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Abstract

We study the value of information in a competitive economy in which agents
trade in asset markets to reallocate risk. We characterize the kinds of infor-
mation that allow a welfare improvement when portfolios can be freely reallo-
cated. We then compare competitive equilibria before and after a change in
information. We show that generically, if markets are sufficiently incomplete,
the welfare effects are completely arbitrary: there typically exist changes in
information that make all agents better off, or all agents worse off.

Journal of Economic Literature Classification Numbers: D52, D60, DS8O0.

Keywords: Competitive Equilibrium, Incomplete Markets, Value of Informa-
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1 Introduction

The objective of this paper is to analyze the value of information in the setup of
a competitive exchange economy under uncertainty in which agents trade in asset
markets to reallocate risk. It is well known that while information cannot reduce
welfare in a single-agent decision-making context, this is not necessarily the case
in a market setting. In a competitive economy with complete markets, the arrival
of information prior to trading cannot improve upon the equilibrium allocation of
risk. Such information can in fact impair risk sharing, and this is true whether or
not markets are complete. Indeed, if the true state of the world is revealed before
markets open, no mutually beneficial risk sharing trade is possible.

The negative effect on welfare of an increase in the information available to market
participants has come to be known as the Hirshleifer effect, after Hirshleifer (1971)
who produced an early example of it. In general, the Hirshleifer effect is due to
changes in equilibrium prices, induced by a change in information, that alter the
budget sets of agents (see Gottardi and Rahi (2001)).

If markets are incomplete, a second welfare effect arises. With additional informa-
tion agents can achieve a larger set of state-contingent payoffs by conditioning their
portfolios on this information. We refer to this as the Blackwell effect, after Blackwell
(1951) who compared the value of different information structures in single-agent de-
cision problems. Roughly speaking, we can think of the value of information in a
competitive market economy as having a negative component due to the Hirshleifer
effect, and a positive component due to the Blackwell effect.

There is an extensive literature on the value of information in a competitive pure
exchange setting. A long line of papers has followed Hirshleifer’s lead in comparing
competitive equilibrium allocations associated with differing levels of information.
Assuming complete markets, Schlee (2001) derives conditions under which more in-
formation is Pareto worsening. Green (1981) and Hakansson et al. (1982) provide
(quite restrictive) conditions under which better information leads to a Pareto im-
provement when markets are incomplete. Milne and Shefrin (1987) show, by way of
examples, that better information can lead to any pattern of welfare changes in an
incomplete markets economy.

In this paper we provide a general characterization of the effect of changes in
information on welfare, starting from a competitive equilibrium allocation, in the
context of a two-period exchange economy with a single consumption good and a
single round of asset trade. We provide two sets of results, the first in a situation
where a hypothetical planner can freely reallocate portfolios after a change in infor-
mation, and the second where we consider only equilibrium allocations corresponding
to the new information. We refer to these as results relating to feasible changes in
welfare and equilibrium changes in welfare, respectively.

Feasible welfare changes can be attributed entirely to the Blackwell effect. Since
prices do not constrain attainable allocations, there is no Hirshleifer effect. Just
as in a single-agent decision problem, information cannot reduce welfare, as it can



simply be disregarded. We characterize the set of informational changes for which
a Pareto improvement can be achieved. In doing so, we obtain a characterization
of risk sharing with incomplete markets that is of independent interest. The state
space can be partitioned into a collection of “insurable events” such that, in equi-
librium for a generic economy, all gains from trade in state-contingent consumption
are exhausted between these events, but not within them. While a change in infor-
mation that affects only the relative probabilities of insurable events has no value,
a Pareto improvement can typically be attained for informational changes that alter
the relative probabilities of states within an insurable event.

The information structures that allow a Pareto improvement in our model with a
single round of trade are precisely those that lead to retrade in a setting where asset
markets open both before and after the change in information under consideration.
As such our results are related to those of Blume et al. (2006). In particular, one
of our results is a generalization of their main theorem (see Section 4 for further
details).

Next we consider equilibrium welfare changes, comparing agents’ welfare at a
competitive equilibrium before and after a change in information. We show that
generically, if markets are sufficiently incomplete, equilibrium welfare effects are com-
pletely arbitrary: there typically exist informational changes that make all agents
better off, or all agents worse off, or indeed any subset of agents better (or worse)
off. Thus pecuniary externalities arising from price changes can outweigh the value
that a change in information might otherwise have for any individual agent. To put
it differently, when both the Hirshleifer and Blackwell effects are present, the net
effect can go in any direction.

Our welfare analysis is in the spirit of the literature on constrained inefficiency in
an incomplete markets economy, where welfare comparisons are made between com-
petitive equilibrium allocations and allocations attainable subject to appropriately
specified constraints. Diamond (1967) allows arbitrary reallocations of portfolios and
shows that competitive equilibria are constrained efficient. In our results on feasible
welfare changes, we identify conditions under which a welfare improvement can be
achieved when information is modified as well as portfolios. Geanakoplos and Pole-
marchakis (1986) and Greenwald and Stiglitz (1986) consider the effect of portfolio
reallocations on spot commodity prices, and establish a constrained inefficiency re-
sult; the first paper shows that constrained inefficiency is, in fact, a generic property.
In order to establish our equilibrium welfare result, we utilize the analytical appa-
ratus developed by Geanakoplos and Polemarchakis (1986), and later generalized by
Citanna et al. (1998). This approach has been employed in several papers in the
incomplete markets literature including, in particular, Cass and Citanna (1998) and
Elul (1995), who show that generically the welfare effects of the introduction of a
new asset are arbitrary. We provide such a result with respect to changes in public
information.!

'We are able to exploit differential techniques by employing a smooth parametrization of changes
in information, just as Cass and Citanna (1998) and Elul (1995) are able to use these techniques



The closest result to ours on equilibrium welfare changes is in Citanna and Vil-
lanacci (2000), who study the value of information in an asymmetric information
economy with nominal assets. In their model, there is a continuum of equilibria which
can be parametrized by the (state-contingent) price level. The authors show that
generically there is an arbitrary change in welfare when moving from a non-revealing
equilibrium to a nearby equilibrium at which asset prices reveal some information.
In contrast, we show that there is an arbitrary change in welfare when moving from
any equilibrium of a generic economy to a nearby equilibrium associated with a new
information structure. Also, the welfare effects in Citanna and Villanacci (2000)
involve changes in real asset payoffs (through changes in the price level), in asset
prices, and in relative spot commodity prices, while in our one-good model, asset
payoffs and spot commodity prices are fixed.

The paper is organized as follows. We describe the economy in Section 2, and
analyze competitive equilibria in Section 3. In Section 4, we consider feasible welfare
changes and characterize the set of (potentially) welfare-improving changes in infor-
mation. In Section 5, we study equilibrium welfare effects, and show that they are
typically arbitrary. Some of the more technical proofs are collected in the Appendix.

2 The Economy

There are two periods, 0 and 1, and a single physical consumption good. The econ-
omy is populated by H > 2 agents, with typical agent h € H (here, and elsewhere,
we use the same symbol for a set and its cardinality). No consumption takes place at
date 0 and agents have no endowment in that period. Uncertainty, which is resolved
at date 1, is described by S states of the world.

Agent h € H has an endowment at date 1 given by w” € Ri +, and preferences over
date 1 consumption described by a twice continuously differentiable von Neumann-
Morgenstern utility function u" : R,, — R, satisfying uh’ > 0, u"" < 0, and
lim._ uh/[c] = 00. We denote the set of utility functions with these properties by U.

Asset markets, in which J > 2 securities are traded, open at date 0. At date
1 assets pay off, and agents consume. The payoff of asset j in state s is denoted
by 4, and the vector of asset payoffs in state s by r, € R’7. By default all vectors

1 J

are column vectors, unless transposed. Thus r/ = (r!...7r/). Let R be the S x J

matrix whose s’th row is 7/. We assume that r, # 0 for all s € S, and R has
full column rank J. These assumptions are without loss of generality as the results
depend only on the asset span (the column space of R), and states in which no asset
pays off are irrelevant when considering the welfare effect of changes in information.
We also assume that there is an asset, say asset J, whose payoff is nonnegative in

every state. This condition, together with the monotonicity assumption on utility

by modeling the introduction of an asset in a way that avoids discontinuities. While the effect of
increasing the information of agents on their trading possibilities has some analogies with the effect
of introducing new securities, these are really two distinct problems (see Milne and Shefrin (1987)).



functions, ensures that the equilibrium price of asset J is positive. It also guarantees
that budget constraints are satisfied with equality. Markets are complete if S = J,
and incomplete if S > J.

We model the information of agents as a public signal, observed prior to trading,
correlated with the state of the world s. This signal has support X, #> > 2, with a
typical element of > denoted by . Having fixed the spaces S and ¥, the information
of agents can be completely described by the probabilities 7 := {7, } soex € R;SEF,
where 7y, denotes Prob(s,o). We will identify a signal by the vector = associated
with it. The space of signals is thus IT := {7 € R} | 3., 7 = 1}. Let my, :=
Prob(s|o), ms := Prob(s), and 7, := Prob(o). A signal 7 is uninformative about s
if it satisfies the independence condition m,, = 7,m,, for all s € S, 0 € ¥. We will
often refer to a signal as an “information structure.”

Let w == {w'}tpeny € Q = R and u := {u"}peny € U?. An economy is
described by the tuple (w,u,7) € £ := Q x UH x II. We formalize our notion of
genericity as follows. The sets 2 and II are endowed with the usual (Euclidean)
topology. The set U is endowed with the C? uniform convergence topology on com-
pact sets, i.e. the sequence u! in U converges to u” if and only if u”,u! and u""

. h h/ h// .
converge uniformly to u",u™ and u" respectively, on any compact subset of R, .
The set of economies £ is endowed with the product topology. By “generic subset
of ,” we mean “for an open, dense subset of €,” and likewise for &/ and II. By
“generically” we mean “for an open, dense subset of £.”2

Transversality. We use the transversality theorem to establish our genericity results.
Since we employ the same argument at several different points in the paper, it is
useful to summarize it here. Consider a function ¥ : Z x £ — R"*!, where Z is an
open subset of R"™. For e € £, let U, be the function ¥(-,e). The argument involves
identifying such a function W, such that the desired result can be formulated as
U 1(0) = @, for every e in a generic subset of £. We show that the Jacobian D, W
has full row rank at all zeros of U, i.e. W is transverse to zero. By the transver-
sality theorem, there is then a generic subset of £ such that, for each e in this set,
U, : Z — R™! is transverse to zero.® Tt follows that U_'(0) = @. In other words,
the equation system W.(z) = 0 has no solution since the number of (locally) inde-

pendent equations exceeds the number of unknowns.

Notation. In our analysis we use the following shorthand notation for matrices.
Given an index set N with typical element n, and a collection {z, },enr of vectors or
matrices, we denote by diag, . \-[2,] the (block) diagonal matrix with typical entry z,,
where n varies across all elements of /. For a given vector or matrix z, diag,cx[z] is
then the diagonal matrix with the term z repeated #A times. In similar fashion, we

20nly one of our main results, Theorem 5.1, requires perturbations of utility functions and the
(initial) information structure. The other results hold for a generic subset of endowments, and for
all (u,m) € UH x 1.

3Openness follows from a standard argument; see, for example, Citanna et al. (1998).



write [... 2, .. .nen] to denote the row block with typical element z,, and analogously
for column blocks. We drop reference to the index set if it is obvious from the context:
for example diagy,. 5 is shortened to diagy,, and ... 25 . . e85, ] 1O [ .- 25 . . 525,]. We
use the same symbol 0 for the zero scalar and the zero matrix; in the latter case we
occasionally indicate the dimension in order to clarify the argument. We denote by
Iy the N x N identity matrix, and by I the (J — 1) x J matrix (I;_; 0). A “”
stands for any term whose value is immaterial to the analysis. The symbols ~g and
~¢ denote row and column equivalence, respectively.

We will sometimes need to order the set S (and similarly the sets ¥ and H) as
{s1, 82,...}, s1 being the first state, and so on.

3 Competitive Equilibrium

Consider an economy (w,u,m) € €. Let y* € R’ denote the portfolio of agent h
when the signal realization is ¢. Since portfolios uniquely determine consumption
(the consumption of agent h for state s and signal ¢ is given by W + r, - y?), an
allocation is completely specified by a collection of portfolios, one for each agent h,
and each signal o. For each o, asset prices are given by a vector p, € R”.

Let ¥y == {¥"}her, ¥ = {Uo}oex, and p := {p, }sex. A competitive equilibrium
is defined as follows:

Definition 3.1 Given an economy (w,u, ) € &€, a competitive equilibrium consists
of an allocation y, and prices p, satisfying the following two conditions:

(a) Agent optimization: Yh € H and o € 3, y" solves

BT, h
MAaX, ey Y, Tsjo U [ws +r,- x}

(1)

subject to Py - x = 0.

(b) Market clearing: Vo € X,

> U5 =0, (2)
h

We will often refer to an equilibrium (y, p) of the economy (w, u, ) as a m-equilibrium
in order to emphasize the signal structure under consideration. Since asset J has a
nonnegative nonzero payoff, we can choose it as the numeraire, setting (p,); = 1.
Let p, denote the vector consisting of the first J — 1 elements of the price vector p,.
Likewise, for given p,, the corresponding p, is given by {p,, 1}. Let p := {ps }oex-

The Kuhn-Tucker first-order conditions for the utility-maximization program (1)
are:

Zﬁsg (uh/[w?—l—rs-y(};] rs—/\gpg):o, Vhe HoeX (3)

Pe -yl =0, Vhe HoeX, (4)



where A" is the (positive) Lagrange multiplier associated with the budget constraint
of agent h for signal o. By Walras’ law, the market-clearing equation for one asset
is redundant, for each o. Hence, the market-clearing condition (2) reduces to

Y gh=0, Voex, (5)
h

where " denotes the vector consisting of the first J — 1 elements of the portfolio y”.

Let Ay := {\'}em, and X := {\, },ex. A competitive equilibrium (y, p), together
with the associated Lagrange multipliers A\, must satisfy the equation system (3)—(5).
Indeed, (y, p) is a competitive equilibrium if and only if it satisfies the system (3)—(5)
for some A € R, Let

&5 = (Yo, Doy Ao) € R x RITH x R
and

fol&) =) T (uh’ [Wh+ 7y -yt vy — )\Zpg) . YheH

ok
90(50) = (nghgz ), he H.

Then the equations that characterize a competitive equilibrium, (3)—(5), can be
written as

(&)Y _
Fy(&,) == ( () ) =0, Voey, (6)

o= (1) -o @)

where £ 1= {& }oes = (¥, D, N), [ = {fs}oen, and g := {gs}sex. Henceforth, we
identify a competitive equilibrium by &. If 7 is uninformative, we restrict attention
to equilibria that are o-invariant.*

Consider the equilibrium system (6) for a given value of o. These are (J+1)H +
(J — 1) equations, equal to the number of unknowns. Taking w to be a parameter of
this equation system, the Jacobian can be written as follows:

Dafo' Dwa'
Dgg,wFa(gaaw) = ( Dz o 0 )

or more compactly as

with
"
D, f, = diag,, [ . Tse u’;U [w? +ry- y(ﬂ Ts .. .S}

4In other words, we ignore equilibria in which dependence on ¢ arises merely from randomization
across different equilibria associated with the same information.



and

<diagh[p;—] | [gh ]t ‘ O)
nggoz ~
Ly 0 | 0

The matrix D, f, has full row rank since R has full column rank and the term
Tootll [ + 7y - 4] is nonzero, for all h,s,0. Also, D,, g, has full row rank, since
I=(I;_4 0)and (p,); =1, and therefore so does D¢, g,. By a standard argument,
for a generic subset of endowments (g, the number of equilibria conditional on o
(zeros of F,) is finite (and positive). Hence, for endowments in the generic subset
Qr = Nyex Qrey, the number of equilibria (zeros of F') is finite as well.

Notice that 77 := {7, }ses is a parameter of F,. We will write F,(&,;7%) when
we need to make this explicit, or when we wish to consider F,, for a particular choice
of 7.

4 Feasible Changes in Welfare

From the first welfare theorem it follows that competitive equilibria in a complete
markets economy are ex-post Pareto efficient, i.e. Pareto efficient conditional on each
realization of o. If markets are incomplete, on the other hand, competitive equilibria
are ex-post Pareto inefficient for a generic subset of endowments, while being always
ex-post constrained Pareto efficient, where the set of feasible allocations are those
that can be achieved with the available assets. These results are well known (see, for
example, Magill and Quinzii (1996)), and will serve as a benchmark for our welfare
analysis.

Given an initial information structure, and a corresponding competitive equilib-
rium, we wish to investigate whether an increase in information, or more generally
a change in information, can lead to an ex-post (and hence also ex-ante) welfare im-
provement via a reallocation of the available assets. It is convenient to formulate this
in terms of whether the allocation under consideration is ex-post inefficient relative
to the new information. We say that a portfolio allocation y is feasible if it satisfies

(2).

Definition 4.1 A T-equilibrium allocation 7 is m-efficient if there does not exist a
feasible allocation y, such that, given the information w, y ex-post Pareto dominates

Y, i.e.

wa<uh[wf+rs-yﬂ —uh[w£‘+rs-§ﬂ> >0, Vhe H oeck,

where at least one of these inequalities is strict.

In this definition, a feasible allocation is one that can be achieved with the existing
assets, as in the above notion of constrained efficiency. In order to interpret the



change in the signal structure from 7 to 7 as a purely informational change, 7 must
leave the marginal distribution over S invariant, i.e. it must belong to the set

Il = {WERii‘ Zﬂsa:ﬁs,VSE S}

oeEX

Clearly Il C II. Notice that both the allocations 7 and y are evaluated at the same
odds, given by 7. It would not be sensible to evaluate y at the initial information
structure 7, and y at the new information structure 7 (doing so can lead to the
possibility of a “Pareto improvement” with no change in the allocation).

While a T-equilibrium is 7-efficient (this being just a restatement of the fact that it
is constrained ex-post Pareto efficient), it is not in general m-efficient. In other words,
while a competitive equilibrium makes efficient use of the available information, there
is in general a change in information that admits a Pareto improvement. We now
study such informational changes.

We fix an initial information structure 7@ € II, and characterize the set of alter-
native information structures m € Ilz such that w-equilibria are m-inefficient. It is
straightforward to check that this set is empty if markets are complete (see Lemma
4.1 below). On the other hand, if markets are incomplete, we show that generically
an ex-post Pareto improvement can be attained for a large set of 7’s. The main re-
sults of this section, Theorems 4.1, 4.2 and 4.3, formalize this statement in different
ways. We prove Theorems 4.1 and 4.2 for an arbitrary initial information structure
7 € II. They can, of course, be specialized to the case where 7 is uninformative, as
is typically assumed in the literature.

We use the shorthand u;‘; = ugl [w;‘ +rg- yﬂ and E’;; = u?,[w? + 7 @Z], and
similarly for the second derivatives, u’;;/ and ﬂi‘”

Lemma 4.1 Suppose markets are complete. Then a T-equilibrium is m-efficient for
all m € 11.

Proof:

Consider a m-equilibrium allocation y. Since markets are complete, ¥ is ex-post
Pareto efficient and this property, characterized by the equality of agents’ marginal
rates of substitution across states,

—n! —h

Uso Uso 7 A

0t = Vh,he H;s,5€ S; 0 € &,
Uso Uy

is independent of the value of 7. Hence, there cannot be an allocation which ex-post
Pareto dominates 7, for any 7.5 O

If markets are complete, all states are insurable (an insurable state is a state s € S

5Notice that Lemma, 4.1 applies for all w7 € II, and not just for 7 € IIx.
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for which the corresponding Arrow security can be replicated with the existing as-
sets). Changing the relative probabilities of these states does not admit an ex-post
Pareto improvement as all gains from trade (conditional on any o) have already been
exhausted in equilibrium.

When markets are incomplete, risk sharing and the possibility of a welfare im-
provement with a change in information can be characterized in terms of what we call
insurable events. An insurable event is a generalization of the concept of an insurable
state. We will show that gains from trade are exhausted in equilibrium across these
events, while this is generically not the case within such events. While a change in
information that affects only the relative probabilities of insurable events does not
admit an ex-post Pareto improvement, such an improvement can typically be found
for informational changes that affect the relative probabilities of states within an
insurable event.

We formalize the notion of an insurable event as follows.® Consider a partition
of S given by S(R) := {S1,...,Sk}. For each k € K := {1,...,K}, let Ly be
the subspace of R’ spanned by the vectors {r}ss,. We say that the subspaces
Ly,..., Lk are linearly independent if Y, . 0 = 0, {; € Ly, implies £, = 0 for
all k. Henceforth, we choose S(R) to be the partition for which Ly,..., Lx are
linearly independent, and K is maximal (it is easy to check that there is a unique
such partition). We call S, € S(R) an insurable event. We justify this choice of
terminology below, and show that this is indeed a generalization of the notion of an
insurable state.

We denote the dimension of L; by Ji. Thus we have Zke x Jr = J. Without
loss of generality we can order the states in S so that the first S; states correspond
to the event Si, the following S, states correspond to the event S, and so on. The
partition S(R) is invariant to changes in asset payoffs that do not affect the column
span of R. Moreover, R is column-equivalent to a block-diagonal matrix, with each
block corresponding to an insurable event Sj:”

Lemma 4.2 Suppose the asset payoff matrices R and R' are column-equivalent.
Then S(R) = S(R'). Furthermore, R is column-equivalent to diag,c[Rk], where
Ry, is an Sy x Ji, matriz with rank(Ry) = Jj.

The proof is in the Appendix. It follows from this result that, if agents’ endowments
are measurable with respect to S(R), i.e. constant in each cell S, then competitive
equilibria are ex-post Pareto efficient. For general endowments, if an equilibrium
allocation is not ex-post Pareto efficient, it must be because of unexploited gains
from trade within an insurable event. All gains from trade across insurable events
are exhausted in equilibrium.

We say that an insurable event Sy is trivial if it is a singleton, and nontrivial
otherwise. A trivial insurable event consists of a single insurable state, while a

SHere we draw on Geanakoplos and Mas-Colell (1989). See, in particular, the analysis at the
beginning of Section III of that paper.
7If there is only one insurable event, this block-diagonal matrix has only one diagonal block.

11



nontrivial insurable event (which exists if and only if markets are incomplete) consists
of two or more states, none of which is insurable. An insurable event S, is nontrivial
if and only if J, < S,. We say that the asset payoff matrix R is in general position
if every J x J submatrix of R is nonsingular. If markets are incomplete, and R is in
general position, there is only one insurable event, i.e. S(R) = {S}.®

Given an allocation y, and information structure 7, let

' .J
Zses Tso uscr,rs

h J
Zses Tso uscrrs

Ngh(ym WU) =

denote the ratio of marginal utilities of asset J for agents h and ﬁ, conditional on
o. Since asset J has a nonnegative nonzero payoff, this is a positive scalar. A 7-
equilibrium allocation 7 is m-efficient if and only if the marginal rates of substitution
between assets, evaluated at 7, are equal across agents, for every o, i.e.

S
—h! J al rd
Moy ULT Mg Ugy, T 5
ZseS so Uso SZZSGS 59 LA Vh,he H; je J, 0 €,

—h! .J —h
ZsES Tso UseT's ZSES Tso Uy T:s]

which can be written as

iy fAL/ A
Zﬂ'sg< ,ua( )uw)rszo, Vh,h € H; 0 € &,

SES

where " (7,) := p""(3j,, 7). Since the subspaces Li, ..., L are lincarly indepen-
dent, this condition is equivalent to

Zﬂ'sa<2; ,ua( )ui‘;)rs:(), Vh,h € H; S, € S(R); 0 € X.

SESE

For p € R, let
Ay, 1) 1= uly = el
and A
A1) = A, p) =t — pt.
Then we can state the above result as follows:

Lemma 4.3 A 7-equilibrium allocation ¥y is w-efficient if and only if

Z Tso Ahh (W”)) rs =0, Vh,h € H; S, € S(R); 0 € . (8)

SESk

Since a T-equilibrium is 7-efficient, condition (8) must hold at 7 = 7. In other words,
at T, agents’ marginal utilities for assets are collinear in each insurable event. The
allocation 7 is m-inefficient for all 7’s that violate (8). The possibility of finding such
7’s arises from the following result:

8The converse is not true, however: S(R) = {S} does not imply that R is in general position.
It is also worth noting that if R is in general position, so is any R’ that is column-equivalent to R.

12



Lemma 4.4 Suppose markets are incomplete. Let S be a subset of S that contains a
nontrivial insurable event, and suppose that there exists a portfolio with a nonnegative
nonzero payoff in S, Then, for a generic subset of (2, at any T-equilibrium allocation
7, A

{Agg(u)} A0 VweRihheHiocx. 9)

The proof is in the Appendix.? In the special case where S = S, Lemma 4.4 says
that agents’ marginal utility vectors for state-contingent consumption, conditional
on o, are generically not collinear (the condition on asset payoffs is satisfied since
asset J has a nonnegative nonzero payoff in S). This is just the standard result
that competitive equilibria are generically ex-post Pareto inefficient if markets are
incomplete. Lemma 4.4 strengthens this result by showing that agents’ marginal
utility vectors are generically not collinear in any nontrivial insurable event, subject
to a mild condition on asset payoffs. Combining this with our discussion of Lemma
4.2, we can conclude that in equilibrium, while there are no unexploited gains from
trade between insurable events, generically such gains do exist within each nontrivial
insurable event.

We now use Lemma 4.4 to show that, for a generic subset of endowments, and
for a generic choice of the information structure 7, the m-efficiency condition (8) is
violated at any competitive equilibrium:

Theorem 4.1 Suppose markets are incomplete, and there are two assets whose pay-
offs are not collinear in any pair of states. Then, for any T, there is a generic subset
Q x Iz of Q x Iz such that every T-equilibrium is w-inefficient, for all w € 1l=.

Proof:

Consider a 7 € II. It suffices to establish that condition (8) is violated for one value

of 0. Accordingly, fix a value of . Recall from Section 3 that there is a generic

subset (g, of 2 for which the Jacobian De, F,({,;77) has full row rank, at all zeros

of F,(&,;7). Let Q be the generic subset of Q for which Lemma 4.4 holds. For the

rest of the proof, we restrict endowments to lie in the generic subset Q= Qp, N Q.
We consider a 77 in the set

7 := {r" € RY, | myy <T,Vs € 5},

which is the projection of Il onto the S-dimensional subspace of R%* corresponding
to the value of o that we have fixed. Let 7, € R? be the payoff in state s of two assets
that satisfy the non-collinearity condition of the theorem. We will show that, for 7
in a generic subset of IIZ, at every T-equilibrium allocation y, there is no solution to
the equation system

Fy(&5:7) ) _0

\I}l(&”u’ﬂ'”;f(’) = ( Z o Ahh(y H)f
= SO SO g S

9If s is an insurable state, AQ;L (ﬁgh (77)) = 0, since equation (8) holds for 7 = 7.
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for a given pair of agents h and h. Then, by Lemma 4.3, a Pareto improving real-
location exists conditional on o. For any choice of 77 € IIZ, we can always choose
{77} 125, s0 that m € Iz, and find a weakly Pareto improving reallocation for all
o' # o. Moreover, if 77 is in a generic subset of IIZ, the corresponding 7 is in a
generic subset of IIx.

The Jacobian of Wy, evaluated at a zero (£, p, ) of Wy, is

D v D¢, Fo(6:7) 0 | 0 (10)
oy, 1= S
N sk | AM () P e

Since this is a block-triangular matrix, its rank is equal to the sum of the ranks of the
diagonal blocks. The upper left block has full row rank, and {A" (1)} ,cs is nonzero
by Lemma 4.4. Indeed, since 7y and 7y are not collinear, for any pair of states s, s,
and Y. ¢ oo A ()7 = 0 at any zero of ¥y, we must have A (p) # 0 for at least
three states in S. This implies that the lower right block of (10) has full row rank.
Therefore, the Jacobian Dy, , .- W¥; has full row rank, at every zero of ¥;. Thus
¥, is transverse to zero, and ¥, % (0) = &, for every ©7 in a generic subset of [1Z. O

Theorem 4.1 holds for 7 in a generic subset of I+. It does not specify this subset,
however. A 77 for which the m-efficiency condition (8) is violated for a pair of agents
h and h will depend on {AZ(’} ses, and hence we cannot say whether 7-equilibria are
m-inefficient for a given choice of 7, without reference to a particular equilibrium. On
the other hand, it is clear from (8) that a change in information that affects only the
relative likelihood of insurable events (i.e. {7, }ses, proportional to {7y, }ses,, for
all k € K, 0 € ¥) does not admit an ex-post Pareto improvement. Agents’ marginal
utilities for assets remain collinear after such a change in information, which we can
therefore deem to be payoff-irrelevant. This leads us to the following definition:'°

Definition 4.2 Given 7 € Il, an information structure m € 1% is payoff-relevant if

{750 }ses,, s not proportional to {Tss}tses,, for some o € ¥, and for some insurable
event S, € S(R).

Of course, if {7y, }ses, is not proportional to {7, }ses, , then Sk must be nontrivial. If
markets are incomplete (so that a nontrivial insurable event exists), the set of payoff-
relevant information structures is a generic subset of IT=.*!' Lemma 4.4 suggests that
a payoff-relevant information structure 7 may admit an ex-post Pareto improvement.
Indeed, this is generically the case:

Theorem 4.2 Suppose markets are incomplete, and there exists a portfolio of the
first J — 1 assets with a nonnegative nonzero payoff. Then, for any T, and a

10The payoff-relevance condition applies to a change in information from 7 to 7. However, it is
easier to speak of 7 as being payoff-relevant, taking 7 as given.

11 As we have noted before, if R is in general position, there is only one insurable event, namely the
whole set S; in this case, any 7 for which 77 is not proportional to 77, for some o, is payoff-relevant.

14



payoff-relevant w, there is a generic subset of € such that every T-equilibrium 1is
m-inefficient.

Proof:

Consider a ™ € II, and a payoff-relevant ©# € Il-. Fix a ¢ for which the payoff-
relevance condition applies. Given the assumption in the theorem that there exists a
portfolio of the first J — 1 assets with a nonnegative nonzero payoff, we can assume,
without loss of generality, that an asset j° # J has this property.

We will use the following result, which can be deduced from Lemma 5 of Geanako-
plos and Mas-Colell (1989):

Fact 1 Consider nonzero scalars 6,0., s € S, such that {0s}ses, s not proportional
to {0 }ses,., for some insurable event Sy, € S(R). Then, diag,[fs|R and diag,[0.|R
do not have the same column span.

Let
R = <diags 7] R diags[ﬁsa]R>

Since 7 is payoff-relevant, Fact 1 implies that rank(R*) > J + 1. Let r/ € R denote
the payoff of asset j. We pick an asset j; such that diag,[m,,|7’* lies outside the
column span of diag,[7s,|R. We pick a second asset js as follows. If rank(R*) > J+1,
we choose jp so that diag,[m,,]| 7 lies outside the column span of diag, [, R. If, on
the other hand, rank(R*) = J + 1, we choose js to be either j" or J (if j; happens to
be the same as j’ or J, we pick js to be the other asset). Thus the matrix

A

R .= (diags[wsg](rj1 r72) diags[ﬁsa]R> (11)

either has rank J + 2, or has rank J + 1 and diag[rs,] 772 lies in the column span of
diag,[Tso] R

Let 7, € R? be the payoff in state s of assets j; and j,. We will show that, for a
generic subset of €2, there is no solution to the equation system

—0 (e FJ 50—700;70
qu(fovlhw;Tr T ) = ( Z es Wsa(Ahlm(ym):uvw) ,ﬁs ) -0

This is the same system of equations as in the proof of Theorem 4.1, for a (possibly)
different choice of 75, and of the pair of agents. Here we will be perturbing w instead
of 7.

The Jacobian of Wy, evaluated at a zero (£, i, w) of Wy, is

* ‘ 0 } diag,, [ . T ﬂ?grs .. .S}
D£o7u,w\p2 = ngga ‘ 0 } 0
* ‘ — > Tso ﬂ?g/fs } [ . Tsy U?gﬁfs .. .5] *
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which is row-equivalent to

x| = T | me %

x| 0 | T 0

x| 0 | 0 | diagy,p, [ oo @5 - ]
D, 9o | 0 | 0 | 0

We wish to show that this matrix has full row rank. Since D¢, g, has full row rank,

as does the matrix diagh?éhl [ . Tse usgrs .. .s}, it suffices to show that

_h/A _h//A
(—stsgusgrs ‘ T Uil T g

_ —h”
0 ‘ B 7 A

has full row rank, J + 2. This matrix is column-equivalent to

—h/A ~
(stsgusgrs ‘ ...7ng7‘5...5>

0 ‘ e T Ts e s

)

the transpose of which can be written as follows:

diag, [meo](r7t 172) | diag, [T R

We now exploit the properties of the matrix R*, given by (11). If rank(R*) = J+2,
Ao has full column rank and we are done. If not, we have

[. Mo ﬂ?g’ .. .S} ri2 ‘ *
Ay ~e : : —
0 | diag,[m,] r! diag,[Ts, ] R |

Since asset j, has a nonnegative nonzero payoff, the upper left block of this matrix
is a nonzero scalar, while the rank of the lower right block is J + 1. Therefore, A,
has full column rank for this case as well.

We have shown that the Jacobian D¢, .Ws has full row rank, at every zero of
W,. Thus ¥, is transverse to zero, and W, (0) = @, for every w in a generic subset
of Q. O

Theorem 4.2 shows that any payoff-relevant 7 violates (8), with an appropriate
perturbation of {A?g}ses, i.e. for a generic subset of €2. This generic subset will
clearly depend on 7 (unlike the generic subset Q) in Theorem 4.1, which does not
depend on the choice of 7 in lﬁlﬁ) Thus, while Theorem 4.2 improves upon Theorem
4.1 by identifying a generic subset of 7’s for which equilibrium allocations are -
inefficient, it does not specify a generic subset of {2 for which a Pareto improving
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reallocation exists for all such n’s. We now show that, under some restrictions on
asset payoffs, there is a generic subset of €2 for which a Pareto improvement can be
attained for a large, albeit not necessarily generic, subset of 7’s that can be explicitly
identified.

In order to develop this result in a notationally convenient manner, we will assume
that R takes the block-diagonal form diag,[Ry] and, if there is a trivial insurable
event, then Sk is one such event. Due to Lemma 4.2, this assumption is without loss
of generality. In particular, it implies that asset J pays off only in event Sg.'?

Suppose markets are incomplete, there are at least two insurable events, and the
initial information structure 7 is uninformative. We consider information structures
7w that affect the relative probabilities of states in a nontrivial insurable event S,
k # K, but not in Sk (if Sk is trivial, then the latter condition is irrelevant). As we
will verify in the proof of Theorem 4.3 below, this implies that 7"(7%) = m"(77),
and Ahi‘(_ A(_ )) is o-invariant for all s € S;. In Lemma A.1 in the Appendix
we show that Ahh(ua (7)) is nonzero, for all s € Sy, for a generic subset of
(thus strengthening the non-collinearity condition (9) for a particular value of p,
namely p = ﬁgﬁ (77)). The m-efficiency condition (8) is then violated if the change in
information is independent across sufficiently many different values of o, i.e. if the
matrix

HSk = c o Tso - - -5€8,
has sufficiently high rank. Formally, we have:
Theorem 4.3 Suppose markets are incomplete, there are at least two insurable events,

and T is uninformative. Let Sy be a nontrivial insurable event, k # K. Then, for a
generic subset of (), every T-equilibrium is w-inefficient, for all m € 1l= satisfying

(a) rank(Ilg, ) > Sy — Ji; and

(b) {7so}sesy is collinear with {Tsy }ses,, for all o € X.

Proof:

Consider a 7-equilibrium allocation 7, a nontrivial insurable event Sy, and a 7 € 1I=
satistying the conditions of the theorem. Suppose ¥ is m-efficient. Then, by Lemma
4.3, for an arbitrary pair of agents h and h,

Z Moo Ahh _hh(ﬂ' )) rye =0, Vo € X. (12)

SESK

12Tf Sk is trivial, then asset J pays off only in the last state. Of course, Sk may be nontrivial,
and may even be the whole state space S (if there is only one insurable event).
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Exploiting the fact that asset J pays off only in the event Sk, and using condition
(b) in the statement of the theorem, we see that " (7%) = " (77), for all ¢ € X.
Therefore, condition (12) reduces to

Z Tso Ahh _hh(_a)) rs =0, Vo € X. (13)
SES
Due to the assumption that 7 is uninformative, the margmal utilities u’ " and @ u are

o-invariant, and so is @ (7). It follows that AZ;L( (7)) is U—mvarlant. Condltlon
(13) can then be rewritten as follows:

ILs, diag,cs, [AM (7" (77))] Ry = 0.

Since rank(ILg, ) > Sp — Ji, the rank of diag,g, [AMh (1 (77))| Ry, must be strictly

less than J;. Therefore, Agg(ﬁgh(ﬁ")) = 0 for some s € S,. By Lemma A.1, this
condition is violated for a generic subset of 2. O

Notice that condition (b) is automatically satisfied if Sk is trivial. The theorem
generalizes Theorem 5 of Blume et al. (2006). Their result corresponds to the case
where Sk is trivial (they assume that one of the assets is an Arrow security); they
also impose a stronger full rank condition (in our notation, their assumption is that
rank(Ilg, ... Ils,) = S). While in Theorems 4.1 and 4.2 it sufficed to consider a
change in the information structure for only two values of o, for example an ap-
propriate choice of 7' that admits a Pareto improvement conditional on oy, and a
corresponding choice of 772 to satisfy the adding-up condition 7 € I+, Theorem 4.3
requires an independent change in information across at least S, — J;, values of .3
The corresponding m must therefore be payoff-relevant for these values. In Theorems
4.1 and 4.2, the set of n’s for which 7-equilibria are m-inefficient is a generic subset
of Il=, but this is not the case in Theorem 4.3 unless Sk is trivial.

5 Equilibrium Changes in Welfare

We have shown that, for any 7-equilibrium, there is a rich set of information struc-
tures that allow a Pareto improvement. For every information structure = in this
set, there is an ex-post Pareto improving reallocation of the given assets. A natural
question to ask is whether there exists a 7 such that an associated m-equilibrium
Pareto dominates the m-equilibrium under consideration. In this section we provide
an affirmative answer to this question, for a generic economy. It is indeed typically
possible to find an information structure 7, and a corresponding m-equilibrium, such
that all agents are better off ex-ante.'* But it is also possible to find a 7 such that

13Condition (a) allows for the possibility that the relative probabilities of the states in Sy, are the
same under 7 and 7 for one value of o.
14Whether this is possible ex-post remains an open question.
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all agents are worse off. Indeed, the welfare effects in equilibrium of a change in
information can go in any direction. The proof of this result exploits the general
framework laid out in Citanna et al. (1998), and exposited more fully in Villanacci
et al. (2002), Chapter 15.

Given a T-equilibrium allocation 7, and a m-equilibrium allocation y, let

U(r,y;7) {Z?Ra( Wy +rs-y2]—uh[wi}—|—rs.gg}>}

be the vector of differences in the ex-ante expected utilities of agents between the
two allocations. We consider local changes in (7,y) in a neighborhood of (7,7).
With no change in information, there is no change in welfare: U(7,7;7) = 0. An
ex-ante Pareto improvement is attained in equilibrium if U(w,y;7) is nonnegative
and nonzero. We show, in fact, that it is possible to generate a local change in U in
any direction, for a generic economy. Our result requires that markets are sufficiently
incomplete, and that the heterogeneity of agents is not too large.

heH

Theorem 5.1 Suppose S > 2JH, J > H, and R is in general position. Then, for
a generic subset of £, for any w-equilibrium allocation Y, there exists a local change
in information dmw, and a corresponding local change in the equilibrium allocation dy,
such that U (T + dm,y + dy; ) is any desired vector in RY.

Proof:

We fix an economy e € £, with information structure 7, and consider a T-equilibrium
given by & = (7, 7, X). With a slight abuse of notation, we can write the equilibrium
system (7) as F(m,§) = 0. Thus (7, &) is a zero of F'if and only if £ is a m-equilibrium.
Of course, F(7, &) = 0. Let

~—

U(r,y;9)
®(m, & 9) = F(m,§)

ZU Tsg — ﬁs}ses

where y is the allocation corresponding to £, and ¢ is any (exogenously given) al-
location. Notice that ®(7,&;%) = 0. The theorem is established by showing that
the Jacobian of ®(r,¢;5) with respect to (7,&) has full row rank at (7, &;7), ie
D, ¢®(7,&; ) has full row rank. This full rank property implies that there is a local
change (dm,d§) such that d®(7,&;7) is any desired vector. In particular, (dr,d§)
can be chosen so that dU (7, ;y) := U(T +dm,y + dy; ) is any desired vector in R
dF(7,€) == F(T + dr, £+ d¢) = 0, and >_dm,, = 0 for all s € S. The latter two
conditions ensure that (7 + dr) € Iy, and (€ + d€) is a (7 + dr)-equilibrium.
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The matrix D, ¢®(7,;7) is given by

O ’ Dy,pU(fa gv y) | O
diag, .. (ﬂ?;rs Xgﬁo) s ‘ * diagy, , [T-D,] (1)
h
0 ’ D yp 9 (E) ’
Is...o | 0 |

. .. ~h— . .
Notice that we can eliminate the term A p, in the (2,1) block with column opera-
tions involving the last column block. Rearranging rows, (14) is thus row/column-
equivalent to

Dyxﬁg(g)
! ‘ (Dy,pU(ﬁy;@) ) ’ (15)

Q@) | *

where
diag, | ... ugrs s

Qly) == : (16)

‘h

Is ...,

In the Appendix we show that, for every competitive equilibrium of a generic
economy, under the dimensionality restrictions in the statement of the theorem, the
portfolios and marginal utilities of agents satisfy the following conditions:*®

C1. The vectors {9"}nem nsn, are linearly independent, for all o € 3.
C2. The vectors (... A" .. .;)and (... A2 .. .,) are not collinear.

C3. Q(y) has full row rank.

Each of these conditions holds for a different generic subset of £ (see Lemmas A.2, A.4
and A.6). In the remainder of the proof, we assume that the economy € considered
in the foregoing analysis is in the intersection of these three generic subsets. Thus
€ is a generic economy for which conditions C1, C2 and C3 hold. We will prove
that, for such an economy, (15) has full row rank, and hence so does the Jacobian

Dw,fq)(ﬁ7 ga y)

15The choice of agent h; in condition C1, and agents h; and hs in condition C2, is just a matter
of convenience.
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Since (15) is a block-triangular matrix, it suffices to show full row rank of the
two blocks along the north-east diagonal. The matrix Q(7) has full row rank due to
C3. The nonzero term in the other diagonal block is

. _ . ~h
Dy 54(@) diagy, , )] | diag, [... Y, .. .n)"
y,pY . 7
9&) ) <, diag [.. 1 ... 0 17
( D, ,U(T,7;7) ) . & [_ _h_Th] | 1"
... diag), [TeAgDa] - o | 0

where we have used (3) to evaluate D,U, the (3,1) block of (17). Consider the top
two submatrices of (17). Adding the rows corresponding to agents h # hy to the row
for agent hy, for every o, we see that (17) is row-equivalent to

. ~h
* | diag, [ Yy ngna] |

diag,[... D) .. .4]
diag,[... 1. . .1] 0
.. diag, [Fo VBT -+

We need to verify that this matrix has full row rank. It is block-triangular, and the
upper right block has full row rank by C1. It remains to show that the lower left block
also has full row rank. Rearranging rows and columns, this block is row/column-

equivalent to
: Do
...diag, < i )h

diag, [ . . To DY . o]

=T =T =T
diag,, ( I[Z” ) diag, ( 1}" ) ...diag, ( I[Z” ) < -hethiho
~R ﬁaxglp;r
0 —hs o *
ToNg Do
0 0 diagy, s [ - ToAaDy - o]

This is again a block-triangular matrix. The first diagonal block has full row rank,
since I = (I;_; 0) and (p,); = 1. The middle diagonal block has full row rank due
to C2. The third diagonal block clearly has full row rank as well. Hence the whole
matrix has full row rank as desired. O
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A Appendix

We first provide proofs of Lemmas 4.2 and 4.4 stated in Section 4, and of Lemma
A.1 that was invoked in the proof of Theorem 4.3. We then establish conditions C1,
C2 and C3, that were used in the proof of Theorem 5.1, for a generic subset of £.

Proof of Lemma 4.2:

The matrices R and R’ are column-equivalent if and only if R = RX, for some J x J
nonsingular matrix X. Let S(R) = {S,..., Sk}, and let R}, be the Sy x J submatrix
of R consisting of the rows of R corresponding to the states in Si. Similarly, let R}
be the S; x J submatrix of R’ corresponding to Sj. Consider a vector a € R®, and
let a;, € R% be the elements of a corresponding to S,. We have a' R’ = " RX and
af R, = a} Ry X.

Now suppose a' R = 0. Thena' R =", ;- a} R, = 0. Since the subspaces {L;}
are linearly independent, we must have a; Ry, = 0, for all k. It follows that a, R}, =
for all k£, and hence the subspaces {L}.} are linearly independent. Moreover, since
{Lx} is a maximal set of linearly independent subspaces, so is { L}, }. This establishes
that S(R) = S(R).

We now show that there exists a J x J nonsingular matrix X such that RX
has the block-diagonal structure in the statement of the theorem. Let M, be the
J-dimensional subspace of R’ that is the orthogonal complement of the subspace
generated by {Lj}; . We claim that the subspaces {Mj} are linearly independent.
Indeed, consider my, € M, such at ), my = 0. Then, ¢;-> ", my =0, for all £, € Ly.
But ¢; - m; = 0, for all k # k. Therefore, 0}, - >, my = £ - my, = 0, for all £, € Ly,
i.e. my, is orthogonal to L;. By the definition of M, my, is orthogonal to L, for all
k # k. Consequently, my, is orthogonal to R’, implying that it is zero. The same
argument applies for all values of k.

Let X; be a J x J, matrix whose columns are a basis of M. Thus every
column of X} is orthogonal to every row of R that does not correspond to the
states in Sg. Therefore, R; X = 0, for all k # k. Let X := (X;...Xg). Then
RX = diag,[Ry], where Ry := R, X}, an Si x J, matrix. Since the subspaces { M}
are linearly independent, X is nonsingular. This proves that R ~¢ diagy[Ry|. More-
over, rank(Ry) = rank(R;) = J,. O

Proof of Lemma 4.4:

Let S be a subset of S satisfying the conditions of the lemma. We choose a pair of
states in S, in a manner that we specify later in the proof. It is convenient to reorder
the states in S so that these are the first two states, labeled s; and ss. It suffices to
establish the result for the first two agents, h; and hy. We will show that generically
there is no solution to the equation system

‘I, o F (&, w; ) _
3(507,”7(")771- ) T {Ahth(y 1 CU)} ‘ ) =0.
so o I s€q{s1,s2
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The system W3 is obtained from the equilibrium system F, by appending one addi-
tional variable, p, and two additional equations.
The Jacobian D, , Vs, evaluated at a zero (§,, 1, w) of W3, is

* | 0 ‘ diagy, ... Tso ar, .. s
Dfa 9o | 0 ‘ 0
—ﬂh2/ . "
* ’ _ﬂ]sllj ‘ dlagse{81,52} [ﬂ?& } OQX(S*Q) *

o | T | b0 *
Uy
* } 0 ‘ . Tsy uh Ts.nus ‘ 0
* } 0 ’ 0 ‘ diagy, zp,, [ T sor Uh"rs .. .3]
D¢, gs | 0 | 0 | 0

We wish to show that this matrix has full row rank. Since Dy g, has full row rank,
as does the matrix diagy, ., [ . Tso Ei}!rs . .s}, it suffices to show that

ﬂgf" dia, [_hll’} 0
) ﬂh2 gse{31 s2}
A3 = So0
— —h "
0 } o Tso Ugt Ts o g

has full row rank, J + 2. We have

_h2/
—u
S10
A & ‘ 0z, ' !
3 NC S0
Tsi0 s Tsoo I'sy | 0 } o Ts s sy,50)
_77ha!
I Ysig 0
2 _E]m/
~R So0
—ho! —ha!
0 | Tsi0 UsigTsy T Tsgo Ugey s ‘ T s {s1,s0)

Thus, in order to establish that rank(As) = J + 2, it suffices to show that the matrix

o —hy! —ha!
B = ( 1o UgigTs) T Tspo UgayTsy | co T s {s1,80) >

has rank J. We now argue that this is indeed the case, for an appropriate choice of
the states s; and ss.
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By assumption, S contains a nontrivial insurable event, say S, so that J, < Sy.
If J, < Sk —2, we can choose s; and s, in Sy such that both r,, and rg, are spanned
by the vectors {rs}scs, s¢{s1,s2}- Lhen the right submatrix of B has rank .J, and hence
so does B. Suppose then that J, = S, — 1. Let s; be any state in Si. The vector rg,
must be in the span of {r,}ses, s, (if this is not the case, then s; is an insurable
state, contradicting the fact that s; belongs to the nontrivial insurable event Sy). If
S). is a strict subset of g, let s5 be a state in S that is not in Sk. Then ry, is in the

span of {rs}scs s¢fs: 50}, SO that

B ~¢ ( Tsq ‘ o Ts s {sisa} >

which has rank J.

The only case that remains to be considered, therefore, is the one where S = Sk,
with J, = S, — 1. As before, let s; be any state in S;. We claim that there is a
state sy € S, such that rank(B) = J. Suppose not. Then, there exist coefficients
{agjs}gesk,ses such that

—hy! —ho! A
Tsio Ugiglsy + Moo Uge s = Q5.5 Ts, Vs e S.
s€S,s¢{s1,8}

Since r,, can be written as a unique linear combination of {r}ses, szs,, We must

have
7T510 U’Sl(f E 7TSO' sa— 87

SESk,s#S1

> Feoulr, = 0. (18)

SESK

1.e.

We now invoke the assumption that there exists a portfolio whose payoff is nonneg-
ative and nonzero in 5.1 In the case under consideration, S = Sk. Hence, there
exists * € R’ such that r, - 2* > 0 for all s € Si, and 7, - * > 0 for some s € 5.
Then we must have ) o 7o, a"2'r, - 2* > 0, which contradicts (18).

We have shown that D¢, , W3 has full row rank, at every zero of W3. Thus W3 is
transverse to zero, and W5 !(0) = @ for all w in a generic subset of Q. O

16This is the only place in the proof where we use this assumption. Thus the assumption is
needed only for the case where S is a nontrivial insurable event Sy, and J, = Sy — 1.
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Lemma A.1 Suppose markets are incomplete, and there are at least two insurable
events. Let Sy be a nontrivial insurable event, k # K. Then, for a generic subset of
Q, at any T-equilibrium allocation 7,

A7) #0,  Vse Sy hhe H,geX.

Proof :

Let Sy be a nontrivial insurable event, k # K. It suffices to establish the result for
the pair of agents h; and hs, and for one state in Sy, which we take to be the first
state sp, for convenience in writing the matrix computations below. We show that
generically there is no solution to the equation system:

Fo(éo,w;T)
Uy(&o, ptyw; T7) = Al (y, p,w) = 0.

s10

5" (Yo, wi T7) —

The Jacobian Dy, ,, ., V4, evaluated at a zero (€, 1", w) of Wy, is

% -1 0 Tso HZ;HT;] *
1x1 _z = ﬂthT'J."‘S#sl
s#sy TWso Usa T
. — _h//
* | 0 | diag,, [  Tso Uy Ts - .S}
Déaga' | 0 | O
_ho! —hi’
* | Us o | Us, o 01><(5—1) *

)

where we have used the fact that the payoff of asset J in s; is zero (since asset .J
pays off only in Sk ). The Jacobian is row-equivalent to

— =
* ) -1 ‘ 0 ‘ S Wsa;saﬂ";f2/ st *
s#sy 1180 Wso s
e 0 | *
s |0 | Fae®@lrg | R W s | 0
« | 0 | 0 | 0 | diagy, [ Foo @ rs. . s
De,go | 0| 0 | 0 | 0

Since Dg,g, has full row rank, as does the matrix diag, ., [ . Tse ﬂ?!rs .. .5], it
suffices to show that

7h1ll J

- Tso Usg T
1 O e — 7h2/ 7 .. ’57/:81
257531 Tso Usg Tg
A4 = _ﬂhQI ‘ _hlll ‘ 0
S§10 S510
" "
= i — i
0 ‘ Ts1o Ug o T'sy ‘ e Tog Ugy T - - sty
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has full row rank, J 4 2. Exploiting once again the fact that r;,]l = 0, we can do a
row operation using the last row of A4 to get

-1 | 0 | 0
_he! hi!’
A4 ~R uslo' ‘ s10 0
— —
0 ‘ Tsio Uy T'sy ‘ e Tsg Ugy T - st

Since Sy is a nontrivial insurable event, ry, is in the span of {r,}ses, s2s,- It follows
that the bottom right block has rank J. Hence rank(A,) = J + 2 as desired.

We have established that W, is transverse to zero, so that ¥, !(0) = @ for all w
in a generic subset of Q. O

Lemma A.2 Suppose J > H. Then, for a generic subset dy of €1, condition C1 is
satisfied at any equilibrium.

Proof :
Consider the equation system

\115(&07 1/}5” w) = %TYU - 07
Vg s — 1
where 15 € RE~1 and Y, is the square matrix obtained from [... 4" ...;] by deleting

the first column and the last J — H rows. We will show that, for a generic subset
of endowments, this system has no solution, and hence Y, has full rank at any
equilibrium.

The Jacobian of Uy is

Dgo' fO' O ‘ D(-L) fO'
D 0 0
D, s0Vs5 = ¢e9s (19)
i De, (g Ys) Y, 0
0 21/); 0
Note that the matrix
diagy[p, ]
9o
()

(0 diag,[] 0])

is row-equivalent to

Py O 0

I I I

0 ) 0

0 [¢5 0] 0 (20)
0 0 Py

0 0 [¢3 0]
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Since (p,); = 1 and, at any zero of W5, 15 # 0, (20) has full row rank, and hence
so does the lower left block of (19). Furthermore, D, f, has full row rank. It follows
that the Jacobian Dy . Vs has full row rank, at every zero of W5. Thus U5 is
transverse to zero, and W;!(0) = @ for all w € Qy,, a generic subset of . The set
Qy in the statement of the lemma is given by Qy := Nyex Qy,. O

In order to establish conditions C2 and C3, we will need to independently perturb
the marginal utilities of agents, for different signal realizations ¢. This cannot be
achieved via endowment perturbations, since endowments do not vary with respect
to 0. Instead, we perturb the (initial) information structure 7. As a first step we
show that, for a generic subset of endowments, marginal utilities vary sufficiently
with respect to m, across both s and o. Let

f01<5017717w>
W 013 So29 1, 27(4) = Zsﬂ-sal — Toy
(5 1 fz T, ) fUz(&m?ﬂ.Z,w)

Zs Moy — ﬁaz

)

where 7' := {7, }ses, and Ty, is an arbitrary constant in (0,1), i = 1,2. We show
in Lemma A.3 below that, for a generic subset of endowments, D1 2 has full row
rank at any equilibrium. Note that we are considering perturbations in 7! and 72
that leave 7,, and 7,, unchanged. In particular this ensures that the perturbations
lie in the set II. Lemma A.3 is invoked in all the lemmas that follow (the assumptions

in the statement of Lemma A.3 are implied by those in the statements of Lemmas
A4, A5 and A6).

Lemma A.3 Suppose S > J(H + 1) + 1, and R is in general position. Let m € 11
be an information structure with ) mws, = T,. Then, for a generic subset Qu of (2,
at any m-equilibrium, D1 2 W has full row rank.

Proof :
We have
R h h — \h
fr= E Too " [W! + 75 - y2] 75 — Ta A2 Do, o = 01,09.
S
Therefore,
h/
u r
. so' S S
Dﬂ.l’ﬂ.ZW = dlagge{o.17a2} .
‘h
N
Let
. — h!
o = U'SO'TS < s<JH+1
‘h
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and 17 = (1 1...1)1xum+1)- We claim that, for a generic subset of €2, at a 7-
equilibrium, the (square) matrix

o I,

I'y = T

has full rank, i.e. for 1 € R7#+1 there is no solution to

Fo (o, w)
Fcr (507 W) %
Us(&s, Vg, w) = =0.
6(5 ¢6 ) 1T,l/}6
g Y — 1
The Jacobian, D¢, 4.V, is row-equivalent to
fo >
* * D,
e
17 (21)
0 0
R
Dfo'go' | O | O

We wish to show that this matrix has full row rank at any zero of Wg. As we have
seen already, Dy, g, has full row rank. Also, ¢ is orthogonal to 1 and nonzero (since

¢ 6 = 1). Hence, due to the block-triangular structure of (21), it suffices to show
that the upper right block, given by

2 B diag,, [ T u 5]
Dw - "
FU ¢6 diagh[(...wg;su?a TS"'SSJH-Fl) (00):|
has full row rank. This matrix is row-equivalent to a block-diagonal matrix, with
blocks indexed by h. The h’th block is:

)

n! n!
e Tgg Ugy T's -+ os<JH+1 | e Mg Ugy Ts o v os>JH+1

o (22)
Vs, Ts oo s<JHAL | 0

This matrix is block-triangular as well, and its upper right block has full row rank
since it has at least J columns and R is in general position. It remains to show
that the lower left block of (22) has full row rank. Let S be the subset of states
for which 1, # 0. This is a nonempty subset at any zero of Wg.!7 Then we have
Y ses Yesury = 0. Since R is in general position, and u/ is nonzero for all s, we
must have #S > J + 1. Full row rank of the lower left block of (22) now follows
from the general position of R.

178 may depend on the zero of Wg we are considering, but this does not affect our argument.
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We have shown that the Jacobian Dy, 4 W has full row rank, at every zero of
Ws. Thus Wy is transverse to zero, and \Ifgwl(O) = @ for all w € Qu,, a generic subset
of Q. This establishes that I, has full row rank. It follows that D1 2W has full
row rank for the generic subset of endowments Qp 1= Qu,, N Qwy,. O

Lemma A.4 Suppose S > J(H + 1)+ 1, and R is in general position. Then, for a
generic subset of 2 x Il, condition C2 is satisfied at any equilibrium.

Proof :

We restrict endowments to lie in the generic subset Qy of € for which D1 2 W has
full row rank (see Lemma A.3), and show that, for a generic subset of II, there is no
solution to

Foy (§ovs Wl)
Foy(ons 772)
\117(&7“ 5027 7T17 7T2) = ZS Tso1 = Moy =0.
Zs Moy — 702

ARtz \b1 yho

01702 027 '01

The Jacobian, Dy, ¢,, 1 2V7, I8 row /column-equivalent to

* } Dﬂ.lﬂrzw
Dyo1 9oy 0 *
0 Dy(rz gU2 * 0
h1\h hi\h
0 0 Dpol \Pag Aoy Aoy [)\0'1 )\0'5 - )\oé )\Uf]

Since D, g, has full row rank, and A\ # 0 for all o, it follows that the lower left
block of the above matrix has full row rank. Since D1 2W also has full row rank,
the Jacobian Dgal 7502,,,177@\1!7 has full row rank. Thus W is transverse to zero, and

U-1(0) = @ for all 7 in a generic subset of II. O

In order to establish condition C3, we will employ finite-dimensional perturba-
tions of the agents’ utility functions. This procedure requires the following result.

Lemma A.5 Suppose S > J(H + 1)+ 1, J > H, and R is in general position.
Then, for a generic subset Q¢ x I of Q x I, at any equilibrium, cb, # cb. for all
(5,6) # (8,0), and for all h € H.

Proof :

Consider first the case where § # § and ¢ = ¢. Without loss of generality, we can
take § = s; and § = s, and prove the result for the first agent, hy, for a given 0. We
will show that, for a generic subset of 2, there is no solution to
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Csla CSQO'

Ba(enw) = (472 ) =0

Here we use ¢ as shorthand notation for w” + -y, not as an additional variable.

The Jacobian, D¢, Vs, is row-equivalent to

fo
s10 So0

D¢, gs | 0

and

;. diagy[. .. Teeull 7y .. ]
IO (23)
Csio ~ Csyo 1 =1 Ok | 0 )

Note that the zero block in the lower right of (23) corresponds to all agents other
than h;. The matrix (23) is row-equivalent to

Tsi0 uifll;/ Ts, Tsyo u;‘;;/ Tsy |- Tso ug(}”rs .y
0
1 -1 0
. h//
0 | diagyp, [ T u 7

(24)
The lower right submatrix of (24) has full row rank due to the general position
of R. The (1,3) block of the upper left submatrix of (24) also has full row rank
for the same reason (note that the assumed dimensionality condition implies that
S > J + 2). Consequently, the whole matrix (24) has full row rank, and hence so
does (23). Furthermore, due to the full row rank of Dg_g,, the Jacobian D¢, ., Vg has
full row rank as well. Thus Wy is transverse to 0, and ¥g}(0) = @ for all w € Qy,, a
generic subset of 2. Let 1 := Nyex Q0.

Now consider the case where ¢ # &, while § may or may not be equal to .
Without loss of generality, we can take ¢ = 01, & = 09, and § = sy, and prove the
result for the first agent, h;. We restrict the set of endowments to the generic subset
Qy N Qy, for which condition C1 holds and D1 2W has full row rank (see Lemmas
A.2 and A.3), and show that, for a generic subset of II, there is no solution to

Foy(&yy ")
FO’2 (50'27 7-(2)

qj9(€0’17€0277r177r2> = Zs Tsoy _ﬁﬂl = 0.
Zs 7T302 702
h h
Cslla'l - Cééz
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We have

Jo,
0 | D¢, 9o,

ch
Dfdl 7602,71'1,#2 \Ilg ~R ‘Dgo‘1 5101 " ' O

Since D1 .2W has full row rank, it suffices to show that the lower left block of the
above matrix has full row rank. This block is itself block-triangular, and Dg,, g, has
full row rank. The other diagonal term is:

N T Ors(i-1) | 0 | o

1

Dggl ( C;lO'l ) e dlagh[pl—l] ‘ [ . le . h]T ‘ O
o1 ~

Consider the middle row block of this matrix. Adding the rows corresponding to all
agents other than h; to the first row of this block, and using the market-clearing
condition, we get:

| 0 | 0 | 0
( i > . P, ‘ - -h#h ‘ 0 ‘ 0
1\ Goy 0 ‘ dlaghﬂ11 P ‘ T L ‘ 0
I | o 0 | 0
} diagh#hl [p(—l)'—l] | [ o ggl ° h;ﬁhl]—l— O
T T
~R p;1 ' < p}Il ) - h#thy | 0
re | 0 | 0

This matrix has a block-triangular structure. Since condition C1 holds, the top right
diagonal block has full row rank. The middle diagonal block has full row rank since
I = (I;_; 0)and the Jth element of p,, is nonzero. The bottom left block is nonzero
by the general position of R.

It follows that the Jacobian De, ¢, x1x2Wg has full row rank, at every zero of Wy.
Thus Wy is transverse to zero, and Wy ! (0) = @ for all w € I, a generic subset of I1.
The set Q¢ in the statement of the lemma is given by Q¢ := Q1 N Qy NQy,. O

The space of utility functions U is infinite-dimensional. For the genericity ar-
guments that we use in order to establish condition C3, it suffices to consider a
finite-dimensional submanifold of &/. This submanifold consists of linear perturba-
tions of the von Neumann-Morgenstern utility index of each agent in the neighbor-
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hood of consumption in each state (s, ), for a given equilibrium. This is a standard
construction (see, for example, Citanna et al. (1998)).18

Consider an economy (w, 1, %) € Q¢ x UH x T, and a corresponding equilibrium
with consumption allocation {¢" }nem sesoes. By Lemma A.5, the consumption level

of agent h, ¢" | is distinct across (s, o), for all h. Therefore, we can find open intervals
B! B! such that ¢ € B?G C B" C R,,, where the intervals B” are disjoint across

(s,0). Define C? functions p” : R, — [0,1] such that p" =1 on B” and p" = 0on
the complement of B .1 Now consider the class of utility functions u” parametrized
by " € R9%:

)= 0+ 2 e )
It can be verified that, for v" sufficiently small in norm, u" € ¢. We have

uh(cu —i—Zp C_C +Zpscr scr’

so that
Dyl (e ) =1. (25)

SO

Let v, := {V" }remses, and v := {1, },ex. In order to show that condition C3 holds,
we will perturb utility functions via perturbations of v.

Lemma A.6 Suppose S > 2JH, J > H, and R is in general position. Then, for a
generic subset of £, condition C3 is satisfied at any equilibrium.

Proof :
Let A, be the JH x S matrix defined by

We first establish that

has full row rank, for all ¢ # 6. Without loss of generality we can take & = o1 and
& = 0y. Let A be the (square) submatrix of A consisting of the first 2JH columns
of A. Let ¢y € R¥#, We will show that, for a generic subset of U x II, there is no
solution to

18Unlike Citanna et al. (1998), we perturb the gradient of the utility functions instead of their
Hessian. Also, we have state-independent separable utility so additional care has to be exercised in
perturbing utilities in different states.

YThe existence of such a “bump” function is well-known. See Guillemin and Pollack (1974),
chapter 1.
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FO’1(€U17VUU7T1)
F02(50'27I/0'277T2)
12y . D osTsoy — T _
‘1’10(5017502;1#1077/017”0277 ) T ) T Zz ﬂ-sz _72 =0.
A(§0'175027V0'1a1/02)1/)10
Yiothio — 1

We restrict ourselves to the generic subset of endowments and initial signals (2 N
Q¢) x ¢ for which Lemma A.5 applies, so that we can parametrize utility functions
by the vector v, and for which the number of equilibria is finite. Recall that Q¢ is a
subset of Qyy, for which D1 2W has full row rank (see Lemma A.3). The Jacobian,

o1 Loy U10Way oyt w2 Y10, 18 TOW-equivalent to

* ‘ * ‘ Dﬂ.17ﬂ.2 %74
* ‘ Dfol Voo <Aw10) ‘ 0
0 0 2], (26)
De, 9o, 0 0 0 0

0 D£02 Gos 0

We wish to show that this matrix has full row rank. Since Dqi W, De, g,
and D, g,, have full row rank, and 19 # 0, it suffices to show that the mid-
dle block of (26) has full row rank. Using (25), we see that this block is block-
diagonal with respect to h € H and o € {oy,0,}, with typical diagonal term given
by [...%10s7s - .s<2su]. This diagonal term has full row rank by the same argu-
ment that we used for the bottom left block of (22). It follows that the Jacobian
£y Eorg 010,V org L2 U, has full row rank, at every zero of Uyq. Thus W, is trans-
verse to zero, and Uiy, (0) = @ for all (u,n) € UH x M.
Now that we have established that A has full row rank, consider the matrix @),

defined in (16). We have
diag, [A,]
U P R

The upper submatrix of () has full row rank due to the full row rank of A, and clearly
the lower submatrix of () has full row rank as well. If () does not have full row rank,
there exist vectors a, € R’ for all ¢ € 3, and b € R, not all of which are zero,
such that a/ A, +b = 0, for all . Moreover, since A, has full row rank, b # 0.
It follows that the row spaces of {A,},ex have a nontrivial intersection. But this
contradicts the full row rank property of A.

The utility perturbations in this proof apply only to the particular equilibrium
under consideration. However, we can repeat the same construction for each equi-
librium, and take the intersection of the generic subsets for which the Jacobian of
U, has full row rank. This intersection is itself a generic subset since the number of
equilibria is finite (recall that endowments are restricted to Qg). O
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