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1 Introduction

There exists a long standing debate in the macro economic literature over whether modeling

micro level frictions is important for matching aggregate quantities. Khan and Thomas (2008)

argue that in general equilibrium prices adjust making micro frictions irrelevant. However Bach-

mann, Caballero, and Engel (2010) show that non-convex frictions can matter for aggregate

quantities under certain conditions. In particular they argue that aggregate investment rate is

heteroscedastic and time-dependent; non-convex frictions help match the heteroscedasticity of

aggregate investment, which standard frictionless models cannot do.

Our key finding is that shocks to the growth rate as opposed to the level of productivity

(exactly the types of shocks necessary to produce high Sharpe Ratios in a Long Run Risk world

Bansal and Yaron (2004)) naturally imply aggregate investment rates which are heteroscedastic

and time dependent. While non-convex frictions can matter for aggregate quantities under some

calibrations (consistent with Bachmann et. al.), these types of frictions are not necessary to

match the aggregate investment moments emphasized by Bachmann et. al.

Our preferred model combines convex costs (which help with aggregate investment dynamics)

and non-convex costs (which help with firm level investment dynamics but are not necessary for

the aggregate) and is able to sufficiently match aggregate real business cycle moments; additional

aggregate investment dynamics emphasized by Bachmann et. al.; high Sharpe Ratios and interest

rates which are low and smooth; as well as firm level investment rates and distributions. Since

most of the work in our preferred model is done by convex costs, yet the model sufficiently

matches both micro and macro observations, the results provide a justification for models such

as Jermann (1998), Croce (2010), Kaltenbrunner and Lochstoer (2010) who use a representative

firm with convex costs only.

The heart of the debate between Khan and Thomas (2008) and Bachmann, Caballero, and

Engel (2010) lies in whether general equilibrium forces can cancel out aggregate investment

demand implied by micro lumpy investment. Consider firms that face a non-convex (ie fixed)

cost to invest; such firms will have a cut off rule in deciding whether to invest a large amount or

2



none at all. Suppose many firms are just below the cutoff and not investing, then a small positive

aggregate shock can drive a large number of firms over the hump, resulting in large swings of

investment as all firms suddenly invests (extensive margin). Without fixed costs firms will only

adjust the quantity of investment (intensive margin) and such large swings in response to small

shocks would not occur. By the logic of Khan and Thomas, general equilibrium forces prevent

a large number of firms from concentrating just below the cutoff because investment is valuable

and prices would reflect this, imploring some of the firms to invest earlier. However, Bachmann,

Caballero, and Engel (2010) show that both adjustment costs and general equilibrium forces play

a relevant role. In particular, when extensive margin is calibrated to have a more important role

in shaping aggregate investment than general equilibrium constraints, non-convex frictions can

have a consequential effect on aggregate quantities.

While the models above are solely calibrated to match multiple aggregate and firm level

quantities, they fail to match the asset prices observed in the data; this is a problem endemic to

most standard models, as observed by Mehra and Prescott (1985). Moreover different calibrations

of capital adjustment costs in Khan and Thomas (2008) versus Bachmann, Caballero, and Engel

(2010) result in lack of restrictions in identifying the form and size of micro-rigidities making

it harder to interpret the results. Asset pricing moments can provide an additional mechanism

to identify the appropriate way to model frictions and shed light on the above debate. To that

end, we use insights from the finance literature to build a model with a non-trivial cross-section

of heterogenous firms and realistic asset prices. In particular household preferences are recursive

and the growth rate (as opposed to the level) of shocks is stationary. Tallarini (2000), Bansal

and Yaron (2004), Croce (2010), Kaltenbrunner and Lochstoer (2010) show that such shocks are

important for asset prices. We then study the implications of frictions for aggregate quantities

and for asset pricing in such a model.

The model mechanism is as follows. When, as in standard models, shocks are to the level

of productivity, firms have an optimal level of capital associated with each productivity level.

When the productivity level increases due to a positive shock, so does optimal capital and firms
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choose investment rate based on the distance to the optimum. Subsequent positive shocks are

counterbalanced by mean reversion, resulting in little change to the currently optimal (high)

productivity and capital levels. The result is an initial jump in aggregate investment rate,

followed by a slow decline towards zero as more positive shocks come because firms are closer and

closer to their optimal capital; this can be seen in the upper panel of Figure 3. On the other hand

when the growth of productivity is trend stationary, a shock to productivity implies a permanent

change in the level of productivity. Subsequent positive shocks are again counterbalanced by

mean reversion, but this time it is the growth rate, rather than level of productivity that stays

high. This results in further increases to productivity and optimal capital, requiring even more

investment. This leads to time dependence in investment rate, with investment rate growing

(falling) as the expansion (recession) gets longer.

These trend stationary shocks to the growth rate (as opposed to the level) of productivity

imply changes to productivity not only today or tomorrow, but for many years to come. Through

production, these shocks also affect consumption over may periods forward. While an agent with

CRRA preferences only cares about changes to today’s consumption growth rate, agents with

recursive preferences also care about these long term changes, making this economy riskier from

their perspective. Therefore, these shocks, combined with recursive preferences, produce high

Sharpe Ratios as in Bansal and Yaron (2004).

The rest of the paper is laid out as follows. In section 2 we review the relevant literature and

empirical facts. In section 3 we write down our model. In section 4 we present and discuss the

model’s results. Section 5 concludes.

2 Review of Literature and Empirical Facts

2.1 Investment

We will first briefly review empirical properties of firm level and aggregate investment, as well

as some of the models used to match these facts.
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Firm level investment tends to be lumpy, with periods of inaction followed by periods of large

investment (spikes); similar plant level findings have been documented by Doms and Dunne

(1998), Davis and Haltiwanger (1992), Caballero, Engel, and Haltiwanger (1995), Cooper and

Haltiwager (2006). These papers have found that non-convex (fixed) costs of investment are

necessary at the plant level to match these spikes and inactions. For example at the plant level,

investment rate has an autocorrelation of 0.05. Cooper and Haltiwager (2006) show that such

a low autocorrelation can happen if firms face fixed costs and invest nothing most of the time

while spike up investment periodically. Convex costs instead lead to positively autocorrelated

investment because firms with high investment demand invest step by step as huge investment

spikes in a single period are extremely costly. We find that at the firm level autocorrelation is

0.36, making fixed costs less important.

Despite this rich structure for micro investment, it is not clear that it is relevant for thinking

about aggregate ivestment. For example Cooper and Haltiwager (2006) solve a partial equi-

librium model with a rich specification of adjustment costs. In their model, non-convex costs

are crucial for matching firm level investment, however when they compute their model’s im-

plied aggregate investment, they find that a model with convex costs alone does reasonably well.

Convex costs models do not track aggregate data well only around turning points in aggregate

productivity. Thomas (2002) argues that even during such turning points, non-convex costs are

irrelevant once general equilibrium forces are taken into account; essentially prices adjust in a

way to prevent large swings in investment. Their general equilibrium model with firm level non-

convex costs has aggregate results identical to a frictionless model. This is a sharp contradiction

to partial equilibrium analysis of Caballero, Engel, and Haltiwanger (1995), Caballero, Engel,

and Haltiwanger (1997), and Caballero and Engel (1999). Khan and Thomas (2003), Khan and

Thomas (2008) confirm that the above irrelevance results holds in a more general model. Ve-

racierto (2002) shows that investment irreversibility does not play a significant role in a standard

real business cycle model.

Aggregate investment rate (I/K) is less volatile than output. Bachmann, Caballero, and Engel
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(2010) highlight two additional features of aggregate investment: it is heteroscedastic and time

dependent. Volatility in investment rate is high when past I/K is high. In Figure 2 (reproduced

from Bachmann, Caballero, and Engel (2010)) I/K is regressed against lagged I/K and the

squared residual is plotted against lagged I/K; the upward slope is evidence of heteroscedasticity.

Additionally, investment rate tends to increase (fall) as the expansion (recession) gets longer.

Bachmann, Caballero, and Engel (2010) refer to this as time dependence and it implies that longer

expansions (recessions) will be associated with larger increases (decreases) in investment. In the

lower panel of Figure 1 we plot the average change in I/K against the length of NBER defined

expansions and recessions between 1947 and 2008; coefficients from the associated regressions are

positive and significant for expansions and negative and marginally significant for recessions1.

These heteroscedasticity and time dependence are especially important during times of high

stress (ie long recessions or expansions) but cannot be matched by standard frictionless models

as will be discussed in our results. To improve the model performance along this dimension,

Bachmann, Caballero, and Engel (2010) provide a counter-example to the Thomas (2002) result

of irrelevance of micro-frictions for aggregate dynamics. They argue that the finding of irrelevance

is due to calibration: the calibration in Thomas (2002) implies sectoral investment volatility that

is too high2. With an alternative calibration Bachmann, Caballero, and Engel (2010) show that

adding non-convex frictions can help their model match the heteroscedasticity in investment

rate. Our analysis contributes to this literature by investigating the asset pricing implications

and investment quantities of a general equilibrium model with non-trivial micro-heterogeneity.

Different from the existing analysis, we gauge the importance of TFP growth rate shocks instead

of the more standard TFP level shocks. We show that the growth rate shocks have important

implications for both aggregate investment and asset prices.

1We have also computed this for U.K. data and the results are similar.
2See other related work, e.g., Gourio and Kashyap (2007), House (2008), Bloom, Floetotto, and Jaimovich

(2009), etc.
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Figure 1: Investment Rate and the Business Cycle

The top panel plots investment rate over time, with NBER contractions dashed. The bottom panel plots ∆I/K against the length

of the associated expansion (contraction) where ∆I/K is the difference between the average I/K during the expansion (contraction)
and I/K at the start.
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Figure 2: Conditional Heteroscedasticity

This figure presents the heteroscedasticity range, it is analogous to Figure 1 in Bachmann, Caballero, and Engel (2010). First I/K is
regressed on its own lag. Next, the squared residuals from this regression are regressed on lagged I/K. Finally, the fitted values from
the second regression are plotted against lagged I/K. The appendix describes this procedure in more detail.
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2.2 Asset Pricing

Our work also relates to a growing literature on the relationship between asset prices and low

frequency shocks. For instance, Tallarini (2000) shows that modeling the growth rate instead of

the level of shocks as trend stationary has important implications for welfare and asset pricing.

Bansal and Yaron (2004) demonstrate that a small long-run predictable component in the con-

sumption growth process can explain key asset markets phenomena. Alvarez and Jermann (2005)

derive a lower bound for the volatility of the permanent component of asset pricing kernels and

show that permanent innovations to consumption are key determinants of financial securities.

We confirm in our model that the permanent shocks are important for asset prices but differ

from Bansal and Yaron (2004) and Alvarez and Jermann (2005): i) instead of assuming shocks

to an exogenous consumption growth rate process, consumption is endogenously determined in

general equilibrium and the permanent shock in our model is to TFP; ii) the general equilibrium

setup allows us to investigate the implications of permanent shocks to aggregate quantities as

well as prices.

Finally, our work is related to several papers which study the effect of investment frictions on

asset prices in production economies. Jermann (1998) and Boldrin, Christiano, and Fisher (2001)

combine habit persistence preferences with investment frictions and show that this helps match

both asset pricing and quantity moments. Our economy is closest to recent models by Croce

(2010) and Kaltenbrunner and Lochstoer (2010) who show that a combination of low frequency

shocks, recursive preferences, and adjustment costs can improve the asset pricing performance

in a real business cycle model. However, the above papers consider a representative firm and a

representative household; we allow for heterogeneity and study the effects of firm level frictions.

3 Model

In this section we describe our model. We begin with the household’s problem. We then outline

the firm’s problem, the economy’s key frictions are described here. Finally we define equilibrium.
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3.1 Households

In the model financial markets are complete, therefore we consider one representative household

who receives labor income, chooses between consumption and saving, and maximizes utility as

in Epstein and Zin (1989).

Ut = max
(
(1 − β)C

1−1/ψ
t + βEt[U

1−θ
t+1 ]

1−1/ψ
1−θ

) 1
1−1/ψ

Wt+1 = (Wt +Nt ∗ wt − Ct)Rt+1

where Rt+1 is the return to a portfolio over all possible financial securities. For simplicity, we

assume labor supply is inelastic: Nt = 1. Risk aversion is given by θ and the intertemporal

elasticity of substitution by ψ.

3.2 Firms

The interesting frictions in the model are on the firm’s side. Firms choose investment and labor

to maximize the present value of future dividend payments where the dividend payments are

equal to the firm’s output net of investment, wages and various other costs. Output is produced

from labor and capital. Firms hold beliefs about the discount factor Mt+1, which is determined

in equilibrium. Firms are indexed by i, which is suppressed where the notation is clear.

Vt = max
It

Et[
∑
j=0,∞

Mt+jDt+j]

Dt = Π(Kt) − It − Φ(It, Kt)

Kt+1 = (1 − δ)Kt + It

Π(Kt) = maxNt ZtK
αK
t N1−αN

t −wtNt−Ψt is profit, given by output less labor and operating

costs3. It can be rewritten as Π(Kt, Nt) = Z
1
αN
t XtK

α
t −Ψt where α = αK/αN , Xt is an aggregate

3As there are no taxes or interest expenses we do not differentiate between operating profit and net income
and simply call it profit.
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variable that depends only on the aggregate wage4. Zt is the firm’s productivity, it includes both

aggregate and individual components. The exact form of Zt is discussed in the calibration section

further below. Ψt is operating leverage which also depends only on the aggregate wage; its exact

functional form will be described in the calibration section below but in our baseline model it is

just proportional to aggregate wages: Ψt = f ∗ wt. When αK = αN , output is homogenous of

degree one in capital and labor, we will consider decreasing returns to scale: αK < αN .

Total capital adjustment costs are given by Φ(It, Kt). We consider two types of costs; Φ(It, Kt)

is the sum of the two. First, fixed costs given by 0 if It
Kt

∈ (a, b), and wtϕ ∗ ut otherwise where ut

is a firm specific, uniform random variable known to firms as of t5. Second, asymmetric convex

costs given by υt

(
It
Kt

)2

Kt where υt = υ+ if It
Kt

> 0 and υt = υ− otherwise. Asymmetric costs

have been shown to quantitatively help with the value premium by Zhang (2005). To sum up:

Φt =

 υt

(
It
Kt

)2

Kt if It
Kt

∈ (a,b)

υt

(
It
Kt

)2

Kt + wtϕ ∗ ut if It
Kt

̸∈ (a,b)

We define the firm’s return on capital as RK
t+1 = Vt+1

Vt−Dt . However, real world firms are financed

by both debt and equity, with equity being the riskier, residual claim. To compare the model’s

equity return to empirical equity returns we lever the return on capital using the 2nd proposition

of Modigliani and Miller (1958): RE
t+1 − Rf

t = (1 + λ)(RK
t+1 − Rf

t ) where λ is the firm’s debt to

equity ratio6.

At this stage it may be useful to compare our model with two closely related models: Khan

and Thomas (2008) (KT) and Bachmann, Caballero, and Engel (2010) (BCE). The two key

4We can define profit in this form because labor is optimized period by period and optimal labor costs are
included in Xt. The derivation of Xt is in the appendix.

5We follow most of the fixed cost literature (for example Thomas (2002) and Bachmann, Caballero, and Engel
(2010)) in choosing the fixed cost to be wtϕ ∗ ut rather than just ϕ. The presence of ut implies that some firms
are low cost firms while others are high cost firms. If fixed costs are more concentrated, investment cycles will
end up being coordinated among firms with the same cost and capital. This will lead to predictable, oscillatory
dynamics (aka ”echo effects” or replacement cycles) in investment. It is unclear whether this type of oscillatory
behavior is desirable, for example Gourio and Kashyap (2007) argue that it is, however we do not want it to have
first order effects in our model and therefore choose ut to be uniform.

6In doing so we assume firms keep leverage constant. We estimate the debt to equity ratio to be 0.59. Boldrin,
Christiano, and Fisher (1999) include leverage in a production economy in the same way and provide additional
discussion.
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differences are the preferences and the aggregate shocks. In both KT and BCE households have

logarithmic utility over consumption; in this paper preferences are recursive as in Epstein and

Zin (1989). In both KT and BCE aggregate TFP is trend stationary; in this paper the growth

rate of TFP is stationary, making TFP itself non-stationary as in Bansal and Yaron (2004).

There are several other differences, however we believe they are minor and do not contribute

to our main result. Labor is inelastic in our model but households have preferences over hours

in KT and BCE. KT have one idiosyncratic shock, calibrated at the plant level; BCE have two

idiosyncratic shocks, calibrated at the plant and sector level; we have one idiosyncratic shock

calibrated at the firm level. This model allows for operating leverage while BCE and KT do

not; we will discuss the effect of operating leverage below. We allow for both fixed and convex

adjustment costs while BCE and KT allow only fixed. Finally, the form of our fixed cost is

identical to KT in that firms pay no cost when investment rate falls inside (a,b), on the other

hand in BCE firms pay no cost if investment rate is equal to (1 − δ)(1 − χ) + χ ∗ (1 + g) where

g is the growth rate of TFP.

3.3 Equilibrium

We assume that there exists some underlying set of state variables St which is sufficient for this

problem. Each firm’s individual state variables are given by the vector Sit . Because the household

is a representative agent, we are able to avoid solving the household’s maximization problem and

simply use the first order conditions to find Mt+1 as an analytic function of consumption or

expectations of future consumption. For instance, with CRRA utility, Mt+1 = β
(
Ct+1

Ct

)−θ
while

for Epstein-Zin utility Mt+1 = β
(
Ct+1

Ct

)− 1
ψ

(
Ut+1

Et[U
1−θ
t+1 ]

1
1−θ

) 1
ψ
−θ

.7

Equilibrium consists of:

• Beliefs about the transition function of the state variable and the shocks: St+1 = f(St, Zt+1)

7Given a process for Ct we can recursively solve for all the necessary expectations to calculate Mt+1. The
appendix provides more details.
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• Beliefs about the realized stochastic discount factor as a function of the state variable and

realized shocks: M(St, Zt+1)

• Beliefs about aggregate wages as a function of the state variable: w(St)

• Policy functions (which depend on St and Sit) by the firms for labor demand N i
t and

investment I it

It must also be the case that given the above policy functions all markets clear and the beliefs

turn out to be rational:

• The firm’s policy functions maximize the firm’s problem given beliefs about the wages, the

discount factor, and the state variable.

• The labor market clears:
∑
N i
t = 1

• The goods market clears: Ct =
∑

(Πi
t + Ψi

t + wtN
i
t − I it) =

∑
Di
t + wtN

i
t + Φi

t + Ψi
t. Note

that here we are assuming that all costs are paid by firms to individuals and are therefore

consumed, the results look very similar if all costs are instead wasted.

• The beliefs about Mt+1 are consistent with goods market clearing through the household’s

Euler Equation8.

• Beliefs about the transition of the state variables are correct. For instance if aggregate

capital is part of the aggregate state vector, then it must be that Kt+1 = (1− δ)Kt +
∑
I it .

4 Results

4.1 Calibration

We solve the model at an annual frequency using a variation of the Krusell and Smith (1998)

algorithm, we discuss the solution method in the appendix. The model requires us to choose the

8For example, with CRRA Mt+1 = β
(∑

Dt+1,i+wtNt+1,i+Φt+1,i+Ψt+1,i∑
Dt,i+wtNt,i+Φt,i+Ψt,i

)−θ
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Table 1: Calibration

Below is the calibration for each of the models we consider. The calibrations in the upper panel (profit growth not calibrated to data)

and lower panel (profit growth calibrated to data) are identical except for operating leverage parameters f and κ.

Profit growth not calibrated to data
β θ ψ Z 1 − αN

αK

αN
δ f κ υ+ υ− (a,b) ϕ

1 0.987 8 2 L 0.64 0.69 0.1 0.155 1 0 0 - 0
2 0.987 8 2 L 0.64 0.69 0.1 0.155 1 0.05 0.15 - 0
3 0.987 8 2 L 0.64 0.69 0.1 0.155 1 0 0 (0,0.1) 0.1
4 0.987 8 2 G 0.64 0.69 0.1 0.146 1 0 0 - 0
5 0.987 8 2 G 0.64 0.69 0.1 0.146 1 0.05 0.15 - 0
6 0.987 8 2 G 0.64 0.69 0.1 0.146 1 0 0 (0,0.1) 0.1
7 0.987 8 2 G 0.64 0.69 0.1 0.146 1 0.05 0.15 (0,∞) 0.05

Profit growth calibrated to data
β θ ψ Z 1 − αN

αK

αN
δ f κ υ+ υ− (a,b) ϕ

1 0.987 8 2 L 0.64 0.69 0.1 0.152 -4.2 0 0 - 0
2 0.987 8 2 L 0.64 0.69 0.1 0.152 -4.2 0.05 0.15 - 0
3 0.987 8 2 L 0.64 0.69 0.1 0.152 -4.2 0 0 (0,0.1) 0.1
4 0.987 8 2 G 0.64 0.69 0.1 0.055 55 0 0 - 0
5 0.987 8 2 G 0.64 0.69 0.1 0.055 55 0.05 0.15 - 0
6 0.987 8 2 G 0.64 0.69 0.1 0.055 55 0 0 (0,0.1) 0.1
7 0.987 8 2 G 0.64 0.69 0.1 0.055 55 0.05 0.15 (0,∞) 0.05

preference parameters: β (time discount factor), θ (risk aversion), ψ (intertemporal elasticity

of substitution); the technology parameters: αN (one minus share of labor), αK (share of cap-

ital), δ (depreciation), Ψ (operating leverage which will depend on two parameters, f and κ);

the adjustment cost parameters: η+ (upward convex adjustment cost), η− (downward convex

adjustment cost), ϕ (fixed adjustment cost), (a,b) (interval within which no fixed cost is paid).

The parameter choices for our preferred model (7), as well as several other models are in Table

1.

Preferences We set β = .987 to match the level of the risk free rate. We set θ = 8 to get

a reasonably high Sharpe Ratio while keeping risk aversion within the range recommended by

Mehra and Prescott (1985). The intertemporal elasticity of substitution ψ also helps with the

Sharpe Ratio, it is set to 2; Bansal and Yaron (2004) show that values above 1 are required for

the long run risk channel to match asset pricing moments.

Technology The technology parameters are fairly standard and we use numbers consistent

with prior literature. We set 1−αN = .64 to match the labor share in production and αN +αK =

14



.89 to be consistent with estimated degrees of returns to scale9. We set δ = .1 to match annual

depreciation.

Operating Leverage The functional form for operating leverage is Ψt = f ∗(w̄t+κ(wt−w̄t))

where wt is the wage, w̄t is the wage trend10. Ψt is a fixed cost from the perspective of the firm,

however it depends on the aggregate state of the economy, in particular the wage.

In our baseline case we set κ = 1 implying that Ψt = f ∗ wt. We choose f to match the

average market to book ratio in the economy11, which we estimate to be 1.34; these choices of f

are listed in the top panel of Table 1. We designate models in which κ = 1 and we match the

market to book ratio only as A; most of the paper will focus on this case. We have also solved

the model with κ = 0 and the results (not reported) are very similar to κ = 1.

However, when κ = 1 equity returns and profits are far too smooth while dividends far too

volatile relative to the data; this is a problem in most production based models, for example

Croce (2010) and Kaltenbrunner and Lochstoer (2010). In an alternative calibration we choose

κ to match the volatility of aggregate profit growth and simultaneously choose f to match the

average market to book ratio; these choices of κ and f are listed in the bottom panel of Table 1.

Although we use κ to match profit volatility only, as will be seen below, this greatly improves

both equity return and dividend volatilities. We designate models in which we match both the

market to book ratio and the profit growth volatility as B. These models have equity volatility

that is much closer to the data, we later show that our key results on aggregate investment hold

in these models as well.

Adjustment Costs We choose adjustment costs to jointly match volatility of aggregate

investment and the distribution of firm level investment rate. Consistent with Cooper and

9Gomes (2001) uses .95 citing estimates of just under 1 by Burnside (1996). Burnside, Eichenbaum, and
Rebelo (1995) estimate it to be between .8 and .9. Khan and Thomas (2008) use .896, justifying it by matching
the capital to output ratio. Bachmann, Caballero, and Engel (2010) use .82, justifying it by matching the revenue
elasticity of capital.

10Recall that the model is non-stationary, w̄t is the non-stationary component of wages while wt is the remaining
stationary component.

11This is the market to book ratio for the entire firm value (the enterprise value). From Compustat we calculate
the market to book ratio for equity to be 1.64 and the book debt to market equity ratio to be 0.59. Sweeney,
Warga, and Winters (1997) find that outside of the Volcker period aggregate market to book values for debt are
very close to one. These numbers imply a market to book of 1.34 for enterprise value.
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Haltiwager (2006), convex costs are more relevant for aggregate investment and fixed costs more

relevant for firm level investment however each cost has some effect on both. Zhang (2005)

finds that η−

η+ = 10 helps to quantitatively match the value premium. We also find that this

asymmetry is helpful for matching the distribution of firm level investment rate, however, we

find that the level of convex costs in Zhang (2005) leads to aggregate investment that is far too

smooth, therefore our level of costs is much smaller with η+ = .05 and η− = .15. The interval of

no fixed cost is (0,∞) in our preferred model, implying no cost for positive investment; in some

specifications the interval is (0,.1) implying no cost only for small investments. The size of the

fixed cost affects the autocorrelation of firm level investment, as well as the frequency of spikes

and inactions.

Productivity Shocks Recall that a firm’s productivity is given by Zi
t which is a combination

of firm specific and aggregate shocks.

Zi
t = AitZ

L
t (ZG

t )1−αN

where Ait is firm specific productivity, ZL
t is the part of aggregate productivity whose level is

trend-stationary, and ZG
t is the part of aggregate productivity whose growth rate is stationary12.

We choose Ait to approximately match the second moment of firm level investment; it is a two-

state Markov variable with annual volatility of 30% and autocorrelation of .6.13

While the setup allows for simultaneous shocks to growth and level of productivity, so far we

have only solved the model for either only growth or only level productivity shocks. The process

for level shocks is

log(ZL
t+1) = (1 − ρL) ∗ g ∗ t+ ρLlog(ZL

t ) + σLϵLt+1.

12Note that ZG
t is a labor augmenting productivity shock. Recall that productivity is ZtK

αK
t N1−αN

t =
Zi

tZ
L
t K

αK
t (NtZ

G
t )1−αN .

13This is roughly consistent with other models. For example 15% and .62 in Gomes (2001) and 35% and .69 in
Zhang (2005).
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The process for growth shocks is

log(
ZG
t+1

ZG
t

) = g + ρGlog(
ZG
t

ZG
t−1

) + σGϵGt+1

where g=2% is the mean growth rate of the economy. Note that ϵL are transitory shocks to

the level of productivity while ϵG are transitory shocks to the growth rate of productivity which

permanently affect the level of productivity. We set ρ and σ to roughly match the autocorrelation

and volatility of output.

4.2 Preferred Model

We will first present results from our preferred calibration and then show several alternative

calibrations to understand what is driving the results.

4.2.1 Conventional RBC Moments

Panel A of Table 2 presents the standard business cycle moments for the preferred models and the

data. Overall, the model matches these aggregate moments quite well. In the data, depending on

the time period output volatility ranges from 1.58% (1954-2008) to 3.94% (1930-2008) with higher

volatility for the period including the Great Depression. We choose productivity parameters so

that the model’s output volatility is closer to the lower end of this range. The model also does well

with the volatilities and autocorrelations of consumption, investment, and investment growth.

The volatilities of investment rate and consumption growth are somewhat high, yet still within

the range of the two time periods. The autocorrelation of consumption growth is too high, while

its correlation with output growth is too low.

4.2.2 Aggregate Asset Pricing Moments

Asset pricing moments are given in Panel B of Table 2. The risk free rate is relatively low

and even smoother than the data; this is often a difficult feature to reproduce and occurs here
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because of the high elasticity of intertemporal substitution. On the other hand, the Sharpe

Ratio is slightly higher than in the data despite having a risk aversion coefficient of only 8. This

happens due to the long run risk channel of Bansal and Yaron (2004): households with a high

elasticity of intertemporal substitution are afraid of changes to expected long run consumption

growth. These changes occur due to shocks to expected long run productivity growth, as in

Croce (2010) and Kaltenbrunner and Lochstoer (2010).

In model A, the expected excess return on equity is low, however this is not due to low price

of risk but rather low quantity of risk. E[Re−Rf ] = SR ∗σ(Re−Rf ) thus both the price of risk

(SR) and the quantity of risk must be high14. Model A is able to match the price of risk, but fails

on the quantity of risk. Matching the volatility of equity is a failure of most production models.

We find that an alternative formulation of operating leverage helps increase equity volatility

while changing little else; these results (Model B) are discussed in a later section.

4.2.3 Firm Level Investment Dynamics

Panel C of Table 2 has firm level investment moments, as well as information on heteroscedasticity

and time dependence of aggregate investment rate. The model is close to the data for both

volatility and autocorrelation of firm level investment. The mean is somewhat below the data

because the distribution in the data is more skewed. Similarly, the model does a good job at

matching the distribution of investment, which has a large number of spikes (I/K>20%) and a

small number of firms disinvesting. Investment by firms with spikes is important for aggregate

investment in both the model and the data, however quantitatively this importance is not quite

as high in the model as in the data: investment by firms with spikes accounts for 39% of all

investment compared to 50% in the data

14In a similar model Croce (2010) chooses a risk aversion of 30 to get an expected return of 3.0. However he
achieves this by overshooting on the Sharpe Ratio (1.9) without having a high enough equity volatility (1.6%). On
the other hand, Kaltenbrunner and Lochstoer (2010) keep risk aversion low, however choose a very high amount
of financial leverage. While we believe the channel in Croce (2010) and Kaltenbrunner and Lochstoer (2010)
is the right one for the price of risk, we believe future work should resolve both the price of risk and volatility
puzzles rather than overshooting on one.
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4.3 Aggregate Investment Dynamics

In this section we describe the main findings on aggregate investment dynamics and investigate

the mechanism behind our model’s ability to match conditional heteroscedasticity and time-

dependence of aggregate investment rates.

Bachmann, Caballero, and Engel (2010) emphasize the importance of heteroscedasticity and

time dependence of aggregate investment rate. Below we discuss how to summarize these two

observations with summary statistics from the data and the model. Following Bachmann, Ca-

ballero, and Engel (2010) we regress aggregate investment rate on its lag and then regress the

squared residuals from this regression on lagged investment rate. We then define σx to be the

fitted value of the x percentile of this regression. In the data, log(σ95

σ5
) = 0.30, indicating that

investment rate is more volatile when it is high.

To summarize time dependence we use NBER quarterly recession dates and calculate the

change in investment rate for each recession and expansion. In particular we calculate the

quantity ∆I/Kj = 1
Tj

∑
t=0j ,Tj

It
Kt

− I0
K0

where the expansion or recession j starts at 0j and ends

at Tj.
15. This measure is plotted against the length of each recession and expansion in the lower

panel of Figure 1. We regress ∆I/K on the length of each recession and separately expansion

and report the slope coefficients γE and γR. We calculate log(σ95

σ5
), γE, and γR for simulated

data from the model in the same way.

The preferred model is able to qualitatively capture these features of the data as reported in

Panel C of Table 2. Investment rate is heteroscedastic log(σ95

σ5
) = 0.18, although somewhat less

so than 0.30 in the data. As in the data, investment rate rises through an expansion, and falls

through a recession: γE = 0.19, and γR = −0.35 compared to 0.08 and -0.49 in the data.

15We choose this as opposed to IT

KT
− I0

K0
because NBER dates do not exactly match true changes in underlying

shocks and the later measure is more sensitive to such errors, nevertheless, the two give qualitatively similar
results.
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4.3.1 Inspecting the Mechanism

To inspect what works and what does not in allowing the preferred model to match the data,

we will study six alternative parameterizations, these are described in Table 1. Panel A presents

results for κ = 1 where we choose f to match average market to book only; in Panel B (to be

discussed below) we choose κ and f to match average market to book and aggregate profit growth

volatility. Models 1-3 have only shocks which are trend stationary in the level of productivity

while models 5-6 have only shocks which are stationary in the growth rate of productivity.

Models 1 and 4 are frictionless, models 2 and 5 have only convex adjustment costs, models

3 and 6 have only non-convex adjustment costs. Recall that model 7 (our preferred model)

has a combination of convex and non-convex adjustment costs which we have found to work

well. This is a calibration, rather than estimation, exercise and there are likely other parameter

combinations that work as well, however we have experimented with a large range of parameters

(not reported) and believe the best combination is not far from our preferred calibration16.

Selected quantities from the data, the six alternative parameterizations, as well as the pre-

ferred model are in Table 3. Results are separated into asset pricing moments, firm level invest-

ment moments, and aggregate investment moments.

Starting with the asset pricing moments, it is clear that growth rate stationary, rather than

level stationary shocks to productivity are necessary to match high Sharpe Ratios of the data

without resorting to very high risk aversion. This happens through the long run risk channel

of Bansal and Yaron (2004): households care about expectations of future consumption growth

and not just this period’s consumption growth. While we only report results in which ψ = 2,

such a high level of the intertemporal elasticity of substitution is a necessary component for this

channel in addition to shocks being growth rate stationary (this has also been documented by

Croce (2010) and Kaltenbrunner and Lochstoer (2010)). We use these findings as a restriction

on technology imposed by asset pricing17.

16Due to the length of time required to solve the model, and the large number of parameters, we have not so
far estimated the model. We are considering estimating the model by Simulated Method of Moments as a future
direction.

17An alternative channel to deliver a high price of risk in a general equilibrium, production economy is habit
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Moving on to the firm level investment, a frictionless model (1 and 4) has investment rate

that is far too volatile; too many firms have negative investment and those with spikes often

have investment rates in excess 100%; in short investment rate is far wilder than in the data. A

convex adjustment cost (2 and 5) fixes most of these problems by preventing firms from taking

very large positive or negative investments. Autocorrelation also increases because for firms with

high investment demand it is cheaper to invest over consecutive years rather than all at once.

A fixed cost alone (3 and 6) does not do as well as a convex cost along most dimensions. For

example, it reduces volatility and increases autocorrelation relative to the frictionless case, but

not by enough.

All calibrations with shocks to the growth rate of productivity have a similar I/K pattern to

the data: I/K grows as an expansion gets longer (γE > 0) and I/K falls as a recession gets longer

(γR < 0). Models with shocks to the level of productivity have exactly the opposite pattern.

This can be further seen in the lower panel of Figure 3. Here we plot impulse responses of I/K to

a one standard deviation positive shock in the random variable governing productivity for a long

and a short expansion. In particular, let x = log(ZL)−g∗ t for models 1-3 and x = log(∆ZG)−g

for models 4-6; let σ = σL for models 1-3 and σ = σG for models 4-6. Note that x=0 is the

normal or average state of productivity. We compare a short expansion, in which x rises from 0

to σ for one year and then falls to 0 (solid line), to a long expansion in which x rises from 0 to

σ and remains at this value for four consecutive years before falling back to 0 (dashed line)18.

In models 1-3, as the expansion gets longer, I/K decreases. This is because each level of

productivity is associated with an optimal level of capital. A temporary rise in productivity

causes firms to increase their target capital level and increase investment immediately. As the

expansion gets longer, the target capital level stays at the same level and I/K falls because

the firms are closer to optimal capital due to past high investment. Adding capital adjustment

costs (models 2 and 3) mitigates this feature of the standard model by making it too costly to

preferences, as in Campbell and Cochrane (1999), Jermann (1998), Boldrin, Christiano, and Fisher (2001) among
others. Both habit and long run risk have certain desirable as well as undesirable features, which have been
debated at length in the literature.

18Because shocks follow an AR(1), this amounts to either one ϵ > 0 or four consecutive ϵ > 0.
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Figure 3: Impulse Response of Investment Rate

These are impulse responses of investment rate to 1 positive shock or 5 consecutive positive shocks (dashed). In models 1-3 shocks
are to TFP level, in models 4-6 shocks are to TFP growth.
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raise investment too much immediately. The result is a flatter decline in investment rate for the

parameters we consider, however never a reversal of the decline. Choosing larger adjustment

costs may reverse the relationship between investment rate and the length of a recession, but

this would make both aggregate and firm level investment far too smooth.

In models 4-6, as the expansion gets longer, I/K increases. The reason this happens is

straight forward: if the growth rate of productivity is high for a longer number of periods, the

level of productivity, and therefore the optimal level of capital continues to grow. Therefore an

unexpected lengthening of an expansion leads firms to ramp up investment rather than slow it

down, this happens even in a model without frictions.

In a standard model (with shocks to the level of productivity) investment rate is homoscedas-

tic, for example in model 1, log(σ95

σ5
) = −0.01. Bachmann, Caballero, and Engel (2010) find that

an increase in fixed costs increases log(σ95

σ5
). We confirm this finding by comparing model 3 to

model 1: log(σ95

σ5
) rises to 0.0919. They cite this as evidence for importance of fixed costs. How-

ever, models with shocks to the growth rate of productivity (including the frictionless model) all

exhibit log(σ95

σ5
) moderately close to the data. Thus asset pricing restrictions suggest that non-

convex frictions are unimportant for the aggregate quantities (at least those aggregate quantities

that have been considered). Of course non-convex frictions are still important for jointly match-

ing micro and macro findings as in model 7; this is consistent with partial equilibrium findings

of Cooper and Haltiwager (2006).

The above results suggest that it may not matter whether Khan and Thomas (2008) or

Bachmann, Caballero, and Engel (2010) are fundamentally correct about the relevance of non-

convex micro frictions for aggregates. Quantitatively, a model calibrated at the firm level to

match asset pricing moments is able to deliver the desired investment moments with or without

non-convex costs. Since model 5 (convex costs only) performs nearly as well as our preferred

model (convex costs and small non-convex costs) even at matching firm level micro data, we

19Their increase is quantitatively bigger than here because their model is not exactly identical to this one. In
particular their firms are forced to replace some amount of depreciated capital, this likely increases the quantitative
importance of partial equilibrium effects.
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provide a micro foundation for convex cost asset pricing models such as Jermann (1998), Zhang

(2005), and Croce (2010).

4.4 Higher Equity and Profit volatility

Thus far we have shown that the long run risk channel, which has been used in the finance

literature to explain several asset pricing puzzles, is also able to explain hard to match aggregate

investment moments. However while this channel is indeed able to match the high price of risk,

it is not able to match the quantity of risk (volatility) of aggregate equity returns; this is common

to most production models. In this section we tweak our model to improve its performance along

this dimension and show that the implications for aggregate investment remain unchanged.

The volatility of aggregate profit growth and the volatility of HP filtered profits for the model

and the data is in table 3. It is evident that profits are much more volatile in the data than in

standard models, for example the volatility of aggregate profit growth is near 9% in the data

while around 3% in all versions of κ = 1 model (Panel A of Table 3). The reason for this is

that in standard models, wages are more volatile than in the data: the volatility of HP filtered

wages in the data is 0.91% compared to 2.1% in our preferred model with κ = 1. Since wages

are pro-cyclical, profits, which are essentially output minus wages are too smooth.

There are several forces outside of the model, for example long term contracts, which make

real world wages smooth. We do not model these forces explicitly and use a reduced form

approach instead: we make operating costs counter-cyclical. Recall that profits are given by

Πt = Yt − (wtNt + Ψt) where Yt is output and Ψt is the operating cost, therefore by making

operating costs covary negatively with wages we are reducing the smoothing effect of pro-cyclical

wages. While this approach is admittedly ad hoc, as will be seen below it brings the model

much closer to the data among several important dimensions although we are adding only one

additional parameter κ.

We choose κ so that the volatility of aggregate profit growth in each model matches the data

(simultaneously we must choose a new f to match the average market to book ratio). Recall
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that operating costs are defined as Ψt = f ∗ (w̄t +κ(wt− w̄t)) where wt is the wage and w̄t is the

wage trend. In models where the level of productivity is trend stationary (Models 1-3) wt − w̄t

is pro-cyclical and therefore a negative κ is required to make operating costs counter-cyclical20.

In models where the growth rate of productivity is trend stationary (Models 4-7) wt − w̄t is

counter-cyclical and therefore a positive κ is required21. The chosen f and κ are listed in the

lower panel of Table 1.

Although we choose κ to match only the volatility of profit growth, this also allows the model

to do much better on several other key quantities. This can be seen by comparing σ(∆Π), σ(∆D),

and σ(Re − Rf ) in Panels A and B of Table 3. When κ = 1 dividend growth is counter-cyclical

and far too volatile. Aggregate dividends are defined as Dt = Yt− (It +wtNt + Ψt + Φt) and the

combination of investment and wages is sufficiently volatile and pro-cyclical to make dividends

counter-cyclical in models with κ = 1. A counter-cyclical Φ reduces the effect of pro-cyclical

wages on dividends, leaving dividends pro-cyclical with roughly the right amount of volatility.

The volatility of equity returns rises to 10.16%; while this is still just over half of what it is in

the data, it is also a nearly five-fold increase compared to standard models. Finally one could

think of total labor costs being the combination of fixed and variable labor costs wtNt + Φt, the

HP filtered volatility of this quantity is 1.2% in our preferred model B, relatively close to the HP

filtered volatility of aggregate wages in the data.

While using κ to match profit volatility greatly improves the financial moments of the model,

it leaves the other moments nearly unchanged. This can be seen by comparing the remaining

rows of Panel A to Panel B in Table 3. Guided by asset pricing restrictions, preferred model B

delivers both a high price of risk and quantity of risk and can explain both the heteroscedasticity

20In these models only the deterministic trend is non-stationary, therefore any variable detrended by egt becomes
stationary. The detrended wage νt is pro-cyclical and satisfies wt = egtνt. The mean of the detrended wage ν̄
is a constant and satisfies w̄t = egtν̄. Therefore operating costs are given by Φt = egt ∗ f ∗ (ν̄ + κ(νt − ν̄)) and
become more pro-cyclical as κ increases.

21In the appendix we show that dividing each variable by (ZG)ζ where ε = 1−αN

1−αK
makes each variable stationary.

The detrended wage νt satisfies wt = (ZG)ζνt; even though the wage itself is pro-cyclical, the detrended wage is
counter-cyclical. The mean of the detrended wage ν̄ is a constant and satisfies w̄t = (ZG)ζ ν̄, note that the wage
trend itself w̄t is pro-cyclical. Therefore νt − ν̄ is counter-cyclical and a sufficiently positive κ can make operating
costs counter-cyclical.
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and time dependence of investment rate.

5 Conclusion

We solve a general equilibrium production economy with firm specific productivity shocks result-

ing in a non-trivial distribution of firms. Within this model, we use insights from asset pricing

to shed light on the irrelevance of non-convex frictions debate in the macro literature; we also

use insights from the macro literature to guide our modeling choices for matching asset pricing

moments.

We use a combination of preferences and technology shocks as in Bansal and Yaron (2004),

Croce (2010), Kaltenbrunner and Lochstoer (2010) which are known to help match aggregate

asset pricing moments. We find that these ingredients can generate the heteroscedasticity and

time-dependence emphasized by Bachmann, Caballero, and Engel (2010). We view asset prices

as additional restriction and find that within such a model, non-convex frictions are unnecessary

to match important features of aggregate investment. Previous literature, e.g. Bachmann, Ca-

ballero, and Engel (2010) has been able to match heteroscedasticity only, by using non-convex

frictions, but not simultaneously with asset prices.

We also find that a model with convex costs alone does nearly as good of a job at matching

firm level micro data as our preferred model with both convex and non-convex costs. This

provides justification for papers such as Jermann (1998), Zhang (2005) and Croce (2010) which

use convex costs alone to explain asset prices.
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A Data

Monthly stock returns are from the Center for Research in Security Prices (CRSP) and account-

ing information is from the CRSP/Compustat Merged Annual Industrial Files. Our sample is

from 1975 to 2009. We exclude from the sample any firm-year observation with missing data

or for which total assets or the gross capital stock are either zero or negative. In addition, as

standard, we omit firms whose primary SIC classification is between 4900 and 4999 (regulated

firms) or between 6000 and 6999 (financial firms). Following Cooper and Haltiwanger (2006),

We define the capital stock, K, as gross property, plant and equipment, and investment (PPEGT

in Compustat), I, as capital expenditures (CAPX) minus sales of property, plant and equipment

(SPPE). Incorporating sales of capital is especially important in our analysis as the role of partial

irreversibility is quite difficult to study with the use of capital expenditures data alone. Both

capital and investment are deflated by the domestic fixed investment price deflator. Investment

rate IK is defined as investment scaled by lagged capital stock, which can be either positive or

negative. The gross domestic fixed investment price deflator is from NIPA table 1.1.9. GDP is

real gross domestic product from NIPA table 1.1.6; real consumption is nondurable consumption

from NIPA table 2.3.5, scaled by implicit price for nondurable expenditures from NIPA table

2.3.4. Investment is investment in private non-residential fixed assets from NIPA table 4.7. Cap-

ital is private non-residential fixed assets from NIPA table 4.1. Both investment and capital

are scaled by investment price deflator to get real terms. Wage is compensation of employees

from NIPA table 6.2 divided by hours worked by full-time and part-time employees from NIPA

table 6.9. Annual dividend is aggregated over monthly dividend from Robert Shiller’s webpage:

http://www.econ.yale.edu/ shiller/data.htm. CRSP value-weighted market returns and risk free

rates are from Ken French webpage: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.

Firm profit is net sales (SALE) minus the sum cost of good sold (COGS) and selling, general

and administrative expense (XSGA). We aggregate all firms’ profit scaled by investment price

deflator to get total real profit.
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A.1 Conditional Heteroscedasticity in Aggregate U.S. Investment

Following Bachmann, Caballero, and Engel (2010), we work with quarterly private fixed non-

residential investment to capital ratio from 1960:I to 2009:IV, denoted by xt and estimate the

following time-series model to quantify conditional heteroscedasticity:

xt = ϕxt−1 + σtet

σt = α0 + α1x̄
k
t−1,

where x̄kt−1 denotes the lagged average investment:

x̄kt−1 =
1

k

k−1∑
j=0

xt−1−j,

and the et are i.i.d with zero mean and variance equal to one. We estimate the parameters of

the above time-series model by first regressing xt on its lagged value and then regressing the

squared residual from the first regression, denoted by ê2t , on x̄kt−1. The second regression has the

following form

ê2t = α̂0 + α̂1x̄
k
t−1 + error.

Figure 2 plots the fitted trend line from the second regression (normalized by the average

fitted value for σt) using k = 5.

B Numerical Solution

B.1 Making the Model Stationary

Note that the model is not stationary. In order to solve it numerically, we must rewrite it in

terms of stationary quantities. Let ε = 1−αN
1−αK

. We will first show that normalizing all variables

by (ZG)ε makes them stationary.

First consider the firm’s problem without operating leverage, without fixed costs, and with
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ZG shocks only, for simplicity we will refer to ZG as simply Z here. Within each period the firm

chooses labor to maximize profits:

Π(Kt) = max
Nt

Z1−αN
t KαK

t N1−αN
t − wtNt

The first order conditions give:

Nt = (1 − αN)
1
αN Z

1−αN
αN

t K
αK
αN
t w

− 1
αN

t

This can be plugged back into the profit equation to solve for firm’s profits under optimal labor

given aggregate wages:

Π(Kt) = αN(1 − αN)
1−αN
αN Z

1−αN
αN

t w
− 1−αN

αN
t K

αK
αN
t

The firm’s full dynamic problem can now be rewritten recursively in terms of aggregate quantities

Zt, wt, and Mt+1, the firm’s capital Kt, and a single choice variable It:

V (Kt) = max
It

αN(1 − αN)
1−αN
αN Z

1−αN
αN

t w
− 1−αN

αN
t K

αK
αN
t − It − υt

(
It
Kt

)2

Kt + Et [Mt+1V (Kt+1)]

subject to Kt+1 = (1 − δ)Kt + It and Zt+1 = ZtSt+1 where St is a stationary variable.

We will now normalize all appropriate variables by Zε
t , it will later be shown that this nor-

malization makes the variables stationary. Let kt = Kt/Z
ε
t , νt = wt/Z

ε
t , and it = It/Z

ε
t . Note

that kt+1 = ((1 − δ)kt + it)S
−ε
t+1 and that V (Kt+1) = V (kt+1S

ε
t+1Z

ε
t ).

V (ktZ
ε
t ) = maxit αN(1 − αN)

1−αN
αN Z

1−αN
αN

t (νtZ
ε
t )

− 1−αN
αN (ktZ

ε
t )

αK
αN − itZ

ε
t − υt

(
it
kt

)2

ktZ
ε
t+

Et
[
Mt+1V (kt+1S

ε
t+1Z

ε
t )
]

V (ktZ
ε
t ) = maxit αN(1 − αN)

1−αN
αN Zε

t ν
− 1−αN

αN
t k

αK
αN
t − itZ

ε
t − υt

(
it
kt

)2

ktZ
ε
t + Et

[
Mt+1V (kt+1S

ε
t+1Z

ε
t )
]
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Next, we will show by recursion that V (Kt) is linear in Zε
t . Suppose this is true at t+1:

V (Kt+1) = V (kt+1S
ε
t+1Z

ε
t ) = V (kt+1)S

ε
t+1Z

ε
t

Then the firm’s problem can be rewritten as:

V (ktZ
ε
t ) = maxit Z

ε
t

(
αN(1 − αN)

1−αN
αN ν

− 1−αN
αN

t k
αK
αN
t − it − υt

(
it
kt

)2

kt + Et
[
Mt+1V (kt+1)S

ε
t+1)

])
= maxit Z

ε
t V (kt)

Therefore, by induction, we have shown that the firm’s value function is linear in Zε
t and we can

rewrite the dynamic problem as:

V (kt) = max
it

αN(1 − αN)
1−αN
αN ν

− 1−αN
αN

t k
αK
αN
t − it − υt

(
it
kt

)2

kt + Et
[
Mt+1V (kt+1)S

ε
t+1)

]
where kt+1 = ((1 − δ)kt + it)S

−ε
t+1 and St+1 is a stationary random variable. Note that we have

yet to justify the normalization by Zε
t or show that νt is stationary, however the rewriting of the

problem above is correct regardless of whether it is the proper normalization. We will now argue

that Zε
t is the proper normalization.

Suppose that each firm believes that νt is stationary. Than everything is stationary in the

problem above and optimal behavior will lead to a stationary kt. We can rewrite firm i’s labor

demand N i
t (solved for above) in terms of detrended variables

N i
t = (1 − αN)

1
αN Z

1−αN
αN

t (ktZ
ε
t )

αK
αN (νtZ

ε
t )

− 1
αN = (1 − αN)

1
αN k

αK
αN
t ν

− 1
αN

t

Note that Zt drops out of the equation and labor demand depends only on the detrended wage

νt and the firm’s detrended capital kt. Thus if the firm believes that νt is stationary than its

labor demand is also stationary.
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In equilibrium aggregate labor demand must equal to aggregate labor supply:

1 =
∑

N i
t =

∑
(1 − αN)

1
αN k

αK
αN
t ν

− 1
αN

t = (1 − αN)
1
αN ν

− 1
αN

t

∑
k
αK
αN
t

which we can solve for the detrended wage: νt =

(
1

(1−αN )
1
αN

∑
k

αK
αN
t

)−αN

. Thus, if firms believe

that νt is stationary, they will optimally act in such a way that νt will indeed be stationary and

that Zε
t will be the correct normalization.

We have so far ignored operating leverage and fixed costs, however the same normalization

works as long as we defined these costs such that they are stationary in the detrended model. This

is what we do. Operating leverage is defined as Ψt = f ∗ (w̄t +κ(wt− w̄t)) which is stationary in

the detrended model because detrended wages are stationary and by definition w̄t/Z
ε
t is constant.

The fixed investment cost is linear in wages so it is also stationary in the detrended model.

B.2 Numerical Algorithm

We will now describe the numerical algorithm used to solve the stationary problem above. We

will first describe the algorithm used to solve a model with CRRA utility and then the extension

necessary to solve the recursive utility version. The algorithm is a variation of the algorithm in

Krusell and Smith (1998).

The state space is potentially infinite because it contains the full distribution of capital across

firms. We follow Krusell and Smith (1998) and summarize it by the average aggregate capital k̄t

and the state of aggregate productivity (Zt in models 1-3 and log(Zt/Zt−1) in models 4-7). Each

of these is put on a grid with grid sizes for capital being 45, while productivity is discretized to

be a 3-state Markov process (we have also solved some of the versions with a 7-state Markov

process and the results are very similar). We also discretize the firm’s individual capital with the

grid size being 45. In models where the fixed cost of investment is non-zero there is an additional

firm level state variable: the cost drawn from a uniform distribution each period. We discretize

this on a grid with 7 points.
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For each point in the aggregate state space (k̄t, Zt) we start out with an initial belief about

consumption, wages, and investment (ct, νt, and it).
22 From these we can solve for aggregate

capital next period k̄t+1 = ((1 − δ)k̄t + it)S
−ε
t+1 for each realization of the shock. Combining

k̄t+1 with beliefs about consumption as a function of capital we can also solve for the stochastic

discount factor next period: Mt+1 = β
(
ct+1

ct

)−θ
S−εθ
t+1 . This is enough information to solve the

stationary problem described in the previous section. We solve the problem by value function

iteration with the output being policies and market values of each firm for each point in the state

space.

The next step is to use the policy functions to simulate the economy. We simulate the

economy for 5500 periods (we throw away the initial 500 periods). Additionally we start off the

model in each point of the aggregate state space. We do this because unlike Krusell and Smith

(1998), the beliefs do not have a parametric form and during the model’s typical behavior it

does not visit every possible point in the state space. From the simulation we form simulation

implied beliefs about ct, νt, and it at each point in the aggregate state space by averaging over

all periods in which the economy was sufficiently close to that point in the state space. Our

updated beliefs are a weighted average of the old beliefs and the simulation implied beliefs23.

With these updated beliefs we again solve the firm’s dynamic program; we continue doing this

until convergence.

In order to solve this model with recursive preferences an additional step is required. Knowing

ct and kt+1 as functions of the aggregate state is not alone enough to know Mt+1 because in

addition to consumption growth, it depends on the household’s value function next period:

Mt+1 = β
(
Ct+1

Ct

)− 1
ψ

(
Ut+1

Et[U
1−θ
t+1 ]

1
1−θ

) 1
ψ
−θ

. However this problem is not difficult to overcome. After

22The standard Krusell and Smith (1998) algorithm instead assumes a functional form for the transition, such
as log(k̄t+1) = A(Zt) + B(Zt)log(k̄t) and forms beliefs only about the coefficients A(Zt) and B(Zt) however we
find that this approach does not converge in many cases due to incorrect beliefs about off-equilibrium situations
and that our approach works better. Without heterogeneity we would not need beliefs about νt because it would
just be the marginal product of aggregate capital; due to firm heterogeneity it is not quite equal to the marginal
product of aggregate capital. Similarly, we would not need beliefs about ct as we could solve for it from yt = ct+it
where yt is aggregate output, however aggregate output is no longer a simple analytic function of aggregate capital.

23The weight on the old belief is often required to be very large in order for the algorithm to converge. This is
because while rational equilibria exist, they are only weakly stable in the sense described by Marcet and Sargent
(1989).
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each simulation step we use beliefs about ct and kt+1 to recursively solve for the household’s value

function at each point in the state space. This is again done through value function iteration,

however as there are no choice variables this recursion is very quick.

We perform the standard checks proposed by Krusell and Smith (1998) to make sure we

have found the equilibrium. Although our beliefs are non-parametric, we can still compute

an R2 analogous to a regression; all of our R2 are above 0.9999. We have also checked that

an additional state variable (either the cross-sectional standard deviation of capital or lagged

capital) does not alter the results.
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Table 3: Inspecting the Mechanism

The rows are separated into asset pricing moments (1-6), firm level investment (7-12), and aggregate investment (13-15). In the upper

panel operating leverage is not calibrated to match the average market to book ratio but not the volatility of aggregate profit growth.

In the lower panel operating leverage is calibrated to match both the average market to book ratio and the volatility of aggregate

profit growth.

Panel A: Profit growth not calibrated to data
Data 1 2 3 4 5 6 7

Shock L L L G G G G
Cost None Convex Fixed None Convex Fixed Both

Sharpe Ratio 0.36 0.01 0.01 0.01 0.43 0.44 0.43 0.44
σ(Re −Rf ) 18.85 0.56 0.72 0.57 2.12 2.19 2.08 2.20
σ(∆Π) 8.85 2.87 2.88 2.87 3.15 3.15 3.14 3.15
σ(Π) 6.74 2.01 2.01 2.01 2.08 2.09 2.08 2.09
σ(∆D) 8.75 47.66 43.95 46.92 155.31 142.20 152.73 142.19
σ(D) 6.94 33.31 30.66 32.56 116.95 106.20 113.71 106.02

I/K<0 4.2 10.0 20.1 6.2 10.0 20.7 5.8 4.0
-5<I/K<15 67.4 80.0 67.5 85.8 80.0 67.3 85.6 75.1

I/K>20 19.8 10.0 18.1 8.2 10.0 18.5 8.5 16.7
σ(I/K) 11.2 63.4 12.0 31.4 63.5 11.7 30.8 10.3
AC(I/K) 0.36 -0.17 0.29 -0.04 -0.16 0.32 -0.03 0.34
E[I20/K]
E[I/K] 0.50 1.03 0.46 0.54 1.02 0.47 0.54 0.39
log(σ95

σ5
) 0.30 -0.01 0.02 0.09 0.18 0.18 0.20 0.18

γE 0.08 -0.01 -0.01 -0.01 0.20 0.20 0.20 0.19
γR -0.49 0.09 0.08 0.08 -0.37 -0.36 -0.38 -0.35

Panel B: Profit growth calibrated to data
Data 1 2 3 4 5 6 7

Shock L L L G G G G
Cost None Convex Fixed None Convex Fixed Both

Sharpe Ratio 0.36 0.01 0.01 0.01 0.43 0.43 0.43 0.43
σ(Re −Rf ) 18.85 2.59 2.77 2.58 9.89 10.19 9.45 10.16
σ(∆Π) 8.85 8.55 8.62 8.47 8.40 8.38 8.24 8.30
σ(Π) 6.74 5.96 6.00 5.90 6.38 6.37 6.27 6.30
σ(∆D) 8.75 14.75 10.55 13.71 15.83 12.80 14.45 12.59
σ(D) 6.94 11.47 8.79 10.86 11.19 9.51 10.26 9.48

I/K<0 4.2 10.0 20.3 6.2 10.0 20.3 5.8 4.1
-5<I/K<15 67.4 80.0 67.5 85.8 80.0 67.1 85.6 75.1

I/K>20 19.8 10.0 18.1 8.2 10.0 18.2 8.5 16.6
σ(I/K) 11.2 63.3 12.0 31.4 63.6 11.7 30.8 10.3
AC(I/K) 0.36 -0.17 0.29 -0.04 -0.16 0.32 -0.03 0.34
E[I20/K]
E[I/K] 0.50 1.03 0.46 0.54 1.03 0.47 0.54 0.38
log(σ95

σ5
) 0.30 -0.01 0.01 0.09 0.16 0.17 0.19 0.18

γE 0.08 -0.01 -0.01 -0.01 0.20 0.20 0.20 0.19
γR -0.49 0.09 0.08 0.09 -0.36 -0.36 -0.36 -0.35
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