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Abstract

We propose a new estimator of multivariate ex-post volatility that is robust to

microstructure noise and asynchronous data timing. The method is based on Fourier

domain techniques, which have been widely used in discrete time series analysis. The

advantage of this method is that it does not require an explicit time alignment, un-

like existing methods in the literature. We derive the large sample properties of our

estimator under general assumptions allowing for the number of sample points for dif-

ferent assets to be of different order of magnitude. The by-product of our Fourier

domain based estimator is that we have a consistent estimator of the instantaneous

co-volatility even under the presence of microstructure noise. We show in extensive

simulations that our method outperforms the time domain estimator especially when

two assets are traded very asynchronously and with different liquidity and when esti-

mating the high dimensional integrated covariance matrix.

Keywords: Quadratic covariation, Fourier transform, Long run variance estimator, Market

microstructure noise
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1. INTRODUCTION

There have been many advances in the theory and application of volatility measurement

from high frequency data. The ex-post measure of volatility called the quadratic variation

has been the focus of much attention. The theory has been developed in a series of papers

including: Andersen, Bollerslev, Diebold and Labys (2001), Barndorff-Nielsen and Shephard

(2002, 2004) and Mykland and Zhang (2006). This work has been recently extended to

take account of what is called microstructure noise when an underlying efficient price dif-

fusion is distorted by measurement error in papers by: Zhang, Mykland, and Aı̈t-Sahalia

(2005), Zhang (2006), Kalnina and Linton (2008), Aı̈t-Sahalia, Mykland and Zhang (2010b),

Barndorff-Nielsen, Hansen, Lunde and Shephard (2008, 2011), and Jacod, Li, Mykland,

Podolskij and Vetter (2009). In the multivariate case an additional issue arises, namely that

the observations are asynchronous, i.e., transactions occur at different time points for differ-

ent assets. Hayashi and Yoshida (2005) proposed an estimator of the integrated covariance

that does not require synchronization. However, their estimator is inconsistent under the

presence of microstructure noise. Malliavin and Mancino (2009) proposed a Fourier domain

approach that does not require data alignment but they did not work out the theoretical

results when the noise is present. Estimators addressing both the non-synchronicity and

the microstructure noise have been proposed by Zhang (2010), Barndorff-Nielsen, Hansen,

Lunde and Shephard (2011) and Aı̈t-Sahalia, Fan and Xiu (2010a). The estimators are con-

sistent with convergence rates respectively Op(n
1/6), Op(n

1/5) and Op(n
1/4). The first two

papers require aligning the data, although the consistency of their estimator is robust to the

alignment. However, the hidden cost of data alignment and non-synchronicity for these esti-

mators are that the sample size n that appears in the convergence rate is the sample size of

aligned data. Also, the drawback of Zhang (2010) and Aı̈t-Sahalia et al. (2010a) is that the

estimator cannot be generalized to dimensions higher than two unless the covariance matrix

is estimated element-wise, which in turn does not guarantee the positive definite estimator.

See Park and Linton (2011) for a more detailed survey.
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The goal of this paper is to propose a new estimator of the general multivariate volatility

measure that is robust to microstructure noise and to asynchronous data timing. The method

is based on Fourier domain techniques, which have been widely used in discrete time series to

estimate the long run variance. The key advantage of this method is that it does not require

an explicit time alignment. Our results allow for the unbalanced case where one series has

many more observations than another, which is quite common in intra-day financial time

series. In Section 2 we give a set up of the model and assumptions regarding the sampling

scheme. In Section 3, we propose a Fourier domain based estimator of integrated covariance

Section 4 presents the asymptotic properties of the proposed estimator without and with

the presence of microstructure noise. The Fourier method is further extended to estimate

the instantaneous covariance matrix and some economically interesting scalar functions of

the integrated covariance matrix. We carried out extensive simulations and the empirical

analysis reported in Section 5.

A word on notation. For scalars a and b, a ∧ b and a ∨ b denote the minimum and

maximum value. For a series ti,j, denote ∆ti,j = ti,j − ti−1,j, and for any function g, let

∆g(ti,j) = g(ti,j) − g(ti−1,j). We use −→p to denote convergence in probability, and =⇒ to

mean stable convergence described in the Appendix. For real sequences an and bn, an ≃ bn

means an = bn+op(bn). For a matrix A, ∥A∥2 = tr(A
ᵀ
A)1/2. Let L denote the discrete time

lag operator, so that LXt = Xt−1.

2. THE MODEL AND ASSUMPTIONS

2.1 Efficient Price and Parameter of Interest

The following assumption describes the general setting used throughout the paper.

Assumption 1. The efficient price process follows a Brownian semimartingale. For a

d×1 vector of logarithmic prices P(t) = [P1(t), . . . , Pd(t)]
ᵀ defined on the filtered probability

space (Ω,F ,Ft≥0,P), we have

P(t) =

∫ t

0

µ(u)du+

∫ t

0

σ(u)dW(u),

4



where µ(u) = [µ1(u), . . . , µd(u)]
ᵀ is a vector of predictable locally bounded drifts and σ(u) is

a symmetric d×dmatrix of locally bounded cádlág processes with
∫ t

0
σ(u)σ(u)ᵀ ⊗ σ(u)σ(u)ᵀdu <

∞ a.s. W(u) is a d× 1 vector of independent Brownian motion and is independent from

the volatility process.

The matrix
∫ t

0
σ(u)σ(u)ᵀ ⊗ σ(u)σ(u)ᵀdu, which we call integrated quarticity, appears in

the asymptotic variance of the estimator discussed later. The assumption of locally bounded

drift and diffusion coefficient are required to apply Girsanov’s theorem to remove the drift

term in the theoretical derivation. Consider the discrete time grid 0 = t0 < · · · < tn = T ,

where T is fixed, and let P(ti) denote the log price at those points. The quadratic covariation

matrix of P over a time interval [0, t], t ≤ T is defined by

[P,P]t = plim
n→∞

∑
i;ti≤t

{P(ti)−P(ti−1)}{P(ti)−P(ti−1)}ᵀ, (1)

where the limit is finite and well defined with probability one. Under Assumption 1, this is

almost surely equal to the integrated covariance matrix

[P,P]t =

∫ t

0

σ(u)σ(u)ᵀdu. (2)

A natural estimator of (2) is the finite sum given in the definition of quadratic variation,

which is called the Realized Covariance. Barndorff-Nielsen and Shephard (2002) showed

that the Realized Covariance is unbiased and is a
√
n consistent estimator of the integrated

covariance under Assumption 1 and assuming synchronous trading. Throughout this paper

we will reserve the square bracket to denote the quadratic variation, following the convention

in the stochastic processes literature. The objective of this paper is to consistently estimate

the integrated covariation matrix (2). The integrated covariance is related to the covariance

matrix of prices by

cov{P(t)} = E{
∫ t

0

σ(u)dW(u)(

∫ t

0

σ(u)dW(u))ᵀ} =

∫ t

0

E{σ(u)σ(u)ᵀ}du = E[P,P]t,

where the second equality follows from Itô’s formula. Let [P,P] := [P,P]T . We will denote
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the (i, j)- th element of an instantaneous covariance matrix by Σi,j(u) = {σ(u)σ(u)ᵀ}i,j.

The j-th diagonal element gives an integrated variance [Pj, Pj] =
∫ T

0
Σj,j(u)du.

Two problems are present in estimating (2). First, prices of different assets are observed at

different times. Second, observed prices are distorted by noise and do not satisfy Assumption

1. We propose below an estimator that is robust to these two problems. We will examine in

detail the two problems in the following sections.

2.2 Sampling scheme

In this section we describe the main assumptions we make on the observation times. We

allow for unequally spaced and asynchronous observation times.

Assumption 2. The time span is fixed and scaled to vary between [0, 2π]. We observe

log prices at discrete time points: 0 = t0,ℓ < · · · < tnℓ,ℓ = 2π for ℓ = 1, . . . , d, where nℓ

is the total number of observations for the ℓ-th asset. The discrete time points are allowed

to be stochastic and assumed to be independent of the price and volatility process. The total

number of observation points nℓ is large and n := minℓ(nℓ) → ∞. Unless otherwise stated,

all convergence below holds with probability one. For all a, b, ℓ ∈ {1, . . . , d} :

1. The discrete time points satisfy sup0≤i<nℓ
(ti,ℓ − ti−1,ℓ) = O(n−1

ℓ ).

2. Denote the interval Ii,a = [ti−1,a, ti,a) and Ij,b := [tj−1,b, tj,b). Define the empirical

quadratic covariation of time by

Q(n)
abcd(t) = (na ∧ nb ∧ nc ∧ nd)∑

i,j,k,l:ti,a,tj,b,tk,c,tl,d<t

(ti,a ∧ tj,b − ti−1,a ∨ tj−1,b)(tk,c ∧ tl,d − tk−1,c ∨ tl−1,d) (3)

× 1{Ii,a∩Ij,b ̸=∅}1{Ik,c∩Il,d ̸=∅}1{Imin{(i,a),(j,b)}∩Imin{(k,c),(l,d)} ̸=∅},

where Imin{(i,a),(j,b)} denote Ii,a if na < nb and Ij,b otherwise. Imin{(k,c),(l,d)} is equiva-

lently defined. The empirical quadratic covariation satisfies Q(n)
abcd(t) −→ Qabcd(t) as

na ∧ nb ∧ nc ∧ nd → ∞, where Qabcd(t) is continuously differentiable.
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3. The degree of non-synchronicity satisfies supi,j |ti,a− tj,b|1{Ii,a∩Ij,b ̸=∅} = O((na∧nb)
−1).

Given any set of {ti,a, tj,b} such that na < nb, we assume that

sup
0≤j≤nb

#{tj,b ∈ [ti−1,a, ti,a)|1{Ii,a∩Ij,b ̸=∅}} = O

(
na ∨ nb

na ∧ nb

)
.

The expression in Assumption 2.2 specializes to Q(n)
aa (t) = na

∑
i:ti,a<t(∆ti,a)

2, which ap-

pears in the asymptotic variance of the integrated variance estimator and Q(n)
aabb(t) = (na ∧

nb)
∑

i,j:ti,a,tj,b<t∆ti,a∆tj,b1{Ii,a∩Ij,b ̸=∅}, which appears in the asymptotic variance of the in-

tegrated covariance estimator. The expression (3) appears in the asymptotic covariance

between the integrated covariance estimators. The Assumption 2 does not restrict the ratio

of sample sizes of different assets to be bounded away from zero or infinity. One asset can

be allowed to be much more liquid than the other. If Assumption 2.1 is further restricted

to infi∆ti,ℓ = O(nℓ
−1) and supi∆ti,ℓ = O(nℓ

−1), then Assumption 2.3 is implied. Define

{Tl
(ab)}

1≤l≤N
(ab)
T

:= {ti,a ∪ tl,b, i = 1, . . . , na, l = 1, . . . , nb}, where N
(ab)
T is a total number of

data points for union of time stamps. The sample size of the union of time stamps, N
(ab)
T is

of order O(na ∨ nb). We introduce here some notation we will use in the sequel. Denote the

average interval size for asset ℓ by ∆tℓ := 2π/nℓ. When comparing asset a and asset b, denote

for convenience the average interval size of the more liquid asset by ∆̃tab = 2π/(na∨nb). We

may drop the asset index whenever it is obvious.

3. ESTIMATION

3.1 Our Estimator

We propose to use the Fourier domain approach, which does not require data alignment at

all. A nonparametric method based on the Fourier analysis of returns was first introduced

by Malliavin and Mancino (2009). Frequency domain techniques are widely used in discrete

time series analysis. One important and related application is the estimation of the long-

run variance of a stationary time series analysis, which is equal to the spectral density at a

frequency zero. We draw a natural link of such traditional method to the estimation of the
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quadratic covariation of a continuous time processes.

The Fourier basis given by {gt(q) := exp(iqt), q ∈ Z} where i =
√
−1 and gt(q) denoting

its complex conjugate, constitutes an orthonormal basis on the interval t ∈ [0, 2π],

1

2π

∫ 2π

0

gt(k)gt(j)dt =

{
1 if k = j
0 otherwise.

We can express the continuous time signal {Σ(t)}t∈[0,2π] as a linear combination of the Fourier

basis with coefficient denoted by F(Σ)(q) for q ∈ Z

Σ(t) =
1

2π

∞∑
q=−∞

F(Σ)(q) exp(iqt), (4)

and its Fourier pair by

F(Σ)(q) :=

∫ 2π

0

exp(−iqt)Σ(t)dt, q = 0,±1,±2, . . . . (5)

This is the continuous time Fourier transform of an instantaneous covariation matrix and at

q = 0 we have the integrated covariance. We will propose an estimator for the above general

form in (5). The above Fourier pair suggests that once we estimate the Fourier coefficient

by F̂(Σ)(q), we may reconstruct the signal by replacing the infinite sum by the finite sum

Σ̂(t) =
1

2π

n∑
q=−n

F̂(Σ)(q) exp(iqt).

By Assumption 1, we have {Σ(t)} ∈ L2([0, 2π]) which guarantees that (4) is finite and

∥Σ̂(t)−Σ(t)∥2 →p 0. We next show how we can estimate (5) from the Fourier transform of

the return process. We define the continuous time Fourier transform of return dPℓ(t) , ℓ =

1, . . . , d satisfying Assumption 1

F(Pℓ)(α) =

∫ 2π

0

exp(−iαt)dPℓ(t), α = 0,±1,±2, . . . (6)

where the integral is a stochastic integral. The discrete Fourier transform of the ℓ-th asset is

Fn(Pℓ)(α) =

nℓ∑
j=1

exp(−iαtj,ℓ)∆Pℓ(tj,ℓ). (7)
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Let Fn(P)(α) = {Fn(P1)(α), . . . ,Fn(Pd)(α)}ᵀ for α ∈ Z denote the vector of such Fourier

transforms. Denote the amplitude window by KH(·) : [−π, π] → R. It is defined by

KH(λ) := HK(Hλ), where the spectral window K(·) satisfies the following assumption.

Assumption 3 The spectral window K(λ), λ ∈ [−π, π] satisfies the following conditions:

(i)
∫ π

−π
K(λ)dλ = 1,

∫ π

−π
λK(λ)dλ = 0; (ii)

∫ π

−π
|K(λ)|2dλ < ∞,

∫ π

−π
|λK(λ)|2dλ < ∞ and∫ π

−π
|λ2K(λ)|2dλ < ∞; (iii) K(λ) ≥ 0, ∀λ ∈ [−π, π].

Our proposed estimator of (5) is given by

F̂(Σ)(q) = (F̂(Σi,j)(q))i,j =
∑

|α|≤m/2

KH(λα)Fn(P)(α)Fn(P)(q − α)ᵀ, (8)

where for ρ(n) := maxℓ=1,··· ,d nℓ, we define λα = 2πα/ρ(n), for α ∈ Z. We let m = ρ(n)/H

where the bandwidth H → ∞ and ρ(n),m → ∞ as n → ∞. We are smoothing λα over the

interval [−π/H, π/H] where H controls the width of the smoothing window. We name our

estimator, Fourier Realized Kernel. For q = 0, we may define the realized cross periodogram

between assets 1 and 2 by I12(α) := Fn(P1)(α)Fn(P2)(−α). Then (1, 2)-th element of F̂(Σ)(0)

is given by kernel smoothing the realized cross periodogram around the zero frequency

F̂(Σ1,2)(0) =
∑

|α|≤m/2

KH(λα)I12(α). (9)

The condition (iii) in Assumption 3 guarantees that the estimators defined in (9) is p.s.d.

3.2 Comparison with some Time domain estimators

We first make a comparison with the covariation estimator of Hayashi and Yoshida (2005).

Their estimator is a realized cross periodogram at zero frequency over the interval that

overlaps i.e HY =
∑n1

i=1

∑n2

j=1∆P1(ti,1)∆P2(tj,2)1{Ii,1∩Jj,2 ̸=∅}. Then the centered realized

cross periodogram can be decomposed into I1,2(0)−
∫ 2π

0
Σ12(t)dt = M1 +M2, where

M1 = HY −
∫ 2π

0

Σ12(t)dt M2 =
∑
i,j

∆P1(ti)∆P2(sj)1{Ii,1∩Jj,2=∅} .

Hayashi and Yoshida (2008) showed that
√
nM1 is asymptotically zero mean Gaussian, i.e.,

HY is unbiased estimator and achieves
√
n consistency when microstructure noise is not
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Figure 1: Toy Example a

aNOTE: Suppose P1(t) = P2(t) = B(t), an independent Brownian motion. Then [P1, P2](1) =
∫ 1

0
dt = 1.

Let P1(ti,1) be observed at {0, 1/2, 1} and P2(ti,2) at {0, 1/4, 3/4, 1}. The refresh time grid is the same as
the time stamp of the first asset in this case. The double summation estimator

∑
i,j ∆P1(ti,1)∆P2(tj,2) does

not have a bias induced by aligning the non-synchronously observed data.

present. The realized periodogram is unbiased but inconsistent due to the extra term in M2

which has a zero mean but it is a leading order term of Op(1). Figure 1 clarifies how the

realized periodogram at zero frequency does not suffer from the bias due to non syncronicity

of observation points. For data that is synchronized at {τ i}, we may define a realized

autocovariance function γ12(h) =
∑

i ∆P1(τ i)∆P2(τ i−h), h ∈ Z, where
∑

i =
∑

h<i≤n for

h ≥ 0, and
∑

i =
∑

1≤i≤n+h for h < 0. Given a smoothing window in time domain k(·), the

Realized Kernel proposed by Barndorff-Nielsen et al. (2011) is

∑
|h|<n

k

(
h

H

)
r12(h) =

N∑
i,j=1

∆P1(τ i)∆P2(τ j)k

(
i− j

H

)
. (10)

We recognize that the estimator in (9) can be expressed in a similar form∑
|α|≤m/2

KH(λα)I12(α) =

n1∑
i=1

n2∑
j=1

∆P1(ti)∆P2(sj)kH(ti − sj), (11)

where we defined the scaled bandwidth ~ = H∆̃t, in which case kH(ti − sj) := k(
ti−sj

~ ).

The lag window k(·) and spectral window K(·) are fourier transform pairs and using the

Parseval’s identity, the Assumption 3 can be translated to condition on the lag windows.

10



When time stamps are equally spaced and synchronous, i.e. τ i = τ j + (i − j)2π/n, the

realized cross periodogram is a fourier transform of the realized autocovariance, i.e., I12(α) =∑n−1
h=−n+1 e

−iαh2π/nγ12(h). Then our estimator (9) can be expressed as smoothing the realized

autocovariances. When data is not syncronous, using all the data and implement (11) delivers

superior estimator, which we will show in the next section. We also note that the relation

between the smoothed periodogram to estimate the spectrum and data tapering (i.e., Fourier

transforming the weighted return) is analogous to the relation between our estimator and

the pre-averaging estimator of Christensen, Kinnebrock and Podolskij (2010).

4. ASYMPTOTIC PROPERTIES

4.1 Without Microstructure Noise

We consider the case where the sample sizes of different assets may not be of the same order

of magnitude. We require the following rate condition.

Assumption 4. H is a bandwidth satisfying H ∝ nα with α ∈ (0, 1) so that we have

as n → ∞, H → ∞ and n/H → ∞. Also assume that (na ∨ nb)/(na ∧ nb) = o(H) for all

a, b ∈ {1, . . . , d}.

Remark Let β ≥ 1 be a degree of liquidity parameter so that na ∨ nb = O((na ∧ nb)
β).

Then, Assumption 4 implies that 1 ≤ β < 2 for all a, b ∈ {1, . . . , d}. By balancing

the squared bias and the variance given in Appendix, the optimal bandwidth is given by

H = C0n
α∗
, α∗ = (4β − 3)/5, where C0 ∈ (0,∞). Then the convergence rate of the

estimator under the optimal bandwidth is given by (n1 ∧ n2)
ϑ, 0 < ϑ = (4 − 2β)/5 ≤ 2/5.

The result makes intuitive sense that for unbalanced sample sizes, the estimator converges

at slower rate than the balanced case, n2/5. As the discrepancy between the liquidity of asset

increases (higher β), the estimator becomes less efficient.

Define for each a = 1, . . . , d, Baa = 0 and

Bab =
|k′′(0)|A2

2C2
0

∫ 2π

0

e−itq|Σab(t)|dt ; A = lim
n1∧n2→∞

n1 ∧ n2

2π
sup
i,j

|ti − sj|1{Ii,1∩Ij,2 ̸=∅},
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where 0 ≤ A < ∞ under Assumption 2. A could be thought as a measure of the degree of

non-synchronicity. When the two series are perfectly synchronized and balanced then A = 0;

otherwise it is O(1) under Assumption 2.3. Define the asymptotic variance for the typical

diagonal and off diagonal element:

Vaa = 2C0||k||2
∫ 2π

0

e−i2qtΣaa(t)dQaa(t)

Vab = C0||k||2
∫ 2π

0

e−i2qt
{
Σaa(t)Σbb(t)dQaabb(t) + Σ2

ab(t)dQabab(t)
}
.

The covariation between the integrated covariance estimator of asset a and b with the esti-

mator of c and d is given by

Vab,cd = C0∥k∥2
∫ 2π

0

e−i2tq {Σac(t)Σbd(t)dQacbd(t) + ΣadΣbc(t)dQadbc(t)} .

Let B and V be the bias and covariance matrix of the vech of unique elements of our estimator.

Define D∗
n to be the matrix of convergence rates, such that

Dn = diag {vech(D∗
n)} ; {D∗

n}a,a =
√
na ; {D∗

n}a,b = (na ∧ nb)
ϑ; ϑ =

4− 2β

5

for 1 ≤ β < 2, where the upper bound ϑ = 2/5 is obtained when the sample sizes are of the

same order.

Theorem 1 Suppose that Assumptions 1 - 4 hold. Then,

Dnvech
{
F̂(Σ)(q)−F(Σ)(q)

}
=⇒ N (B,V) .

remark When data is synchronized and balanced we have Bab = 0 and the covaria-

tion estimator achieves the same rate of convergence as the variance estimator. Our result

is comparable with Malliavin and Mancino (2009) whose results were under sub-optimal

bandwidth.

remark on efficiency If our goal is to achieve the most efficient estimator, we can

estimate the asymptotic bias term and subtract it from our estimator. In that case we can

get
√
n convergence rate at the cost of sacrificing the positive definiteness of the estimator.
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We also may estimate each element of the covariance matrix in most efficient way and use the

clipping method to achieve p.s.d i.e. we can project a d×d symmetric covariance matrix esti-

mate which has singular value decomposition, UTdiag[λ1, · · · , λp]U asUTdiag[λ+
1 , · · · , λ+

p ]U

where λ+
j = max{λj, 0}. Whether we should emphasize on the efficiency of an estimator or

on the covariance estimator that is guaranteed to be positive definite depends on problem

at hand and we leave this choice to the practitioner.

remark on difference from realized kernel We analyze the asymptotic bias of

our estimator v.s. the time domain estimator. Define uij = ti ∧ sj and lij = ti−1 ∨ sj−1.

Conditionally on 1{i,j|uij>lij}, the asymptotic bias of (11) is given by∑
i,j

∫ ui,j

li,j

{P1(t)− P1(li,j)}dP2(t) +

∫ ui,j

li,j

{P2(t)− P2(li,j)}dP1(t)

+
∑
i,j

(∫ ui,j

li,j

−
∫ 2π

0

)
Σ12(t)dt

−
∑
i,j

∫ ui,j

li,j

dP1(t)

∫ ui,j

li,j

dP2(s){1− kH(ti − sj)} = (i) + (ii) + (iii),

where (i) = Op({n1 ∨ n2}−1/2) and (ii) = Op({n1 ∨ n2}−1) are due to the discretization

error of the continuous time signal, which depends inversely on the number of union of time

stamps for two assets. (iii) = Op({ n1∨n2

H(n1∧n2)
}2) is due to smoothing, which can be controlled

as it depends on the bandwidth. The leading order term is then (iii). See Appendix. Our

estimator does not suffer from the Epps effect, that is, a negative bias arising due to aligning

the non synchronous data. In fact, the realized covariance applied to the refresh time aligned

data has a non vanishing component (ii), which is analyzed in Theorem 1 of Zhang (2010).

The stochastic bias term of the Realized Kernel can be derived similarly, given N as a

refresh time sample size, the asymptotic bias is given by Op(N
−1/2) + Op(N

−1) + Op(H
−2),

where bandwidth H is chosen for the Realized Kernel. In practice, with high frequency

data N = o(n1 + n2). Hence, using all the realized transaction stamps is a much finer

approximation for the real line [0, 2π] than the coarser refresh time. If we let N = (n1∧n2)
r,

then under the optimal bandwidth, our estimator converges faster at (n1 ∧ n2)
(4−2β)/5 than

13



the Realized Kernel at (n1∧n2)
2r/5, when r < 2− β i.e. N = o(n1 ∧ n2). In two dimensional

case, this condition will hold when two assets are traded very asynchronously and it will

most likely hold when we are estimating the large dimensional covariance matrix.

4.2 With Microstructure Noise

The empirical evidence from the volatility signature plot suggests that the observed price

deviates from the semimartingale assumption. More precisely various studies document

that the observed high frequency returns have infinite quadratic variation. To model this

phenomena, we make the following assumption.

Assumption 5. Let Xj(ti,j) be the observed log price of the j-th asset which has two

additive components. One is a discrete realization of a continuous signal Pj(ti,j) that satisfies

the semimartingale Assumption 1 and the other component is a noise process with respect to

the realization of transaction time Uj(ti,j)

Xj(ti,j) = Pj(ti,j) + Uj(ti,j). (12)

In univariate studies, it is usually assumed that Uj(ti,j) is a stationary time series, which

has been supported by empirical studies. There has not been a lot of empirical work studying

the cross autocorrelation of the microstructure noise for the multiple asset case. We think

it is realistic to assume the following for the microstructure noise that allows cross-sectional

correlation in the measurement error process.

Assumption 6. Let Uj(.), j = 1, . . . , d be a n dimensional stationary process, inde-

pendent of the efficient price process with E(Uj(.)) = 0 and covariance function defined by

EUa(ti,a)Ub(tj,b) = γ(|ti,a − tj,b|/∆̃tab) that satisfies for some d× d p.s.d. covariance matrix

Γ with (a, b)-th element denoted by Γab,

(na ∧ nb)
−1

na−1∑
i=1

nb−1∑
j=1

γ(|ti,a − tj,b|/∆̃tab) → Γab.

We also assume that |E(Ua(ti,a)Ub(tj,b), Uc(tr,c)Ud(tl,d))| ≤ ρ(M), where

M := sup{u,v},{p,s}{(tu,p − tv,s)/∆̃tps}< ∞ and
∑∞

ν ρ(ν)(1 + ϵ)ν < ∞ for some ϵ > 0.

14



We will show that our estimator in (8) is a consistent estimator of the Fourier transform

of the covariance matrix even under the presence of microstructure noise. We add one further

assumption on the end points.

Assumption 7. The two end points, Xj(t0,j) and Xj(tn,j) are respectively an average of

m0 number of distinct observations on the interval [t−1,j, t0,j) and [tn,j, tn+1,j).

This assumption turns about to be crucial for our estimator to achieve consistency. The

time domain estimator by Barndorff-Nielsen et al. (2011) also assumes this condition. From

Proposition 1 and 2 in the appendix, we derive the rate of convergence of our estimator by

balancing the asymptotic variance of order Op(H/(n1 ∧ n2)) and the asymptotic bias of order

Op((n1 ∨ n2)/H
2). The optimal bandwidth is given by H = C0n

α∗
, α∗ = (2β + 1)/5, where

C0 ∈ (0,∞). When the two sample sizes are the same order i.e.(β = 1), then α∗ = 3/5. In

general, liquidity parameter 1 ≤ β < 2 implies that 3/5 ≤ α∗ < 1. The rate of convergence

is then (n1 ∧ n2)
ϑ, 0 < ϑ := (2− β)/5 ≤ 1/5, where the upper bound is achieved when the

sample sizes are of the same order. We define a finite tuning parameter η in a following

way. There exists C∗ ∈ (0,∞) such that nℓ sup0≤i≤nℓ
∆ti,ℓ ≤ C∗ for ∀ℓ = 1, . . . , d under

Assumption 2.1. We define η = (C
∗

2π
)2. Let denote B = vech(C−2

0 η|k′′(0)|Γ),and let V be as

defined in Theorem 1. Let D∗
n be the matrix of convergence rates

Dn = diag {vech(D∗
n)} {D∗

n}a,b = (na ∧ nb)
ϑ ϑ =

2− β

5
, 1 ≤ β < 2,

where the degree of liquidity parameter β is defined in Theorem 1. The the upper bound for

ϑ is 1/5 which is obtained when na/nb = O(1).

Theorem 2. Suppose that Assumptions 1-7 hold. Then,

Dnvech
{
F̂(Σ)(q)−F(Σ)(q)

}
=⇒ N (B,V) .

The instantaneous covariance matrix is also a parameter of interest, see Kristensen (2010).

We can construct an estimator of instantaneous covariation matrix by Fourier inverting the
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estimator given in (8)

Σ̂(t) =
1

2π

∑
|q|≤m/2

KH(λq) exp(iqt)F̂(Σ)(q). (13)

Suppose that the modulus of continuity of Σ(t) denoted by C(h) is given by

C(h) := sup
|t−s|≤h

∥Σ(t)−Σ(s)∥2. (14)

The continuity assumption is met when each element of Σ(t) in Assumption 1 does not

contain jumps, for example, when it is a Brownian semimartingale.

Theorem 3. Suppose that the assumptions of Theorem 2 hold and that (14) holds. Then,

there exists a sequence δ(n) → 0, such that

lim
n→∞

sup
δ(n)≤t≤2π−δ(n)

∥Σ̂(t)−Σ(t)∥2 = 0.

Often, practitioners encounter a problem of running a regression between variables that

are asynchronously observed - for example we might be interested in the effect of returns

and order book information of one asset on another asset. Hannan (1975) and Robinson

(1975) are the earlier literature on using frequency domain to solve such problems. Mykland

and Zhang (2006) discussed a general the set up of analysis of variance for continuous time

regression.

5. NUMERICAL STUDY

5.1 Simulation studies

In the theoretical work, we assumed no leverage between the volatility and the return process.

In the simulation studies, we relax this assumption and see if our estimator is robust to a

presence of the leverage. The first DGP is same as the Brownian semimartingale with the

perfect leverage given in Barndorff-Nielsen et al.(2011). For the second setting, we consider

the stochastic volatility specified as a jump diffusion process given in Aı̈t-Sahalia et al.

(2010a) . We enrich their DGP by letting the instantaneous co-volatility coefficient to follow
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Table 1: 2 dimensional covariation matrix simulation result (·/100)
Realized Cov HY Realized Kernel FRK,H FRK,H∗

NSR (1,1) (1,2) (2,2) (1,2) (1,1) (1,2) (2,2) (1,1) (1,2) (2,2) (1,1) (1,2) (2,2)

DGP1 : Continuous Stochastic Volatility

Sampling: (3/2,30) Balanced
0 bias 1.0 (1.9) 0.8 1.0 1.0 (1.3) 0.8 0.9 (0.6) 1.4 0.9 (0.6) 1.4

rmse 8.0 7.6 8.1 7.6 8.2 7.5 8.0 20.9 19.6 20.8 20.9 19.6 20.8
0.001 bias 23.2 7.3 22.9 10.3 1.6 0.9 1.6 1.0 0.8 1.7 0.9 (0.1) 0.1

rmse 24.7 10.6 24.6 12.9 16.7 15.2 15.4 30.2 28.9 32.3 38.2 35.5 41.2
0.01 bias 225 92.3 225 96.4 3.5 2.3 4.0 0.6 (1.2) (1.5) 0.6 (1.2) (1.5)

rmse 226 93.6 226 97.6 25.3 23.7 25.5 43.8 40.1 46.7 43.8 40.1 46.7
Sampling: (3/2,30) Unbalanced
0 bias 0.1 (2.6) 0.5 0.4 0.0 (1.9) 0.6 1.0 (3.1) 1.4 1.1 (0.1) 1.3

rmse 6.7 6.9 7.0 6.6 7.0 7.0 7.3 15.9 14.8 15.9 22.2 21.0 23.1
0.001 bias 23.5 6.6 21.3 9.5 2.0 1.8 3.1 1.5 (12.5) 5.0 1.0 (4.2) 2.9

rmse 24.7 9.6 22.6 11.7 15.7 14.6 15.6 10.5 15.5 12.2 15.2 14.4 15.3
0.01 bias 239 92.5 210 95.7 2.6 2.3 4.6 1.9 (1.9) 11.6 1.6 0.3 4.9

rmse 240 93.9 211 96.8 24.0 23.3 25.9 18.1 16.7 21.7 23.9 22.9 25.8
Sampling: (20,30) Unbalanced
0 bias 0.1 (27.1) 0.7 0.8 0.2 (23.7) 0.7 0.9 (0.4) 1.8 0.9 (0.4) 1.8

rmse 8.3 28.0 8.2 9.3 8.4 24.8 8.2 20.2 19.1 20.9 20.2 19.1 20.9
0.001 bias 16.8 (23.1) 16.2 4.9 2.0 0.1 2.8 1.1 0.1 1.9 0.8 0.4 1.5

rmse 19.0 24.4 18.6 11.0 16.3 15.0 16.2 23.3 22.1 24.2 26.9 25.9 28.7
0.01 bias 162 10.4 155 41.1 3.8 2.2 4.7 1.7 0.6 1.9 1.0 (0.5) 0.2

rmse 164 16.5 156 43.6 24.3 23.4 26.7 32.2 30.8 34.5 35.8 34.1 39.4

DGP2 : Jump Diffusion Stochastic Volatility

Sampling: (3/2,30) Balanced
0 bias (0.3) (2.0) (18.7) (0.3) (0.2) (1.5) (18.6) (0.1) (0.7) (18.8) (0.1) (0.7) (18.8)

rmse 6.7 18.1 20.3 18.6 7.1 18.3 20.3 18.0 23.4 24.6 18.0 23.4 24.6
0.001 bias 23.3 8.2 4.9 9.8 1.5 1.3 (16.9) 0.0 0.1 (19.3) 0.0 0.1 (19.3)

rmse 24.7 19.8 9.9 21.1 13.4 22.0 21.8 29.1 29.2 31.9 29.1 29.2 31.9
0.01 bias 233 96.7 211 98.8 2.6 2.1 (15.8) 1.4 1.3 (18.0) 10.2 (0.7) (10.0)

rmse 234 99.6 212 102 19.8 24.5 25.3 42.6 38.9 42.8 17.2 21.2 17.1
Sampling: (3/2,30) Unbalanced
0 bias (0.3) (1.9) (18.8) (0.1) (0.2) (1.6) (18.8) 0.2 (2.5) (19.1) 0.0 (0.5) (18.9)

rmse 7.1 17.7 20.4 18.2 7.1 17.9 20.5 13.7 21.1 23.0 20.1 24.4 25.3
0.001 bias 24.0 8.0 2.6 10.0 0.7 0.5 (17.5) 1.5 (8.3) (14.6) 0.7 (3.2) (17.5)

rmse 25.5 19.7 9.3 21.1 14.0 20.7 21.5 9.2 19.1 18.0 12.8 20.5 21.6
0.01 bias 243 94.1 192 97.8 1.4 1.0 (15.7) 1.8 (1.6) (8.6) 3.8 (3.3) 2.6

rmse 244 97.1 193 101 22.1 24.7 23.8 15.2 21.6 17.3 12.6 19.6 14.8
Sampling: (20,30) Unbalanced
0 bias (0.1) (16.7) (18.0) (0.0) 0.1 (14.7) (18.0) (0.0) (0.9) (18.9) (0.2) (0.1) (18.9)

rmse 6.8 21.5 19.5 19.2 6.8 20.4 19.6 17.6 23.3 24.2 24.2 27.0 28.3
0.001 bias 15.3 (13.2) (2.7) 3.7 1.6 (0.4) (17.9) 0.1 (0.4) (18.5) 0.1 (0.0) (18.8)

rmse 17.1 19.1 8.9 19.6 14.5 21.2 21.7 19.7 24.5 25.1 23.9 26.7 28.0
0.01 bias 159 20.6 136 40.1 3.0 1.2 (15.9) 0.8 0.9 (17.8) 6.2 0.7 (10.5)

rmse 160 26.8 137 45.5 22.7 25.8 24.1 30.2 30.6 32.6 17.9 22.6 17.7
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the CIR process given in Barndorff-Nielsen and Shephard (2004). Specifically, for j = 1, 2-

th asset, we let log price as dPj(t) = σj(t)dWj(t) where EdW1(t)dW2(t) = ρtdt such that

ρ(t) = (e2x(t) − 1)/(e2x(t) + 1) and dx(t) = 0.03(0.64 − x(t))dt + 0.118x(t)dBxt where Bxt is

an independent Brownian motion. The DGP of Microstructure noise is a cross correlated

AR(1) process formed with respect to a transaction time. This can be implemented by;

Uj(ti,j) = Ūj(ti,j) + ε(ti,j) with Ūj(ti,j) = αŪj(ti−1,j) + ϵj(ti,j), where idiosyncratic errors

ϵj(ti,j) are independent Gaussian. The common disturbance is simulated by εl ∼ AR(1) for

{Tl}1≤l≤NT
= {ti,1 ∪ tk,2}. The variance of the noise is set to be proportionate to the sample

integrated quarticity; ζ2
√
nj

−1
∑nj

i=1 σ
4
j(ti,j), where ζ = {0, 0.0.001, 0.01} is a noise to signal

ratio(NSR). We simulated the one second data assuming 6.5 hour daily trading, which give

us 23,400 daily data points over 100 monte carlo sample. We designed the simulation to

assess the impact of the asynchronicity on the estimator. We poisson sampled the data at

the rate {(3/2, 30), (20, 30)}. The sampling rate (3/2, 2) means that we sample the first asset

on average per 1.5 second and the second asset per 2 second. To create a balanced sample

for the rate (3/2, 30), for the first asset, we sample on average at 1.5 second for the first half

of the sample and at 30 second for the last half of the sample. For the second asset, we do

this in reverse order. Then we have two assets that have the same number of transactions

each day but traded very asynchronously.

For third simulation setting, we increase the dimension and consider a simple setting

where log prices are given by P(t) = AB(t) where P(t) is 10 × 1 vector of prices, B(t)

is 3 × 1 independent Brownian motion and A is a factor loading matrix. This is poisson

sampled at rate {2, 2, 4, 4, 8, 8, 10, 10, 30, 30} and masked by the i.i.d gaussian noise.

Table 1 shows that the proposed estimator has the best bias profile and overall estimates

the off-diagonal elements better than the other methods. We calculate the optimal bandwidth

as given in Theorem 1 and 2 for each element of covariance matrix and take the minimum,

maximum of these and average of the two. We report the results for average bandwidth,H

and the bias minimizing bandwidth H∗. With carefully chosen bandwidth we can achieve
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Table 2: Scalar function of 10 dimensional covariation matrix
max(eigenvalue) NSR=0 NSR=0.001 NSR=0.1

Bias rMSE Bias rMSE Bias rMSE
RV refresh (2.34) 2.75 7.22 7.50 127 127
RV fixed (0.85) 3.18 0.40 3.28 15.4 16.5

Realized Kernel (2.21) 2.65 0.38 3.00 1.29 4.82
Fourier RK minH (1.18) 2.17 (0.28) 1.95 1.22 3.27

avgH (0.47) 2.64 0.13 4.02
maxH (0.52) 3.13 (0.03) 4.92

portfolio

RV refresh 1.76 2.74 27.2 27.5 256 257
RV fixed 0.14 4.09 4.14 6.31 40.4 42.0

Realized Kernel 1.66 2.67 1.67 4.16 3.23 6.86
Fourier RK minH 0.26 2.51 3.88 4.87 6.88 8.55

avgH 0.73 3.67 1.76 5.58
maxH (0.20) 3.99 0.67 5.96

the best root MSE under the presence of noise. When no noise is present, the Hayashi and

Yoshida estimator performs well. The refresh time aligned method often performs better in

estimating the integrated variance of the less traded asset; (2,2) element. This is since it

effectively aligns data on the time stamps of the less traded asset. As analysed in the previous

section, when there is no noise and the number of refresh time sample is size small, thr

Realized Kernel underperforms in terms of bias. We observe also that the realized covariance

estimator aligned on sparsely sampled data often performs well - this is because there is two

opposing effect in terms of bias: the negative bias from epps effect and the positive bias

from microstructure noise. The advantage of our estimator is most clear in estimating higher

dimension covariance matrix as shown in Table 2. We estimate 10 dimensional integrated

covariance matrix and compare the maximum of eigenvalues and variance of the equally

weighted portfolio. We note that our estimator seems to have large variance, however it

outperforms other methods under presence of microstructure noise.

5.2 Empirical Application

In this section we apply the Fourier Realized Kernel to a high frequency data. We analyzed

five stocks in order of liquidity : Microsoft, J P Morgan, Dell, Caterpillar Inc. and Banco

de Chile during 05-30 March 2007, where data is taken from WRDS TAQ database. We

calculate the optimal bandwidth for individual asset by equalizing the squared bias and
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Figure 2: Comparison between Realized Covariance and Fourier Realized Kernel : Estimates

of (1, 1) to (2, 5) element of 5× 5 matrix
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the variance term given in Theorem 2. Let nℓ = nβℓ where n is a minimum of all sample

sizes, then it is given by Hℓ = {η|k′′(0)|
∥k∥ }2/5ζ4/5ℓ n

1+2βℓ
5 , where ζ2ℓ is a squared noise to signal

ratio for each asset. We applied maximum, minimum and average of the these individual

bandwidths. The Figure 2 and Figure 3 compare the Realized Covariance and the proposed

method in estimating the daily covariation matrix. Since the first asset is least traded, the

all refresh time is effectively aligned on the trading time of the first asset. In estimating the

integrated variance, the proposed method lies between the RV using pairwise refresh time

(which will be dominated by the microstructure noise) and the RV using all refresh time

(which is more sparsely sampled, therefore less affected by the noise). Most interesting case

is the performance in estimating covariation for assets of different liquidity i.e. (1, 4) and
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Figure 3: Comparison between Realized Covariance and Fourier Realized Kernel : Estimates

of (3, 3) to (5, 5) element of 5× 5 matrix
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(1, 5)-th element of the estimator in our case. The daily Realized Covariance take values

closer to zero due to Epps effect whereas proposed estimator clearly gives us non trivial

estimates.

APPENDIX A. PROOFS OF THEOREMS

We will prove the theorems for the general version of our estimator given in (8). We derive

the results conditionally on the volatility matrix and the discretization time points therefore

we regard these variables deterministic in the proofs. Throughout the proof we denote

C,C1, C2, · · · finite constants.

Lemma 1. Let P(t) defined on the filtered probability space (Ω,F ,Ft≥0,P) satisfies

Assumption 1 with µ(t) = 0. Let f(t, s; q) be a bounded and measurable function. Define

21



square bracket operation to denote a quadratic covariation process defined in (1). Then,

E

[ ∫ 2π

0

∫ 2π

0

f(t, s; q)dPa(s)dPb(t),

∫ 2π

0

∫ 2π

0

f(t, s; q′)dPc(s)dPd(t)

]
(A.1)

=

∫ 2π

0

∫ 2π

0

{f(t, s; q)f(t, s; q′)d[Pa, Pc](s)d[Pb, Pd](t) + f(t, s; q)f(s, t; q′)d[Pa, Pd](s)d[Pb, Pc](t)} .

where double stochastic integral is Wiener-Itô sense.

Proof. The double Wiener-Itô integral can be written as∫ 2π

0

∫ 2π

0

f(t, s; q)dPa(s)dPb(t) =

∫ 2π

0

∫ t

0

{f(t, s; q)dPa(s)dPb(t) + f(s, t; q)dPb(s)dPa(t)} ,

so that the integrand is measurable with respect to Ft and the stochastic integration is well

defined. Two terms above are martingale. Therefore (A.1) can be expressed as[ ∫ 2π

0

∫ t

0
f(t, s; q)dPa(s)dPb(t) +

∫ 2π

0

∫ t

0
f(s, t; q)dPb(s)dPa(t),∫ 2π

0

∫ t

0
f(t, s; q′)dPc(s)dPd(t) +

∫ 2π

0

∫ t

0
f(s, t; q′)dPd(s)dPc(t)

]
.

Consider one of the cross product terms among four possible terms from above. By Itô’s

isometry,

E

[ ∫ 2π

0

∫ t

0

f(t, s; q)dPa(s)dPb(t),

∫ 2π

0

∫ t

0

f(s, t; q′)dPd(s)dPc(t)

]
(A.2)

= E

∫ 2π

0

(∫ t

0

f(t, s; q)dPa(s)

)(∫ t

0

f(s, t; q′)dPd(s)

)
d[Pb, Pc](t).

where d[Pb, Pc](t) means [Pb, Pc]
′(t)dt , where the prime denotes the time derivative. By

Fubini’s theorem,∫ 2π

0

E

(∫ t

0

f(t, s; q)dPa(s)

)(∫ t

0

f(s, t; q′)dPd(s)

)
d[Pb, Pc](t).

=

∫ 2π

0

∫ t

0

f(t, s; q)f(s, t; q′)d[Pa, Pd](s)d[Pb, Pc](t).

Together with the expected quadratic covariation of following terms,

E

[ ∫ 2π

0

∫ t

0

f(s, t; q)dPb(s)dPa(t),

∫ 2π

0

∫ t

0

f(t, s; q′)dPc(s)dPd(t)

]
=

∫ 2π

0

∫ t

0

f(s, t; q)f(t, s; q′)d[Pb, Pc](s)d[Pa, Pd](t),
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we have the result.

Lemma 2. Define a step function

fn(t, s; q) =
∑
i,j

e−isjqe−i(ti−sj)α1[ti−1,ti[(t)1[sj−1,sj [(s)1{Ii,1∩Ij,2=∅}(t, s)

gn(t, s; q) =
∑
i,j

e−isjqe−i(ti−sj)α1[ti−1,ti[(t)1[sj−1,sj [(s).

where discretization points {ti, sj} satisfy Assumption 2.1. Then∫ 2π

0

∫ 2π

0

fn(t, s; q)dsdt =

∫ 2π

0

∫ 2π

0

gn(t, s; q)dsdt+O(
1

n1 ∧ n2

).

Proof. Under Assumption 2.1,∫ 2π

0

∫ 2π

0

∑
i,j

{1− 1{Ii,1∩Ij,2=∅}(t, s)}e−itjqe−i(ti−sj)α1[ti−1,ti[(t)1[sj−1,sj [(s)dsdt

=

∫ 2π

0

∫ 2π

0

∑
i,j

e−isjqe−i(ti−sj)α1[ti−1,ti[(t)1[sj−1,sj [(s)1{Ii,1∩Ij,2 ̸=∅}(t, s)dsdt

≤ sup
i
(∆ti) sup

j
(∆sj)

∑
i,j

1{Ii,1∩Ij,2 ̸=∅} = O(
1

n1 ∧ n2

).

Lemma 3. Define a step function weighted by kernel satisfying Assumption 3 by

fn(t, s; q, a, b) =
∑
i,j

e−itj,bqkH(ti,a − tj,b)1[ti−1,a,ti,a[(t)1[tj−1,b,tj,b[(s)1{Ii,a∩Ij,b=∅}(t, s), (A.3)

gn(t, s; q, a, b) =
∑
i,j

e−itj,bqkH(ti,a − tj,b)1[ti−1,a,ti,a[(t)1[tj−1,b,tj,b[(s).

Then it holds that

na ∧ nb ∧ nc ∧ nd

H

∫ 2π

0

∫ 2π

0

fn(t, s; q, a, b)fn(t, s; q, c, d)d[Pa, Pc](s)d[Pb, Pd](t) (A.4)

→ ∥k∥2
∫ 2π

0

e−i2tq[Pa, Pc]
′(t)[Pb, Pd]

′(t)dQacbd(t),

where Q·(t) is defined in Assumption 2.

Proof. We will proceed by proving for univariate, bivariate and general version of

the formula in (A.4). First note that for any function d(·, ·), it holds that
∑n

i,j=1 d(i, j) =∑n−1
h=0

∑n−h
j=1 d(j, j + h) +

∑n−1
h=1

∑n
j=1+h d(j, j − h), which we will denote by

∑n
i,j=1 d(i, j) =
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∑n−1
h=0

∑n−h
j=1 d(j, j + h)[2]. For univariate case, by Lemma 2, we can replace fn by gn with

error O(n−1)̇. Then (A.4) is approximated by n
H

∑n−1
h=0

∑n−h
j=1 (e

−itj2q+e−itjqe−itj+hq)k2
H(tj+h−

tj)[P, P ]′(tj+h)[P, P ]′(tj)∆tj+h∆tj[2], which is equal to

n

H

n−1∑
h=0

k2
H(th)

n−h∑
j=1

(e−itj2q + e−itjqe−itj+hq)[P, P ]′(tj+h)[P, P ]′(tj)∆tj+h∆tj[2] (A.5)

In (A.5) we can make approximation ti − ti−h ≃ th under Assumption 2. We may replace

the second summation in (A.5) to run to n, with approximation error

n

H

n−1∑
h=0

k2
H(th)

h∑
j=1

(e−itj2q + e−itjqe−itj+hq)[P, P ]′(tj+h)[P, P ]′(tj)∆tj+h∆tj[2]

≤ C2(sup∆tj)
2n
∑
|h|<n

h

H
k2
H(th) ≃

H

n
C2

∫ ∞

−∞
xk2(x)dx.

Then (A.5) is equal to

n

H

{
k2
H(0) + 2

n−1∑
h=1

k2
H(th)

}
n∑

j=1

(e−itj2q + e−itjqe−itj+hq)[P, P ]′(tj+h)[P, P ]′(tj)

×∆tj+h∆tj +O(
H

n
) → 2∥k∥2

∫ 2π

0

e−it2q([P, P ]′)2(t)dQ11(t), (A.6)

where Q11(t) is defined in Assumption 2. For the bivariate case we first establish some

inequalities regarding the two grids of time stamps,

∑
i,j

∆ti∆sj ≥
∑
i,j

∆ti∆sjk
2
H(ti − sj) ≥

∑
i,j

∆ti∆sj1{Ii,1∩Ij,2 ̸=∅}, (A.7)

since they are of order O(1), O(H/(n1 ∧ n2)) and O((n1 ∧ n2)
−1) respectively. Recalling

that {Tl}1≤l≤NT
are union of time stamps, the lower bound for all (A.7) is

∑
i,j(ti ∧ sj − ti ∨

sj)
2 ≤ supl|Tl − Tl−1|

∑
1≤l≤NT

|Tl − Tl−1| = O((n1 ∨ n2)
−1). By Riemann approximation of

a continuous integral and (A.7), under Assumption 2.2,

(n1 ∧ n2)
∑
i,j

e−i2sjq[P1, P1]
′(ti)[P2, P2]

′(sj)∆ti∆sj1{Ii,1∩Ij,2 ̸=∅}

→
∫ 2π

0

e−i2tq[P1, P1]
′(t)[P2, P2]

′(t)dQ1122(t).
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Using Lemma 3, then it holds that

n1 ∧ n2

H

∑
i,j

e−i2sjqk2
H(ti − sj)

∫ ti

ti−1

d[P1, P1](t)

∫ sj

sj−1

d[P2, P2](s)

≃ n1 ∧ n2

H

∑
i,j

e−i2sjqk2
H(ti − sj)[P1, P1]

′(ti)[P2, P2]
′(sj)∆ti∆sj

≃ ∥k∥2(n1 ∧ n2)
∑
i,j

e−i2sjq[P1, P1]
′(ti)[P2, P2]

′(sj)∆ti∆sj1{Ii,1∩Ij,2 ̸=∅}

→ ∥k∥2
∫ 2π

0

e−i2tq[P1, P1]
′(t)[P2, P2]

′(t)dQ1122(t), (A.8)

where the approximation errors are similarly derived as the univariate case. Next we note

that the cross product term simplifies to gn(t, s; q)gn(s, t; q) =
∑

i,j,k,l e
−isjqe−is

l
qkH(ti −

sj)kH(tk − sl)1[ti−1∨sl−1,ti∧sl[(t)1[tk−1∨sj−1,tk∧sj [(s). Then by Lemma 3 and (A.7),

n1 ∧ n2

H

∫ 2π

0

∫ 2π

0

fn(t, s; q)fn(s, t; q)d[P1, P2](t)d[P2, P1](s)

≃ n1 ∧ n2

H

∑
i,j,k,l

e−isjqe−islqkH(ti − sj)kH(tk − sl)[P1, P2]
′(ti ∧ sl)[P2, P1]

′(tk ∧ sj)

× (ti ∧ sl − ti−1 ∨ sl−1)(tk ∧ sj − tk−1 ∨ sj−1)1{Ii,1∩Il,2 ̸=∅}1{Ik,1∩Ij,2 ̸=∅}

≃ ∥k∥2(n1 ∧ n2)
∑
i,j,l

e−isjqe−islq[P1, P2]
′(ti ∧ sl)[P2, P1]

′(ti ∧ sj)

× (ti ∧ sl − ti−1 ∨ sl−1)(ti ∧ sj − ti−1 ∨ sj−1)1{Ii,1∩Il,2 ̸=∅}1{Ii,1∩Ij,2 ̸=∅}

→∥k∥2
∫ 2π

0

e−i2tq([P1, P2]
′)2(t)dQ1212(t). (A.9)

To analyse (A.4) for four assets, we first replace off-diagonal step function fn by gn by Lemma

2 and note that
∫ 2π

0

∫ 2π

0
gn(t, s; q, a, b)gn(t, s; q, c, d)dsdt is given by

∑
i,j,k,l

kH(ti,a − tj,b)kH(tk,c − tl,d)(ti,a ∧ tk,c − ti−1,a ∨ tk−1,c)(tj,b ∧ tl,d − tj−1,b ∨ tl−1,d) (A.10)

The upper bound for (A.10) is given by

∑
i,j,k,l

(ti,a∧ tk,c− ti−1,a∨ tk−1,c)(tj,b∧ tl,d− tj−1,b∨ tl−1,d)1{Ii,a∩Ik,c ̸=∅}1{Ij,b∩Il,d ̸=∅} = O(1). (A.11)
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The lower bound for (A.10) is given by

∑
i,j,k,l

(ti,a ∧ tk,c − ti−1,a ∨ tk−1,c)(tj,b ∧ tl,d − tj−1,b ∨ tl−1,d)1{Ii,a∩Ij,b∩Ik,c∩Il,d ̸=∅} (A.12)

≤ C
1

na ∨ nc

1

nb ∨ nd

∑
i,j,k,l

1{Ii,a∩Ij,b∩Ik,c∩Il,d ̸=∅} = O(
na ∨ nb ∨ nc ∨ nd

(na ∨ nc)(nb ∨ nd)
),

which will be order of inverse of second or third largest sample size. It is bigger or equal

to sum of squared union of all four time stamps which has order O((na ∨ nb ∨ nc ∨ nd)
−1).

Then we may construct a quantity that lies between the (A.12) and (A.11) as following way.

For simplicity assume that na < nb < nc < nd, then∑
i,j,k,l:ti,a,tj,b,tk,c,tl,d<t

(ti,a ∧ tj,b − ti−1,a ∨ tj−1,b)(tk,c ∧ tl,d − tk−1,c ∨ tl−1,d)

× 1{Ii,a∩Ij,b ̸=∅}1{Ik,c∩Il,d ̸=∅}1{Imin{(i,a),(j,b)}∩Imin{(k,c),(l,d)} ̸=∅}

≤ C
1

nb

1

nd

na∑
i=1

nc∑
k=1

♯{tk,c ∈ [ti−1,a, ti,a[}
nb∑
j=1

♯{tj,b ∈ [ti−1,a, ti,a[}
nd∑
l=1

♯{tl,d ∈ [tk−1,c, tk,c[},

which is order of C 1
nb

1
nd
na

nc

na

nb

na

nd

nc
= O(na

−1) under Assumption 2.3. Then (A.4) is derived

similarly as (A.9) using Lemma 3 and inequalities involving the quadratic variation of time

derived above.

Lemma 4. Let P(t) defined on probability space (Ω,F ,Ft≥0,P) satisfying the Assumption

1 and let sub-σ field of F by G = σ(P). The Z is a standard normal variable on the suitable

extension of probability space and V is a G-measurable stochastic variance. Then it holds

that for fn(·) given in (A.3 ),√
n

H

∫ 2π

0

∫ 2π

0

fn(t, s; q)dP1(s)dP2(t) =⇒
√
VZ.

where convergence is G-stably in law.

Proof. Stable convergence is notion of joint convergence and stronger than conver-

gence in law. See Aldous and Eagleson (1978) Proposition 1 for the definition of a stable

convergence. Let the discretized filtration by Fi, i = maxj{tj ≤ t}. For the discretized

sequence χn
i =

√
n
H
∆P1(ti)

∑
j:sj<ti

∆P2(sj)kH(ti − sj)e
−isjq which is adopted to Fi, we
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show the stable convergence of Zn
t :=

∑
maxi{ti≤t} χ

n
i to Zt =

∫ t

0
vsdWs, a Ft-conditional

Gaussian martingale. Under the following conditions: (1)
∑

iE(|χn
i |

2|Fi−1) →p [Z,Z]t;

(2)
∑n

i E(|χi|21{|χn
i |>ϵ}|Fi−1) →p 0 ∀ϵ; we have Zn =⇒ Z stably. See the proof for The-

orem 3.2 in Jacod (1997). The sufficient condition for the conditional Lindberg condition in

(2) is the Liapanov condition
∑

i E({χn
i }2+ε|Fi−1) →p 0,for ε > 0. We will show for ε = 2 in

the proofs for Theorem 1 and Theorem 2.

A.1 Proof of Theorem 1

We first prove for the diagonal element. Consider the first element of the centered estimator

E =
∑

|α|≤m/2

KH(λα)Fn(P1)(α)Fn(P1)(q − α)−F(Σ11)(q).

We drop the subscript denoting asset for now. We can decompose the centered estimator

into two terms, E = M1 +M2 :

M1 =
n∑

i=1

∆P 2(ti)e
−itiq −

∫ 2π

0

e−iqtd[P, P ](t) ;M2 =
∑
i̸=j

∆P (ti)∆P (tj)kH(ti − tj)e
−itjq.

We will show that
√

n
H
M1 = op(1) and

√
n
H
M2 stably converges to a zero mean Gaus-

sian variable By Itô’s formula, M1 can be further decomposed into a martingale M11 =

2
∑n

i=0

∫ ti
ti−1

{P (t) − P (ti−1)}e−iktidP (t) = Op(n
−1/2) and a predictable finite variation com-

ponent A =
∑n

i=1

∫ ti
ti−1

(e−itk − e−itik)d[P, P ](t) = Op(n
−1). This is the Euler discretization

error and its distribution is given by the Theorem 5.5 of Jacod and Protter (1998). There-

fore,
√

n
H
M1 = Op(H

−1/2) = op(1). Given the off-diagonal step function fn(t, s; q) in (A.3

), we can express M2 =
∫ 2π

0

∫ 2π

0
fn(t, s; q)dP (s)dP (t) which has zero expectation. Then it

holds by Lemma 1, E[M2,M2] = 2E
∫ 2π

0

∫ 2π

0
f 2
n(t, s; q)dP (s)dP (t), which is equal to (A.6) in

Lemma 3. To verify the condition (2) in Lemma 4, let χn
i = {

∑
j<i

√
n
H
∆P (ti)∆P (tj)kH(ti−

tj) (e
−itjq + e−itiq)}. Then, E|χn

i |
4 for i = n is bounded by 24×

n2H−2E{
n∑

h=1

∆P (ti)∆P (ti−h)kH (th)}4

= 9n2H−2

n∑
h=1

E

(∫ ti

ti−1

[P, P ]′(t)dt

)2
(∫ ti−h

ti−h−1

[P, P ]′(t)dt

)2

k4
H (th) + 18n2H−2
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×
n∑

h,l=1

E

(∫ ti

ti−1

[P, P ]′(t)dt

)2 ∫ ti−h

ti−h−1

[P, P ]′(t)dt

∫ ti−l

ti−l−1

[P, P ]′(t)dtk2
H (th) k

2
H (tl)

≤ 9n2H−1 sup
t

([P, P ]′(t))4 supi(∆ti
4)× (

1

H

n∑
h=1

k4
H (th) +

2

H

n∑
h,l=1

k2
H (th) k

2
H(tl)

= n−2H−1C1

∫ ∞

0

k4(x)dx+ n−2C2(

∫ ∞

0

k2(x)dx)2 = Op(n
−2).

where [P, P ]′(t)dt = d[P, P ](t). In univariate case this simplifies to [P, P ]′(t) = σ2(t). The

pen-ultimate equality is using Assumption 2.1. Therefore the condition (2) in Lemma 4 is

satisfied.

We now give a result for the off-diagonal element of the estimator when time stamps

are asynchronous and sample sizes are unbalanced. We first show for the bivariate case and

will extend the result to higher dimension. Denote the transaction time of the first asset

ti,1 = ti and the second asset tj,2 = sj. The centered estimator in (8) can be decomposed

into, E = M1 +M2, where

M1 =
∑
i,j

e−isjqkH(ti − sj)∆P1(ti)∆P2(sj)1{Ii,1∩Ij,2 ̸=∅} −
∫ 2π

0

e−iqtd[P1, P2](t)

M2 =
∑
i,j

e−isjqkH(ti − sj)∆P1(ti)∆P2(sj)1{Ii,1∩Ij,2=∅}.

We first derive the asymptotic bias. Let uij = ti ∧ sj and lij = ti−1 ∨ sj−1. Then,

E(M1) = E(
∑
i,j

e−isjq

∫ ui,j

li,j

dP1(t)

∫ ui,j

li,j

dP2(s)1{Ii,1∩Ij,2 ̸=∅} −
∫ 2π

0

e−iqtd[P1, P2](t))

− E(
∑
i,j

e−isjq

∫ ui,j

li,j

dP1(t)

∫ ui,j

li,j

dP2(s){1− kH(ti − sj)}1{Ii,1∩Ij,2 ̸=∅}).

By multivariate Itô’s calculus, E(M1) is given by the expectation of following terms condi-

tionally on 1{Ii,1∩Ij,2 ̸=∅}∑
i,j

e−isjq

∫ ui,j

li,j

{P1(t)− P1(li,j)}dP2(t) + e−isjq

∫ ui,j

li,j

{P2(t)− P2(li,j)}dP1(t) (A.13)

+
∑
i,j

∫ ui,j

li,j

(e−isjq − e−itq)d[P1, P2](t) (A.14)

−
∑
i,j

e−isjq

∫ ui,j

li,j

dP1(t)

∫ ui,j

li,j

dP2(s){1− kH(ti − sj)}. (A.15)
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Recalling the definition of the union of time stamps in Assumption 2, the order of magnitude

of the first term in (A.13) is given by

∑
1≤i≤n1,1≤j≤n2

e−isjq

∫ ui,j

li,j

{P1(t)− P1(li,j)}dP2(t)

=

NT∑
l=1

∫ Tl

Tl−1

{P1(t)− P1(Tl−1)}dP2(t)−
∑
i,j

(1− e−isjq)

∫ ui,j

li,j

{P1(t)− P1(li,j)}dP2(t)

= Op(N
−1/2
T ) +Op(n

−1
2 N

−1/2
T ).

The order of the magnitude for the second term in (A.13) is derived in a similar way. The

change of discretization points to the union of the time points are without error and holds

analytically. The order of (A.14) is Op(n
−1
2 ) since we can replace summation

∑
i,j

∫ ui,j

li,j

by
∑

1≤j≤n2

∫ sj
sj−1

. This term is zero for an integrated (co)variance estimator, q = 0. The

asymptotic bias term conditional on the volatility path is given by

E
∑
i,j

e−isjq

∫ ui,j

li,j

dP1(t)

∫ ui,j

li,j

dP2(s){1− kH(ti − sj)}1{Ii,1∩Ij,2 ̸=∅}

≃
∑
i,j

e−isjq

∫ ui,j

li,j

d[P1, P2](t){−
1

2
k′′(0)

(
(ti − sj)

∆̃tH

)2

}1{Ii,1∩Ij,2 ̸=∅}

≤
(

n1 ∨ n2

(n1 ∧ n2)H

)2
1

2

{
n1 ∧ n2

2π
sup
i,j

|ti − sj|1{Ii,1∩Ij,2 ̸=∅}

}2

|k′′(0)|
∑
i,j

e−isjq

∫ ui,j

li,j

d |[P1, P2]| (t)

=

(
n1 ∨ n2

(n1 ∧ n2)H

)2
1

2
A2 |k′′(0)|

∫ 2π

0

e−itqd |[P1, P2]| (t).

by Taylor expansion of {k(0)−kH(ti−sj)}, the first approximation holds by Assumption 2.3

and k′(0) = 0. Then the order of the stochastic bias M1 is given by Op(N
−1/2
T ) +Op(n

−1
2 ) +

Op({ n1∨n2

(n1∧n2)H
}2) for estimator at non-zero frequency and Op(N

−1/2
T ) + Op({ n1∨n2

(n1∧n2)H
}2) for

integrated (co)variance estimator. In both cases, the leading order term for the bias is the

last term under the optimal bandwidth.

We next analyze M2 which can be expressed as

M2 =

∫ 2π

0

∫
s<t

fn(t, s; q)dP2(s)dP1(t) +

∫ 2π

0

∫
s<t

fn(s, t; q)dP1(s)dP2(t),
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where fn(t, s; q) is given in (A.3). It has a zero expectation and by Lemma 1 and Lemma

3, E [M2,M2] multiplied by the appropriate rate of convergence is equal to (A.8)+(A.9). To

complete the proof for the stable convergence, define χn
i =

∑
j:sj<ti

√
n
H
∆P1(ti)∆P2(sj)kH(ti−

sj)e
−isjq1{Ii,1∩Ij,2=∅}. Then supi E|χn

i |4 = O((n1 ∧ n2)
−2) which can be proved similarly as

the univariate case. Therefore the condition (2) in Lemma 4 is met. To show a convergence

of covariation matrix estimator to a multivariate Gaussian distribution by a Cramer-Wold

device, it is sufficient and necessary to show that the linear combination of the elements

of the matrix estimator converges to a univariate Gaussian random variable. Let denote

R(q) := F̂(Σ)(q) − F(Σ)(q) and consider the linear combination of the element a⊤R(q)b

and c⊤R(q)d. Note that a⊤R(q)cb⊤R(q)d =vech(ab⊤)⊤(R(q) ⊗R(q))vech(dc⊤). The ex-

pectation of the above expression depends on E{R(q)⊗R(q)}. Each element of this is given

in Lemma 3.

A.2 Proof of Theorem 2

We analyze our estimator applied to microstructure noise not affected by the end points U0

and Un, given by

~−2

n1−1∑
i=1

n2−1∑
j=1

U1(ti)U2(sj)e
−isjαk

′′

H(ti − sj)∆ti+1∆sj+1 (A.16)

+ ~−1

n1−1∑
i=1

n2−1∑
j=1

U1(ti)U2(sj)e
−isjα(e−i∆sj+1α − 1)k

′

H(ti − sj)∆ti+1. (A.17)

The upper bound for expectations of (A.17) is given by.

~−1 sup
j

∣∣1− e−i∆sj+1α
∣∣ sup

i
(∆ti+1)

∣∣∣∣∣
n1−1∑
i=1

n2−1∑
j=1

E{U1(ti)U2(sj)}k
′

H(ti − sj)

∣∣∣∣∣
= C1

n1 ∨ n2

H

1

n1n2

∣∣∣∣∣∣{
∑

|ti−sj |/∆̃t≤
√
H

+
∑

|ti−sj |/∆̃t>
√
H

}E{U1(ti)U2(sj)}k
′

H(ti − sj)

∣∣∣∣∣∣
≤ C1(n1 ∧ n2)

−1H−1{ sup
|ti−sj |/∆̃t≤

√
H

|k′

H(ti − sj)|

∣∣∣∣∣∣
∑

|ti−sj |/∆̃t≤
√
H

γ({ti − sj}/∆̃t)

∣∣∣∣∣∣
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+ sup
|ti−sj |/∆̃t>

√
H

|γ({ti − sj}/∆̃t)|

∣∣∣∣∣∣
∑

|ti−sj |/∆̃t>
√
H

k
′

H(ti − sj)

∣∣∣∣∣∣} = o(H−1),

since sup|ti−sj |/∆̃t≤
√
H |k

′
H(ti − sj)| → k′(0) = 0 under the Assumption 2. By Assumption

6,
∑

|ti−sj |/∆̃t≤
√
H γ({ti − sj}/∆̃t) = O(n1 ∧ n2). The last supremum term vanishes at the

exponential rate by Assumption 6. The expectation of squares of (A.17) is bounded by

C2(n1 ∧ n2)
−2H−2

{∑
i,j,r,l

EU1(ti)U2(sj)U1(tr)U2(sl)k
′

H(ti − sj)k
′

H(tr − sl)

}
, (A.18)

which is O((n1 ∧ n2)
−1H2µ−1). Denote a set S := {i, j, r, l; (ti − tr)/∆t < Hµ, (sj − sl)/∆s <

Hµ} where 0 < µ < 1. Then the terms in the curly bracket in (A.18) is given by{ ∑
i,j,r,l∈S

+
∑

i,j,r,l∈Sc

}
EU1(ti)U2(sj)U1(tr)U2(sl)k

′

H(ti − sj)k
′

H(tr − sl)

≤ sup
i,j,r,l∈S

|EU1(ti)U2(sj)U1(tr)U2(sl)|

∣∣∣∣∣∣
∑
i,j

∑
|h|,|v|<Hµ

k
′

H(ti − sj)k
′

H(ti−h − sj−v)

∣∣∣∣∣∣
+ C3n

2
1n

2
2 sup
i,j,r,l∈Sc

|EU1(ti)U2(si−h)U1(tr)U2(sr−v)| = (i) + (ii).

For balanced and equally spaced case, (i) simplifies to

sup
|i−r|<Hµ,|h−v|<Hµ

|EU1(ti)U2(si−h)U1(tr)U2(sr−v)|

∣∣∣∣∣∣
∑

|i−r|<Hµ,|h−v|<Hµ

k
′

H(ti − si−h)k
′

H(tr − sr−v)

∣∣∣∣∣∣ .
When sample size is balanced, it holds that ti−si−h

~ ≃ h
H

under Assumption 2. Then∑
|i−r|<Hµ,|h−v|<Hµ

k
′
(
h

H
)k

′
(
v

H
) = 2Hµn

∑
|h−v|<Hµ

k
′
(
h

H
)k

′
(
v

H
) ≤ 4H2µn

n∑
h=1

{k′
(
h

H
)}2.

For unbalanced case, we use the fact that
∑

i,j{k
′
H (ti − sj)}2 ≃ (n1 ∧ n2)H

∫∞
−∞{k′(x)}2dx

and that the order of #{0 ≤ i, r ≤ n1; |ti − tr| /∆t < Hµ} is same as when the data is

equally spaced under Assumption 2. Then (i) = ρ(0)4(n1 ∧ n2)H
2µ+1

∫∞
−∞{k′(x)}2dx. We

have (ii) = C3n
2
1n

2
2 sup|τ |>Hµ ρ(τ) which is exponentially vanishing by Assumption 6. The

expectation of (A.16) is given by

~−2

 ∑
|ti−sj |/∆̃t≤

√
H

+
∑

|ti−sj |/∆̃t>
√
H

E{U1(ti)U2(sj)}e−isjαk
′′

H(ti − sj)∆ti+1∆sj+1 = (i) + (ii).
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(ii) is bounded by

~−2 sup
i
(∆ti+1) sup

j
(∆sj+1) sup

|ti−sj |/∆̃t>
√
H

|EU1(ti)U2(sj)|
∑

|ti−sj |/∆̃t>
√
H

|k′′

H(ti − sj)|

≤ C4
n1 ∨ n2

H
sup

|ti−sj |/∆̃t>
√
H

∣∣∣γ(|ti − sj|/∆̃t)
∣∣∣ ∫ ∞

−∞
|k′′(x)|dx,

which vanishes at the exponential rate by the Assumption 6.
∫∞
−∞ |k′′(x)|dx is well defined

by the Assumption 3. (i) is bounded by

η
n1 ∨ n2

H2(n1 ∧ n2)

∑
|ti−sj |/∆̃t≤

√
H

E{U1(ti)U2(sj)}k
′′

H(ti − sj)e
−isjα ≃ η

n1 ∨ n2

H2
|k′′(0)|Γ12,

by Assumption 6. The order of (A.16) is derived similarly as (A.18). The expectation of

squares of (A.16) is bounded by

C5

(
n1 ∨ n2

H2(n1 ∧ n2)

)2

E

{
n1−1∑
i=1

n2−1∑
j=1

U1(ti)U2(sj)k
′′

H(ti − sj)

}2

(A.19)

≃ C5

(
n1 ∨ n2

H2(n1 ∧ n2)

)2

ρ(0)4(n1 ∧ n2)H
2µ+1

∫ ∞

−∞
{k′′(x)}2dx = O(

(n1 ∨ n2)
2

n1 ∧ n2

H2µ−3).

When data is balanced it simplifies to O(nH2µ−3). In summary we have

E

 ∑
|α|≤m/2

KH(λα)F(dU1)(α)F(dU2)(q − α)

 ≃ η
n1 ∨ n2

H2
|k′′(0)|Γ12

E


∣∣∣∣∣∣
∑

|α|≤m/2

KH(λα)F(dU1)(α)F(dU2)(q − α)

∣∣∣∣∣∣
2 = O(

(n1 ∨ n2)
2

n1 ∧ n2

H2µ−3).

With some algebra it is easy to show that under the optimal bandwidth given in Theorem

2, the square root of (A.19) multiplied by the rate of convergence of the distribution nϑ, ϑ =

2−β
5

is o(1). All other terms that involve the end terms are of smaller order by similar

argument given in Lemma A.4 and Lemma A.5, Barndorff-Nielsen et al. (2011) Therefore

the microstructure noise only contributes to the asymptotic bias.

A.3 Proof of Theorem 3

Our Theorem 2 implies that (8) is uniformly consistent in q. If we assume the modulus of

continuity of Σ(t) is available and given by (14) then by triangular inequality, there exists
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sequence δ(n) → 0 such that

sup
δ(n)≤t≤2π−δ(n)

∥Σ(t)− 1

2π

∑
|q|≤m/2

KH(λq) exp(iqt)F̂(Σ)(q)∥2 ≤ C( 4
m
).

Therefore we have uniform consistency result for the estimator of instantaneous covariance

matrix.
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