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Abstract

The informativeness principle demonstrates qualitative benefits to increasing

signal precision. However, it is difficult to quantify these benefits — and compare

them against the costs of precision — since we typically cannot solve for the

optimal contract and analyze how it changes with informativeness. We consider

a standard agency model with risk-neutrality and limited liability, where the

optimal contract is a call option. The direct effect of reducing signal volatility is

a fall in the value of the option, benefiting the principal. The indirect effect is a

change in the agent’s effort incentives. If the original option is sufficiently out-of-

the-money, the agent can only beat the strike price if he exerts effort and there is

a high noise realization. Thus, a fall in volatility reduces effort incentives. As the

agency problem weakens, the gains from precision fall towards zero, potentially

justifying pay-for-luck.
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A major result in contract theory is the informativeness principle (Holmstrom

(1979), Shavell (1979), Gjesdal (1982), Grossman and Hart (1983), Kim (1995)). It

argues that the principal should maximize the precision of the performance measure

used to evaluate the agent. Greater precision (in the sense of second-order stochastic

dominance) allows the principal to use a cheaper contract to implement at least the

same effort level. However, increasing informativeness is costly in practice. Investing

in a superior monitoring technology involves direct costs. Engaging in relative per-

formance evaluation (“RPE”) involves the indirect costs of forgoing the benefits of

pay-for-luck documented by prior research (e.g. Oyer (2004), Raith (2008), Axelson

and Baliga (2009), and Gopalan, Milbourn, and Song (2010)). Potentially for this rea-

son, numerous violations of RPE have been found in practice. Aggarwal and Samwick

(1999) and Murphy (1999) show that CEO pay is determined by absolute, rather than

relative performance. Jenter and Kanaan (2013) find an absence of RPE in CEO firing

decisions. Whether these violations are an efficient response to the indirect costs of

RPE is unclear. Bertrand and Mullainathan (2001) show pay-for-luck is strongest in

poorly-governed firms, consistent with the view that it is inefficient. Indeed, Bebchuk

and Fried (2004) argue that the absence of RPE is a key piece of evidence that CEO

compensation results from rent extraction by CEOs rather than efficient contracting

with shareholders.1

The informativeness principle argues that there are qualitative benefits to increas-

ing signal precision. However, for a principal to decide whether to invest in greater

precision, she must quantify these benefits — in particular, relate them to the underlying

parameters of the contracting problem — so that she can compare them against the cost

of precision. Similarly, to evaluate whether the general absence of RPE is efficient, it is

useful to understand under which settings the benefits of informativeness are smallest,

and compare them against the cases in which RPE is particularly absent in reality.

Such quantification is difficult under the general framework in which the informative-

ness principle was derived. As is well-known (e.g. Grossman and Hart (1983)), in a

general setting it is not possible to solve for the optimal contract. We cannot analyze

precisely how the contract changes in response to increased informativeness, and thus

quantify the cost savings from contract redesign.

This paper addresses this open question. We consider the standard setting of risk

1In contrast, Brookman and Thistle (2013) find that luck is a relatively unimportant determinant
of managerial pay, compared to skill and labor market conditions.
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neutrality and limited liability on the agent, which allows us to take an optimal con-

tracting approach. These restrictions lead to optimal contracts that we observe in

practice — as shown by Innes (1990), the agent has a call option on the signal. A fall in

the strike price increases the option’s delta and thus the agent’s effort incentives, but

also augments the value of the option and thus his expected wage. Thus, the strike

price is the minimum possible to satisfy the agent’s incentive constraint.

We start by considering general signal distributions. We show that an increase

in informativeness has two effects, each of which has a clear economic interpretation.

First, ignoring the incentive constraint, a fall in volatility reduces the value of the

option and thus the agent’s expected wage: the direct effect. Second, the increase in

precision changes the agent’s incentives. The heart of the paper analyzes this incentive

effect and shows how its direction depends on the model’s underlying parameters.

The agent’s effort incentives stem from the difference in value between two options

— the (less valuable) option that he receives when he shirks (“option-when-shirking”),

and the (more valuable) option that he receives when he works and improves the signal

distribution (“option-when-working”). Changes in signal precision affect the values

of these options differentially. If the option satisfies increasing differences, i.e. effort

and precision are complements (an increase in precision raises the sensitivity of the

option’s value to effort), then a rise in informativeness augments effort incentives. The

principal can thus increase the strike price of the option, i.e. reduce its delta, without

violating the agent’s incentive constraint. This strike price increase further reduces

the expected wage, and reinforces the first, direct effect. In contrast, if the option

satisfies decreasing differences, i.e. effort and precision are substitutes, an increase in

informativeness weakens effort incentives, offsetting the first effect. In the limit, it fully

offsets it, rendering the total benefit of precision zero. The key result from the general

model is that we derive a simple condition, which holds for any signal distribution

and is easy to verify, that governs whether the option satisfies increasing or decreasing

differences and thus whether a rise in informativeness raises or lowers effort incentives.

We then consider signal distributions with a location parameter, i.e. where effort

shifts the signal distribution rightwards but does not change its shape. Doing so allows

us to relate whether the option satisfies increasing or decreasing differences to its initial

strike price, which in turn depends on the severity of the agency problem: a severe

agency problem (i.e. a high cost of effort) requires the principal to set a low strike

price to induce effort. We can thus relate the effect of informativeness on incentives to
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the underlying agency problem.

When the initial strike price is below a threshold, i.e. the agency problem is suf-

ficiently strong, then effort and informativeness are complements. The intuition is as

follows. A decrease in informativeness, i.e. an increase in signal volatility that aug-

ments both tails of the distribution, raises the value of an option. The magnitude of the

gain is thus increasing in the asymmetry of the option’s payoff. For a low initial strike

price, the signal distribution when the agent shirks is centered around the strike price.

Thus, the option’s payoff is highly asymmetric: high signal realizations lie to the right

of the strike price and lead to the option being exercised, and low signal realizations

lie to the left and lead to no exercise. As a result, when volatility increases, the agent

benefits from the greater probability of very high signal realizations and does not lose

from the greater probability of very low signal realizations, and so the value of the

option-when-shirking rises significantly. Put differently, for a low initial strike price,

the option-when-shirking is relatively close to at-the-money, and thus has a relatively

high vega (sensitivity to volatility).

In contrast, if the agent works, the signal distribution lies largely to the right of

the initial strike price, and so the payoff function is less asymmetric: most signal

realizations lead to the option being exercised. Thus, the agent benefits less from

increases in volatility — he gains from the growth in the right tail, but loses from

the growth in the left tail. Put differently, for a low initial strike price, the option-

when-working is significantly in-the-money, and thus has a low vega. Thus, a fall in

informativeness increases the value of the option-when-shirking more than the option-

when-working, and lowers the agent’s incentives. Intuitively, when volatility is high,

the agent’s effort incentives are weak because, even if he shirked, he would still earn

a high wage if he received a positive shock. The agent is not worried about the fact

that, if he shirks and receives a negative shock, the signal will be very low, because his

payoff cannot fall below zero due to limited liability.

When the initial strike price is above a second (higher) threshold, i.e. the agency

problem is sufficiently weak, then effort and informativeness are substitutes due to

the reverse intuition. The option-when-shirking is deeply out-of-the-money, and the

option-when-working is closer to at-the-money. Thus, the vega of the latter option is

greater, and its value increases with volatility faster than the option-when-shirking,

raising incentives. Intuitively, when the strike price is high, the agent will only receive

a positive wage if he exerts effort and receives a sufficiently positive shock. When
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volatility rises, such shocks are more likely, and so the agent is more likely to be paid

if he works. Thus, his effort incentives increase.

For initial strike prices between the two thresholds, effort and informativeness can

either be complements or substitutes. This is because, for general distributions, a

decrease in informativeness may not have a consistent effect on the signal distribution.

While it is clear that it increases the left and right tails, thus leading to unambiguous

results for low or high initial strike prices, a fall in informativeness can have any effect on

the center of the distribution. For example, it could shift some mass away from a tail, as

long as it also moves mass towards a more extreme tail point. Under a simple regularity

condition which guarantees that decreases in informativeness consistently shift mass

from the center of the distribution to the tails, the two thresholds now coincide at a

single point and there is no ambiguous intermediate region. A sufficient (although not

necessary) condition for regularity is that the signal distribution has a scale as well as

a location parameter — i.e. can be characterized by its mean and standard deviation,

as with the Normal, uniform, and logistic distributions. Intuitively, when volatility can

be fully characterized by a scale parameter, changes in this parameter have a consistent

effect on the shape of the distribution, moving mass towards its tails.

Under regular distributions, the effect of informativeness on incentives depends on

whether the initial strike price of the option is above or below a single threshold. Thus,

when incentives are strong (weak) to begin with, e.g. for CEOs (rank-and-file workers),

an increase in informativeness further increases (reduces) incentives, amplifying (low-

ering) the gains from informativeness. In contrast, an analysis focusing only on the

direct effect of informativeness, and ignoring the incentive constraint, would suggest

that the gains from informativeness are highest when the option is at-the-money — i.e.

a moderate initial strike price and a moderate agency problem.

In addition to studying whether a firm should endogenously choose to increase

informativeness, our analysis also investigates the impact of exogenous changes in in-

formativeness. An exogenous increase in volatility (see Gormley, Matsa, and Milbourn

(2013) and DeAngelis, Grullon, and Michenaud (2013) for natural experiments) will

increase (reduce) the effort incentives of agents with out-of-the-money (in-the-money)

options. Thus, if firms recontract in response to these exogenous shocks, firms with

in-the-money options should increase their CEOs’ incentives relative to firms with out-

of-the-money options, either by granting additional options, or reducing the strike price
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of new grants or existing options.2

For tractability, the analysis features a binary effort level. In the continuous-effort

analog, in order to implement a given effort level, the contract must ensure that the

agent will not deviate to a slightly lower or a slightly higher effort level (i.e. the

incentive constraint will be “local”). This situation resembles a binary model in which

the low effort level is very close to the (implemented) high effort level. In this case, the

threshold for the initial strike price — that determines whether informativeness increases

or decreases effort — is the expected value of the signal. If the initial strike price is

above (below) this threshold, increases in informativeness lower (raise) the strike price

towards the threshold. Thus, improvements in informativeness (e.g. increases in stock

market efficiency) move the strike price closer to the expected value of the signal, and

thus closer to at-the-money. Bebchuk and Fried (2004) argue that the almost universal

practice of granting at-the-money options is suboptimal and that out-of-the-money

options are more effective because the agent is paid only if performance is very high

(see also Rappaport (1999)). Our analysis suggests that at-the-money options can be

close to optimal if informativeness is high. This result also suggests that accounting or

taxation considerations that favor at-the-money options need not induce suboptimal

contracting.

Dittmann, Maug, and Spalt (2013) also consider the incentive constraint when as-

sessing the benefits of a specific form of increased informativeness — indexing stock and

options — and similarly show that indexation may weaken incentives. They use a quite

different setting, which reflects the different aims of each paper. Their primary goal is

to calibrate real-life contracts, and so their model incorporates risk aversion to allow

them to input risk aversion parameters into the calibration. However, under risk aver-

sion, it is difficult to solve for the optimal contract. They therefore restrict the contract

to comprising salary, stock, and options, and hold stock constant when changing the

contract to restore the agent’s incentives upon indexation. They acknowledge that the

actual savings from indexation will be different if the principal uses an initially optimal

contract and responds optimally to changes in incentives. In contrast, our primary

goal is theoretical. We incorporate risk neutrality and limited liability, allowing us to

take an optimal contracting approach and to achieve analytical solutions. In addition,

2Acharya, John, and Sundaram (2000) also study the repricing of stock options theoretically,
although in response to changes in the mean rather than volatility of the signal. Brenner, Sundaram,
and Yermack (2000) analyze repricing empirically.
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our model allows the analysis of reductions in volatility through other means than

indexation, for example investing in a superior monitoring technology.

Other explanations for pay-for-luck have been proposed in the literature, partially

reviewed by Edmans and Gabaix (2009). Oyer (2004) shows that pay-for-luck may be

optimal if the value of workers’ outside options vary with economic conditions and if

re-contracting is costly. Raith (2008) shows that it may be preferable to base compen-

sation on measures of output rather than input when the agent has private information

on the production technology. Axelson and Baliga (2009) argue that, for contracts to

be renegotiation-proof, the manager must have private information that causes him

to have a different view from the board on the value of his long-term pay. Industry

performance is an example of such information, and so it may be efficient not to filter it

out. Gopalan, Milbourn, and Song (2010) show that tying the CEO’s pay to industry

performance induces him to choose the firm’s industry exposure correctly.

This paper proceeds as follows. Section 1 presents the model. Section 2 shows that

the optimal contract takes the form of a call option. Section 3 derives the gains from a

reduction in the variance of the performance measure. Section 4 concludes. Appendix

A contains all proofs not in the main text.

1 The Model

We consider a standard principal-agent model with risk neutrality and limited liability,

similar to Innes (1990). The timing is as follows. At time t = −1, the principal (firm)
offers a contract W to the agent (manager). At t = 0, the agent chooses his effort level

e ∈ {0, e}. Effort of e = 0 is of zero cost to the agent, and e = e costs him C > 0. We

will sometimes refer to e = e as “high effort” or “working”, and e = 0 as “low effort”

or “shirking”.

At t = 1, the agent’s contribution to firm value (“output”) q is realized. As in the

literature on performance measurement (e.g. Baker (1992)), output is not contractible:

for example, it is difficult to measure an employee’s contribution independently of his

colleagues’. Instead, contracts can depend on a performance measure (“signal”)

s = q + η,

where η is a mean-zero random variable that is uncorrelated with effort: E [η|e] = 0.

7



For example, η may be a market or industry shock, the contribution of other workers,

or measurement error.

We assume that output q is not contractible and the contract depends on a sepa-

rate signal s, so that we can change signal precision without affecting output volatility.

However, the model allows for the case in which output is contractible, which corre-

sponds to the degenerate distribution concentrated at η = 0 (i.e. signal equals output).

Our results also hold in the case in which output equals the signal, and so the analysis

considers changes in the variance of output.

Conditional on effort e, the signal s is continuously distributed on the real line

according to the probability density function (“PDF”) fθ (s|e), although it needs not
have full support over the real line. Let Fθ(s|e) denote the cumulative distribution
function (“CDF”) of s. A high signal is good news about effort in the sense of the

strict monotone likelihood ratio property (“MLRP”). Formally, for all θ and for all

signals s1 and s0 with s1 > s0,

fθ (s1|ē)
fθ (s1|0) >

fθ (s0|ē)
fθ (s0|0) .

Strict MLRP implies that the distribution of the signal is ordered according to strict

first-order stochastic dominance (“FOSD”): Fθ (s|0) > Fθ (s|e) ∀ s, θ. Combined with
E [η|e] = 0, the above also implies that effort improves output in terms of FOSD.
The real-valued parameter θ, which lies in an interval Θ, captures the informative-

ness or precision of the signal, and orders the distributions in terms of second-order

stochastic dominance. Formally, the mean of the signal is independent of θ, and

θ ≥ θ
 =⇒
% t

−∞
Fθ (s|e) ds ≤

% t

−∞
Fθ� (s|e) ds, (1)

∀ t ∈ (−∞,∞). Thus, increases in θ generate more precise signal distributions in the
sense of mean-preserving spreads.

Our analysis solves for the optimal contract for each given level of precision θ. This

approach applies to settings in which signal precision depends on exogenous forces

(such as technological change); the analysis derives empirical predictions on how these

changes affect the optimal contract. Our approach can easily be extended to settings in

which the principal can choose the level of precision θ at a cost κ (θ). Under the inter-
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pretation that η arises from measurement error, removing the shock corresponds to im-

proving the monitoring technology at cost κ (θ). For example, Cornelli, Kominek, and

Ljungqvist (2013) show that boards of directors engage in extensive (and thus costly)

monitoring to gather soft information on the CEO’s competence, strategic choice, and

effort. Under the interpretation that η is a market or industry shock, increasing θ

corresponds to relative performance evaluation (RPE), in which case the cost κ (θ)

stems from two sources. First, it can arise from the literal cost of implementing RPE.

While the actual calculation of industry performance, given a peer group, is relatively

costless, the determination of the peer group may involve the hiring of compensation

consultants. Second, the cost can also represent the loss of the benefits of pay-for-luck

highlighted by prior work, e.g. Oyer (2004), Raith (2008), Axelson and Baliga (2009),

and Gopalan, Milbourn, and Song (2010).

The discount rate is normalized to zero. Given a contractW (·) and a level of effort
e, the agent’s expected wage is

E [W (s) |e] =
% ∞

−∞
W (s) fθ (s|e) ds.

The agent is risk-neutral and so maximizes his expected wage, less the cost of effort.

His reservation utility is zero. The principal is also risk-neutral and chooses a contract

W (·) and an effort level e to maximize expected output E [q] less the expected wage
E [W ].
Following Innes (1990), we make two assumptions on the set of feasible contracts.

First, the agent is protected by limited liability: W (s) ≥ 0 ∀ s. Second, pay-

performance sensitivity lies between 0 and 1:

W (s+ �) ≥ W (s) and s+ �−W (s+ �) ≥ s−W (s)

for all s and all � ≥ 0. These constraints must be satisfied if the agent can freely

borrow to artificially increase output and the principal can freely destroy output. If

the constraint on the left did not hold, the agent would artificially increase output,

increasing the signal and thus his payoff. If the constraint on the right did not hold,

the principal would exercise her control rights to “burn” output, reducing the signal

9



and increasing her payoff. These constraints can be expressed as

1 ≥ W (s+ �)−W (s)

�
≥ 0 (2)

∀ �. It thus follows that W (·) is Lipschitz continuous and, therefore, differentiable
almost everywhere. Hence, without loss of generality, we can assume that the contract

W (·) is a cadlag function satisfying 0 ≤ W 
 (s) ≤ 1 at all points of differentiability.3
In the first best, effort is verifiable. There is no incentive constraint and only a

participation constraint. If the principal wishes to induce high effort, the participation

constraint is given by:

E[W (s)|e]− C ≥ 0. (3)

To satisfy (3), the principal pays an expected wage E [W (s) |e] that equals the agent’s
cost of effort C. Thus, if

E [q|e]− E [q|0] > C, (4)

high effort is optimal for the principal. We assume (4) throughout, else even under the

first-best, the principal would not want to induce effort.

In the second best, the agent’s effort is unverifiable and so the contract must satisfy

an incentive constraint. The agent will exert effort if and only if:

E[W (s)|e]− E [W (s)|0] ≥ C. (5)

Following standard arguments, this incentive constraint will bind, in which case the

participation constraint will be slack and can be ignored in the analysis that follows.

We define Xθ implicitly by% ∞

Xθ

(s−Xθ) [fθ(s|e)− fθ(s|0)] ds = C. (6)

We will show in Lemma 1 that Xθ exists and is unique. The intuition behind (6) is

that, if the agent is given a call option on s, Xθ is the strike price such that working

increases the value of the agent’s option by an amount equal to the cost of effort, so

that the incentive constraint is satisfied with equality.

3A cadlag function is everywhere right-continuous and has left limits everywhere.
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We make the following assumption to ensure that e = e is second-best optimal:

E [q|e]− E [q|0]−
% ∞

Xθ

(s−Xθ)fθ(s|e)ds ≥ 0. (7)

The first term, E [q|e] − E [q|0], is the benefit to the principal of inducing e = e. The
second term is the cost of the contract required to do so. If (7) did not hold, the

principal would allow the agent to shirk, in which case the problem would be trivial

and the contract would involve a constant wage.

Given informativeness θ, the principal’s problem is to choose a contract W (·) to
minimize the expected wage E [W (s) |ē] subject to the agent’s incentive and limited
liability constraints, plus the constraints on the slope of the contract:

E [W (s) |e] ≥ E [W (s) |0] + C, (8)

0 ≤ W (s) ∀ s, and (9)

0 ≤ W 
(s) ≤ 1 at all points of differentiability of W. (10)

Our contracting problem is the dual to the one in Innes (1990). In his model, the

agent (entrepreneur) chooses a financing contract subject to his own incentive con-

straint and the participation constraint of the principal (investor). Here, the principal

(firm) chooses an employment contract subject to the incentive and participation con-

straints of the agent (manager). In both models, the optimal contract has the same

form; the only difference is in the division of the rents. Since Innes studies a financing

setting, the optimal contract for the principal is debt. Thus, the agent has equity,

which is a call option on the firm’s assets; here, we will show that the agent receives a

call option on the signal.

Another difference is that Innes features a continuous action set. His focus was

to derive the form of the optimal contract and thus he wishes to do so in the most

general setting. Our goal is different: given that the optimal contract is a call option,

we study how changes in informativeness affect the agent’s incentives and thus the

strike price. We thus specialize to a binary effort level. With a continuous effort level,

a change in informativeness may alter the optimal effort level. It is well known that

solving for the optimal effort level in addition to the cheapest contract that induces a

given effort level is extremely complex (see, e.g., Grossman and Hart (1983)), and thus

many papers focus on the implementation of a given effort level. For example, Biais et
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al. (2010) consider a binary effort choice and conditions to guarantee that high effort

is optimal, as in our setting, and Dittmann and Maug (2007) and Dittmann, Maug,

and Spalt (2010, 2013) consider the implementation of a given effort level out of a

continuum. (Indeed, Innes (1990) does not solve for the optimal effort level or study

how it is affected by the parameters of the setting, but shows that an optimum exists.)

Edmans and Gabaix (2011) show that, if the benefits of effort are multiplicative in firm

size and the firm is sufficiently large, it is always optimal for the principal to implement

the highest effort level and so the optimal effort level is indeed fixed. We thus consider

a binary effort setting where high effort is optimal.

2 The Optimal Contract

This section solves for the optimal contract for a given level of informativeness θ. The

analysis is similar to Innes (1990). Our main results will come in Section 3, which

analyzes the gains from increasing θ.

Let Wθ (·) denote the optimal contract for a given θ. Lemma 1 establishes that
Wθ (·) is a call option on s, where the strike price Xθ is chosen to satisfy the incentive

constraint (6).

Lemma 1 (Optimal contract): For each given θ, there exists a unique optimal con-
tract, characterized by e = e, and

Wθ (s) = max{0, s−Xθ}, (11)

where Xθ is determined by the unique solution of (6).

The setting is slightly different from Innes (1990), since the principal is contracting

on a signal rather than output. We show that the Innes (1990) result of the optimality

of a call option extends to this case, and the intuition is the same. The absolute value

of the likelihood ratio is highest in the tails of the distribution of s, so the signal is

most informative about effort in the tails. The left tail cannot be used for incentive

purposes due to limited liability, and so incentives are concentrated in the right tail.

This maximizes the likelihood that positive payments are received by a working agent.

With an upper bound on the slope, the optimal contract involves call options on s with

the maximum feasible slope, i.e. W 
 (s) = 1.
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Lemma 2 below shows that the strike price falls with the cost of effort, which

parameterizes the severity of the agency problem.

Lemma 2 (Effect of effort cost on strike price): Let Xθ be the strike price in the

optimal contract for a given θ. Then, Xθ is strictly decreasing in the cost of effort C.

3 The Value of Informativeness

This section calculates the gains from increasing informativeness. Section 3.1 con-

siders general signal distributions and provides a condition under which increases in

informativeness raise effort incentives. Section 3.2 studies distributions with a location

parameter and shows that whether this condition is satisfied depends on the initial

strike price and thus the severity of the agency problem. Section 3.3 graphically il-

lustrates the benefits of informativeness for the Normal distribution. It also proves

analytically that, for this distribution, the benefits from informativeness are monoton-

ically increasing in the cost of effort, and thus monotonically decreasing in the initial

strike price.

3.1 General Distributions

The total effect of increasing informativeness on the expected wage can be decomposed

as follows:
d

dθ
E [W (s)|e] = ∂

∂θ
E [W (s)|e]. -, /
direct effect

+
∂

∂Xθ

E [W (s)|e] dXθ

dθ. -, /
incentive effect

. (12)

The first component is the direct effect, ∂
∂θ
E [W (s)|e]. Holding constant the strike

price, an increase in signal precision changes the value of the option; we will later prove

that this effect is negative. This reduction in the cost of compensation is the benefit

of informativeness highlighted by Bebchuk and Fried (2004) in their argument that

the lack of RPE is inefficient. In the Holmstrom (1979) setting of a risk-averse agent,

an increase in informativeness reduces the risk borne by the agent and thus allows

the principal to lower the expected wage without violating the agent’s participation

constraint. In our setting of risk neutrality and limited liability, an increase in precision

reduces the value of the option.
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The second component is the incentive effect, ∂
∂Xθ
E [W (s)|e] dXθ

dθ
, which arises be-

cause the increase in precision requires the strike price to rise by dXθ
dθ

to maintain

incentive compatibility. ∂
∂Xθ
E [W (s)|e] is negative — any increase in the strike price

reduces the value of the option — but the sign of dXθ
dθ
is unclear. We thus seek to derive

conditions under which an increase in precision raises or lowers the optimal strike price.

The following definition will be useful:

Definition 1 (Increasing differences): Let (Θ, E) ⊆ R2. A function g (θ, e) : Θ×E →
R satisfies increasing differences if, for all θL < θH and eL ≤ eH ,

g (θH , eH)− g (θH , eL) ≥ g (θL, eH)− g (θL, eL) . (13)

It satisfies decreasing differences if −g satisfies increasing differences. θ and e are
complements if g (θ, e) satisfies increasing differences, substitutes if g (θ, e) satisfies

decreasing differences, and neutral if g (θ, e) satisfies both increasing and decreasing

differences.

The increasing differences condition (13) means that the incremental gain (i.e., in-

crease in g) from effort, g (θ, eH)−g (θ, eL), is increasing in θ: effort and informativeness
are complements in terms of their effect on g. Conversely, decreasing differences means

that the incremental gain from effort is decreasing in θ. Thus, effort and informative-

ness are substitutes. Indeed, increasing (decreasing) differences is the most common

definition of complementarity (substitutability).4 In our setting, if g is differentiable,

increasing differences is equivalent to the single-crossing condition:

∂g

∂θ
(θ, ē)− ∂g

∂θ
(θ, 0) ds ≥ 0.

We are concerned with how changes in precision affect the incentive constraint (5).

The agent’s incentives stem from the fact that exerting effort increases the value of his

option. If he works, his option is worth E [W (s) |e]; we refer to this as an “option-
when-working.” If he shirks, he receives an “option-when-shirking” worth E [W (s) |0].
His effort incentives are given by the difference in the values of these options, i.e.

E [W (s) |e]− E [W (s) |0] . (14)

4There is a very large literature using these concepts for understanding outcomes of games — e.g.
Bulow, Geanakoplos, and Klemperer (1985) and Milgrom and Roberts (1990).
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Since a change in precision θ affects the option-when-working and the option-when-

shirking to different degrees, it affects the agent’s effort incentives (14). When precision

and effort are complements, i.e. E [W (s)|e] satisfies increasing differences, increases in
precision augment the agent’s effort incentives:

∂

∂θ
{E [W (s) |e]− E [W (s) |0]} > 0, (15)

We thus wish to understand the conditions under which E [W (s)|e] satisfies increasing
differences. We do so by using integration by parts (see Appendix A) to rewrite the

agent’s expected wage as

E [W (s)|e] = E [s|e]−Xθ +

% Xθ

−∞
Fθ (s|e) ds. (16)

The area under the CDF for signals below Xθ (the third term) is the value of a put

option with a strike price of Xθ:

Pr (s < Xθ|e)E [(Xθ − s) |s < Xθ, e] =

% Xθ

−∞
− (s−Xθ) f(s|e)ds =

% Xθ

−∞
Fθ (s|e) ds,

where the last equality follows from integration by parts. Therefore, equation (16)

can be interpreted as the put-call parity equation. The agent’s call option equals the

expected value of the signal, minus the strike price, plus the value of a put option. Let

πX (θ, e) ≡
$ X
−∞ Fθ (s|e) ds denote the value of a put option with a strike price of X.

By second-order stochastic dominance (equation (1)), the value of the put option is

decreasing in θ (
∂πXθ
∂θ

(θ, e) ≤ 0).5
To study whether E [W (s)|e] satisfies increasing differences, we examine each of the

three terms on the right-hand side (“RHS”) of (16). While E [s|e] depends on e, it is
independent of θ since changes in θ represent mean-preserving spreads. In addition, Xθ

depends on θ but not e. Thus, θ and e are neutral in their effect on both of these terms,

and non-neutral only in their effect on the third term
$ Xθ
−∞ Fθ (s|e) ds. This observation

leads to the following Lemma:

5In the Black-Scholes model, we have a strict inequality. This is because the Black-Scholes model
assumes a lognormal distribution for stock returns, so an increase in precision (which corresponds
to a decrease in volatility) affects the whole distribution. However, in our setting with a general
distribution, a change in θ may only affect the part of the distribution above the strike price Xθ,
where the put option has zero payoff, and so its value does not change.
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Lemma 3 (Condition for increasing differences): The agent’s expected pay E [W (s)|e]
satisfies increasing differences if and only if the area under the CDF,

$ Xθ
−∞ Fθ (s|e) ds,

satisfies increasing differences.

The usefulness of Lemma 3 lies in the fact that, while the value of the call option

(16) involves several terms, it is relatively easy to verify whether the area under the

CDF
$ Xθ
−∞ Fθ (s|e) ds satisfies increasing differences. While it may seem intuitive that

the value of the call option satisfies increasing differences if and only if the value of

the put option satisfies increasing differences, the value of Lemma 3 is that we can

check whether expected pay satisfies increasing differences by studying a single term$ Xθ
−∞ Fθ (s|e) ds — not that this term can be interpreted as the value of a put option. The
condition in Lemma 3 is simple to check and general: it holds for all signal distributions

that satisfy MLRP (so that the optimal contract is a call option). Definition 1 then

allows us to determine the effect of informativeness on the strike price Xθ:

Proposition 1 (Effect of informativeness on strike price): Let πX(θ, e) ≡
$ X
−∞ Fθ (s|e) ds.

The optimal strike price Xθ is increasing in informativeness θ if πX(θ, e) satisfies in-

creasing differences at Xθ, decreasing in informativeness if πX(θ, e) satisfies decreasing

differences at Xθ, and constant if it satisfies both increasing and decreasing differences

at Xθ.

When precision and effort are complements, exerting effort augments the value of

the call option by a greater amount when precision is high. As a result, the agent’s

marginal benefit from effort (equation (14)) is increasing in informativeness. Increases

in precision loosen the incentive constraint and allow the principal to increase the strike

price while still inducing effort. Thus, in addition to the direct benefit of informative-

ness (it reduces the expected wage, holding constant the strike price Xθ), the principal

further benefits from its incentive effect (it allows the strike priceXθ to increase, further

reducing the expected wage). Proposition 1 in turn leads to Corollary 1 below.

Corollary 1 (Partial and total effects of informativeness on expected wage):���� ddθE [W (s)|e]
���� > ���� ∂∂θE [W (s)|e]

���� if and only if
dXθ

dθ
> 0. (17)
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Proof. From equation (12), we have:

d

dθ
E [W (s)|e] = ∂

∂θ
E [W (s)|e]. -, /
direct effect

+
∂

∂Xθ

E [W (s)|e] dXθ

dθ. -, /
incentive effect

=
∂πX (θ, e)

∂θ
−


1− ∂πX (θ, e)

∂Xθ

�
dXθ

dθ
=
∂πX (θ, e)

∂θ
− [1− Fθ (Xθ|e)] dXθ

dθ
.

d
dθ
E [W (s)|e] and ∂

∂θ
E [W (s)|e] are both negative, and the former is more negative

(i.e. its absolute value is higher) if and only if dXθ
dθ
> 0, i.e. effort and precision are

complements.

The direct effect, ∂
∂θ
E [W (s)|e], is negative. An increase in precision decreases

the value of the put option (
∂πXθ
∂θ

≤ 0) and thus the expected wage. Turning to

the incentive effect, higher precision augments the strike price by dXθ
dθ
, which in turn

requires the principal to pay an additional dXθ
dθ

dollars whenever the price exceeds

Xθ, which occurs with probability 1 − Fθ(Xθ|e). The sign of dXθdθ in turn depends on

whether informativeness and effort are substitutes or complements. When they are

complements, then dXθ
dθ
> 0. The strike price increases, further reducing the expected

wage and reinforcing the direct effect. When they are substitutes, then dXθ
dθ

< 0,

opposing the direct effect.

Even when dXθ
dθ
< 0 and the incentive effect counteracts the direct effect, it can never

outweigh it. The total effect d
dθ
E [W (s)|e] is always weakly negative, i.e. increasing

precision weakly reduces the expected wage. This result arises from revealed preference.

If reducing precision reduced the expected wage, the principal would have added in

randomness to the contract, and so the initial contract would not have been optimal.

Even though the incentive effect cannot outweigh the direct effect, it is still important

to consider as it affects the optimal level of precision θ that the principal should choose,

since increasing precision is costly. Indeed, it is possible that the incentive effect exactly

offsets the direct effect, and so that the total gains from informativeness equal exactly

zero: see Appendix B for an example.6

6While we consider the effect of changes in signal informativeness, Chaigneau, Edmans, and Got-
tlieb (2014) derive a general condition for whether the addition of a new signal has strictly positive
value for contracting.
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3.2 Distributions in the Location Family

Section 3.1 shows that, with general distributions, the effect of precision on incentives

depends on whether effort and precision are complements or substitutes. We now grad-

ually add more structure to the signal distribution, which allows us to relate whether

we have complements or substitutes — and thus the effect of precision on the agent’s

incentives — to the underlying parameters of the agency problem.

Since the expected signal is strictly increasing in effort, we can always normalize

effort to be measured in units of the average signal: e = E[s|e]. Hence, for any signal
distribution, we can write the signal as s = e + ε, where we define the noise term ε

as the difference between effort and the signal. Thus, if Gθ(ε) denotes the CDF of

the noise, we have Gθ(ε) = Gθ(s− e) = Fθ (s|e). While the conditional mean of noise
is zero (E[ε|e] = 0), higher moments of ε may, in general, depend on the effort e.

We now assume that the whole distribution of noise Gθ (not only its first moment) is

independent of e. This assumption is equivalent to specifying that the distribution of

s has a location parameter — changes in effort shift the location of the distribution but

do not change its shape.

To ensure that limε	−∞Gθ(ε) and limε�∞Gθ(ε) are differentiable with respect to θ,

we make the technical assumptions that Gθ is differentiable with respect to θ and that

the sequences {Gθ(−n)}n∈N ,
�
∂Gθ
∂θ
(−n)�

n∈N , {Gθ(n)}n∈N ,
�
∂Gθ
∂θ
(n)
�
n∈N are uniformly

convergent. These assumptions are automatically satisfied if the noise has bounded

support and are also satisfied under standard unbounded distributions (such as the

Normal, logistic, Cauchy, and Laplace distributions).

With a slight abuse of terminology, we say that s belongs to a location family if the

two above conditions — independence between e and θ and the technical differentiability

condition — are satisfied. When the signal belongs to the location family, we can show

that whether effort and informativeness are complements or substitutes depends on the

level of the initial strike price:

Lemma 4 (Effect of informativeness on the strike price): Suppose that the signal
distribution belongs to a location family. Then there exist &X1 and &X2 ≥ &X1 such that
dXθ
dθ
≥ 0 if Xθ < &X1 and

dXθ
dθ
≤ 0 if Xθ > &X2.

Effort and precision are complements when the initial strike price Xθ is below a

threshold &X1, substitutes when Xθ exceeds a higher threshold &X2, and may be either

complements or substitutes for &X1 ≤ Xθ ≤ &X2.
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The intuition is as follows. Recall from inequality (15) that the effect of informa-

tiveness on effort depends on its differential effects on the values of the option-when-

working and the option-when-shirking. We thus study how changes in informativeness

affect the value of each option.

A decrease in informativeness (from θ to θ
) increases both the left and right tails

of the signal distribution. If the initial strike price of the option is sufficiently low

(Xθ < &X1), then the signal distribution upon shirking lies on both sides of Xθ. The

agent benefits from high signal realizations (s > Xθ), since the option-when-shirking

is in-the-money (“ITM”) and so he exercises it, but does not lose from low signals

(s < Xθ) as he does not exercise the option. Thus, when informativeness falls, a shirking

agent benefits from the growth in the right tail, but does not lose from the growth in

the left tail, and so the value of the option-when-shirking increases significantly.

Since the signal distribution has a location parameter, working shifts it rightwards.

Thus, for Xθ < &X1, the signal distribution upon working is mostly to the right of Xθ,

and remains this way after informativeness falls. Since the option usually ends up ITM,

the agent usually exercises it. Thus, a working agent benefits from the growth in the

right tail and loses from the growth in the left tail, and so the value of the option-when-

working is relatively unchanged. Put differently, reductions in informativeness increase

the value of an option due to its asymmetric payoff: the agent benefits from s > Xθ,

but does not lose from s < Xθ. When Xθ is low and the agent shirks, the mean

signal 0 is close to the kink Xθ and the agent benefits from the asymmetry. When

the agent works, the mean signal e is far from the kink Xθ, and so he enjoys little

asymmetry. Overall, a fall in θ raises the value of the option-when-shirking more than

the option-when-working and reduces effort incentives: effort and informativeness are

complements. In simple language, the agent thinks “I’m not going to bother working

hard, because even if I do, I might be unlucky and so profits will be low. I might as well

shirk, because even if I get unlucky and profits become very low, that doesn’t matter,

because I can’t get paid less than zero no matter how low profits get.”

The existence of a location parameter is central to the above intuition, as it means

that effort shifts the signal distribution rightward and reduces the probability of very

low signals (s < Xθ). If, in contrast, effort increased the dispersion of the signal in

addition to its mean, it could increase the probability of very low signals. Thus, the

effect on effort incentives would be ambiguous.

For a sufficiently high strike price (Xθ > &X2), the signal distribution upon shirking
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is mostly to the left of Xθ — and remains this way even after informativeness falls and

the right tail expands. Thus, the option-when-shirking remains usually OTM and its

value is little changed. In contrast, if the agent works, this shifts the signal distribution

rightward and so decreases in informativeness now push the right tail above Xθ. Thus,

when informativeness falls, a working agent benefits from the growth in the right tail

(since he can now exercise the option) but does not lose from the growth in the left tail

(since he does not exercise the option). Put differently, when Xθ is high and the agent

works, the expected signal e is close to the kink Xθ and the agent benefits from the

asymmetry. When the agent shirks, the expected signal 0 is far from the kink Xθ, and

so he enjoys little asymmetry. Overall, a fall in informativeness raises the value of the

option-when-working more than the option-when-shirking, and increases the agent’s

effort incentives: effort and informativeness are substitutes. In simple language, the

agent thinks “If informativeness were high, I wouldn’t bother working because the

target Xθ is so high that I wouldn’t meet it, even if I did work. But, now that the

signal is more noisy, I will work — because if I do, and I get lucky, I’ll meet the target.”

From Lemma 2, the initial strike price Xθ is decreasing in the cost of effort, and

thus the severity of the agency problem. When the agency problem is mild (severe),

the initial strike price is high (low); increases in informativeness reduce (increase) effort

incentives, causing the strike price to fall (rise).

However, without any restrictions on the distribution, it is unclear how changes in

θ affect the tails of the distribution between &X1 and &X2. The source of the ambiguity

is that, for arbitrary distributions, decreases in precision in a SOSD sense need not

consistently shift mass from the center of the distribution towards the tails. It may be

that a fall in θ shifts some mass away from a tail, as long as it also moves mass towards

a more extreme tail point. Figure 1 shows that, while a fall in θ increases Gθ (s) for

low s below a threshold s1 (i.e. increases the left tail) and increases 1−Gθ (s) for high

s above a threshold s2 > s1 (i.e. increases the right tail), the effect of θ on Gθ (s) is

unclear for intermediate s. The CDFs Gθ and Gθ� could cross many times between &X1

and &X2.
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Figure 1: Distributions in the location family.

Definition 2 below introduces a simple regularity condition that guarantees that

falls in informativeness have a “consistent” effect on the distribution — they shift mass

towards the tails away from the center. Proposition 2 shows that, for regular noise dis-

tributions, &X1 = &X2 = &X, and so there is a single threshold below (above) which effort
and precision are complements (substitutes): the CDFs cross at a single point &X, as
shown in Figure 2. There is no intermediate range in which changes in informativeness

have an ambiguous effect.
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Figure 2: Regular signal distributions.

Definition 2 The distribution Gθ is regular if there exists &X such that

s

�
<

>

� &X =⇒ ∂Gθ

∂θ
(s)

�
≤
≥

�
0.

Proposition 2 (Effect of informativeness with regular distributions): Suppose that the
signal distribution F belongs to a location family and that the noise distribution Gθ is

regular. Then there exists &X such that dXθ
dθ
≥ 0 if Xθ < &X, and dXθ

dθ
≤ 0 if Xθ > &X.

Regularity is not automatically implied by SOSD, but is satisfied by most stan-

dard distributions. Indeed, Corollary 2 shows that regularity is satisfied by any signal

distribution that has a scale parameter (in addition to a location parameter).
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Corollary 2 (Distributions with a scale parameter): If the signal distribution F has

a scale parameter, i.e. its CDF and PDF can be written as Fσ(s|e) = G
�
s−e
σ

�
and

fσ(s|e) = 1
σ
g
�
s−e
σ

�
, then the noise distribution G is regular and so there exists &X such

that dXθ
dθ
≥ 0 if Xθ < &X, and dXθ

dθ
≤ 0 if Xθ > &X.

A distribution with a location and scale parameter can be fully characterized by its

mean e and standard deviation σ. Since the volatility of a signal is the inverse of its

precision, we have σ = 1√
θ
and so:

∂

∂σ
G

�
s− e
σ

�
= −s− e

σ2
g

�
s− e
σ

��
< 0 if s > e

> 0 if s < e
(18)

as required by Definition 2. Intuitively, the existence of a scale parameter means that

informativeness is characterized by this parameter, and so changes in this parameter

have a consistent effect on the shape of the distribution, moving mass towards its tails,

thus satisfying the regularity condition.

While regularity guarantees a single cutoff &X, for general distributions we do not
know where this cutoff lies. Indeed, Claim 1 in Appendix C shows that, for distrib-

utions with a scale parameter, &X may lie anywhere between 0 and e. Proposition 3

shows that, when the distribution is not only regular (for which a scale parameter is

sufficient but not necessary) but also symmetric (as with the Normal, uniform, logistic,

Cauchy, and Laplace distributions), &X lies half-way between 0 and e, i.e. &X = ē
2
, as is

intuitive. Thus, we can compare the initial strike price, which depends on the under-

lying parameters of the agency problem (see Lemma 2) to the threshold ē
2
. Hence, we

can relate whether effort and informativeness are complements or substitutes to model

primitives.

Proposition 3 (Symmetric regular distributions): Suppose that the signal distribu-
tion F belongs to a location family and that the noise distribution Gθ is regular and

symmetric. Then, dXθ
dθ
≥ 0 if Xθ < &X, and dXθ

dθ
≤ 0 if Xθ > &X, where &X ≡ ē

2
.

In addition to being sufficient for regularity, the presence of a scale parameter also

clarifies the intuition because we can fully parameterize changes in precision by changes

in volatility σ. We can thus examine how changes in σ affect the values of the two

options using the familiar concept of the option “vega”: the sensitivity of its value to
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σ. In turn, the vega of each option will depend on the initial strike price, and thus the

underlying parameters of the agency problem. With a scale parameter, equation (15)

now becomes
∂

∂σ
{E [W (s) |e]− E [W (s) |0]} < 0. (19)

The left-hand side (“LHS”) of inequality (19) — the vega of the option-when-working

minus the vega of the option-when-shirking — represents the effect of changes in σ

on incentives. The vega of an option is always positive, highest for an at-the-money

(“ATM”) option (see Claim 2 in Appendix C7), and declines when the option moves

either ITM or OTM. Thus, the vega of the option-when-working is highest at X = e,

and so if it has a strike price of &X = e
2
, then it is ITM by e

2
. The vega of the option-

when-shirking is highest at X = 0, and so if it has a strike price of &X = e
2
, then it

is OTM by e
2
. Overall, at a strike price of &X = e

2
, both options are equally away-

from-the-money and have the same vega (see Claim 3 in Appendix C), and so effort

incentives are independent of σ. We thus have dXσ
dσ
= 0 for X = &X.

When X < &X, then Y (0, X) is closer to being ATM than Y (e,X), and so it has a

higher vega. Thus, an increase in σ reduces effort incentives, and so dXσ
dσ

< 0. When

X < &X, then Y (e,X) is closer to being ATM than Y (0, X), and so it has a higher

vega. Thus, an increase in σ lowers effort incentives, and so dXσ
dσ
> 0.

Proposition 3 implies that, for all symmetric regular distributions, regardless of

the initial strike price X, improvements in informativeness draw X towards &X = ē
2
.

When the initial strike price is high (low), a fall in volatility reduces (increases) effort

incentives, causing the strike price to fall (rise). In the current discrete model, there

are two effort levels, ē and 0. In a continuous-effort analog, where the principal wishes

to implement effort of ē, the contract must ensure induce the agent to exert effort of ē

rather than ē+ ε or ē− ε, i.e. the incentive constraint must be “local”. In our discrete
model, a local incentive constraint resembles the case in which the (implemented) high

effort level (ē) is very close to the low effort level (0). If ē � 0, then &X � 0. Moreover,
since the contract induces the agent to exert effort of ē, the mean value of the signal

is ē and so an ATM option will have a strike price of ē � 0. Thus, if the initial strike
price is higher (lower) than &X � 0, improvements in informativeness (e.g. increases

in stock market efficiency) will lower (raise) the optimal strike price towards 0, i.e.

7It is well-known that for lognormal distributions, the vega is highest for ATM options. Claim 2
in Appendix C extends this result to all distributions with a location and scale parameter.
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bring the option closer to ATM. (Indeed, Appendix E sketches a continuous effort

model which shows that increases in informativeness bring the option closer to ATM.)

Bebchuk and Fried (2004) argue that the almost universal practice of granting ATM

options is inefficient and that OTM options would be cheaper for the firm. Similarly,

Rappaport (1999) advocates OTM options as they reward the agent only for exceptional

performance. However, such views ignore the incentive effect: OTM options have lower

deltas and so more would be required to achieve incentive compatibility. Murphy (2002)

notes that ITM options would provide the strongest incentives, but that the tax code

discourages such options. One interpretation is that the tax code leads to firms choosing

ATM options when ITM options may be more efficient. Our analysis instead suggests

that increases in informativeness lead to options optimally being close to ATM.8

In addition, Proposition 2 suggests that exogenous increases in informativenesswill

have different effects on the incentives of agents depending on the moneyness of their

options. In particular, it will reduce (increase) the incentives of agents with OTM

(ITM) options. Thus, firms may wish to reduce the strike prices of OTM options to

restore incentives. Option repricing is documented empirically by Brenner, Sundaram,

and Yermack (2000), although they do not study if it is prompted by falls in volatility.

Acharya, John, and Sundaram (2000) also study the repricing of options theoretically,

although in responses to changes in the mean rather than volatility of the signal.

Finally, note that the above analysis takes an optimal contracting approach, so the

slope of the contract is the maximum possible without violating the constraint (10).

We thus have W 
 (s) = 1: the agent is the residual “claimant” of any increase in the

signal (as long as s ≥ Xθ). Thus, the principal changes Xθ to ensure that the incentive

constraint binds. An alternative approach is to restrict the contract to comprising ATM

options, e.g. for accounting or tax reasons9, and instead meet the incentive constraint

by varying the slope of the contract. Appendix D demonstrates an analogous result for

this case. With ATM options, we have X = e ≥ &X = e
2
and so effort and precision are

substitutes. An increase in informativeness requires the number of options granted to

8Hall and Murphy (2000) restrict the contract to consist of options, rather than taking an optimal
contracting approach, and calibrate the optimal strike price depending on the CEO’s risk aversion,
the proportion of his wealth in stock, and the proportion of his wealth in options. They show that, in
most cases, the range of optimal strike prices includes the current stock price, i.e. corresponds to an
ATM option. In contrast, Dittmann and Yu (2011) feature a risk-taking as well as effort decision, and
restrict the contract to consisting of fixed salary, stock, and options. They show that ITM options are
typically optimal.

9Murphy (1999) documents that ATM options are almost universally granted.
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increase to maintain incentive compatibility. This augments the expected wage, just

like a decrease in the strike price, and so the total effect of informativeness on expected

pay is less than the direct effect. Thus, the results of the core model, where X > &X,
extend to the case of ATM options.

3.3 Normal Distribution

We now demonstrate graphically the direct and incentive effects. We need to assume

a specific distribution to enable us to calculate the derivatives, and so we consider the

common case of a Normal distribution. Let ϕ and Φ denote the PDF and CDF of the

standard Normal distribution, respectively. As we show in Appendix A, the total effect

and the direct effect are respectively given by:

dE [W (s) |e]
dσ

= ϕ

�
Xσ − e
σ

�
−


1− Φ

�
Xσ − e
σ

��
ϕ
�
Xσ−e
σ

�− ϕ �Xσ
σ

�
Φ
�
Xσ
σ

�− Φ
�
Xσ−e
σ

� , and (20)

∂E [W (s) |e]
∂σ

= ϕ

�
Xθ − e
σ

�
. (21)

Figure 3 illustrates how these effects change as we vary the severity of the moral hazard

problem (parameterized by the the cost of effort C). As is standard for graphs of option

values, the figure contains the strike priceX on the x-axis; sinceX is strictly decreasing

in C (equation (31)), there is a one-to-one mapping between X and C.
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Figure 3: Total and partial derivative of expected pay with respect to σ for a range of values of

X, for ē = 1 and σ = 1.

To understand Figure 3, recall from (12) that the total effect is given by dE[W (s)|e]
dσ

=
∂E[W (s)|e]

∂σ
+ ∂E[W (s)|e]

∂Xθ

dXθ
dσ
. The direct effect, ∂E[W (s)|e]

∂σ
, tends to zero as the strike price

approaches either −∞ or ∞. The vega of an option is greatest when the option is
ATM, i.e. X = 1. An ATM option benefits most from the asymmetry in an option’s

payoff: a high noise realization leads to a large increase in the option’s payoff, but a

low noise realization has no effect as the agent will not exercise the option.

The incentive effect, ∂E[W (s)|e]
∂Xσ

dXσ
dσ
, consists of two components. The first is the

change in strike price required to maintain incentive compatibility, dXσ
dσ
. From Propo-

sition 3 and using σ = 1√
θ
, dXσ
dσ
> 0 if and only if X > &X = 1

2
. Indeed, for the Normal

distribution, not only does dXσ
dσ
turn from negative to positive as X crosses above &X,
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but it is also monotonically increasing in X, i.e. monotonically decreasing in the cost

of effort. This result is stated in Lemma 5 below:

Lemma 5 (Normal distribution, change in strike price): Suppose ε is Normally dis-
tributed. Then, the benefits of informativeness are decreasing in the cost of effort,

i.e.
d2Xσ

dσdC
< 0. (22)

The second is the change in the value of the option when the strike price increases,
∂E[W (s)|e]

∂Xσ
. This change is always negative, and so the sign of the incentive effect is

the opposite of the sign of dXσ
dσ
: indeed, in Figure 3, the incentive effect is positive

(negative) for X < (>) &X. In addition, the magnitude of ∂E[W (s)|e]
∂Xσ

is increasing in

the moneyness of the option. Overall, as X falls below &X, dXσ
dσ

becomes increasingly

negative (see Lemma 5), and the option becomes increasingly in the money so ∂E[W (s)|e]
∂Xσ

also becomes increasingly negative (it falls towards −1). Thus, the overall incentive
effect ∂E[W (s)|e]

∂Xσ
dXσ
dσ
becomes monotonically more positive as X falls below &X. However,

as X rises above &X, the two components of the incentive effect move in opposite
directions. On the one hand, greater informativeness becomes increasingly detrimental

to incentives (dXσ
dσ

becomes more positive). On the other hand, ∂E[W (s)|e]
∂Xσ

falls towards

zero: when the option is deeply OTM, its value is small to begin with and thus little

affected by changes in the strike price. Overall, the impact ofX on the incentive effect is

non-monotonic. As X initially rises above &X, the incentive effect becomes increasingly
negative as the option has significant value, and this value is affected by the change

in the strike price required to maintain incentives (∂E[W (s)|e]
∂Xσ

is large). However, as X

continues to rise, the option’s value falls and so is little affected by the strike price

(∂E[W (s)|e]
∂Xσ

is small). Thus, the incentive effect tends to zero.

The total effect dE[W (s)|e]
dσ

combines these direct and incentive effects. While the di-

rect effect is initially increasing in X, this is outweighed by the fact that the incentive

effect is initially decreasing in X. Thus, in Figure 3, the total gains from increased

informativeness are monotonically decreasing in X. Indeed, focusing on the Normal

distribution allows us to prove this result analytically: C is the exogenous parame-

ter that drives X, and Proposition 4 shows that the gains from informativeness are

monotonically increasing in C.
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Proposition 4 (Normal distribution, effect of cost of effort on gains from informa-

tiveness) Suppose ε is Normally distributed. Then, d
dC

*
dE[W (s)|e]

dσ

+
> 0.

An analysis focusing purely on the direct effect would suggest that the gains from

informativeness are greatest when the initial option is ATM, which in turn corresponds

to a moderate strike price and a moderate cost of effort. In contrast, considering

the total effect (which incorporates the incentive effect) shows that the gains from

informativeness are monotonically increasing in the severity of the agency problem.

Thus, workers with high-powered incentives (such as CEOs) should be evaluated more

precisely than those with low-powered incentives (such as rank-and-file workers).

Corollary 3 shows that, as the cost of effort goes to zero, the gains from informa-

tiveness also approach zero, as does the total gain relative to the direct effect.

Corollary 3 (Normal distribution, limiting cases). Suppose ε is Normally distributed.
Then,

dE [W (s) |e]
dσ

−→C→0 0 and
dE[W (s)|e])

dσ
∂E[W (s)|e]

∂σ

−→C→0 0. (23)

As the moral hazard problem becomes weaker, the total effect of informativeness

becomes very small relative to the direct effect. Thus, ignoring the incentive effect

and considering only the direct effect would substantially overestimate the gains from

informativeness. Indeed, in Figure 3, the direct effect significantly overestimates the

total gains for sufficiently large X. For example, for σ = 1 and X = 2 (which is

only one standard deviation away from the expected performance of e = 1), the gains

from a marginal change in σ are 10.8 times larger with the direct effect than with

the total effect. Thus, even for non-extreme parameter values, gains from improved

informativeness can be much lower if the incentive effect is taken into account. This

ratio becomes much greater for higher X, because the total benefits of informativeness

fall towards zero.

4 Conclusion

This paper studies the principal’s benefits from increasing the informativeness of the

signal used to evaluate the agent. The direct effect is that higher signal precision

reduces the value of the agent’s option and thus expected pay. The core focus of the
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paper is on the indirect effect — how changes in precision affect the agent’s incentives.

By taking an optimal contracting approach, we can be specific on how the contract

changes in response to increases in informativeness. With general signal distributions,

we show that, if effort and informativeness are substitutes, increases in precision weaken

the agent’s incentives. Thus, the principal must reduce the strike price of the option

to preserve effort incentives, increasing the cost of compensation and offsetting the

direct effect. Indeed, we derive a simple condition that governs whether effort and

informativeness are substitutes or complements, that holds for all distributions that

satisfy the monotone likelihood ratio property.

Focusing on signal distributions with a location parameter allows us to relate

whether effort and informativeness are substitutes or complements to the initial strike

price of the option, and thus the severity of the underlying agency problem. When the

initial strike price is above a threshold, i.e. incentives are low-powered to begin with,

an increase in informativeness reduces the agent’s effort incentives and thus the benefits

of informativeness. The principal therefore optimally invests less in improving infor-

mativeness, potentially rationalizing the scarcity of relative performance evaluation for

some agents in reality.

In contrast, if the initial strike price is below a second (lower) threshold, i.e. in-

centives are high-powered to begin with, an increase in informativeness augments the

agent’s effort incentives. This provides an additional gain from informativeness over

and above the direct effect of reducing volatility traditionally focused upon. Thus, the

gains from informativeness depend critically on the strength of incentives, and thus

the magnitude of the moral hazard problem to begin with. For regular signal distri-

butions, where an increase in informativeness consistently moves mass from the tails

of the distribution to the center, both thresholds coincide at a single point. This reg-

ularity condition is satisfied by any distribution with a location and scale parameter,

such as the Normal, uniform, and logistic distributions. Furthermore, with a Normal

distribution, the benefits from informativeness are monotonically increasing in the cost

of effort, and thus the severity of the agency problem. Finally, if incentive constraints

are local, i.e. the implemented effort level is close to other feasible effort levels, then

increases in informativeness cause the strike price to move closer to at-the-money.

30



References

[1] Acharya, Viral V., Kose John, and Rangarajan K. Sundaram (2000): “On the

optimality of resetting executive stock options.” Journal of Financial Economics

57, 65-101.

[2] Aggarwal, Rajesh K. and Andrew A. Samwick (1999): “Executive compensation,

relative performance evaluation, and strategic competition: theory and evidence.”

Journal of Finance 54, 1999—2043.

[3] Axelson, Ulf and Sandeep Baliga (2009): “Liquidity and manipulation of executive

compensation schemes.” Review of Financial Studies 22, 3907—3939.

[4] Baker, George (1992): “Incentive contracts and performance measurement.” Jour-

nal of Political Economy 100, 598—614.

[5] Bebchuk, Lucian and Jesse Fried (2004): Pay without performance: the unfulfilled

promise of executive compensation. (Harvard University Press, Cambridge).

[6] Bertrand, Marianne and Sendhil Mullainathan (2001): “Are CEOs rewarded for

luck? The ones without principals are.” Quarterly Journal of Economics 116,

901—932.

[7] Biais, Bruno, Thomas Mariotti, Jean-Charles Rochet, and Stéphane Villeneuve

(2010): “Large risks, limited liability and dynamic moral hazard.” Econometrica

78, 73—118.

[8] Brenner, Menachem, Rangarajan K. Sundaram, and David Yermack (2000): “Al-

tering the terms of executive stock options.” Journal of Financial Economics 57,

103—128.

[9] Brookman, Jeffrey T. and Paul D. Thistle (2013): “Managerial compensation:

Luck, skill, or labor markets?” Journal of Corporate Finance 21, 252—268.

[10] Bulow, Jeremy I., John D. Geanakoplos, and Paul D. Klemperer (1985): “Mul-

timarket oligopoly: Strategic substitutes and complements.” Journal of Political

Economy 93, 488—511.

31



[11] Chaigneau, Pierre, Alex Edmans and Daniel Gottlieb (2014): “The informative-

ness principle under limited liability.” NBER Working Paper No. 20456.

[12] Cornelli, Francesca, Zbigniew Kominek, and Alexander Ljungqvist (2013): “Mon-

itoring managers: Does it matter?” Journal of Finance 68, 431—481.

[13] De Angelis, David, Gustavo Grullon, and Sébastien Michenaud (2013): “Downside

risk and the design of CEO incentives: Evidence from a natural experiment.”

Working Paper, Rice University.

[14] Dittmann, Ingolf and Ernst Maug (2007): “Lower salaries and no options? On

the optimal structure of executive pay.” Journal of Finance 62, 303—343.

[15] Dittmann, Ingolf, Ernst Maug, and Oliver G. Spalt (2010): “Sticks or carrots? On

the optimal structure of executive pay.” Journal of Finance 65, 2015—2050.

[16] Dittmann, Ingolf, Ernst Maug, and Oliver G. Spalt (2013): “Indexing executive

compensation contracts.” Review of Financial Studies 26, 3182—3224.

[17] Dittmann, Ingolf and Ko-Chia Yu (2011): “How important are risk-taking incen-

tives in executive compensation?”Working Paper, Erasmus University Rotterdam.

[18] Edmans, Alex and Xavier Gabaix (2009): “Is CEO pay really inefficient? A survey

of new optimal contracting theories.” European Financial Management 15, 486—

496.

[19] Edmans, Alex and Xavier Gabaix (2011): “Tractability in Incentive Contracting.”

Review of Financial Studies 24, 2865—2894.

[20] Gjesdal, Froystein (1982): “Information and incentives: the agency information

problem.” Review of Economic Studies 49, 373—390.

[21] Gopalan, Radhakrishnan, Todd T. Milbourn and Fenghua Song (2010): “Strategic

flexibility and the optimality of pay for sector performance.” Review of Financial

Studies 23, 2060—2098.

[22] Gormley, Todd A., David A. Matsa, and Todd T. Milbourn (2013): “CEO compen-

sation and corporate risk-taking: Evidence from a natural experiment.” Journal

of Accounting and Economics 56, 79—101.

32



[23] Grossman, Sanford J., and Oliver D. Hart (1983): “An analysis of the principal-

agent problem.” Econometrica 51, 7—45.

[24] Hall, Brian J. and Kevin J. Murphy (2000): “Optimal exercise prices for executive

stock options.” American Economic Review 90, 209—214.

[25] Holmstrom, Bengt (1979): “Moral hazard and observability.” Bell Journal of Eco-

nomics 10, 74—91.

[26] Innes, Robert D. (1990): “Limited liability and incentive contracting with ex-ante

action choices.” Journal of Economic Theory 52, 45—67.

[27] Jenter, Dirk and Fadi Kanaan (2013): “CEO turnover and relative performance

evaluation.” Journal of Finance, forthcoming.

[28] Kim, Son Ku (1995): “Efficiency of an information system in an agency model.”

Econometrica 63, 89—102.

[29] Milgrom, Paul and John Roberts (1990): “Rationalizability, learning, and equilib-

rium in games with strategic complementarities.” Econometrica 58, 1255—1277.

[30] Murphy, Kevin J. (1999): “Executive compensation” in Handbook of Labor Eco-

nomics, O. Ashenfelter and D. Card, eds. Elsevier/North-Holland.

[31] Murphy, Kevin J. (2002): “Explaining executive compensation: Managerial power

versus the perceived cost of stock options.” University of Chicago Law Review 69,

847—869.

[32] Oyer, Paul (2004): “Why do firms use incentives that have no incentive effects?”

Journal of Finance 59, 1619—1649.

[33] Raith, Michael (2008): “Specific knowledge and performance measurement.” Rand

Journal of Economics 39, 1059—1079.

[34] Rappaport, Alfred (1999): “New thinking on how to link executive pay with

performance.” Harvard Business Review 72, 91—101

[35] Shavell, Steven (1979): “Risk sharing and incentives in the principal and agent

relationship.” Bell Journal of Economics 10, 55—73.

33



[36] Zang, Israel (1980): “A smoothing-out technique for min-max optimization.”

Mathematical Programming 19, 61—77.

34



A Proofs

Proof of Lemma 1
Denote the lower bound of the support of s by s, and the upper bound by s. We

will adopt a two-step approach. First, we solve for the optimal contract for a fixed

minimum paymentWθ (s) = Z ≥ 0. As we will show, the solution involves an “option”
with a fixed minimum payment Z. Then, we will show that the floor is zero.

Formally, for a given constant Z ≥ 0, consider the following “relaxed” program:

min
Wθ(·)

% s

s

Wθ (s) fθ (s|e) ds

subject to % s

s

Wθ (s) [fθ (s|e)− fθ (s|0)] ds ≥ C,

0 ≤ Ẇθ (s) ≤ 1, and Wθ (s) = Z fixed.

Note that the monotonicity condition Ẇθ (s) ≥ 0 implies that Z ≥ 0 is both necessary
and sufficient for the limited liability constraint to hold.

Introduce the auxiliary variables y (s) ≡ Ẇθ (s) and set up the Hamiltonian:

H (W, y,λ,μ, s) ≡ −Wθ(s)fθ(s|e) + λ [Wθ(s) [fθ(s|e)− fθ(s|0)]− C] + μ (s) y(s),

where Wθ are state variables, y are control variables, μ are co-state variables, and λ is

a (state-independent) Lagrange multiplier. The necessary optimality conditions are:

y (s) ∈ arg max
0≤y≤1

μ (s) y ∴ y (s) =

�
0

1

�
if μ (s)

�
<

>

�
0; (24)

∂H

∂Wθ

= −μ̇ ∴ fθ(s|e)− λ [fθ(s|e)− fθ(s|0)] = μ̇ (s) ; (25)

and the transversality condition μ (s) = 0.

Condition (25) yields:

μ̇ (s) > 0 ⇐⇒ 1

λ
> 1− fθ(s|0)

fθ(s|e) ⇐⇒
1

LR (s)
>
λ− 1
λ

,
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where LR (s) ≡ fθ(s|e)
fθ(s|0) is the likelihood ratio, which we assumed to be increasing. Thus,

the LHS of the last inequality above is decreasing in s while the RHS is constant. Hence,

there exists a threshold s∗θ ∈ [s, s] such that μ̇ (s) > 0 for s < s∗θ and μ̇ (s) < 0 for

s > s∗θ. (Notice that if s
∗
θ = s or s

∗
θ = s, one of these intervals vanishes). Therefore, μ

is bell-shaped, with a unique maximum at s∗θ and (at most) two local minima — one at

s and and another at s.

We claim that s∗θ < s, i.e. μ is increasing ∀ s if s∗θ = s. Then, the transversality con-
dition μ (s) = 0 and condition (24) implies thatWθ(s) is constant (Wθ (s) = Wθ (s) = Z

∀ s), which violates the incentive constraint. Thus, it cannot be a solution.
There are two possible solutions depending on whether μ (s) ≥ 0 or μ (s) < 0. In

the former case, we must have μ (s) > 0 ∀ s ∈ (s, s) (since the only candidates for
global minima are s and s and μ(s) ≥ 0 = μ(s)). In the latter case, there exists a

threshold s∗∗θ ∈ (s, s∗θ) such that μ (s) < 0 if s < s∗∗θ and μ (s) > 0 if s > s∗∗θ . We can

combine both cases by letting s∗∗θ ∈ [s, s∗θ) denote the threshold below which we have
μ (s) < 0. The solution is then

W ∗
θ (s) = Z +max {s− s∗∗θ , 0} (26)

for some s∗∗θ ∈ [s, s). This concludes the first part of the proof.
It remains to be shown that the solution entails Z = 0. Substitute the agent’s

payment from (26) in the principal’s expected cost% s

s

W (s) fθ(s|e)ds = Z +
% s

s∗∗θ

(s− s∗∗θ ) fθ(s|e)ds,

and in the incentive constraint% s

s∗∗θ

(s− s∗∗θ ) [fθ(s|e)− fθ(s|0)] ds ≥ C. (27)

Note that monotonicity is automatically satisfied under (26) and, as before, the limited

liability constraint holds if and only if Z ≥ 0. The optimal contract must solve:

min
Z≥0, s∗∗θ ∈[s,s]

Z +

% s

s∗∗θ

(s− s∗∗θ ) fθ(s|e)ds (28)
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subject to (27). Since Z increases the expression in (28) but does not affect the incentive

constraint in (27), the solution entails Z = 0. Thus, the solution of the relaxed program

is

W ∗
θ (s) = max {s− s∗∗θ , 0} ,

With this contract, and setting Xθ = s
∗∗
θ , we show in the proof of Lemma 2 that

the LHS of the incentive constraint (5) becomes
$ s
Xθ
[Fθ (s|0)− Fθ (s|e)] ds. By FOSD,

the LHS of (27) is decreasing in Xθ. Since both the expected cost to the principal and

the LHS of the incentive constraint are strictly decreasing in Xθ, the optimal level of

Xθ satisfies the incentive constraint with equality:% s

Xθ

(s−Xθ) [fθ(s|e)− fθ(s|0)] ds = C.

Finally, we establish that Xθ exists. Evaluated at X = s, the LHS of the incentive

constraint is 0 < C. Evaluated at X = s, it equals% s

s

[Fθ (s|0)− Fθ (s|ē)] ds =
% s̄

s

sfθ (s|ē) ds−
% s

s

sfθ (s|0) ds, (29)

using the same integration by parts as in the proof of Lemma 2. Since high effort

is first-best efficient, the expression in (29) exceeds C. Thus, the intermediate value

theorem and the monotonicity of the LHS ensure that a unique solution to (30) exists.

In sum, we have established that the optimal contract is

Wθ(s) = max{s−Xθ, 0},

where the strike price Xθ is such that the incentive constraint holds with equality.

Proof of Lemma 2
Denoting the upper bound of the support of s by s, we first show that the incentive

constraint (6) can also be rewritten as% s

Xθ

[Fθ (s|0)− Fθ (s|e)] ds = C. (30)
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Opening the expressions inside the brackets in equation (5), we obtain:% s

Xθ

sfθ (s|e) ds− [1− Fθ (Xθ|e)]Xθ =

% s

Xθ

sfθ (s|0) ds− [1− Fθ (Xθ|0)]Xθ + C,

which yields% s

Xθ

sfθ (s|e) ds−
% s

Xθ

sfθ (s|0) ds = [Fθ (Xθ|0)− Fθ (Xθ|e)]Xθ + C.

Applying integration by parts (for e ∈ {0, e}), gives% s

Xθ

sfθ (s|e) ds =


sFθ (s|e)−

%
Fθ (s|e) ds

�s
Xθ

= s−XθFθ (Xθ|e)−
% s

Xθ

Fθ (s|e) ds.

Plugging back in the previous expression, we obtain

s−XθFθ (Xθ|e)−

% s

Xθ

Fθ (s|e) ds
�
−


s−XθFθ (Xθ|0)−

% s

Xθ

Fθ (s|0) ds
�

= [Fθ (Xθ|0)− Fθ (Xθ|e)]Xθ + C.

Canceling terms gives equation (30). Applying the implicit function theorem to (30)

yields:
dXθ

dC
= − 1

F (Xθ|0)− F (Xθ|e) < 0. (31)

Proof of Equation (16)
Denoting the lower bound of the support of s by s, the agent’s expected pay in case

of effort e is% +∞

X

(s−X) fθ (s|e) ds =
% +∞

X

sfθ (s|e) ds−X [1− Fθ (X|e)]

=

% +∞

s

sfθ (s|e) ds−X [1− Fθ (X|e)]−
% X

s

sfθ (s|e) ds.
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Applying integration by parts, we have:% X

s

sfθ (s|e) ds =


sFθ (s|e)−

%
Fθ (s|e) ds

�X
s

= XFθ (X|e)−
% X

s

Fθ (s|e) ds.

Substituting this into the previous equation yields:% +∞

X

(s−X) fθ (s|e) ds =
% +∞

s

sfθ (s|e) ds−X+
% X

s

Fθ (s|e) ds = E [s|e]−X+
% X

s

Fθ (s|e) ds.

Proof of Lemma 3
Denote the lower bound of the support of s by s, and the upper bound by s. The

agent’s expected pay in the case of effort e is given by

E [W (s)|e] =
% s

Xθ

(s−Xθ) fθ (s|e) ds. (32)

Integration by parts yields:% s

Xθ

sfθ (s|e) ds = s̄−XFθ (s|e)−
% s

Xθ

Fθ (s|e) ds

and so (32) can be rewritten:

E [W (s)|e] = s−XFθ (s|e)−
% s

Xθ

Fθ (s|e) ds−X [1− Fθ (s|e)]

= s−X −
% s

Xθ

Fθ (s|e) ds. (33)

Since s and X are not functions of either θ or e, it follows that the agent’s expected

pay satisfies increasing differences if and only if
$ s
Xθ
Fθ (s|e) ds satisfies decreasing dif-

ferences (and vice-versa). The following Lemma will be useful for this and future

proofs:

Lemma 6 For any θ,
$ s
s
Fθ (s|e) ds = s− E [s|e], which is not a function of θ.
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Proof. Applying integration by parts to
$ s
s
sfθ (q|e) ds, we obtain:

% s

s

sfθ (q|e) ds =


sFθ (q|e)−

%
Fθ (s|e) ds

�s
s

= s−
% s

s

Fθ (s|e) ds.

Since θ parameterizes mean-preserving spreads, the expression on the LHS, E[s|e] is
not a function of θ.

From Lemma 6,
$ s
Xθ
Fθ (s|e) ds satisfies decreasing differences if and only if

$ Xθ
s
Fθ (s|e) ds

satisfies increasing differences (since their sum is independent of θ by second-order sto-

chastic dominance). Thus, the agent’s expected pay satisfies increasing differences if

and only if
$ Xθ
s
Fθ (s|e) ds satisfies increasing differences.

Proof of Proposition 1
Applying the implicit function theorem to equation (30) gives:

dXθ

dθ
=

$∞
X

∂
∂θ
[Fθ (q|0)− Fθ (q|e)] dq

Fθ (Xθ|0)− Fθ (Xθ|e) .

By FOSD, the denominator is positive. Lemma 6 yields:

∂

∂θ

% ∞

X

Fθ(q|e)dq = − ∂
∂θ

% X

−∞
Fθ(q|e)dq

∀ X, θ, e. Plugging back:

dXθ

dθ
=

$ X
−∞

∂
∂θ
[Fθ (q|e)− Fθ (q|0)] dq

Fθ (Xθ|0)− Fθ (Xθ|e) .

It is straightforward to show that if
$ X
−∞ Fθ (q|e) dq satisfies increasing (decreasing)

differences and is differentiable with respect to θ, then

∂

∂θ

% X

−∞
[Fθ (q|e)− Fθ (q|0)] dq ≥ (≤)0 (34)

∀ e > 0. The denominator is positive by FOSD.
Proof of Lemma 4

40



From Lemma 3, effort and informativeness are complements if and only if

∂

∂θ

% Xθ

−∞
[Fθ(s|e)− Fθ(s|0)] ds ≥ 0, (35)

i.e. the single-crossing condition holds. Since Fθ(s|e) = Gθ (s− e), we have

∂

∂θ

% Xθ

−∞
[Fθ (s|e)− Fθ (s|0)] ds = ∂

∂θ

�% Xθ

−∞
Gθ (s− e) ds−

% Xθ

−∞
Gθ (s) ds

�

=
∂

∂θ

�% Xθ−e

−∞
Gθ (s) ds−

% Xθ

−∞
Gθ (s) ds

�
=
∂

∂θ

�
−
% Xθ

Xθ−e
Gθ (s) ds

�

= −
% Xθ

Xθ−e

∂Gθ

∂θ
(s) ds. (36)

Therefore, effort and informativeness are complements if and only if (36) > 0.

Let ξ(θ) ≡ lim�	−∞Gθ (�) = 0. Since ξ is differentiable at −∞, it follows that
ξ
(θ) = 0. Similarly, ξ̂(θ) ≡ lim��+∞Gθ (�) = 1 and the differentiability of ξ̂ at ∞
implies that ξ̂
(θ) = 0. Moreover, it is straightforward to show that SOSD implies10% Xθ

−∞

∂Gθ

∂θ
(s− e) ds ≤ 0 (37)

∀ Xθ. Thus,
∂Gθ
∂θ

≤ 0 for s small enough. As a result, there exists &X1 such that$ X1
X1−e

∂Gθ
∂θ
(s) ds < 0. Thus, (36) > 0 and so effort and informativeness are complements.

In addition, ∂Gθ
∂θ
= 0 for s→∞. Thus, ∂Gθ

∂θ
must eventually turn positive: ∂Gθ

∂θ
≥ 0

for s large enough. As a result, there exists &X2 such that
$ X2
X2−e

∂Gθ
∂θ
(s) ds > 0. Thus,

(36) < 0 and so effort and informativeness are substitutes. In sum, there exists &X1

such that dXθ
dθ
≥ 0 if Xθ < &X1, and &X2 ≥ &X1 such that

dXθ
dθ
≤ 0 if Xθ > &X2. However,

10Recall that SOSD requires that for all θ� ≥ θ% X

−∞
Gθ (s− e) ds ≤

% X

−∞
Gθ (s− e) ds.

Taking the limit as θ� 
 θ gives % X

−∞

∂Gθ
∂θ

(s− e) ds ≤ 0.
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for &X1 < Xθ < &X2, it is possible for
∂Gθ
∂θ

to alternate signs several times, and so we

cannot sign (36).

Proof of Proposition 2
From the definition of regular distributions (Definition 2), ∂Gθ

∂θ
alternates signs only

once. Furthermore, we know from Lemma 4 that ∂Gθ
∂θ

≤ ( ≥ ) 0 for s small (large)

enough. Therefore, there exists &X such that − $ Xθ
Xθ−e

∂Gθ
∂θ
(s) ds is nonnegative for Xθ <&X, and nonpositive for Xθ > &X. It then follows from Lemma 4 that dXθ

dθ
≥ 0 if Xθ < &X

and dXθ
dθ
≤ 0 if Xθ > &X.

Proof of Proposition 3
We know from Lemma 4 that dXθ

dθ
≥ (≤)0 if

−
% Xθ

Xθ−e

∂Gθ

∂θ
(s) ds ≥ (≤) 0. (38)

If G is regular and symmetric for any θ, then

G(x) = 1−G(−x)
∂Gθ

∂θ
(x) = −∂Gθ

∂θ
(−x)

∂Gθ

∂θ
(x) ≥ 0 ⇔ x ≥ 0.

It follows that, for Xθ = e/2, the LHS of equation (38) is% e/2

−e/2
−∂Gθ

∂θ
(s) ds = 0. (39)

For Xθ − e ≥ 0, % Xθ

Xθ−e
−∂Gθ

∂θ
(s) ds ≤ 0, (40)

and for Xθ ≤ 0, % Xθ

Xθ−e
−∂Gθ

∂θ
(s) ds ≥ 0. (41)
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Finally, for Xθ ∈ (0, e),

∂

∂Xθ

�% Xθ

Xθ−e
−∂Gθ

∂θ
(s) ds

�
=
∂Gθ

∂θ
(Xθ − e)− ∂Gθ

∂θ
(Xθ) ≤ 0 (42)

Combining (39)-(42) shows that dXθ
dθ
≥ 0 if Xθ <

e
2
, and dXθ

dθ
≤ 0 if Xθ >

e
2
.

Proof of Equations (20) and (21)
First, with volatility σ instead of precision θ, the decomposition in (12) can be

rewritten as
d

dσ
E [W (s)|e] = ∂

∂σ
E [W (s)|e]. -, /
direct effect

+
∂

∂Xσ

E [W (s)|e] dXσ

dσ. -, /
incentive effect

(43)

Second,

∂E[W (s)|e]
∂σ

=
∂

∂σ

% ∞

Xσ

(s−Xσ)
1

σ
ϕ

�
s− e
σ

�
ds =

∂

∂σ

% ∞

Xσ−e

s+ e−Xσ

σ
ϕ
	 s
σ



ds

=
∂

∂σ

% ∞

Xσ−e

s

σ
ϕ
	 s
σ



ds− (Xσ − e) ∂

∂σ

% ∞

Xσ−e

1

σ
ϕ
	 s
σ



ds

=
∂

∂σ

�(
−σϕ

	 s
σ


)∞
Xσ−e

�
− (Xσ − e) ∂

∂σ

�
1− Φ

�
Xσ − e
σ

��
= ϕ

�
Xσ − e
σ

�
− σXσ − e

σ2
ϕ

�
Xσ − e
σ

�
+ (Xσ − e)

�
−Xσ − e

σ2

�
ϕ

�
Xσ − e
σ

�
= ϕ

�
Xσ − e
σ

�
− Xσ − e

σ
ϕ

�
Xσ − e
σ

�
+
Xσ − e
σ

ϕ

�
Xσ − e
σ

�
= ϕ

�
Xσ − e
σ

�
(44)

where the fourth and sixth equalities use the property that ϕ
(x) = −xϕ(x), and the
fifth equality uses ϕ(x)→x→∞ 0. This establishes (21). In addition, it follows that

∂

∂σ
{E [W (s) |ē]− E [W (s) |0]} = ϕ

�
Xθ − ē
σ

�
− ϕ

�
Xθ

σ

�
.

Third,
∂E[W (s) |e]

∂Xθ

=
∂

∂Xθ

% ∞

Xθ

(s−Xθ)
1

σ
ϕ

�
s− e
σ

�
ds

=

% ∞

Xθ

− 1
σ
ϕ

�
s− e
σ

�
ds = −

�
1− Φ

�
Xθ − e
σ

��
. (45)
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It follows that

∂

∂Xσ

{E [W (s) |ē]− E [W (s) |0]} = −
�
1− Φ

�
Xθ − ē
σ

��
+

�
1− Φ

�
Xθ

σ

��

= Φ

�
Xθ − ē
σ

�
− Φ

�
Xθ

σ

�
.

which is strictly negative because of MLRP, which implies FOSD.

Using the results above, we can rewrite (43) as

dE[W (s)|ē]
dσ

= ϕ

�
Xσ − e
σ

�
+



1− Φ

�
Xσ − e
σ

��
ϕ
�
Xσ−ē
σ

�− ϕ �Xσ
σ

�
Φ
�
Xσ−ē
σ

�− Φ
�
Xσ
σ

� (46)

This establishes (20).

Proof of Lemma 5
As Xσ is strictly decreasing in C (see Lemma 2), inequality (22) holds if and only

if d
dXσ
dσ

dX
> 0. As established in the proof of equations (20) and (21) above,

dXσ

dσ
= −ϕ

�
Xσ−ē
σ

�− ϕ �Xσ
σ

�
Φ
�
Xσ−ē
σ

�− Φ
�
Xσ
σ

� .
To simplify notation, define

x ≡ Xσ

σ
, t ≡ ē

σ
.

We wish to show that ∀t > 0,

f(x, t) ≡ [ϕ(x)− ϕ(x− t)]2 − [Φ(x)− Φ(x− t)][ϕ
(x)− ϕ
(x− t)] > 0, ∀x, (47)

where

ϕ(x) =
1√
2π
e−

x2

2

Φ(x) =

% x

−∞
ϕ(y) dy.

For t = 0, f(x, 0) is trivially 0. Since ϕ(x) = ϕ(−x), we have Φ(x) − Φ(x − t) =
Φ(−x + t) − Φ(−x) and ϕ
(x) − ϕ
(x − t) = ϕ
(−x + t) − ϕ
(−x). As a consequence,
f(x, t) = f(−x+ t, t). We thus only have to study x ≥ t

2
> 0.
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We first analyze the term ϕ
(x)− ϕ
(x− t). Since

ϕ
(x) = − x√
2π
e−

x2

2 ,

ϕ
(x)− ϕ
(x− t) = ϕ(x− t)(−xe−t(x−t/2) + x− t).
When x ≥ t/2, the function e−t(x−t/2) − 1 + t

x
is only equal to zero at one point, since

it monotonically decreases from 2 to −1. Let that point be x0. Then

ϕ
(x)− ϕ
(x− t)

⎧⎪⎨⎪⎩
< 0 t

2
≤ x < x0

= 0 x = x0

> 0 x > x0

.

We know that when x ∈ [ t
2
, x0], f(x, t) > 0 since [ϕ(x) − ϕ(x − t)]2 > 0 and Φ(x) −

Φ(x− t) > 0 ∀x, so that (47) is proven for x ∈ [ t
2
, x0]

We now prove (47) for x > x0. In this interval (we omit the argument t in what

follows):

f(x, t) > 0 ⇐⇒ g(x) ≡ f(x, t)

ϕ
(x)− ϕ
(x− t) > 0.

To prove the latter, we first calculate

g
(x) =
2[ϕ(x)− ϕ(x− t)][ϕ
(x)− ϕ
2 − [ϕ(x)− ϕ(x− t)]2[ϕ

(x)− ϕ

(x− t)]

[ϕ
(x)− ϕ
2
− [ϕ(x)− ϕ(x− t)]

=
[ϕ(x)− ϕ(x− t)][ϕ
(x)− ϕ
2 − [ϕ(x)− ϕ(x− t)]2[ϕ

(x)− ϕ

(x− t)]

[ϕ
(x)− ϕ
2

=
[ϕ(x)− ϕ(x− t)]ϕ(x− t)2

[ϕ
(x)− ϕ
2*�−xe−t(x−t/2) + x− t�2 − �(x2 − 1)e−t(x−t/2) − (x− t)2 + 1� �e−t(x−t/2) − 1�+
=
[ϕ(x)− ϕ(x− t)]ϕ(x− t)2

[ϕ
(x)− ϕ
2
(�
e−t(x−t/2) − 1�2 + t2e−t(x−t/2))

< 0, x ∈ (x0,∞),
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where in the last step we used the fact that ϕ(x) < ϕ(x− t) when x > t/2. Therefore,

g(x) > 0 ∀x ∈ (x0,∞) ⇐⇒ lim
x→∞

g(x) ≥ 0.

Since

g(x) =
[ϕ(x)− ϕ(x− t)]2
ϕ
(x)− ϕ
(x− t) − Φ(x) + Φ(x− t)

=
1√
2π
e−(x−t)

2/2

�
e−t(x−t/2) − 1�2

−xe−t(x−t/2) + x− t − Φ(x) + Φ(x− t)
,

it is clear that

lim
x→∞

g(x) = 0.

Proof of Proposition 4
Using the chain rule,

d

dC

�
dE[W (s)|e]

dσ

�
=

d

dXσ

�
dE[W (s)|e]

dσ

�
dXσ

dC

Since dXσ
dC

< 0 (see Lemma 2), we have d
dC

*
dE[W (s)|e]

dσ

+
> 0 if and only if d

dXσ

*
dE[W (s)|e]

dσ

+
<

0.

Using (20) and ϕ
(x) = −xϕ(x) for the Normal distribution, we have

d

dXσ

�
dE[W (s)|e]

dσ

�
=

d

dXσ

�
ϕ

�
Xσ − e
σ

�
−


1− Φ

�
Xσ − e
σ

��
ϕ
�
Xσ−e
σ

�− ϕ �Xσ
σ

�
Φ
�
Xσ
σ

�− Φ
�
Xσ−e
σ

��

=
1

σ

�
−Xσ − e

σ
ϕ

�
Xσ − e
σ

�
+



Xσ − e
σ

ϕ

�
Xσ − e
σ

�
− Xσ

σ
ϕ

�
Xσ

σ

��
1− Φ

�
Xσ−e
σ

�
Φ
�
Xσ
σ

�− Φ
�
Xσ−e
σ

�
+



ϕ

�
Xσ − e
σ

�
− ϕ

�
Xσ

σ

��
ϕ
�
Xσ−e
σ

�
Φ
�
Xσ
σ

�− Φ
�
Xσ−e
σ

�
− 1− Φ

�
Xσ−e
σ

��
Φ
�
Xσ
σ

�− Φ
�
Xσ−e
σ

��2 �ϕ�Xσ − e
σ

�
− ϕ

�
Xσ

σ

��2�
(48)

Multiplying all terms by σ
�
Φ
�
Xσ
σ

�− Φ
�
Xσ−e
σ

��
> 0, the expression in (48) has the
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same sign as

�
ϕ
�
Xσ−e
σ

�− ϕ �Xσ
σ

�
Φ
�
Xσ
σ

�− Φ
�
Xσ−e
σ

� − Xσ

σ

� 

ϕ

�
Xσ

σ

�

1− Φ

�
Xσ − e
σ

��
− ϕ

�
Xσ − e
σ

�

1− Φ

�
Xσ

σ

���
− e

σ
ϕ

�
Xσ − e
σ

�

1− Φ

�
Xσ

σ

��
. (49)

Since the last term in (49) is always negative, the expression in (49) is negative if the

first line in (49) is negative. We show this in two steps.

To start with, the hazard rate ϕ(x)/(1 − Φ(x)) of the Normal distribution is in-

creasing, which implies that

ϕ
�
Xσ
σ

�
1− Φ

�
Xσ
σ

� > ϕ
�
Xσ−e
σ

�
1− Φ

�
Xσ−e
σ

� .
Rearranging, we have

ϕ

�
Xσ

σ

�

1− Φ

�
Xσ − e
σ

��
− ϕ

�
Xσ − e
σ

�

1− Φ

�
Xσ

σ

��
> 0 (50)

Define

g(Xσ, e) ≡
ϕ
�
Xσ−e
σ

�− ϕ �Xσ
σ

�
Φ
�
Xσ
σ

�− Φ
�
Xσ−e
σ

� .
If g(Xσ, e) <

Xσ
σ
, then combining with (50) establishes that the expression in (49) is

negative, as desired. We now show that g(Xσ, e) <
Xσ
σ
holds. To this end, we will show

in turn that g(Xσ, e) −→e→0 Xσ
σ
, and that g(Xσ, e) is decreasing in e.

First,

ϕ

�
Xσ − e
σ

�
− ϕ

�
Xσ

σ

�
= −ϕ


�
Xσ

σ

�
e

σ
+O(e2)

Φ

�
Xσ

σ

�
− Φ

�
Xσ − e
σ

�
=
e

σ
ϕ

�
Xσ

σ

�
+O(e2).

Using ϕ
(x) = −xϕ(x) for the Normal distribution, we have

ϕ
�
Xσ−e
σ

�− ϕ �Xσ
σ

�
Φ
�
Xσ
σ

�− Φ
�
Xσ−e
σ

� −→e→0
ϕ
�
Xσ
σ

�
eXσ
σ2

e
σ
ϕ
�
Xσ
σ

� =
Xσ

σ
.
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Second,

d

de

�
ϕ
�
Xσ−e
σ

�− ϕ �Xσ
σ

�
Φ
�
Xσ
σ

�− Φ
�
Xσ−e
σ

�� = d

de

⎧⎨⎩
$ Xσ/σ
(Xσ−e)/σ s exp

*
− s2

2

+
ds$ Xσ/σ

(Xσ−e)/σ exp
�− s2

2

�
ds

⎫⎬⎭
=
1

σ

Xσ−e
σ
exp
*
− (Xσ−e)2

2σ2

+$ Xσ/σ
(Xσ−e)/σ exp

*
− s2

2

+
ds− exp

*
− (Xσ−e)2

2σ2

+$ Xσ/σ
(Xσ−e)/σ s exp

*
− s2

2

+
ds	$ Xσ/σ

(Xσ−e)/σ exp
�− s2

2

�
ds

2 .

This expression has the same sign as

Xσ − e
σ

% Xσ/σ

(Xσ−e)/σ
exp

�
−s

2

2

�
ds−

% Xσ/σ

(Xσ−e)/σ
s exp

�
−s

2

2

�
ds

=

% Xσ/σ

(Xσ−e)/σ



Xσ − e
σ

− s
�
exp

�
−s

2

2

�
ds < 0.

This establishes that g(Xσ, e) is decreasing in e, which completes the proof.

Proof of Corollary 3
We have dE[W (s)|ē]

dσ
≥ 0 for any Xσ: indeed, if

dE[W (s)|ē]
dσ

< 0 for a given σ, and

considering that increasing σ is costless, the given level of σ would not be an equilibrium

for any cost of increasing informativeness (including a zero cost).

Using (46), dE[W (s)|ē]
dσ

≥ 0 may be rewritten as

ϕ
�
Xσ−ē
σ

�− ϕ �Xσ
σ

�
ϕ
�
Xσ−e
σ

� ≤ Φ
�
Xσ
σ

�− Φ
�
Xσ−ē
σ

�
1− Φ

�
Xσ−e
σ

� . (51)

Define

yN(xσ) ≡
�
ϕ

�
Xσ − ē
σ

�
− ϕ

�
Xσ

σ

���
1− Φ

�
Xσ − e
σ

��
(52)

yD(xσ) ≡
�
Φ

�
Xσ

σ

�
− Φ

�
Xσ − ē
σ

��
ϕ

�
Xσ − e
σ

�
. (53)
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where xσ ≡ Xσ
σ
. Differentiating yN(Xσ) and yD(xσ) with respect to xσ gives

y
N(xσ) =
�
ϕ

�
Xσ − ē
σ

�
− ϕ


�
Xσ

σ

���
1− Φ

�
Xσ − e
σ

��

−
�
ϕ

�
Xσ − ē
σ

�
− ϕ

�
Xσ

σ

��
ϕ

�
Xσ − e
σ

�
=

�
−Xσ − ē

σ
ϕ

�
Xσ − ē
σ

�
+
Xσ

σ
ϕ

�
Xσ

σ

���
1− Φ

�
Xσ − e
σ

��
−
�
ϕ

�
Xσ − ē
σ

�
− ϕ

�
Xσ

σ

��
ϕ

�
Xσ − e
σ

�
. (54)

y
D(xσ) = ϕ


�
Xσ − e
σ

��
Φ

�
Xσ

σ

�
− Φ

�
Xσ − ē
σ

��
+ϕ

�
Xσ − e
σ

��
ϕ

�
Xσ

σ

�
− ϕ

�
Xσ − ē
σ

��
= −Xσ − e

σ
ϕ

�
Xσ − e
σ

��
Φ

�
Xσ

σ

�
− Φ

�
Xσ − ē
σ

��
+ϕ

�
Xσ − e
σ

��
ϕ

�
Xσ

σ

�
− ϕ

�
Xσ − ē
σ

��
.

(55)

At any given Xσ, (54) is larger than (55) if and only if�
−Xσ − ē

σ
ϕ

�
Xσ − ē
σ

�
+
Xσ

σ
ϕ

�
Xσ

σ

���
1− Φ

�
Xσ − e
σ

��

> −Xσ − e
σ

ϕ

�
Xσ − e
σ

��
Φ

�
Xσ

σ

�
− Φ

�
Xσ − ē
σ

��
. (56)

Or, for Xσ > e,

ϕ
�
Xσ−ē
σ

�− ϕ �Xσ
σ

�
ϕ
�
Xσ−e
σ

� − ē

Xσ − e
ϕ
�
Xσ
σ

�
ϕ
�
Xσ−e
σ

� < Φ
�
Xσ
σ

�− Φ
�
Xσ−ē
σ

�
1− Φ

�
Xσ−e
σ

� (57)

As ē
Xσ−e

ϕ(Xσσ )
ϕ(Xσ−eσ )

> 0 for any Xσ > e, and because of (51), we know that (54) > (55)

for any Xσ > e, i.e., y
N(Xσ) > y


D(Xσ) for any Xσ > e.

Using (46), we get

dE[W (s)|ē]
dσ

∂E[W (s)|ē]
∂σ

= 1−
�
1− Φ

�
Xσ−e
σ

�� �
ϕ
�
Xσ−ē
σ

�− ϕ �Xσ
σ

���
Φ
�
Xσ
σ

�− Φ
�
Xσ−ē
σ

��
ϕ
�
Xσ−e
σ

� . (58)

Note that the numerator and the denominator in the fraction of the RHS of (58) are
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yN(xσ) and yD(xσ), respectively. We have shown above that y
N(xσ) > y


D(xσ) for any

xσ > 0. For any two given b and a such that b > a ≥ 0, we therefore have

yN(b)− yN(a) > yD(b)− yD(a) (59)

Rearranging (59) yields

yD(b)− yD(a)
yN(b)

<
yN(b)− yN(a)

yN(b)
(60)

for any b > 1
2σ
, given that yN(xσ) > 0 for xσ ≥ 1

2σ
. Setting a = 1

2σ
, (60) holds (as

b > a), and we have yN(a) = 0. In addition, we have
yD(a)
yN (b)

−→b→∞ 0, so that

yD(b)− yD(a)
yN(b)

−→c→∞
yD(b)

yN(b)
. (61)

Using (60) with yN(a) = 0, this implies that

lim
b→∞

yN(b)

yD(b)
≥ 1. (62)

In addition, ∂E[W (s)|ē]
∂σ

= ϕ
�
Xσ
σ

�
> 0, and dE[W (s)|ē]

dσ
≥ 0 for any Xσ, as established

above. It then follows from (58) that we must have yN (b)
yD(b)

≤ 1. Combining with (62)

then implies that

lim
b→∞

yN(b)

yD(b)
= 1. (63)

Given the definitions of yN(xσ) and yD(xσ) and (58), this establishes
dE[W (s)|e])

dσ
∂E[W (s)|e]

∂σ

−→X→0

0. The result that dE[W (s)|e])
dσ

−→X→0 0 then follows from this result and from
∂E[W (s)|ē]

∂σ
=

ϕ
�
Xσ−ē
σ

� −→Xσ→∞ 0.

Given the optimal contract derived in Lemma 1, the incentive constraint in (5) for

a given Xσ is % ∞

Xσ

(s−Xσ)f(s|ē)ds−
% ∞

Xσ

(s−Xσ)f(s|0)ds = C.

As Xσ →∞, this equation is satisfied if and only if C → 0. Combining with the results

above yields (23).
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B Informativeness Has Zero Value

This section gives an example where the value of informativeness is exactly zero. From

(16), the principal’s payoff is

E[s|e]−Xθ +

% Xθ

s

Fθ(s|e)ds,

where Xθ solves the incentive constraint (30):% s

Xθ

[Fθ (s|0)− Fθ (s|e)] ds = C. (64)

Let the lower bound of the support of s be s = 0 and let the upper bound be s = 2.

Suppose that, under low effort, s is uniformly distributed in [0, 1] for any level of

informativeness θ:

Fθ(s|0) = s× 1 (0 ≤ s ≤ 1) .
This assumption is for concreteness only; the example can be generalized to distribu-

tions that, conditional on low effort, are not functions of θ: Fθ(s|0) = ζ(s).
Assume two possible informativeness levels: θL and θH . Under high informativeness,

s is uniformly distributed in [0, 2]:

fH(x|1) = 1

2
, FH(x|1) = x

2
.

Under low informativeness, s has the following density function:

fL(x|1) =

⎧⎪⎨⎪⎩
1
4
if x ≤ .25 or .75 ≤ x < 1

3
4
if .25 < x < .75
1
2
if 1 < x ≤ 2

.

Notice that θH is a mean-preserving spread of θL. Integrating, we obtain the CDF

FL(x|1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x
4
if x ≤ 1

4
1
16
+ 3

4

�
x− 1

4

�
if 1
4
< x < 3

4
7
16
+ 1

4

�
x− 3

4

�
if 3
4
≤ x < 1

x
2
if x ≥ 1
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Suppose the parameters are such that Xθ ≥ 1. For x ≥ 1, the CDF are the same

under both θH and θL so that, for Xθ ≥ 1, the incentive constraint (64) yields:% 2

Xθ

	
1− s

2



ds = C ∴ (2−Xθ)− 1

2



2−
�
X2
θ

2

��
= C

∴ X
2
θ

4
−Xθ + (1− C) = 0.

The solution to this quadratic equation is

Xθ =
1±√C
2

.

The relevant root is the smallest one, otherwise we can relax the incentive constraint

(64) by reducing the strike price Xθ:

Xθ =
1−√C
2

,

so the indirect effect is zero (the strike price is the same for both precision levels). The

direct effect is also zero since
$ x
0
FθH (s|e)ds =

$ x
0
FθL(s|e)ds ∀ x ≥ 1.11 Indeed, we can

calculate this expression explicitly:% 1

0

FθH (s|e)ds =
% 1

0

FθL(s|e)ds =
1

4
.

Thus, the expected wage is independent of informativeness.

11This follows because, since s|e has the same mean under both θH and θL, integration by parts
gives: % 2

0

FθH (s|e)ds =
% 2

0

FθL(s|e)ds.

Thus,
$ 2
1
FθH (s|e)ds =

$ 2
1
FθL(s|e)ds implies that% 1

0

FθH (s|e)ds =
% 1

0

FθL(s|e)ds.
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C Additional Results for Location-Scale Distribu-

tions

Claim 1 states that, if the distribution of s has a location and scale parameter, &X ∈
(0, e).

Claim 1 Suppose the distribution of s belongs to the location-scale family. Then,
dXθ
dθ

≥ 0 if Xθ < &X, and dXθ
dθ

≤ 0 if Xθ > &X, where &X ∈ (0, e). Furthermore,

when Gθ is symmetric, &X ≡ e
2
.

Proof. Since Fθ(s|e) = G
�
s−e
σ

�
, condition (36) from Lemma 4 becomes

−
% Xθ

Xθ−e

∂G
�
s
σ

�
∂θ

ds ≥ 0.

Using σ = 1√
θ
, this becomes

−
% Xθ

Xθ−e

∂G
	
s
√
θ



∂θ
ds ≥ 0 ⇐⇒ −

% Xθ

Xθ−e

s

2
√
θ
g
	
s
√
θ


ds ≥ 0. (65)

For a distribution symmetric about its mean of zero, this inequality holds if and only

if

(Xθ − e) +Xθ ≤ 0, (66)

that is, if and only if Xθ ≤ e
2
. Since dXθ

dθ
≥ 0 if (36) > 0 and dXθ

dθ
≤ 0 if (36) < 0, we

conclude that dXθ
dθ
≥ 0 if Xθ ≤ e

2
, and dXθ

dθ
≤ 0 if Xθ ≥ e

2
.

Now consider asymmetric distributions. Since g ≥ 0, condition (65) is satisfied for
Xσ ≤ 0, whereas the LHS of (65) is nonpositive for Xσ ≥ ē. In addition,

∂

∂Xθ

�
−
% Xθ

Xθ−e

s

2
√
θ
g
	
s
√
θ


ds

�
=
Xθ − e
2
√
θ
g
	
(Xθ − e)

√
θ


− Xθ

2
√
θ
g
	
Xθ

√
θ



(67)

which is strictly negative for Xθ ∈ (0, e), as both terms on the RHS are negative. We
conclude that there exists a unique X̂ ∈ (0, e) such that condition (36) is satisfied if
Xθ ≤ X̂, in which case dXθ

dθ
≥ 0, whereas the LHS of (36) is nonpositive for Xθ ≥ e, in

which case dXθ
dθ
≤ 0.
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Under the Black-Scholes assumption that the stock price is lognormally distributed,

the vega of a stock option is highest when the option is ATM. Claim 2 shows that this

result extends to distributions with location and scale parameters.

Claim 2 For distributions parameterized with e and σ such that Fσ (s|e) = G
�
s−e
σ

�
,

the option vega is highest for an option such that Xσ = e.

Proof. Let s be the upper bound of the support of s. By definition, for given e and
Xσ ≤ s, the vega of the associated option is

ν =
∂

∂σ
E [W (s)|e] = ∂

∂σ

�
s−X −

% s

Xσ

Fσ (s|e) ds
�

(68)

where we use (33) to derive the second equality. Since Fσ (s|e) = G
�
s−e
σ

�
, we have

ν =
∂

∂σ

�
−
% s

Xσ

G

�
s− e
σ

�
ds

�
=
1

σ

% s

Xσ

s− e
σ
g

�
s− e
σ

�
ds (69)

Using the change of variable y = s−e
σ
gives

ν =

% s−e
σ

Xσ−e
σ

yg(y)ds (70)

Given that g(y) > 0, this expression is maximized forXσ = e, i.e., for an ATM option.12

Claim 3 shows that, for symmetric distributions with unbounded support, the vegas

of the option-when-working and option-when-shirking are equal for Xσ =
e
2
.

Claim 3 For symmetric distributions with unbounded support parameterized by e and
σ such Fσ (s|e) = G

�
s−e
σ

�
, the vegas of the option-when working and the option-when-

shirking are equal for Xσ =
e
2
.

Proof. We rely on (70) and use the fact that, for a distribution with unbounded
support, s =∞.
12With high effort, e = e, so the option-when-working is ATM for Xσ = e. With low effort, e = 0,

so the option-when-shirking is ATM for Xσ = 0.
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For Xσ =
e
2
, the vega νe of the option-when-working (e = e) is

νe =

% ∞

Xσ−e
σ

yg(y)ds =

% ∞

− e
2σ

yg(y)ds. (71)

For Xσ =
e
2
, the vega ν0 of the option-when-shirking (e = 0) is

ν0 =

% ∞

Xσ
σ

yg(y)ds =

% ∞

e
2σ

yg(y)ds. (72)

In addition, % ∞

− e
2σ

yg(y)ds =

% e
2σ

− e
2σ

yg(y)ds+

% ∞

e
2σ

yg(y)ds (73)

For a symmetric distribution, we have
$ e

2σ

− e
2σ

yg(y)ds = 0. Equation (73) then implies

that νe = ν0.

D At-The-Money Options

This Appendix shows that the model’s main results continue to hold when the principal

is restricted to granting ATM options.

We consider the same problem described in Section 3.1, except that we assume that

the contract takes the form of ATM options. Considering ATM options requires that

we complement the model by deriving the t = 0 stock price. To simplify the exposition,

we assume that the firm has a single share outstanding. Denoting the stock price at

time 0 by S0, we have S0 = E[q] given the assumptions of a zero discount rate and risk
neutrality. In addition, with a symmetric distribution with location parameter e, we

have S0 = e.

Since the strike price is fixed (at the stock price), the number n ≤ 1 of ATM

options granted adjusts to satisfy the incentive constraint.13 It follows that e = ē in

equilibrium, and S0 = ē. With ATM options, the exercise price is therefore X = ē.

Considering the same distributions as in section 3.3, we have the following results:

Lemma 7 (Effect of volatility on number of options) With ATM options, dn
dσ
< 0.

13We only consider the cases such that there exists an incentive compatible contract with ATM
options subject to the constraint n ≤ 1.
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Proof. Totally differentiating the LHS of the incentive constraint in (5) with respect
to σ yields

d

dσ
{E[W (s)|ē]− E[W (s)|0]} = ∂

∂σ
{E[W (s)|ē]− E[W (s)|0]}+ ∂

∂n
{E[W (s)|ē]− E[W (s)|0]} dn

dσ
= 0

so that
dn

dσ
= −

∂
∂σ
{E[W (s)|ē]− E[W (s)|0]}

∂
∂n
{E[W (s)|ē]− E[W (s)|0]} . (74)

First, if the agent receives n options instead of 1, we have

E[W (s)|ē]− E[W (s)|0] = n
% ∞

X

[F (s|0)− F (s|ē)] ds

for any given X. With distributions with a location parameter e and scale parameter

σ, the numerator of the fraction on the RHS of (74) is then

∂

∂σ
{E[W (s)|ē]− E[W (s)|0]} = n ∂

∂σ

% ∞

X



G
	 s
σ



−G

�
s− ē
σ

��
ds

= n

% ∞

X



− s

σ2
g
	 s
σ



+
s− ē
σ2

g

�
s− ē
σ

��
ds

= n

�% ∞

X
σ

−yLg (yL) ds+
% ∞

X−ē
σ

yHg (yH) ds

�
= n

% X
σ

X−ē
σ

yg (y) ds,

where we used the changes of variables yL = s
σ
and yH = s−ē

σ
. Given the symmetry of

g, we have
$ X

σ
X−ē
σ

yg (y) ds ≥ 0 if and only if X
σ
> −X−ē

σ
, which is always the case with

ATM options, i.e., with X = ē. We conclude that the numerator of the fraction on the

RHS of (74) is strictly positive with ATM options.

Second, for an agent who receives n ATM options, the denominator of the fraction

on the RHS of (74) is equal to

∂

∂n

�% ∞

X

n(s−X)f(s|ē)ds−
% ∞

X

n(s−X)f(s|0)ds
�

=

% ∞

X

(s−X)f(s|ē)ds−
% ∞

X

(s−X)f(s|0)ds > 0. (75)

Since both the numerator and the denominator of the fraction on the RHS of (74) are
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strictly positive, we have
dn

dσ
< 0 (76)

with ATM options.

If informativeness is improved (i.e. σ falls), n must increase to maintain incentive

compatibility. This is because X = ē > ē
2
with ATM options: the exercise price

is higher than the threshold ē
2
, so that an increase in informativeness reduces effort

incentives, ceteris paribus (the intuition is the same as in Section 3.3). Incentive

compatibility then requires that the agent be given additional options.

Corollary 4 is the analogy of Corollary 1 in the main paper and compares the partial

and total effects of changes in informativeness on the expected wage.

Corollary 4 (Partial and total effects of informativeness on expected wage):

dE[W (s)|ē]
dσ

<
∂E[W (s)|ē]

∂σ

Proof. First,
dE[W (s)|ē]

dσ
=
∂E[W (s)|ē]

∂σ
+
∂E[W (s)|ē]

∂n

dn

dσ

Second,

∂E[W (s)|ē]
∂n

=
∂

∂n

�% ∞

X

n(s−X)f(s|ē)ds
�
=

% ∞

X

(s−X)f(s|ē)ds > 0

Corollary 4 then follows from this inequality and Lemma 7.

With ATM options, the total change in expected pay that follows a change in infor-

mativeness is smaller than the partial change: while an improvement in informativeness

lowers the value of the agent’s options, it also requires that the agent receives more

options for incentive compatibility. This incentive effect partially offsets the benefits

to the principal.

E Continuous Effort Model

In this section, we sketch a continuous effort analog of the core model. The model

remains the same, except for the following assumptions:

(A1) The agent chooses effort in e ∈ [0,∞).
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(A2) The agent’s objective function is E[W (s)|e] − cξ(e), with c > 0, ξ > 0, ξ
 >

0, ξ

 > 0.

(A3) MLRP: d
ds

*
fe(s|e)
f(s|e)

+
> 0, where f(π|e) denotes the PDF of s conditional on e,

and fe(π|e) denotes its first derivative with respect to e.
(A4) E[max{s−Xθ, 0}|e]−cξ(e) is concave in e, andW (s) is piecewise smooth with

a right derivative, which guarantees that the first-order approach to the effort choice

problem applies (see footnote 12 in Innes (1990)).

As in the core model, the principal induces a given level of effort ē > 0. As in

Proposition 3, we consider continuously distributed symmetric and regular distributions

with a location parameter, denoted by e. This implies that we can write s = e + ε,

where E [ε|e] = 0.
For a given informativeness parameter θ, the principal’s problem is to choose a cad-

lag functionW (·) to minimize E[W (s)|ē] subject to the same constraints on contracting
as in the core model and the following incentive constraint:

d

de

% ∞

−∞
W (s)f(s|ē)ds = cξ
(ē). (77)

Then applying Proposition 1 in Innes (1990) implies that, for a given θ, the optimal

contract is characterized by

W (s) = max {0, s−Xθ} . (78)

As in the core model, there is a unique Xθ that satisfies the incentive constraint in (77)

with equality. Subsequent calculations require that the W (s) function be of class C2

on the whole domain. This can be achieved by an arbitrarily small change in W (s) on

(Xθ − u,Xθ + u), where u→ 0, which smooths out the kink at Xθ (Zang (1980)) while

leaving expected pay conditional on any e approximately unchanged.

Denoting by ψ and Ψ the PDF and CDF of the distribution of ε, respectively, the

incentive constraint in (77) can be rewritten as% ∞

−∞
W 
(ē+ ε)ψ(ε)dε = cξ
(ē). (79)

Denote by ψ̄ and Ψ̄ the PDF and CDF of ε, respectively, after a decrease in θ. For

a distribution which is regular and symmetric, the CDFs corresponding to different
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levels of θ cross only once, at the mean of zero, so that Ψ(0) = Ψ̄(0).

For a given exercise price, an improvement in informativeness θ reduces the LHS of

the incentive constraint in (77) if and only if% ∞

−∞
W 
(ē+ ε)

�
ψ(ε)− ψ̄(ε)� dε < 0. (80)

Integrating by parts, this becomes

�
W 
(ē+ ε)

�
Ψ(ε)− Ψ̄(ε)

��∞
−∞ −

% ∞

−∞
W 

(ē+ ε)

�
Ψ(ε)− Ψ̄(ε)

�
dε < 0. (81)

The first term is equal to zero since Ψ(−∞) = Ψ̄(−∞) = 0 and Ψ(∞) = Ψ̄(∞) = 1. In
addition, W 

(s) > 0 on (Xθ − u,Xθ + u), and is equal to zero elsewhere. Since u→ 0

and Ψ is continuous, it follows that (81) is satisfied if and only if Ψ(Xθ−ē) > Ψ̄(Xθ−ē).
In turn, because of single crossing of the CDFs at zero and the symmetry of Ψ, this is

satisfied if and only if Xθ > ē.

As in the baseline model, the LHS of the incentive constraint is strictly decreasing in

X. Therefore, for the incentive constraint to still be satisfied following an improvement

in informativeness (i.e., a higher θ), we have

dXθ

dθ
< 0 if and only if Xθ > ē. (82)

Thus, as informativeness θ increases, Xθ approaches ē and the option becomes closer

to ATM.
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