = 0.538.
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Figure 8
State-Price Densities under Full Information and Bayesian Learning

State-price densities for the 50 days ahead (τ=50) values of the S&P 500 index derived from a BS vs. a Bayesian learning
model on Feb. 22, 1993. The parameters are set as follows: m =  1, gh=  0.00315, gl= -0.00314, π =  0.519, ρ =  0.02 (annual), γ
= 0.999, nt=  42, and Nt=  80, implying an initial belief tπ̂ = 0.525. The price of the S&P 500 is $436.38, the closing price

on Feb. 22, 1993. The third panel compares the BS with the BL state price density adjusting for differences in their
respective supports. For comparison, the fourth panel plots the average empirical SPD estimated in Section 2 when the
index takes a value of $436.38.
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Figure 9
Implied Volatility Term Structure Under Full Information and Bayesian Learning

We assume m=1 while the other 'deep' parameters (gh, gl, π, ρ, and γ) are adjusted according to Proposition 2 to ensure
that the BS option price is an approximation to the Black-Scholes value with an annual risk-free rate of 4% and a

dividend yield of 3%. In the BL case, we take nt=42 and Nt=80, implying an initial belief tπ̂ = 0.525. The current price of

the S&P 500 is assumed to be $436.38, the closing price on Feb. 22, 1993. The first panel sets K=455, the second K=435,
and the third K=420.
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Figure 10
Implied Volatility Surface under Bayesian Learning

We plot the annualized implied volatilities as a function of both the strike price and time to maturity when the economy

is on a Bayesian learning path. We assume nt=42 and Nt=80, implying an initial belief tπ̂ = 0.525. The current price of the

S&P 500 is assumed to be $436.38, the closing price on Feb. 22, 1993.
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Figure 11
Weak Learning Effects

We plot the differences between call prices, implied volatilities as a function of the strike price, and 50-day-ahead state-
price densities for the S&P 500 index on Feb. 22,1993 for the FIRE and BL asset pricing models. The first three graphs
refer to a European call 50 days to expiration (τ=50). The fourth plot represents with squares the SPD calculated under
full information rational expectations and with diamond the SPD calculated under Bayesian learning. The parameters are
set as follows: m=1, gh=0.00315, gl=-0.00314, π=0.519, ρ=0.02 (annual), γ= 0.999, nt= 182, and Nt= 350, implying an initial

unbiased belief tπ̂ =0.52 ≅ π. The current price of the S&P 500 is assumed to be $436.38 dollars, the closing price on Feb.

22, 1993.
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Figure 12
Estimated Parameter Plots

The graphs plot weekly parameter estimates obtained by fitting to the cross section of S&P 500 index option prices each
day Black-Scholes (BS), BS with three maturity parameters (BS(τ)), BS with three moneyness parameters (BS(m)), a BS-
spline model (BS-spline) with five parameters, Heston and Nandi„s (2000) NGARCH(1,1) model, and a Bayesian learning
model (BL) obtained by setting ρ =  0.02 and γ =  0.9. The sample consists of the weekly data for the period June 1988 fi
December 1993. In the case of the ‚ad hoc„ strawman of Dumas et al. (1993), only the estimates of the coefficients α0, α1,
and α2 are reported; for the NGARCH (1,1) only the estimates of α, ξ, and φ are plotted.
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Figure 13
Implied Risk-free Rate and Expectations on Annual Growth under Bayesian Learning

The graphs plot weekly values of the implied risk-free interest rate on a one year zero coupon bond as well as implied
expectations on the annual rate of growth of fundamentals for an economy on a Bayesian learning path. For each week,
π, N, and m are set equal to corresponding estimates obtained from S&P 500 index option prices under the BL model.
The estimation sets ρ =  0.02 and γ =  0.9. The sample consists of the weekly data for the period June 1988 fi December
1993. In the case of the risk-free rate, the observed values over the sample period are also reported.
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Figure 14
Learning Dynamics on an Expanding Window

We plot the time series for the probability of a high dividend growth state ( tπ̂ ) implied by observed S&P 500 index

option prices during the period June 1988 fi June 1991. We also report the precision of these beliefs (the number of
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Table 1
Implied State Price Densities

The table reports the price of a state-contingent claim that pays out 1 dollar when (demeaned) S&P 500 returns fall below
or above X standard deviations, calculated using the SPD estimated from option contracts with at least 7 calendar days to
maturity. As a benchmark the table also reports the price of the same contingent claims based on a lognormal SPD. The

SPDs have been demeaned and divided by τσ . The price of the contingent claims are calculated according to the
formula:
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options data. The estimated SPDs are either average or median state-price densities estimated from S&P 500 index options
and the S&P 500 cash index over the period June 1988 fi December 1993 using the nonparametric, implied binomial tree
method of Rubinstein (1994) and Jackwerth and Rubinstein (1996). The objective is the maximum smoothness function:
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-7< 1.42E-05 0.00069 3.81E-13 1.71E-10
-6< 2.01E-05 0.00079 7.35E-10 7.37E-10
-5< 2.08E-05 0.00089 3.33E-07 1.83E-09

−Q  -4< 6.17E-05 0.00128 4.34E-05 3.59E-09

-3< 0.00176 0.00188 0.00186 6.97E-09
-2< 0.02720 0.00446 0.02932 2.06E-08
-1< 0.17622 0.06631 0.18695 4.78E-05
>1 0.13626 0.05123 0.12875 0.04078
>2 0.01852 0.00831 0.01629 0.00239
>3 0.00110 0.00262 0.00080 0.00022

+Q   > 4 7.94E-05 0.00136 1.37E-05 5.22E-05

>5 4.83E-05 0.00061 7.23E-08 1.20E-05
>6 4.02E-05 0.00043 9.71E-11 4.44E-06
>7 3.20E-05 0.00028 2.46E-14 2.00E-06
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Table 2

Average Dollar Valuation Errors Using the Bayesian Learning Model and Different
Versions of Black-Scholes.

RMSVE is the root mean squared dollar valuation error averaged across all days and all traded contracts over the sample
period June 1988 -  December 1993. MAVE is the average of the mean absolute dollar evaluation error. AIC is the average
of the Akaike Information Criterion. MOE is the average pricing error outside the bid/ask spread. '% best-RMSVE' is the
frequency of days, expressed as a ratio of the total number of days, on which a particular model has a lower daily RMSVE
than any other. '% best-MAVE', '% best-AIC', and '% best-MOE' are defined analogously. BS is the Black-Scholes model,
BS(τ) is a BS model that allows volatility to be a function of time-to-expiration, BS(m) is a BS model that allows volatility
to be a function of moneyness, 'BS spline' fits a function of a polynomial in K (the strike price) and τ (time-to-maturity)
to the implied volatility surface and then prices options using the fitted volatility levels. NGARCH is the option pricing
GARCH model proposed by Heston and Nandi (2000). BL is a Bayesian learning model (assuming ρ =  0.02 and γ =  0.9)
re-estimated on a weekly basis. All the models are estimated by minimizing the sum of squared pricing errors. Moneyness
is defined as 100×(F/K-1), where F is the futures price for maturity identical to the option contract.

Panel A: Aggregate Results

Model RMSVE MAVE AIC MOE % best-
RMSVE

% best-
MAVE

% best-
AIC

% best-
MOE

BS 1.5048 1.2634 0.7829 1.1098 0% 0% 0.34% 0%
BS (τ) 1.4508 1.1916 0.8259 1.0401 0% 0% 0.34% 0%
BS(m) 0.7846 0.5756 -0.3847 0.4364 11.30% 14.04% 19.52% 14.73%
BS spline 0.6240 0.4391 -0.7822 0.3015 53.77% 63.70% 52.06% 55.67%
NGARCH 0.6999 0.5396 -0.5105 0.7141 13.36% 8.56% 10.96% 0%
BL 0.7190 0.5612 -0.5361 0.3512 21.58% 13.70% 17.47% 29.59%

Panel B: Results by Moneyness
Moneyness (%)

Less than -2% (OTM) -2% to +2% (ATM) More than 2% (ITM)

Model RMSVE MAVE MOE RMSVE MAVE MOE RMSVE MAVE MOE

BS 2.155 1.352 1.203 1.494 0.990 0.797 1.184 1.452 1.321

BS (τ) 1.481 1.271 1.124 1.078 0.833 0.646 1.638 1.426 1.295

BS(m) 0.422 0.348 0.348 1.087 0.929 0.929 0.685 0.523 0.523

BS spline 0.553 0.407 0.278 0.855 0.709 0.518 0.435 0.313 0.204

NGARCH 0.795 0.664 0.829 0.876 0.757 0.979 0.469 0.417 0.562

BL 0.640 0.484 0.288 0.853 0.665 0.394 0.689 0.548 0.348

Panel C: Results by Time-to-Maturity
Days to Expiration

Less than 40 40 to 70 More than 70

Model RMSVE MAVE MOE RMSVE MAVE MOE RMSVE MAVE MOE

BS 0.477 0.623 0.450 0.871 0.886 0.645 2.078 1.358 0.999

BS (τ) 0.482 0.422 0.334 0.749 0.636 0.523 1.299 1.068 0.925

BS(m) 0.536 0.418 0.330 0.648 0.493 0.382 0.767 0.565 0.431

BS spline 0.273 0.211 0.129 0.344 0.260 0.158 0.565 0.404 0.273

NGARCH 0.450 0.431 0.505 0.520 0.504 0.542 0.684 0.825 0.758

BL 0.439 0.359 0.219 0.507 0.405 0.237 0.695 0.577 0.358
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Table 3

Summary Statistics for Parameter Estimates.
The table reports summary statistics from fitting five different models to the cross-section of S&P 500 index option prices
over the period Jan. 4 -  Dec. 31, 1993. BS is the Black-Scholes model, BS (τ) is a BS model that allows volatility to be a
function of time-to-expiration, BS(m) is a BS model that allows volatility to be a function of moneyness, 'BS spline' that
fits a function of a polynomial in K (the strike price) and τ (time-to-maturity) to the implied volatility surface and then
prices options using the fitted volatility levels. NGARCH is the option pricing GARCH model proposed by Heston and
Nandi (2000). BL is a Bayesian learning model (assuming a fundamental volatility of 5% per year) re-estimated on a daily
basis.

Model Coefficient
estimate

Mean Median Standard Dev.

BS σ 0.1314 0.1283 0.0274
σOTM 0.1126 0.1090 0.0241

BS(m) σATM 0.1381 0.1343 0.0335
σITM 0.1681 0.1620 0.0371
σshort 0.1221 0.1185 0.0333

BS(τ) σmedium 0.0997 0.1130 0.0532
σlong 0.1329 0.1310 0.0279
α0 1.4299 1.2683 1.1750
α1 -0.0053 -0.0045 0.0066

BS-spline α2 4.80E-06 3.80E-06 10.0E-06
α3 -0.0019 -0.0014 0.0022
α4 5.29E-06 4.33E-06 5.67E-06
ω -7.44E-06 4.53E-07 26.06E-06
α 14.16E-06 2.29E-06 28.80E-06

NGARCH β 0.6560 0.7003 0.2757
γ 373.4480 261.1294 651.4054
λ 0.6698 0.6768 1.2937
πt 0.5589 0.5776 0.0315

Bayesian learning Nt 315.52 317.00 18.96
mt 0.2839 0.2676 0.0913
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Table 4

Average Dollar Prediction Errors Using the Bayesian Learning Model and Different
Versions of Black-Scholes formula.

RMSPE is the root mean squared dollar prediction error averaged across all days and traded contracts in the sample
period January 4, 1993 -  December 31, 1993. MAPE is the average of the mean absolute dollar prediction error. MOE is
the average pricing error outside the bid/ask spread. '% best-RMSPE' is the frequency of days, expressed as a ratio of the
total number of days, on which a particular model has a lower daily RMSPE than any other. '% best-MAPE' and '% best-
MOE' are defined analogously. BS is the Black-Scholes model, BS(τ) is a BS model that allows volatility to be a function
of time-to-expiration, BS(m) is a BS model that allows volatility to be a function of moneyness, 'BS spline' fits a function
of a polynomial in K (the strike price) and τ (time-to-maturity) to the implied volatility surface and then prices options
using the fitted volatility levels. NGARCH is the option pricing GARCH model proposed by Heston and Nandi (2000).
BL is a Bayesian learning model (assuming either ρ =  0.1 or ρ =  0.05 and γ =  0.9) re-estimated on a weekly basis.
Moneyness is defined as 100×(F/K-1), where F is the futures price with maturity identical to the option contract.

Panel A: Aggregate Results

Model RMSPE MAPE MOE-P % best-
RMSPE

% best-
MAPE

% best-
MOE-P

BS 1.6767 1.3630 1.1079 0% 0% 0%
BS (τ) 1.8873 1.4886 1.0380 0.34% 0% 0%
BS(m) 1.0713 0.7888 0.4367 15.12% 18.56% 17.18%
BS spline 1.0614 0.7321 0.3009 42.61% 48.45% 58.35%
NGARCH 1.1602 0.9010 0.7546 7.22% 5.84% 0.69%
BL 0.9990 0.7704 0.3532 34.71% 27.15% 23.78%

Panel B: Results by Moneyness
Moneyness (%)

Less than -2% (OTM) -2% to +2% (ATM) More than 2% (ITM)

Model RMSPE MAPE MOE-P RMSPE MAPE MOE-P RMSPE MAPE MOE-P

BS 1.606 1.452 1.201 1.422 1.162 0.796 1.729 1.472 1.320

BS (τ) 1.766 1.522 1.122 1.816 1.402 0.644 1.821 1.559 1.294

BS(m) 0.771 0.619 0.228 1.399 1.169 0.739 0.878 0.680 0.403

BS spline 1.003 0.756 0.277 1.129 0.909 0.516 0.820 0.596 0.203

NGARCH 1.166 1.030 0.891 1.195 1.056 0.863 0.896 0.805 0.680

BL 0.897 0.698 0.398 1.158 0.910 0.512 0.899 0.718 0.423

Panel C: Results by Time-to-Maturity
Days to Expiration

Less than 40 40 to 70 More than 70

Model RMSPE MAPE MOE-P RMSPE MAPE MOE-P RMSPE MAPE MOE-P

BS 0.602 0.580 0.451 1.053 0.800 0.646 2.543 1.219 0.997

BS (τ) 0.635 0.542 0.334 1.376 1.064 0.523 1.682 1.322 0.923

BS(m) 0.626 0.500 0.329 0.770 0.600 0.382 0.989 0.736 0.432

BS spline 0.416 0.347 0.129 0.504 0.408 0.158 1.000 0.635 0.273

NGARCH 0.659 0.644 0.554 0.778 0.763 0.610 1.027 0.908 0.834

BL 0.553 0.460 0.454 0.659 0.526 0.297 0.925 0.734 0.405
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Table 5

Average Dollar Hedging Errors Using the Bayesian Learning Model and Different
Versions of Black-Scholes.

RMSHE is the root mean squared dollar hedging error averaged across all days and all traded contracts in the sample
period January 4, 1993 -  December 31, 1993. MAHE is the average of the mean absolute dollar hedging error. '% best-
RMSHE' is the frequency of days, expressed as a ratio of the total number of days, on which a particular model has a
lower daily RMSHE than any other model. '% best-MAHE' is defined analogously. BS is the Black-Scholes model, BS (τ)
is a BS model that allows volatility to be a function of time-to-expiration, BS(m) is a BS model that allows volatility to be
a function of moneyness, 'BS spline' fits a function of a polynomial in K (the strike price) and τ (time-to-maturity) to the
implied volatility surface and then prices options using the fitted volatility levels. NGARCH is the option pricing
GARCH model proposed by Heston and Nandi (2000). BL is a Bayesian learning model (assuming either ρ = 0.1 or ρ =
0.05 and γ = 0.9) re-estimated on a weekly basis. Moneyness is defined as 100×(F/K-1), where F is the futures price with
maturity identical to the option contract.

Panel A: Aggregate Results

Model RMSHE MAHE % best-RMSHE % best-MAHE

BS 0.9399 0.6804 2.06% 5.84%
BS (τ) 0.9414 0.6647 6.53% 8.94%
BS(m) 0.9327 0.6586 13.75% 12.72%
BS spline 0.7556 0.5233 28.87% 29.90%
NGARCH 0.8126 0.6082 21.99% 17.87%
BL 0.7441 0.5404 26.80% 24.74%

Panel B: Results by Moneyness
Moneyness (%)

Less than -2% (OTM) -2% to +2% (ATM) More than 2% (ITM)

Model RMSHE MAHE RMSHE MAVE RMSHE MAHE

BS 0.792 0.652 1.177 0.919 0.552 0.461

BS (τ) 0.815 0.649 1.148 0.870 0.579 0.476

BS(m) 0.615 0.496 1.184 0.945 0.680 0.513

BS spline 0.664 0.522 0.938 0.718 0.449 0.353

NGARCH 0.713 0.646 0.931 0.774 0.479 0.443

BL 0.716 0.574 0.994 0.756 0.592 0.493

Panel C: Results by Time-to-Maturity
Days to Expiration

Less than 40 40 to 70 More than 70

Model RMSHE MAHE RMSHE MAVE RMSHE MAHE

BS 0.575 0.479 0.659 0.513 0.903 0.650

BS (τ) 0.575 0.381 0.696 0.454 1.037 0.633

BS(m) 0.638 0.510 0.736 0.546 0.953 0.672

BS spline 0.415 0.337 0.482 0.354 0.881 0.657

NGARCH 0.598 0.583 0.615 0.511 0.802 0.600

BL 0.537 0.432 0.600 0.455 0.789 0.560


