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ABSTRACT 
 
 

We study how efficient primary financial markets are in allocating capital when 
information about investment opportunities is dispersed across market participants. 
Paradoxically, the very fact that information is valuable for making real investment 
decisions destroys the efficiency of the market. To add to the paradox, as the number 
of market participants with useful information increases a growing share of them fall 
into an “informational black hole,” making markets even less efficient. Contrary to 
the predictions of standard theory, social surplus and the revenues of an entrepreneur 
seeking financing can be decreasing in the size of the financial market, the linkage 
principle of Milgrom and Weber (1982) may not hold, and collusion among investors 
may enhance efficiency. JEL Codes: D44, D82, G10, G20. 
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The main role of primary financial markets is to channel resources to firms with worth- 
while projects. This process requires information about demand, technological feasi- 
bility, management, and current industry and macroeconomic conditions, as well as 
views on how to interpret such information. No single investor typically holds all this 
information. The unprecedent growth of the financial sector over the last three decades 
has led to a proliferation of informed intermediaries such as venture capitalists, private 
equity firms, hedge funds, as well as fintech innovations such as peer-to-peer lending 
and crowdfunding platforms. As a result, although the amount of information about 
investment opportunities may have increased, it may have become more dispersed than 
ever. 

In this paper, we ask two central questions about the functioning of primary finan- 
cial markets when information is dispersed: does market competition for the financing 
of new ventures lead to the right investment decision, and do larger markets lead to a 
more efficient outcome? 

Based on the seminal work of Hayek (1945) and the follow-on literature, one would 
be tempted to answer “Yes” to both questions. Hayek argued that exactly in situations 
when information is dispersed, competitive markets are superior to centralized decision 
making because of the ability of markets to aggregate information—the “wisdom of the 
crowd” prevails. This argument was first formalized in the rational expectations liter- 
ature (Grossman (1976), Grossman (1981)), in which market participants take prices 
as given. The auction literature, which provides a game-theoretic foundation for how 
prices are formed, has also shown that markets are good at aggregating information. 
For example, if an existing asset is sold in the standard auction formats analyzed in 
Milgrom and Weber (1982), anyone who observes the bids in the auction learns all the 
information the market possesses. In fact, in an ascending price auction, the resulting 
price itself is a sufficient statistic for all relevant information (Kremer (2002) and Han 
and Shum (2004)). Larger markets are always better, both for total surplus and for the 
seller of the asset, because more information is learnt and prices are more competitive 
(see Bulow and Klemperer (1996) and Bali and Jackson (2002)). 

The message in our paper is a more pessimistic one. We set up a model where in- 
formed investors such as venture capitalists compete for the right to finance a project 
by submitting bids, and show that the market outcome never fully reflects the infor- 
mation in the market. Strikingly, even when the market grows so large that as an 
aggregate it possesses perfect information about which projects are worth financing 
and which are not, there will be substantial allocational inefficiencies—the wisdom of 
the crowds fails, and an entrepreneur might in fact be better off seeking financing from 
just one investor. 
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This result is due to the fact that we study a production economy rather than the 
endowment economies of standard auction theory. In our setting, the market outcome is 
not only a price at which trade of an asset takes place, but also a decision about whether 
a project should get started or not. If an investor with a sufficiently pessimistic signal 
were to win the right to finance the project, he will assume that the project is negative 
NPV and not worth investing in. Relatively pessimistic investors will therefore either 
abstain from bidding or bid zero—they fall into an “informational black hole” where 
information is lost. The informational black hole leads to less informed investment 
decisions and lower surplus—paradoxically, the introduction of a real surplus-creating 
role for information destroys the informational efficiency of the market. 

This problem is exacerbated as the market grows larger, because of the winners 
curse. In a larger market, even an investor with somewhat favourable information will 
conclude that the project is not worth investing in if he wins, since winning implies that 
all other investors are more pessimistic. Hence, the informational black hole grows with 
the size of the market, and we show that for some reasonable distributional assumptions 
the social surplus as well as the expected revenues to the entrepreneur can fall with 
the size of the market. 

This insight has normative implications for how entrepreneurs should maximize 
revenues that drastically contrast with the prescriptions of standard auction theory. 
In particular, our findings might explain why we often see entrepreneurs engage in 
so-called proprietary transactions, where they negotiate a financing deal with a single 
venture capitalist rather than engaging in a more competitive search. Similarly, in ac- 
quisition procedures investment banks working on behalf of a selling firm often restrict 
the set of invited bidders, and there is no evidence that this practice reduces seller 
revenues.1 

Of course, it may not always be possible for a firm to restrict the number of potential 
investors submitting bids—in fact, the firm needs to commit not to consider unsolicited 
offers, because ex post it is always optimal to consider all offers. When firms cannot 
commit to restrict the number of bidders, we show that the equilibrium size of the 
financial sector may be inefficiently large. This happens because the marginal investor 
does not internalize the negative externality he imposes on allocational efficiency when 
he enters the market. We show that social welfare can decrease with a decrease in 
information gathering costs, and that restricting the size of the market can constitute 
a Pareto improvement. 

Our analysis has a number of auxiliary implications which contrast with the findings 
of traditional theory.   For example, we show that the famous “linkage principle” of 

1See Boone and Mulherin (2007). 
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Milgrom and Weber (1982) may fail in our setting. The linkage principle holds that any 
value-relevant information that can be revealed before an auction should be revealed in 
order to lower the informational rent of bidders. For example, if an entrepreneur can 
postpone seeking financing until some public information about market conditions is 
revealed, he should do so. In our setting, to the contrary, it is often better to attempt 
financing of the project before some value-relevant information is revealed. The reason 
is that residual uncertainty creates an option value to the project which makes less 
optimistic bidders participate, which in turn increases the information aggregation 
properties of the market. 

We also show that in our setting, efficiency can be improved by allowing a suffi- 
ciently large number of investors to receive a stake in the project if this is practically 
feasible. This is in contrast to the standard setting, where revenues are maximized 
by concentrating the allocation to the highest bidder. In a multi-unit auction where 
the number of units grows with the number of bidders, a loser’s curse balances out 
the winner’s curse which in our setting leads to higher participation and a recovery 
of information aggregation, and hence a higher surplus. This may be one rationale 
for crowd-funding, in which start-ups seek financing on a platform that looks very 
much like a multi-unit auction. The finding may also explain why IPO allocations are 
rationed to increase the number of winning participants. 

A related solution is to allow syndicates or consortia consisting of multiple investors 
to submit joint “club bids” in the auction. Club bids and syndicates are common 
practice among both angel investors, venture capitalists, and private equity firms, and 
have been the subject of investigation by competition authorities for creating anti- 
competitive collusion. Indeed, in a standard auction setting, club bids reduce the 
expected revenues of the seller. In our setting, the opposite may hold—because club 
bids reduce the winner’s curse problem, it encourages participation, which increases 
the efficiency of the market. 

In the main part of our analysis, we model competition as happening through a 
standard auction format (first price, second price, or ascending price). These mar- 
ket structures approximate most real-world financing procedures, including informal 
settings where investors approach the entrepreneur with unsolicited offers. As an ex- 
tension we discuss sufficient conditions under which informational black holes and the 
resulting inefficiencies can appear in an optimal market mechanism. First, we have to 
assume that the mechanism cannot split the allocation of the project rights over sev- 
eral investors, perhaps because cash flows are non-contractible or because coordination 
among several creditors is costly ex post. This rules out the use of multi-unit auctions 
and club bidding. Second, we assume a mechanism has to be regret free in that bidders 
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can default on the mechanism ex post if they are not happy with the outcome, and 
that it should not be profitable for unserious bidders without information to enter the 
mechanism. These two restrictions make it impossible to reward or punish bidders 
who do not receive an allocation in the mechanism, which limits the scope of eliciting 
information from then. Third, we assume that the mechanism should be ex-post effi- 
cient, or renegotiation proof, in that the project is started if and only if it is positive 
NPV given the information revealed in the mechanism. These restrictions turn out 
to be sufficient for the existence of informational holes even in optimal mechanisms. 
Finally, if we impose that the mechanism also has to be robust to the introduction of 
arbitrarily small costs of submitting a bid, we show that even an optimal mechanism 
cannot achieve higher efficiency than the worst equilibria in standard auctions. 

Our paper is related to several different strands of literature. As mentioned earlier, 
the importance of market prices in aggregating information relevant for production 
decisions has been recognized since Hayek (1945). Despite this, most of the work on 
information aggregation in both financial theory and in auction theory has been done 
in endowment economies. A prominent exception is the relatively recent “feed back” 
literature which studies the link between the informativeness of secondary financial 
markets (such as stock markets) and real decisions by firms or governments (for a 
summary of this literature, see Bond, Edmans and Goldstein (2012)). Maybe closest to 
our work in this literature are the papers by Bond and Goldstein (2014) and Goldstein, 
Ozdenoren, Yuan (2011) who show that when an economic actor takes real decisions 
based on the information in asset prices, they affect the incentives to trade on this 
information in an endogenous way that may destroy the informational efficiency of the 
market, and Edmans, Goldstein, Jiang (2014), who show that negative news will be 
less likely to be incorporated in stock prices because firms may act on this information 
by cancelling negative NPV projects, rendering short positions less valuable. None 
of these papers analyze the effect of market size on informativeness, which is one of 
our key objectives. Furthermore, our paper shows that informational and allocational 
efficiency can fail even in the primary market for capital, where investors directly bear 
the consequences of their actions. 

At a more general level, our paper is related to the literature on the social value and 
optimal size of financial markets. Several papers have argued that gains associated with 
purely speculative trading or rent-seeking activities can attract too many entrants into 
financial markets (see, e.g., Murphy, Shleifer and Vishny (1991) and Bolton, Santos 
and Scheinkman (2016)). We provide an alternative mechanism in which each market 
participant possesses valuable information for guiding real production, but competition 
inhibits the effective use of information. 
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We are not the first to study auction-like settings of project financing. Broecker 
(1990) derives a credit market equilibrium which is a special case of our model when 
first-price auctions are used, signals are binary, and banks who provide financing do 
not have the option to cancel a project after an offer is accepted. Broecker (1990) 
does not study information aggregation and surplus specifically and does not consider 
the effect of reducing the number of bidders, releasing information, revealing bids, or 
allowing bidders to endogenously decide on the investment after the auction is over. 

A few other papers also study auction settings where some decision has to be made 
about how to use an asset up for sale. Atakan and Ekmekci (2014) consider a multi- 
unit, uniform-price auction where the value of each unit depends on the action taken 
by the winner of that unit. The values under different actions are negatively correlated, 
which leads value functions to be non-monotonic in signals. They show that this non- 
monotonicity results in failure of information aggregation in large auctions. Neither 
the assumption of non-monotonicity nor the assumption that multiple winners take 
different actions, which are key to their results, are natural in the project financing 
setting we are interested in. Atakan and Ekmekci (2014) also do not consider the effect 
of changing market size, which is our main focus. 

Cong (2014) and Board (2007) study private-value models of auctioning options, 
and focus on the efficiency of exercise decisions by winning bidders. Because informa- 
tion aggregation is unimportant in pure private value settings, their models are silent 
on the informational properties of auctions that are central to our analysis. 

A few papers in auction theory also show that restricting the number of bidders can 
be optimal using other deviations from the standard symmetric model of Milgrom and 
Weber (1982). Bulow and Klemperer (2002) show that this can happen in an auction 
in which bidder valuations depend on a common value component that is the sum of 
the independently drawn bidder signals and a (very small) private value component. 
Samuelson (1985) and Levin and Smith (1994) show that it may be optimal to restrict 
entry in auctions where bidders incur a participation cost. 

The rest of the paper is organized as follows. Section 1 describes the model setup. 
Section 2 contains our main analysis of equilibrium when investors compete to finance a 
project. A main difference relative to the standard auction setting is that the introduc- 
tion of a real investment decision leads to multiple equilibria ranked by efficiency, and 
we show how some simple robustness criteria help in ruling out fragile equilibria. In 
Section 3, we analyze the effect of market size on social surplus and the entrepreneur’s 
revenues. Section 4 shows how efficiency may be improved by changing the timing of 
capital raising, running multi-unit auctions, allowing collusion, and introducing short- 
ing markets. Section 5 outlines criteria under which informational black holes exist in 
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optimal mechanisms.  Section 6 provides further robustness discussions, and Section 7 
concludes. 

 
 
 

1. Model setup 
 
 

We consider a penniless entrepreneur seeking outside financing for a new project 
from a set of N  potential investors indexed by i ∈ {1, ..., N }.2    All agents are risk 
neutral. The project requires an investment of I and yields a random cash flow V if 
started. The project can be of two types: good (G) and bad (B), where a good project 
is positive net present value and a bad project is negative net present value: 

 

E(V − I|G) > 0 > E(V − I|B). (1) 
 
 

The assumption of two types of projects is for convenience only—all of our results 
generalize to cases with more types or a continuum of types. The investment amount 
I can also be interpreted more broadly as an opportunity cost foregone if the project is 
started. For example, it can represent the outside option of the entrepreneur in another 
employment. Alternatively, V can represent the cash flows of an existing asset in a 
particular use, while I is the value in an alternative use. What is important is that V 
is the uncertain variable about which the market has dispersed information, while I is 
either a known quantity or a random variable about which all available information is 
public. 

No one knows the type of the project, but investors each get a noisy private signal 
Si  ∈ [0, 1] about project type.  Signals are drawn independently from a distribution 
with cumulative distribution function FG(s) and density fG(s) if the type is good, and 
from a distribution with cdf FB (s) and density fB (s) if the type is bad. We make the 
following assumption about the signal distribution: 

 
ASSUMPTION 1:  Signals satisfy the monotone likelihood ratio property (MLRP): 

 
fG(s) fG(st) 

∀s > st, fB (s) 
≥ 

fB 
. 

(st) 
 

Both fG(s) and fB (s) are continuously differentiable at s = 1, fB (1) > 0, and λ ≡ 
fG(1)/fB (1) > 1. 

 
2Although we assume the entrepreneur has zero wealth to invest in the project, this is not essential 

for our results. Our results generalize to situations where the entrepreneur has either wealth or other 
assets to pledge against the project. 
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Without loss of generality, we will also assume that fG(s) and fB (s) are left- 
continuous and have right limits everywhere. Assumption 1 ensures that higher signals 
are at least weakly better news than lower signals. Assuming that densities are con- 
tinuously differentiable at the top of the signal distribution simplifies our proofs, but 
is not essential for our results. 

We denote the likelihood ratio at the top of the distribution by λ, a quantity that 
will be important in our asymptotic analysis.  Assuming λ > 1 ensures that MLRP 

is strict over a set of non-zero measure, which in turn implies that as N  → ∞, an 
observer of all signals would learn the true type with probability one. Therefore, for 
large enough N , the aggregate market information is valuable for making the right 
investment decision. 

To focus our analysis on the most interesting case, we make the stronger assumption 
that the signal of a single investor can take on values such that the project can be either 
negative or positive NPV: 

ASSUMPTION 2: E(V − I|Si = 0) < 0 < E(V − I|Si = 1). 
 

Assumption 2 is not essential for our results, what matters is that the investment 
decision is non-trivial conditional on observing a sufficient number of signals, which is 
already guaranteed by Assumption 1. 

Although the signal space is continuous with no probability mass points, it can be 
used to represent discrete signals by letting the likelihood ratio fG(s)/fB (s) follow a 
step-function which jumps up at a finite set of points. All signals within an interval 
over which the likelihood ratio is constant are informationally equivalent and represent 
the same underlying discrete signal. Following Pesendorfer and Swinkels (1997), we 
call such intervals “equivalence intervals.” Representing discrete signals as equivalence 
intervals is a convenient way of making strategies pure when they are mixed in the 
discrete space: one can think of a continuous signal s as a combination of a discrete 
signal and a random draw from the equivalence interval, where a different draw can 
result in a different strategy even when the underlying discrete signal is the same. 

Investors compete with each other to finance the project by submitting offers to 
the entrepreneur. We assume that the entrepreneur can only accept financing from 
a single investor. The assumption that outside ownership has to be concentrated is 
realistic in many corporate finance contexts, where a dispersed ownership structure can 
lead to free-riding and coordination problems that impede the running of the firm (see, 
for example, Myers (1977), Grossman and Hart (1980), Shleifer and Vishny (1986), 
and Gertner and Scharfstein (1991). In Section 4.2, we show that if the assumption of 
concentrated ownership is relaxed, the efficiency of the market can be improved. 
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We model competition as happening through one of the standard single-unit auc- 
tion formats (first-price, second-price, and ascending-price auctions). These market 
structures approximate most real-world selling procedures, including informal settings 
where investors approach the entrepreneur with unsolicited offers.3 

Our results hold both for cash auctions, in which investors submit cash bids for full 
ownership of the right to start the project, and security auctions, in which investors 
finance the project in exchange for a security backed by the cash flow V of the project. 
One example of a security auction is a setting where banks offer loans at interest rate 
Ri and the bank which submits the lowest interest rate gets to finance the project, 
while another is a setting where venture capitalists offer to finance the project in 
exchange for an equity stake. Although the real-world applications we have in mind are 
usually security auctions, we choose to focus on cash auctions to make the exposition as 
transparent as possible and to simplify comparison with the standard auction literature. 
We show that all results hold for security auctions in Section 6.1. 

In a first-price cash auction, investors submit sealed cash bids for ownership of the 
project rights. The highest bidder wins the auction and pays his bid to the seller. He 
then gets to see all the bids submitted by other investor, whereafter he decides whether 
to start the project or not. A second-price auction is the same except that the winning 
investor pays the bid of the runner-up. 

An ascending-price auction proceeds as follows. Bidding starts at 0 and the price 
is gradually increased until all but one investor remains. All bidders can see at which 
price other bidders drop out, and a bidder who has dropped out cannot reenter the 
auction. The last remaining investor wins the auction and pays the price at which the 
runner-up dropped out, and then decides whether to invest or not.4 

 
 
2. Equilibrium bidding 

 
We begin this section by focussing on a specific equilibrium of the second-price 

auction to build intuition.  We then show that the introduction of a real investment 
3In a companion paper (Axelson and Makarov (2016)), we show that most of our results are robust 

to modelling competition as a sequential search market in which an entrepreneur visits investors in 
sequence. 

4The ascending-price auction is of special importance for two reasons.  First, it is probably the 
best approximation to most real-world settings, be it formal auction procedures or informal rounds 
of bidding where bidders have the chance to react to competitors. Second, it has been shown to have 
the best information aggregation properties  of  all  standard  auctions  (including  multi-unit  auctions; 
see Kremer (2002) and Han and Shum (2004)), as well as generating the highest revenues to the 
seller (see Milgrom and Weber (1982) for revenue comparisons between standard auction formats and 
Lopomo (2000) for a mechanism-design approach.) Thus, our results about the failure of information 
aggregation are the starkest for the ascending-price auction. 
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decision in an otherwise standard auction setting leads to the existence of multiple 
equilibria, and introduce two natural robustness criteria to eliminate fragile equilib- 
ria. In Section 2.3, we show how our results extend to first-price and ascending-price 
auctions. 

As a benchmark, we review the standard auction theory setting where there is no 
investment decision to be made. For this purpose, assume that the investment into the 
project has already been made by the entrepreneur, whereafter the project is sold in 
an auction. Thus, the auction is of an asset that pays a random amount V . 

We denote the order statistics of the N signals received by investors by Y1,N , ..., YN,N 

so that Y1,N represents the highest signal, Y2,N represents the second-highest signal, et 
cetera. As shown in Milgrom (1981), in the second price auction it is an equilibrium 
for a bidder with signal s to bid b(s) given by: 

 
b(s) = E(V |Y1,N = Y2,N = s), 

 
That is, a bidder bids his value of the asset conditional on just marginally winning 

the auction, which happens when he has the highest signal (Y1,N = s) and the second 
highest signal is the same (Y2,N = s). Deviating by bidding higher would make a bidder 
win in situations when the price is higher than his valuation conditional on winning; 
while deviating by bidding lower would make a bidder lose in situations when the price 
would have been lower than his valuation.5 

Figure 1 shows the equilibrium bidding function in the standard setting. Bids are 
strictly increasing in the signal of a bidder, which implies that anyone who observes 
the history of bids ex post can recover all the information available in the market. This 
is also true in first-price and ascending-price auctions. Thus, the auction generates all 
relevant information possessed by the bidders about project cash flows. 

We now turn to our setting in which after winning, an investor has to decide whether 
to invest I and start the project or not. Thus, unlike in the standard setting, infor- 
mation learnt in the auction has real value. Proposition 1 describes a particularly 
transparent equilibrium, in which bidders simply lower their bids by I relative to the 
standard setting to reflect the investment amount, and cap their bids at zero to reflect 
the option of not investing: 

 
PROPOSITION 1: In the second-price auction, there is an equilibrium where bidders 
bid according to 

b(s) = max(E(V − I|Y1,N = Y2,N = s), 0). 
 

5 The fact that bids are revealed to the winner after the auction has no impact on bidding strategies, 
since this information cannot be used for anything ex post in the standard setting. 
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Bidders with Si ≤ sN  bid zero, where sN  is defined as 
 

sN = sup s : E(V − I|Y1,N = Y2,N = s)) ≤ 0. (2) 
 
 
The winner invests in the project if Y2,N > sN  or if his own signal is sufficiently high, 
and otherwise does not invest. 

 
We postpone the proof until Proposition 2, which considers a more general case. 

Figure 2 shows the equilibrium bidding function relative to the standard setting. In- 
vestors with signals below the threshold sN bid zero and do not invest if they win the 
auction. To see why, suppose a bidder with a signal equal to the threshold sN expects 
all other bidders to follow the strategy in Proposition 1. If he wins with a bid of zero, 
all he learns from observing other bids (which are all zero) is that all other bidders 
have signals below sN . By the definition of sN , his updated NPV of the project is then 
negative. Therefore, he does not invest, which justifies his bid of zero.6 

Investors with signals above sN submit strictly positive bids which are strictly 
increasing in their signal. If such an investor wins and the second highest bid is also 
strictly positive, the updated NPV of the project is positive by the definition of sN , 
so the winner will invest. If all other bids are zero, the winner may or may not invest 
depending on how high his own signal is. Hence, investors with signals above sN expect 
to sometimes win when the project is positive NPV, which justifies their positive bids. 
Bids are strictly increasing since investors with higher signals attach strictly higher 
NPV to the project. 

Relative to the standard setting, only signals above sN can be recovered from ob- 
serving bids. Signals below the threshold sN cannot be recovered, since all bids are 
zero. We therefore call the signal range [0, sN ] the informational black hole, and the 
threshold sN the black-out level. 

The existence of the informational black hole leads to inefficient investment behavior 
relative to the situation where all signals are observed because a winner will assume 
that all bidders who bid zero had “average” signals. In particular, when signals in the 
black hole are close to the black-out level, the project will often not be undertaken even 
though it is positive NPV, while if signals in the black hole are very pessimistic the 
project will often be undertaken even though it is negative NPV. This loss of efficiency 
leads to a reduced surplus, and hence lower expected revenues to the entrepreneur 
relative to the first best. The magnitude of investment inefficiencies is determined 
purely by the size of the informational black hole and otherwise does not depend on 

6We allow for the possibility of negative bids, but because investors always have the option to 
abandon the project they never submit negative bids in equilibrium. 
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i=1 

 

the particular shape of the bidding function, as long as bids outside of the informational 
black hole are strictly increasing. We use this fact below to extent our results to other 
auction formats. 

 
 
2.1. Strategic complementarities and multiple equilibria 

 
Because the size of the informational black hole affects the efficiency of investment 

decisions, there are strategic complementarities among investors. When an investor 
expects others to bid zero over a large signal interval so that the informational black 
hole is larger, he expects surplus from the auction to be lower because of the lost 
information, which justifies bidding lower and in particular bidding zero for higher 
signal realizations. Hence, the expectation of a larger informational black hole can 
be self-fulfilling. We next show that this feedback loop can lead to a continuum of 
equilibria characterized by different sizes of the informational black hole. 

Proposition 2 establishes an upper and a lower bound on the equilibrium black-out 
level and shows that any black-out level in between can be supported in equilibrium: 

 
PROPOSITION 2:  Define the threshold sN   as the highest signal such that 

 

E[V − I|Y1,N =, . . . , = YN,N = sN ] ≤ 0, (3) 
 
 
and the threshold sN   as the highest signal such that 

 

E(V − I|Y1,N  = sN ) ≤ 0. (4) 
 

For any ŝ ∈ [sN , sN ], there is a symmetric monotone equilibrium in the second-price 

auction with black-out level ŝ, in which a bidder with a signal s bids 
 

b(s; ŝ) = E [max (E[V − I|S>ŝ], 0) |Y1,N = Y2,N = s] , (5) 
 
 
where S>ŝ is the signal vector of investors censored below ŝ: 

 
S>ŝ ≡ {max(Si, ŝ)}N  . 

 
There is no symmetric monotone equilibrium with a black-out level outside this range. 

 
 
Proof. The upper bound sN on feasible black-out levels is defined such that an investor 
who learns only that he has the top signal will invest if and only if his signal is above sN . 
To see why this is an upper bound, suppose to the contrary that there is an equilibrium 
in which a bidder with a signal slightly above sN  is supposed to bid zero.  If such a 
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bidder wins the auction, his updated NPV of the project is strictly positive from the 
definition of sN , so he makes strictly positive profits when winning. By an arbitrarily 
small increase of his bid, he is guaranteed to receive this profit without affecting the 
price he pays, a profitable deviation. 

The lower bound sN on feasible black-out levels is defined such that the project just 
breaks even conditional on all investors having this signal. Suppose to the contrary 
that there is an equilibrium where a bidder with a signal s < sN bids a strictly positive 
amount. When such a bidder wins the auction in a monotone equilibrium, other bidders 
have signals weakly below his. By the definition of sN , the project is therefore always 
negative NPV when such a bidder wins, which is inconsistent with a strictly positive 
bid. 

We next show that we can support any black-out level ŝ ∈ [sN , sN ] in equilibrium. 
An investor who expects the black-out level to be ŝ will assume that if he wins, he will 
be able to recover all signals above the black-out level when making his investment 
decision, which is equivalent to observing the censored vector of signals S>ŝ defined 
in the proposition. Since a winner will invest only if the NPV is positive conditional 
on observing S>ŝ, this is an auction of an option to invest which has random value 
max (E[V − I|S>ŝ], 0).  The equilibrium bidding function b(s; ŝ) then takes the stan- 
dard form derived in Milgrom (1981): Investors bid their value of the project rights 
conditional on just marginally winning. The bidding function (5) will indeed constitute 
an equilibrium in our setting if it is consistent with the belief that the black-out level 

is ŝ, that is, if b(s; ŝ) is zero for s ≤ ŝ and is strictly positive and increasing for s > ŝ. 
Notice that investors with signals below the black-out level ŝ learn only that all signals 
are in the informational black hole when they win, which results in zero option value 

of the project for any ŝ ≤ sN  . Therefore, it is optimal for them to bid zero. To prove 
that b(s; ŝ) is strictly positive for s > ŝ notice that if a bidder with signal above the 
the black-out level ŝ ≥ sN wins the auction then there is a positive probability that all 
other bidders have their signals in the interval [sN , ŝ], which results in positive option 
value, and therefore, a positive bid. The proof that b(s; ŝ) is strictly increasing for 
s > ŝ is the same as in Milgrom (1981). Q.E.D. 

 

The feedback effect from the destruction of information to the value of the option 
to invest allows the black-out level to take any value in the range [sN , sN ]. The least 
efficient equilibrium is the one with the highest black-out level sN . In this equilibrium, 
only information in the highest signal affects the investment decision and no other 
information can be used.  The equilibrium in Proposition 1 with black-out level sN 

is more efficient because the top two signals can affect the investment decision. Fi- 
nally, the equilibrium with the lowest black-out level sN  is the most efficient because 
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investment can be conditioned on the largest set of information.7 We next show that 
equilibria with black-out levels below sN are very fragile, so that the equilibrium in 
Proposition 1 is in fact the most efficient robust equilibrium. 

 
 
2.2. Robust equilibria 

 
In this section, we introduce two robustness criteria. The first one requires that an 

equilibrium is a limit of equilibria in auctions where bids have to be made in increments 
of some δ > 0 as we let δ go to zero. Since all real-world markets have discrete price 
grids we view this as a natural requirement. We call such an equilibrium δ-bid robust. 

Our second robustness criterion requires that an equilibrium is a limit of equilibria 
in auctions where bidders have to incur some cost ε > 0 for submitting a bid as we let 
ε go to zero. We allow bidders to not submit a bid to avoid this cost. We call such an 
equilibrium ε-cost robust. 

The equilibria in the standard setting in all auction formats are both δ-bid and 
ε-cost robust. In our setting, Proposition 3 shows that the more efficient equilibria 
with black-out levels below sN are not δ-bid robust, and that equilibria with black-out 
levels below sN  are not ε-cost robust. 

 
PROPOSITION 3: There is no δ-bid robust symmetric monotone equilibrium in the 
second-price auction with black-out level below sN . There is no ε-cost robust symmetric 
monotone equilibrium in the second-price auction with black-out level below sN . 

 
Proof. See the Appendix. 

 
 

The formal proof is in the appendix. Here we provide a sketch of the proof. Consider 
an equilibrium with a black-out level ŝ < sN , and an investor with a signal s very 
slightly above ŝ who submits the minimal bid δ. If he wins the auction at price zero, 
so that all other bids are in the informational black hole, he concludes that the project 
is negative NPV and he does not invest. If he wins when only one other bidder bids 
δ, the updated NPV is also negative by the definition of sN . Hence, he loses the price 
δ. The only circumstance in which the investor can make profits from investing is 
when there are at least two other bidders who bid δ. But for small δ, as we show 
in the formal proof, the probability of tying at δ with more than one bidder becomes 
negligible relative to the loss event of tying with just one bidder. Hence the investor 
cannot break even with a non-zero bid, which contradicts that the black-out level is 
ŝ < sN . 

7Note that even this equilibrium has inefficiencies relative to the first best where all signals are 
observed because the black-out level sN  is strictly positive. 
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Note that this argument does not extend to equilibria with black-out levels ŝ ≥ sN 

because by the definition of sN the project is positive NPV when a winner outside of the 
black hole ties with one other bidder. However, if bidders have to incur some arbitrarily 
small cost for submitting a bid (but can stay out of the auction for free), a parallel 
argument shows that the only viable equilibrium black-out level is the upper bound sN 

even when bids do not need to be in discrete increments. To see this, consider again an 
investor very slightly above a candidate black-out level ŝ < sN . From the definition of 
sN , such an investor can only make profits if at least one other bidder submits a lower 
but strictly positive bid. But the probability of this event becomes arbitrarily small for 
investors arbitrarily close to the black-out level, so that they cannot recoup the cost of 
submitting a bid. Therefore, the equilibrium unravels so that the only viable threshold 
is sN . 

When we analyze how efficiency varies with the size of the market in Section 3, we 
will restrict attention to robust equilibria. Before turning to that analysis, we show 
how our results extend to other standard auction formats. 

 
 
2.3. Ascending and First-Price Auctions 

 
We now extend our results to the ascending-price and first-price auction formats. 

The logic for the first-price auction is the same as for the second-price auction. Given a 
candidate black-out level ŝ we can view our setting as an auction of an object with value 

max (E[V − I|S>ŝ], 0).  This is the value of the option to do the project for someone 
who expects to observe all signals above the black-out level. In the first-price auction, 
the winner can infer all signals above the black-out level by observing bids ex post. 

Constructing an equilibrium then follows the same steps as in the standard setting 
of Milgrom and Weber (1982), with the extra condition that the candidate black-out 
level has to be consistent with the equilibrium bidding function. As in Milgrom and 
Weber (1982), an equilibrium bid in the first price auction is an average of the bids 
b(s; ŝ) investors with lower signals would have submitted in the second-price auction: 

 

 
bI (s; ŝ) = 

   s 

b(st; ŝ)dL(st|s), (6) 
0 

where b(st; ŝ) is the bidding function (5) from the second-price auction specified in 
Proposition 2, and / 

sl h(st|s) 
\

 
L(st|s) = exp dt . 

s H(st|s) 
 

The function H(·|s) is the distribution of Y2,N conditional on Y1,N = s and h(·|s) is the 
associated conditional density function. 
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Note that since b(st; ŝ) is strictly positive if and only if st > ŝ, the same is true for 
bI (s), so that the bidding function is consistent with the black-out level ŝ. Following 
the same steps as the ones in the proof of Theorem 14 of Milgrom and Weber (1982) 
one can then show that bidding strategies bI (s; ŝ) form an equilibrium in the first-price 

auction for any black-out level ŝ ∈ [sN , sN ]. 
The equilibria of the first-price auction turn out to be even more fragile than for 

the second-price auction. This is because a winner has to pay his own bid, so that he 
incurs a loss whenever he does not invest. Following similar steps as for the second- 
price auction, one can show that only the equilibrium with the highest black-out level 
sN  is δ-bid and ε-cost robust.8 

Next consider the ascending-price auction. For black-out levels in the interval ŝ ∈ 
[sN , sN ], exactly the same arguments as for the first-price and second-price auctions can 
be used to construct equilibria as in Milgrom and Weber (1982), where the object for 
sale has value max (E[V − I|S>ŝ], 0). If the price goes above zero, which happens only 
if at least two bidders stay in, the project is always positive NPV from the definition 
of sN , so that the auction is completely standard. 

However, for black-out levels below sN  we have to take special care in defining how 
bidders can react when other bidders drop out as the price increases above zero. When 
multiple bidders drop out at price zero, other bidders who otherwise would stay in the 
auction may want to drop out immediately as well. Modelling this requires either that 
we allow players to condition their actions on the simultaneous actions of other players, 
or that bidders can drop out just as the price goes above zero. The first alternative 
is logically inconsistent, while the second is not well defined when price is increased 
continuously. For this reason we model price as increasing in discrete increments, and 
study equilibria in the limit as the size of the increments go to zero. Proposition 4 
shows that the feasible equilibrium black-out levels are then exactly the same as the 
ones we derived for the robust second-price auctions in Proposition 3. 

 
PROPOSITION 4: There is no δ-bid robust symmetric monotone equilibrium in the 
ascending-price auction with black-out level below sN . There is no ε-cost robust sym- 
metric monotone equilibrium in the ascending-price auction with black-out level below 
sN . 

 
Proof. See the Appendix. 

 
 

The argument that the black-out level cannot be below sN with discrete bids follows 
a similar logic as for the second-price auction. Suppose to the contrary that there is an 

 
8The formal proof is in the online appendix. 
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equilibrium in which the black-out level is some signal ŝ < sN , so that an investor with 
a signal just slightly above ŝ stays in the auction until the price is slightly positive. 
This investor can win under three circumstances. First, he can win if all other bidders 
drop out at zero, in which case it is optimal not to start the project, which involves zero 
profits because the price is also zero. Second, he can win if only one other bidder stays 
in the auction and this bidder has a signal below sN , in which case it is also optimal 
not to start the project. Since the price is positive, this involves some losses. Third, 
he can win if more than two other bidders stays at positive prices, which could imply 
that the project is positive NPV. But in this scenario he only wins if other bidders 
have lower signals than him, a very small probability event. The expected profits will 
therefore be negative. 

The argument for why an arbitrarily small cost ε of submitting a bid leads to the 
maximum black-out level is the same as for the second-price auction. For any candidate 
lower black-out level, an investor just above the threshold would be unable to recoup 
his cost because the probability of winning when the project is positive NPV is too 
small. 

The results of this section and Section 2.2 above show that the most efficient black- 
out level in robust equilibria is either sN or sN , depending on what robustness criterion 
and what auction format we consider. The social surplus created is independent of the 
auction format and depends only on the black-out level. We now turn to the question 
of how surplus in robust equilibria changes with the size of the market. 

 
 
3. Market size and informational efficiency 

 
We now study the effect of market size on informational efficiency. We first show 

that even as the market grows infinitely large so that aggregate information is perfect, 
substantial investment mistakes still occur. We then show that small markets can create 
both higher social surplus and higher entrepreneurial revenues than large markets. 
Finally, we endogenize the size of the market by assuming that investors have some 
cost of acquiring information and show that inefficiently large financial markets can 
occur in equilibrium. 

 
 
3.1. Surplus in large markets 

 
Figure 3 shows the effect of increasing the market size on bidding functions in our 

setting relative to the standard setting. Panel A shows bidding functions for a smaller 
market and panel B for a larger market. In the standard setting, bids conditional on a 
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given signal decrease with the number of bidders because the winner’s curse becomes 
stronger: Bidders condition on winning, and having the highest signal in a large sample 
is worse information than having the highest signal in a small sample. Nevertheless, all 
information is still recovered from observing bids, since the bidding function is strictly 
increasing. In the limit, as the market grows infinitely large, an observer of all bids in 
the standard setting will therefore learn the quality of the asset perfectly. 

In our setting, as the market grows larger, the stronger winner’s curse leads to 
a larger informational black hole. Proposition 5 below shows that the informational 
black hole approaches the whole range of signals as N goes to infinity, and characterizes 
limiting  investment behavior: 

 
PROPOSITION 5: The black-out levels sN and sN go to 1 with N : 

 

  a1 1 
 

  
1 
    a2 

 
1 

 

  
1 
  

sN = 1 − 
B 

+ o 
(1) N N , sN = 1 − 

B 
+ o , 

(1) N N 
 

where a1 and a2 are strictly positive constants with a2 > a1. 
Both over- and under-investment happens with positive probability as N goes to 

infinity.  For equilibria with black-out level sN : 
 
 
 

lim 
N →∞ 

lim 
N →∞ 

Pr(Investment |B) = 1 − e−a2 (1 + a2), 

Pr(No Investment |G) = e−λa2 (1 + λa2). 
 
 
 

For equilibria with black-out level sN : 
 
 
 

lim 
N →∞ 

lim 
N →∞ 

Pr(Investment|B) = 1 − e−a1 , 

Pr(No Investment |G) = e−λa1 . 
 
 
 
Proof: See the Appendix. 

 
 

Because of the lost information, large investment mistakes persist in the limit as 
long as the likelihood ratio λ at the top of the signal distribution is finite. In the 
most efficient robust equilibrium with black-out level sN , the informational black hole 
adjusts so that at most the top two signals are used for investment decisions. In the 
least efficient equilibrium with black-out level sN , only the top signal is used. Hence, the 
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first-best is never implemented unless top signals are infinitely informative. It is easy 
to verify that the least efficient equilibrium with black-out level sN has sizeably larger 
probability of both over- and under-investment than the most efficient equilibrium also 
in the limit. 

 
 
3.2. Smaller versus larger markets 

 
We next show that not only is the first best not achieved in the limit, but surplus 

can actually go down as the market grows. Since investment depends entirely on the 
realization of either the highest or the second highest signal among bidders, increasing 
the market size is beneficial only if top signals become more informative as the “sample 
size” of signals grows. 

 
PROPOSITION 6: If fG(s) / fB (s)

 
 
is a decreasing (increasing) function at s = 1 then 

FG(s) FB (s) 
there is an N such that surplus decreases (increases) with N > N for equilibrium 
black-out levels sN and sN in all auction formats. 

 
Proof: See the Appendix. 

 
The ratio fG(s) / fB (s)

 
 

is a conditional likelihood ratio, which measures the informa- 
FG(s) FB (s) 

tiveness of the top signal s if signals are restricted to be drawn from the interval [0, s]. 
If this ratio decreases with s, it means that not much of the information in the signal 
distribution is concentrated at the top end. Adding bidders then reduces efficiency, 
since it shifts the distribution of the pivotal order statistics Y1,N and Y2,N towards the 
less informative part of the distribution. 

We now give three examples of signal distributions, one in which efficiency decreases 
with market size, one where it increases, and one where market size is irrelevant for 
efficiency. 

 

Example 1: One example where the market becomes less efficient as the size increases 
is when information is coarse such that signals can take on only a finite number of 
discrete values. In our continuous representation, a discrete signal corresponds to an 

interval (a, b] such that the likelihood ratio fG(s)/fB (s)) is flat for s ∈ (a, b]. At the top 
of the signal distribution, the likelihood ratio is then a constant λ over some interval 
(a, 1], so that 

fG(s) / fB (s) FB (s) = λ , 
FG(s) FB (s) FG(s) 

 

which decreases in s. Intuitively, the highest signal in a very large market will almost 
surely be in the highest interval regardless of the quality of the project. Hence, the 
realization of the top signal is not particularly informative. In a smaller market, on 
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the other hand, observing that the top signal is in the highest interval makes it more 
likely that the project is good rather than bad. 

Figure 4 plots surplus as a function of the market size for binary signals. We assume 
that if the project is good, investors get only high signals, while if the project is bad, 
they are equally likely to get high and low signals. This binary signal structure can be 

represented by setting fB (s) = 1 for all s ∈ [0, 1], and setting fG(s) = 0 for s ∈ [0, 1/2] 
and fG(s) = 2 for s > 1/2. We provide the full calculations for this example in the 
appendix. 

In line with the results of Proposition 6 we can see in Figure 4 that in the least 
efficient equilibrium social surplus declines with the market size for all N —surplus is 
maximized with a single investor. In the most efficient robust equilibrium surplus is 
maximized with two investors and then declines with market size. 

 
Example 2: Milgrom (1981) shows that a necessary and sufficient condition for the 
price in a second-price auction to converge to the true value of the asset as the number 
of bidders goes to infinity is that for any two values v and vt  of the asset with vt > v, 

f (s|v) 
inf 

s f (s|vt) 
= 0, 

 

where f (s|v) denotes the density of the signal distribution conditional on the value v. 
For example, this condition is satisfied if signals are normally distributed around the 
true value of the asset.9 In our setting, this condition can only hold if the likelihood 
ratio fG(s)/fB (s) goes to infinity at the top of the signal distribution. When this is 
the case, not only is surplus increasing in the size of the market, but all investment 
mistakes are eliminated in the limit. As Pesendorfer and Swinkels (1997) note, this 
condition is very strong—it requires that for any value v, there is a signal s such that 
an observer of that signal can rule out values below v. 

 
Example 3: If fG(s) = asa−1 and fB (s) = bsb−1 with a > b, the ratio in Proposition 
6 is constant, so the number of bidders is irrelevant for surplus.10 

 
 

We next consider entrepreneurial revenues as a function of market size. If the 
entrepreneur has the power to pick the number of bidders, he will do so in order to 
maximize revenues rather than surplus. The private optimum may differ from the 
social optimum if the entrepreneur captures only part of the surplus. In our setting, 
the split of the surplus between the entrepreneur and investors has similar comparative 

9The normal distribution has unbounded support, but can be represented on a unit interval by an 
appropriate change of variables. 

10This specification is the exponential distribution transformed to a bounded support. 
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statics with respect to the number of bidders as in the standard auction theory setting 
of Milgrom and Weber (1982), where surplus itself is fixed. In particular, the fraction 
of surplus captured by the entrepreneur goes to one with N in all auction formats. 
Hence, if surplus increases with N , there is no conflict between the private and social 
optimum—the entrepreneur will prefer the maximal number of bidders. 

The non-trivial case is when surplus decreases with N . Will the entrepreneur find 
it optimal to restrict the number of bidders even though this may entail surrendering a 
higher fraction of the surplus to investors? Our answer is a qualified “Yes”. The next 
proposition gives a sufficient condition for when this is the case. 

 
PROPOSITION 7: Suppose that there exists an ε > 0 such that fG(s)/fB (s) = λ for 
s ∈ [1 − ε, 1] . Then, there exists some N such that revenue is strictly decreasing in N 
for N ≥ N . 

 

Proof: We know that there exists some N such that sN ≥ 1 − ε for all N ≥ N . Over 
this interval, fG(s) / fB (s)

 is strictly decreasing, and so from Proposition 6, surplus is 
FG(s) FB (s) 

decreasing in N for N > N . All bidders must make the same expected profits since 
they are in the same equivalence interval. Since some bidders do not participate, the 
expected bidder profits are zero, and hence revenues coincide with surplus. Q.E.D. 

 
To understand this result, note that surplus decreases with N when the top of the 

signal distribution is relatively flat, so that investors who draw high signals are infor- 
mationally close to each other. But when this is the case, investors also capture little 
informational rent even for moderate levels of N . In other words, increasing N beyond 
a certain level has little effect on the split of revenues but a large negative effect on sur- 
plus. As an illustration, in the example of Figure 4 where investors get binary signals, 
bidders earn exactly zero surplus whenever N > 1 because of competition between 
informationally identical bidders from the top equivalence interval. Hence, whenever 
surplus is maximized at some market size N > 1, the social optimum coincides with the 
entrepreneur’s private optimum. For the least efficient equilibrium, the social optimum 
is to have one investor. For this case the entrepreneur may prefer inviting an extra 
bidder despite the loss of surplus in order to increase competition.11 

The conditions in Proposition 7 are sufficient but not necessary for the entrepreneur 
to prefer a smaller market. As Example 4 in the next section shows, the entrepreneur 
will prefer a smaller market whenever the likelihood ratio does not increase too steeply 
at the top of the signal distribution. 

11Even for N = 1, the entrepreneur can capture the full surplus if he has enough commitment power 
to set an appropriate reserve price. 
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Our results provide one explanation for why so many capital raising situations 
involve negotiations with a restricted set of investors rather than an auction open to 
everyone. 

 
 
3.3. Can financial markets be too big? 

 
In the previous section we established that small markets may be preferable both 

from the entrepreneur’s and from a social surplus perspective. In this section we show 
that the equilibrium size of the market can be too large relative to both the social and 
the entrepreneurial optimum, and can be Pareto inferior relative to a market with one 
less investor. 

If the entrepreneur can commit to seek financing from a restricted set of investors, 
the market can obviously never be larger than what is optimal for the entrepreneur. 
However, restricting the set of potential investors may be difficult in practice because it 
is ex post optimal for the entrepreneur to consider any offer he receives, even if the offer 
is unsolicited. In this section we therefore assume no commitment so that investors 
can enter any auction. 

So far, we have assumed that investors observe signals for free to make our results 
on the failure of information aggregation in large markets as striking as possible. In 
order to have a non-trivial equilibrium market size, we now assume that investors face 
some costs of gathering information. 

Assume that each potential investors i has a cost ci of gathering information about 
the project, and that ci is strictly increasing. We focus on the case where fG(s) / fB (s)

 
FG(s) FB (s) 

is a decreasing function around s = 1 so that social surplus (gross of investor costs) 
is maximized at a finite market size.  The socially optimal market size net of costs is 
then even smaller. 

We also assume that MLRP holds strictly, which ensures that investors have strictly 
positive expected profits from participating in the market gross of their information 
gathering cost. We then have the following result: 

 
PROPOSITION 8: Suppose that fG(s) / fB (s)

 
 
is a decreasing function around s = 1 

FG(s) FB (s) 
and that MLRP holds strictly. Then, there is a c > 0 such that if sufficiently many 
investors have costs of gathering information below c, the equilibrium size of the market 
is larger than the socially optimal size. Lowering information gathering costs can lead 
to a decrease in social surplus. 

 
Proof: See the Appendix. 

 

 
The proposition shows that there is no reason to believe that markets will become 
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more efficient as information technology improves. This is in contrast to the predictions 
of Samuelson (1985) and Levin and Smith (1994) who study information costs in an 
otherwise standard auction theory setting. In both papers, the optimal size of the 
market goes to infinity as costs go to zero. 

Proposition 8 shows that there can be too much entry in equilibrium relative to 
the social optimum. The next example shows that both investors and the entrepreneur 
can be better off if entry is restricted. 

Example 4: Suppose that fB (s) ≡ 1 and fG(s) is a truncation to the interval [0, 1] of 

a normal distribution with mean 1 and standard deviation 0.75. The likelihood ratio 
fG(s)/fB (s) is strictly increasing over [0, 1], so MLRP holds strictly. Also, because the 
derivative of the likelihood ratio is zero at s = 1, the ratio fG(s) / fB (s)

 is a decreasing 
FG(s) FB (s) 

function around s = 1. We assume that the net present value for a good project is 
0.75, while a bad project has an NPV of minus one. 

Panel A of Figure 5 shows social surplus gross of investor costs and the expected 
revenues to the entrepreneur as a function of the size of the market. The figure is drawn 
for the most efficient robust equilibrium where the black-out level is sN . Social surplus 
is maximized at a market size of three, while the entrepreneur’s revenues are maximized 
at a market size of four. The entrepreneur prefers a somewhat larger market size than 
what maximizes social surplus because increased competition between investors reduces 
their share of the surplus. 

Panel B shows expected gross profits to investors from participating in the auction 
as a function of market size, as well as a particular specification for the cost ci of 
information gathering for each investor. In equilibrium, investors will enter as long as 
expected profits cover their cost, so that for the specific costs drawn in the figure the 
first 10 investors will enter in equilibrium with investor 10 indifferent between entering 
and staying out. Hence, the equilibrium market size is larger than both the social 
optimum and the entrepreneur’s optimum. 

Now suppose that every investor’s cost was just slightly larger. This would be the 
case if, for example, tax rates on venture capitalist profits are increased slightly. The 
equilibrium market size would drop to 9, which would constitute a Pareto improvement. 
Participating investors would make higher profits because of both reduced competition 
and more efficient investment decisions. The entrepreneur’s revenues would increase 
because the increased surplus from more efficient investment outweighs the loss from 
reduced competition. Finally, the investor who drops out of the market is no worse off 
since he was just breaking even before. 
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4. Strategies for reducing the winner’s curse 
 

The source of inefficiency in our model is the effect the winner’s curse has on the 
participation of pessimistic bidders, an effect that becomes stronger as the market grows 
larger. In this section we discuss a number of strategies that can help to alleviate the 
winner’s curse. First, we show that it may be beneficial to raise capital before important 
information is learnt in order to increase the option value embedded in the project. 
Second, we show that allowing a larger set of investors to co-finance the project helps 
reduce the winner’s curse. Third, in contrast to results for standard auctions, we show 
that allowing bidders to collude ex ante via bidding clubs can also improve efficiency 
and revenues. Finally, we discuss how adding an appropriately designed derivative 
market where investors can bet on project failures might eliminate the informational 
black hole. All these “fixes” rely on alternative trading mechanisms that may not 
always be implementable in practice. In Section 5 we provide a systematic treatment 
of the conditions that lead to informational black holes in optimal mechanisms. 

 
 
4.1. Choosing when to finance and the linkage principle 

 
Suppose that there is some exogenous signal affiliated with the value of the project 

that gets realized either before or after the auction. For example, this could be a 
signal about demand conditions for the products the project is meant to create, or 
any information the entrepreneur might have about the project that can be credibly 
communicated to the bidders. The question we ask is whether it is better to run the 
auction before or after this information is released. 

For standard auctions, where no action is taken, the linkage principle of Milgrom 
and Weber (1982) suggests that it is better to run the auction after all value-relevant 
information is realized in order to lower the informational asymmetry between bidders. 
However, in our setting we have an extra effect: If the signal is revealed after the 
auction but before the investment decision is made, the project has some real option 
value when bids are submitted, and so even bidders with low signals might want to 
participate. This could break the destruction of information. 

We now give an example where the linkage principle fails in our setting. Suppose 
that a public signal SP ∈ {sG, sB } will be released at date t, where Pr(SP = sG|B) = 0 
and Pr(SP  = sG|G) = q, q ∈ (0, 1). Hence, when the public signal is sG, the project 
NPV is positive regardless of the bidders’ signals. 

Suppose first that the entrepreneur runs the auction after the public information 
is released, as the linkage principle prescribes. We now calculate the expected surplus 
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  Pr(G)(1−q)   

 
 

generated by the auction. With probability q Pr(G) the public signal reveals that the 
project is good, so surplus is E(V − I|G). With probability (1 − q) Pr(G) + 1 − Pr(G), 
the public signal is sB and the updated prior on the project being good is Pr(G|sB ) = 

Pr(G)(1−q)+(1−Pr(G)) < Pr(G), in which case the auction generates some surplus W , which 
from Proposition 6 is strictly below the first-best surplus. The expected surplus is then 

 

q Pr(G)E(V − I|G) + ((1 − q) Pr(G) + 1 − Pr(G))W < Pr(G)E(V − I|G). 
 
 

Suppose to the contrary that the entrepreneur runs the auction before the public 
signal is released, and that winners can wait to observe the public signal before they 
make the decision to start the project. In this case, everyone participates in the auction 
and there is no informational black hole. To see this, notice that even for the most 
pessimistic bidders, the option to do the project has some strictly positive value since 
there is always some strictly positive probability that the public signal will reveal the 
project to be good. It is then easy to verify that bids will be strictly positive and 
strictly increasing in signals for all N . As a result, all informational properties of the 
auction are the same as in the standard setting. In particular, ascending-price auctions 
aggregate all information and leads to first-best investment decisions when the market 
grows large, and the same holds for first-price and second-price auction if bids are 
revealed ex post. Furthermore, the expected revenue converges to the expected surplus 
as N goes to infinity. Hence, the seller is better off running the auction before the 
public signal is revealed. 

 

Remark 1: Our exercise in this section compares the effect of running the auction 
before or after some public release of information, rather than asking whether releasing 
information is better than never releasing it at all. In the standard model of Milgrom 
and Weber (1982) this distinction is irrelevant, since ex post releases of information 
have no impact on the expected value of the asset up for sale. If the choice is whether 
to release information before the auction or never, Theorem 18 of Milgrom and Weber 
(1982) can be applied to show that the linkage principle holds for the least efficient 
equilibria. Whether this version of the linkage principle holds for our wider set of 
equilibria is an open question. 

 
Remark 2: The results in this section show that if the decision to start the project 
can be postponed indefinitely and costlessly, and if there is any possibility that the 
project can become positive net present value sometime in the future even for the 
most pessimistic investors, then the informational black hole will be eliminated and 
the auction will properly aggregate information (assuming bids are revealed ex post). 
Hence an important underlying assumption for our results is that the option to start the 
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project has some natural expiration date, or that there are sufficient costs associated 
with keeping the option alive. We believe this to be a natural assumption for most real 
options. 

 
 
4.2. Dispersed  ownership 

 
In the previous sections we assumed that only one investor ends up with a stake 

in the project. In this section we allow for the possibility that K > 1 investors can 
co-finance the project. Allowing for more investors to receive an allocation weakens 
the winner’s curse and hence encourages more investors to submit non-zero bids, which 
has a positive effect on efficiency. Pesendorfer and Swinkels (1997) show that the K- 
unit auction has a unique symmetric monotone equilibrium in the standard setting and 

that the auction fully aggregates information as N → ∞ if and only if K satisfies the 
“double largeness” condition: K → ∞ and N − K → ∞. 

While there are multiple equilibria in our setting, we show that the aggregation 
properties of K-unit auction mirror those of Pesendorfer and Swinkels (1997). In 
particular, inefficiencies persist as long as K is finite, even if the bids are made known 
after the auction and are incorporated in the investment decision. The case of finite 
K seems reasonable in most corporate finance situations. If K is allowed to grow 
proportionately with N , we show that inefficiencies disappear in the limit. 

Specifically, we assume that the K highest bidders who submit nonzero bids share 
the investment costs and the project’s payoff. Each bidder pays the bid submitted by 
the K + 1st highest bidder. If there are less than K bidders who submit nonzero bids 
the project is cancelled. Otherwise the K highest bidders get the right to finance the 
project. In principle, winning bidders may disagree about the decision to start the 
project. When K grows with N we show that for large N all winning bidders agree 
on the investment decision. When K is finite we consider the optimistic scenario in 
which all winning investors share their information with each other and jointly decide 
whether to start the project. 

 
PROPOSITION 9: In the K-unit auction, for any finite K, the  limiting  surplus  is 
strictly lower than the first-best expected surplus. If K/N goes to some constant larger 
than zero and smaller than one, then the expected surplus converges to the first-best 
expected surplus. 

 
Proof: See the Appendix. 

 

 
Our results in this section can be used to explain why firms explicitly ration the 

allocation of shares in initial public offerings so that a larger number of investors receive 
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an allocation. It can also explain why entrepreneurs often allow a number of venture 
capitalists to co-invest, and the increasing popularity of crowd-funding platforms. 

 
Remark 3: Atakan and Ekmekci (2014) study K-unit auctions in which double- 
largeness holds and in which information is not fully aggregated in the limit. Their 
equilibria are specific to the multi-unit setting and fail to exist in a single-unit setting. 
Our results are the reverse—information is aggregated when double-largeness holds but 
not when K is finite. In this sense, our papers are complementary. 

 
 
4.3. Syndicates and club bids 

 
We now study a setting in which bidders can form consortia and submit a joint 

bid. We provide an example in which allowing such “club bids” has a positive effect 
on surplus and revenues. This is in contrast to the intuition from the standard setting, 
where collusion among bidders tends to lower seller revenues. 

A full analysis of club bidding is challenging for several reasons. First, club forma- 
tion is an endogenous process which may lead to clubs of different size, which would 
require analysis of auctions with asymmetric bidders. Second, there may be incentive 
problems within the club that prevent full sharing of information among club members. 
Third, even if information is freely shared within the club, the resulting information is 
multidimensional, which makes analysis of the resulting auction technically challenging. 

Dealing with these issues is beyond the scope of our paper and we therefore consider 
a simplified setting where we assume clubs are of equal and exogenously given size, and 
that information is freely shared within the club. We also assume that individual signals 
are distributed as in Proposition 7 and that the market is sufficiently large, which as we 
explain below makes it possible to handle multidimensional signals in a straightforward 
way. 

We assume that there are N × M investors in the market. We will contrast two 
market settings. In the first, there is no collusion among bidders and everyone submits 
bids independently. In the second, investors are randomly allocated to N symmetric 
clubs each consisting of M investors, whereupon each club submits a joint bid in the 
auction. Our question is whether an auction with club bids generates more revenue 
than a non-collusive auction. 

As a benchmark, we first consider the standard auction setting where the asset 
for sale is already in place. In this setting, surplus is always the same. Under the 
assumptions of Proposition 7, the results in Axelson (2008) imply that in the first- 
price and second-price auctions, larger clubs lead to lower revenues when the number 
of participants is large. 
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In our investment setting, suppose we hold the number of club members M fixed 
and let the number of clubs N grow large. Recall that Proposition 7 assumes that 
individual signals have a constant likelihood ratio λ = fG(s)/fB (s) over some interval 
at the top of the signal distribution, which is a sufficient condition for the entrepreneur 
to prefer smaller markets. If the number of clubs N is large enough, only clubs where 
all members have signals in the top interval will participate because of the winner’s 
curse. The likelihood ratio corresponding to a situation where M members have signals 
in the top interval is then λM . Since λ > 1, this likelihood ratio increases in the size 
of the club—in other words, the fact that all members in a club are optimistic is a 
stronger signal the more members there are. 

We show in the proof of Proposition 6 that the asymptotic surplus is an increasing 
function of the likelihood ratio at the top of the signal distribution, which is a natural 
consequence of the fact that a signal with a higher likelihood ratio is more informative 
and leads to smaller investment mistakes. It then follows immediately that for a large 
enough market larger clubs lead to higher social surplus. Furthermore, we show in the 
proof of Proposition 7 that all this surplus goes to the entrepreneur, and hence the 
entrepreneur is better off with club bidding. 

There are two forces favoring club bidding in our setting. First, club bidding reduces 
the effective number of bidders, which is beneficial when markets are inefficiently large, 
even if the club would submit a bid based on the signal of only one member. Second, 
signals become more informative whenever there is some information sharing within the 
club. When these effects outweigh the reduced competition, the entrepreneur gains. 
Our theory provides a benign rationale for the prevalent use of club bids in private 
equity and the use of syndicates in venture capital that has come under scrutiny by 
competition  authorities.12 

 
 
4.4. Shorting markets 

 
The informational black hole appears because pessimistic investors have no incentive 

to bid in the auction. It could therefore be in the interest of the entrepreneur to create 
a market which rewards pessimistic bidders for expressing their views, in a similar way 
that short sellers in equity markets can profit on their information when they think 
a stock is overvalued. We now discuss how creation of such a market can remove the 
informational black hole. 

There are at least three problems in constructing such a market. First, a derivatives 
market in which investors can take zero-sum bets would not be possible because there 

12See Bailey (2007) for further discussion. 
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are no gains from trade due to the pure common value nature of the project, and so 
the no-trade theorem applies. As a result, any side market would have to be subsidized 
and would not appear spontaneously. 

Second, one has to be careful in the design of the contract to avoid further informa- 
tional black holes to appear. For example, a contract which is short the cash flows of 
the project relies on the project actually being started, and so would not be attractive 
to the most pessimistic bidders. Similarly, a bet on whether the project is started or 
not would have a black hole where only the most pessimistic bidders participate. Fi- 
nally, a side market can lead to negative externalities on the original financing market 
due to strategic interactions. 

Addressing all these issues rigorously goes beyond the scope of the current paper. 
Here we just conjecture a design that may reduce or eliminate the informational black 
hole. For example, suppose the entrepreneur subsidizes a side market and sells a 
contract which promises to pay $1 if the project is not started, or if the project is 
started but fails, and pays $0 if the project is started and succeeds. The entrepreneur 
then sells the project rights and the shorting contract in two independent, simultaneous 
auctions, whereafter all bids are revealed so that information from the shorting market 
can be used when making the investment decision. We conjecture that in a sufficiently 
large market, bids in the shorting market will be strictly decreasing in bidder signals, 
and hence observing the bids in the shorting market is equivalent to observing all 
signals. This would eliminate the informational black hole in the original market and 
lead to a first-best solution. 

 
 
5. When do informational black holes exist in op- 

timal mechanisms? 
 

The previous section illustrates a number of special examples of augmented selling 
procedures that eliminate the informational black hole. In fact, it is well-know that in a 
pure common value setting such as ours, there are mechanisms that can fully extract the 
information of bidders at virtually no cost for the entrepreneur if no restrictions are put 
on allowable mechanisms (see for example McAfee, McMillan and Reny (1989)). These 
mechanisms have been criticized for their sometimes esoteric structure and for their lack 
of “robustness” to small changes in the environment, which is one of the reasons that 
our main focus in this paper is on the tried and tested standard auction procedures. 
Nonetheless, it is natural to ask what type of robustness criteria are needed for our 
results to go through in a mechanism design setting where general selling mechanisms 
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are allowed. 
We show two results. First, we develop a set of robustness criteria under which 

any direct mechanism in which bidders either report their true signal or nothing has 
equilibria with informational black holes. In other words, an equilibrium without an in- 
formational black hole cannot be uniquely implemented in direct mechanism.13 Second, 
we show that if we also require mechanisms to be ε-cost robust, an optimal mechanism 
cannot improve on the least efficient equilibria with black-out level sN . 

Consider a direct mechanism in which bidders either report their true signal or 
nothing (which we denote by a report of ∅).   We denote a set of reports by R = 

{r1, ..., rN }. A mechanism is a function Q(R) = {q1(R), ..., qN (R)}, which for each set 
of reports R assigns probability qi(R) that bidder i gets allocated the project rights, an 
outcome A(R) ∈ {0, 1, ..., N } of the lottery Q(R), where A(R) is the winning bidder 
(A(R) = 0 is the situation where the seller keeps the project rights), and a set of 
transfers t(R, A(R)) = {t1(R, A(R)), ..., tN (R, A(R))} from bidders to the seller (which 

could be negative, if bidders are paid by the seller). A bidder who gets allocated the 
project rights and does not walk away from the mechanism gets the net project payoff 

E(V − I|R) if the project is started. 
The first robustness condition we impose rules out mechanisms that split the allo- 

cation over several bidders, such as a K-unit auction or collusion among bidders. 
 

Condition 1: (Winner-take-all) The project is indivisible, with non-contractible cash 
flows, and the mechanism must allocate the project to the highest-signal investor or no 
one at all if no signals are reported. 

 

Notice that it is not enough to require that the project can only be allocated to 
one bidder, because the equilibrium of the K-unit auction can be implemented by 
allocating the entire project to one of the K highest bidders through a lottery, rather 
than splitting the allocation over many bidders. Hence, we require that the mechanism 
is such that it allocates the project to the highest signal bidder. 

There are two possible ways to justify this condition: First, if the highest signal 
bidder also has some small private value component which is higher than other bidders 
(such as lower costs or better skills in running the project), it is ex post efficient to 
allocate the project to him, and the highest-signal bidder would be allocated the project 
in a renegotiation proof mechanism. Second, the highest signal bidder will also have 
the highest ex post willingness to pay, so a seller without sufficient commitment power 
may be tempted to allocate the full project rights to him. The next two conditions put 
restrictions on the type of admissible transfers. 

13Whether such an equilibrium can be uniquely implemented in an indirect mechanism remains an 
open question. 
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Condition 2: (Fly-by-night free) No bidder without private information can strictly 
profit from entering the mechanism. 

 
Condition 3: (Regret free) No bidder would prefer ex post to exit the mechanism. 

 
 
Condition 2 ensures that the mechanism is not swamped by unserious “fly-by-night” 
operators masquerading as serious bidders but without private information. If there 
is an infinite supply of such fly-by-night operators, a mechanism that rewards them 
for revealing their “signal” would quickly run out of money.14 Imposing this condition 
ensures that losers in the auction never get any positive transfers. Condition 3 ensures 
that losers never pay.15 The combination of conditions 2 and 3 makes it impossible 
to give bidders a strict incentive to reveal their information if they expect to never 
implement the project if they win the auction. Finally, we require that the mechanism 
is renegotiation proof in the following sense: 

 
Condition 4: (Renegotiation proof ) The project is implemented if and only if it is 
positive NPV conditional on the information revealed in the mechanism. 

 
If the mechanism is not required to be renegotiation proof, an entrepreneur with per- 
sonal wealth could eliminate the informational black hole by promising to fund the 
project with some small probability independent of bids. This would give all bidders 
an incentive to bid something strictly positive, and bids would be strictly increasing in 
signals. 

We show in Proposition 10 that conditions 1-4 are sufficient for informational black 
holes to exist as the outcome in any mechanism. If we also assume that equilibria have 
to be ε-cost robust, that is, robust to introducing an arbitrarily small cost for bidders 
to reveal their signal, we show that any equilibrium must contain a black hole of the 
maximal size. 

 
PROPOSITION 10: Under conditions 1-4, it is incentive compatible in any direct 
mechanism for bidders not to reveal their signal below the black-out level sN . Under 
conditions 1-4, an optimal ε-cost robust equilibrium has black-out level sN . 

 
Proof: See the Appendix. 

 
14See Rajan (1992) and Axelson, Stromberg, and Weibach (2009) for related robustness criteria. 
15See Lopomo (2000) and Bergemann and Morris (2005) for related robustness criteria. 
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6. Other robustness issues 
 
 
6.1. Security  auctions 

 
We first show that all our results remain true in the case of security auctions, in 

which investors finance the project in exchange for part of the profits. Suppose the 
project’s payoff in our setting is either 0 or 1 + X.  Then, a security auction takes 

a particularly simple form: bidders submit interest rates Ri  ∈ [0, X] at which they 
are willing to finance the project. The auction proceeds in the same way as for cash 
auctions, except that the winner is the bidder submitting the lowest interest rate. 

We assume that the decision to start the project rests with the entrepreneur unless 
the winning bid is X, in which case the entrepreneur gives up all the cash flow rights, 
and therefore control rights are transferred to the winning bidder. 

Notice that whenever the winning bid is below X the entrepreneur always starts the 
project. Hence, a bidder who submits a bid below X should be prepared to finance and 
start the project if he wins the auction. Hence, the black-out region in the first-price 
security auction is exactly the same as the one in the first-price cash auction. 

In the second-price and ascending-price security auctions, a winner who gets to 
finance the project at the interest rate X has an option not to start it even if his own 
winning bid is below X. This is the same option that a winner in the cash option has 
when the latter wins and pays 0. Thus, there is one-to-one map between the size of 
the informational black hole in the second-price and ascending-price security and cash 
auctions. 

Because social surplus depends solely on the size of the informational black hole, 
social surplus is the same in the security auction as in the cash auction. 

 
 
6.2. Assets in place and entrepreneurial wealth 

 
We have assumed that the entrepreneur has no wealth of his own to finance the 

project, and no other assets that can be pledged to investors in exchange for financing. 
The model easily extends to the case of an existing firm raising financing for a new 
project, where the firm could either use some of its cash to co-finance the project or 
issue securities that are backed not only by the cash flows of the new project but also 
by the existing assets of the firm. 

First, imagine that the entrepreneur has some wealth w, and issues an equity stake 
backed by a fraction 1 − w of the cash-flows of the project, where the winner invests 
1 − w and the entrepreneur invests w to start the project if they find it optimal to 

do so.  It is easy to see that this leads to the exact same equilibria as when there is 
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no wealth, except that all prices and bids are scaled down by a factor 1 − w. Hence, 
surplus is exactly the same independent of the wealth of the entrepreneur.  The only 
change is that revenues of the entrepreneur go up with wealth, since the fraction of 

surplus captured by investors goes down by a factor 1 − w. This effect reinforces our 
result in Proposition 7 that revenues can go down with the number of bidders:  as w 
goes to one, revenues will behave in exactly the same way as surplus. 

 

One can also show that the entrepreneur would never want to subsidize investors 
by giving up a larger share of the project than 1 − w. Doing so would lower equilibrium 

black-out levels, but only because investors sometimes would find it optimal to pursue 
negative NPV projects, which would lead to a destruction of surplus. 

Now suppose that the entrepreneur does not have liquid wealth, but has an existing 
firm with assets that can be pledged to back the security issue. For example, suppose 
the firm has assets in place with random but positive cash flows Z uncorrelated with 
the project’s cash flows and that the firm issues new shares backed by both the assets in 
place and the new project. Suppose the firm runs a security auction in which investors 
bid the fraction of shares α they are willing to accept in exchange for the capital 
needed to finance the project. The most pessimistic investors would then submit a bid 
of 1/E(Z + 1); this is the fraction of shares needed to break even on an investment 
of 1 if the project is not pursued and the money raised is kept within the firm. The 
equilibrium black-out level below which investors submit this bid would be exactly the 
same as in our original model, so surplus would also remain the same. Again, as in the 
case of wealth, the entrepreneur would capture a larger share of the surplus the larger 
the value of the existing assets are, but investment efficiency would not be improved. 

 
 
7. Conclusion 

 
Our paper studies information aggregation in primary financial markets. We show 

that information aggregation is severely impeded once information has real value for 
guiding investment decisions, and that the inefficiencies grow larger with the size of 
the market. Our analysis shows that several intuitive prescriptions from standard 
theory need to be reexamined when information has a real allocational role:  a more 
competitive, larger financial market is not always better, early releases of information 
may be suboptimal, and collusion among investors may be beneficial for an entrepreneur 
seeking financing. 
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Appendix. Proofs 
 
Proof of Proposition 3: For convenience, the proof assumes that fG(s) and fB (s) 
are continuous. The proof extends to the case with jump points. 

Part 1. First, we show that there is no δ-bid robust symmetric monotone equi- 
librium in the second-price auction with black-out level below sN . Suppose to the 
contrary that there exists such an equilibrium.  It must then be the case that for any 
d > 0, we can find a δ ∈ (0, d] such that if bids have to be made in increments of δ, 
there is an equilibrium black-out level below sN . Let ŝ < sN be a candidate black-out 
level such that it is the largest signal at which the zero bid is submitted. Let ∆1 be 
such that investors with signals in the interval (ŝ, ŝ + ∆1] bid δ, and ∆2 be such that 
investors with signals in the interval (ŝ + ∆1, ŝ + ∆1 + ∆2] bid 2δ.16 We assume that ŝ 
is such that 

 

E (V − I|Y1,N  = Y2,N = ŝ + ∆1) < 0, (A1) 

E (V − I|Y1,N = Y2,N = Y3,N = ŝ) > 0, (A2) 
 
 
which means that if there are only two bidders who bid δ the project is negative NPV. 
However, the project is positive NPV if there are at least three bidders who bid δ. The 
proof easily extends to lower values of ŝ. Consider a bidder with signal S = ŝ. For 

each i ∈ N define 
 

Pri(ŝ, ∆1)   =   Pr (Y1,N −1, . . . , Yi,N −1 ∈ (ŝ, ŝ + ∆1], Yi+1,N −1 ≤ ŝ|S = ŝ) , 

Ui(ŝ, ∆1)   =   E (V − I|Y1,N −1, . . . , Yi,N −1 ∈ (ŝ, ŝ + ∆1], Yi+1,N −1 ≤ ŝ, S = ŝ) . 
 
 
Pri(ŝ, ∆1) is the conditional probability that there are exactly i bidders with signals 
in the range (ŝ, ŝ + ∆1] (where bids are δ), and that the rest of the bidders get signals 
below or equal to ŝ. Ui(ŝ, ∆1) is the corresponding expected value of the project. 

The condition for the bidder with signal ŝ to be indifferent between bidding zero 
or δ is 

\ Pri(ŝ, ∆1) 

i + 1 × (max [Ui(ŝ, ∆1), 0] − δ) = 0. (A3) 
i=1 

 
Conditions (A1) and (A2) imply that U1(ŝ, ∆1) < 0 and Ui(ŝ, ∆1) > 0 for i > 1.  In 
what follows, we let δ go to zero and show (equations (A5) and (A7)) that ∆1 ∼ δ and 
Pri(ŝ, ∆1) = o(δ2) for i > 2. Therefore, the indifference condition (A3) takes the form: 

 
1 1 2 

− 2 δ × Pr1(ŝ, ∆1) + 3 Pr2(ŝ, ∆1) × U2(ŝ, ∆1) + o(δ ) = 0. (A4) 
16The proof follows similar steps if the lowest bid is not δ but kδ for some k ∈ N. 
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Let π be the ex-ante probability of the project being good. Define z = π/(1 − π) 
and 

 

z(ŝ) = fG(ŝ) 
fB (ŝ) 

 

z, π(ŝ) = 
z(ŝ) 

. 
1 + z(ŝ) 

 

Because signals are conditionally independent, and using the mean value theorem, we 
have 

 
Pri(ŝ, ∆1) = Ci ∆i   π(ŝ)f i (s̄g )F N −i−1(ŝ) + (1 − π(ŝ))f i (s̄b)F N −i−1(ŝ) . (A5) 

N −1 1 G G B B 
 
where Ci 

− denotes the combinations of i elements in a set of N − 1, and s̄g  and s̄b 

are in (ŝ, ŝ + ∆1) and are such that 
 
 

fG(s̄g )∆1 = 
ŝ+∆1 

ŝ 

 
fG(s)ds, fB (s̄b)∆1 = 

ŝ+∆1 

ŝ 

 
fB (s)ds. 

Let  
f i (s̄g )F N −i−1(ŝ) 

 
   zi(ŝ, ∆1)   

zi(ŝ, ∆1) = z(ŝ) G 
f i 

G N −i−1 , πi(ŝ, ∆1) = , 

 

and let 
B (s̄b)FB (ŝ) 1 + zi(ŝ, ∆1) 

 
 

VG =  E[V − I|G], 

VB =  E[V − I|B]. 
 
We have  

 
 

Ui(ŝ, ∆1) = πi(ŝ, ∆1)VG + (1 − πi(ŝ, ∆1))VB = 

 
 
 

zi(ŝ, ∆1)VG + VB . 1 + z (ŝ, ∆ ) 
i 1 

Substituting expressions for Pr1(ŝ, ∆1), Pr2(ŝ, ∆1), and U2(ŝ, ∆1) into (A4) we have 

π(ŝ)ξg ∆1 C2 (VG + z−1(ŝ, ∆1)VB )∆1 − C1 δ     FG(ŝ)   1  FB (ŝ) 
  

 + +o(δ2) = 0, 

where 

N −1  3 N −1 2 fG(s̄g ) z2(ŝ, ∆1) fB (s̄b) 
(A6) 

ξg = f 2 (s̄g )F N −3(ŝ). 
G G 

Solving (A6) for ∆1 we have 
  

FG(ŝ)   1  FB (ŝ) 
\ 

∆1 = δ × 
1 
N −1 
2 
N −1 

fG(s̄g ) + z2(ŝ,∆1) fB (s̄b) 

(VG + z−1(ŝ, ∆1)VB ) 

 
+ o(δ). (A7) 
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N −1 × 

 

Equation A7 verifies our conjecture that ∆1  is of the same order as δ. The bidder 
with signal ŝ should be better off if she bids zero or δ rather than 2δ.  Consider a 
deviation to a bid of 2δ. We only need to consider auction outcomes in which the 
bidder wins with a nonzero price, which can be either δ or 2δ. Consider first the case 
when the final price is δ. In this case, when the bidder bids δ she wins the auction with 

probability 1/2 when there is only one more bidder with signal s ∈ (ŝ, ŝ+ ∆1] and with 
probability 1/3 when there are two or more bidders with signals s ∈ (ŝ, ŝ + ∆1]. When 
the bidder bids 2δ she wins the auction with probability one in both cases. Using (A6), 
the expected gain from bidding 2δ rather than δ in the case when final price is δ can 
then be calculated as: 

 
∆S = π(ŝ)ξg ∆1C1 

 

δ     FG(ŝ) 
 

  1 FB (ŝ) 
 

 + 
 
+ o(δ2). (A8) 

N −1 2 fG(s̄g ) z2(ŝ, ∆1) fB (s̄b) 
 

Consider now the case when the final price is 2δ. In this case, there is at least one 
other bidder with signal s ∈ (ŝ + ∆1, ŝ + ∆1 + ∆2). The bidder incurs a loss if all other 
bidders’ signals are less than ŝ. The expected loss from this event is 

 
 

∆L = 1 
2δC1 

2 

 
π(ŝ)ξg ∆2 

  
fG(s̃g )FG(ŝ) 

f 2 
  1  fB (s̃b)FB (ŝ) 

 
 + 2 
 
, (A9) 

G(s̄g ) z2(ŝ, ∆1) fB (s̄g ) 
 

where s̃g and s̃b are in [ŝ + ∆1, ŝ + ∆1 + ∆2) and are such that 
 
 

fG(s̃g )∆2 = 
ŝ+∆1+∆2 

ŝ+∆1 

 
fG(s)ds, fB (s̃b)∆2 = 

ŝ+∆1+∆2 

ŝ+∆1 

 
fB (s)ds. 

The bidder realizes a gain if there is at least one more bidder with signal s ∈ (ŝ, ŝ + 
∆1 + ∆2). The gain is at least as large as 

 
π(ŝ)ξ̃g C2 (VG + z̃−1(ŝ, ∆1)VB )∆2 

∆G = N −1  2 

3 
2 + o(δ2), (A10) 

which is the gain if there is at least one more bidder with signal s ∈ (ŝ+∆1, ŝ+∆1 +∆2), 

where 
ξ̃g = f 2 (s̃g )F N −3(ŝ + ∆1), 

and 

G G 

f 2 (s̃g )F N −3(ŝ + ∆1) 
z̃2(ŝ, ∆1) = z(ŝ) G 

f 2 
G . N −3 

B (s̃b)FB (ŝ + ∆2) 
Because the bidder with signal ŝ should be better off if she bids zero or δ rather than 
2δ it must be that 

∆G − ∆L + ∆S ≤ 0. (A11) 
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N −1 

N  1 

4C 2 

B 

G 

B 

2 

2 

2 

f 2 fB (s)ds 

2 

2 

. 

⇔ 

 

Equation (A11) defines a quadratic equation for ∆2: 
 

α∆2 + β∆2 + γ ≤ 0, (A12) 
 
where 

 
 
 
π(ŝ)ξ̃g C2 

 
 
 
(VG + z̃−1(ŝ, ∆1)VB )∆2 

α =  N −1 2 2 
3 

β =  −δC1 
 
π(ŝ)ξg 

  
fG(s̃g )FG(ŝ) 

f 2 
  1  fB (s̃b)FB (ŝ) 

 
 + 2 

G(s̄g ) z2(ŝ, ∆1) fB (s̄g ) 
3(C1 γ = −

 
)2π(ŝ)ξg δ2 

  
FG(ŝ)   1  FB (ŝ) 

 2
 + . 

2 
N −1 (VG + z−1(ŝ, ∆1)VB ) fG(s̄g ) z2(ŝ, ∆1) fB (s̄b) 

 

Equation (A12) has a solution if and only if 
 

β2 − 4αγ ≥ 0. (A13) 
 

Remark: In fact, coefficients α and β depend on ∆2. Below we show that β2 −4αγ < 0 

for any ∆2. 
 
Notice that 

 
 

β2 =  δC1 

 
 
 
π(ŝ) 2 ξ F N −1(ŝ)   

fG(s̃g ) + 
1
 

 
 
 
F N −2(ŝ) fB (s̃b) 

 
 

N −1 g  G fG(s̄g ) z(ŝ) F N −2(ŝ) fG (s̄g ) 
 
and 

 
 4αγ =  δC1 

 
 
 
π(ŝ) 2 ξ F N −3(ŝ + ∆ )F 2 (ŝ)   

fG(s̃g ) + 
1
 

 
 
 
F N −2(ŝ) fB (s̄b)fG(s̃g ) 

 
 

N −1 g  G 1 G f (s̄  ) z(ŝ) F N −2(ŝ) f 2 (s̄ ) 
× 

G g G G g 
 

(VG + z̃−1(ŝ, ∆1)VB ) × 
(VG + z−1(ŝ)VB ) 

 

Notice that FG(ŝ + ∆1) > FG(ŝ). The MLRP implies that 
 

(VG + z̃−1(ŝ, ∆1)VB ) 
2 

(VG + z−1(ŝ)VB ) 
> 1. 

 

Observe that 
 
 

fB (s̄b)fG(s̃g ) 
 

fB (s̃b) 
 

fG(s̃g ) 
 

fG(s̄g ) 
r ŝ+∆1+∆2 
ŝ+∆1 

 

fG(s)ds r ŝ+∆1 
ŝ 

 
fG(s)ds 

 

G(s̄g ) 
> 

fG(s̄g ) 
 

fB (s̃b) 
> 

fB (s̄b) 
⇔ r ŝ+∆1+∆2 

ŝ+∆1 

> r ŝ+∆1 

ŝ 

. 
fB (s)ds 
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fG(s)ds 

fB (s)ds 

 

By Cauchy’s mean value theorem there exist st ∈ [ŝ, ŝ+∆1] and stt ∈ [ŝ+∆1, ŝ+∆1 +∆2] 
such that 

 
 

fG(stt) 
fB (stt) 

r ŝ+∆1+∆2 

= ŝ+∆1 , r ŝ+∆1+∆2 
ŝ+∆1 r ŝ+∆1 

fG(st) 
fB (st) 

 

= ŝ r ŝ+∆1 
ŝ 

fG(s)ds 
. 

fB (s)ds 
 

The MLRP implies that  
fG(stt) 

 
fG(st) .  

 
Thus, 

fB (stt) 
≥ 

fB (st) 
 
 

β2 − 4αγ < 0. 
 

Hence, for any ∆2 the bidder with signal ŝ prefers bidding 2δ rather than zero or δ, 
a contradiction. Thus, there can be no δ-bid robust equilibrium with black-out level 
lower than sN . 

 
Part 2. We now show that there is no ε-cost robust symmetric monotone equi- 

librium in the second-price auction with black-out level below sN . Suppose to the 
contrary that the black-out level is ŝ < sN . First, note that in equilibrium it must be 
that bidding schedules are strictly monotone in some neighborhood of ŝ for s > ŝ. If 
this is not the case then there is an ŝt > ŝ such that all players with a signal S ∈ (ŝ, ŝt] 
submit the same bid b. Consider a deviation of the player who receives signal ŝt to a bid 
of b + E, where E is very small. It is clear that this deviation increases the probability 
of winning by some δ > 0, no matter how small the E is. Also, conditional on winning 
the probability of the project being good is no less than it was before. As a result, 
the deviation delivers strictly higher utility to the player, which is inconsistent with 
equilibrium. 

If a bidder with signal s wins the auction then the maximum surplus she can expect 
to receive is 

b(s; ŝ) = E [max (E[V − I|S>ŝ], 0) |Y1,N = Y2,N = s] . 
 
In the proof of Proposition 2 we showed that b(s; ŝ) is continuous in s and b(ŝ; ŝ) = 0 
for any ŝ ≤ sN . The gain from participating in the auction must cover the cost ε of 
participation. As s → ŝ the gain decreases to zero. Thus, there is a signal s > ŝ such 
that an agent with signal s cannot recover her participation costs, which contradicts 
that ŝ is a black-out level. Q.E.D. 

 
Proof of Proposition 4: 
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Part 1. First, we show that there is no δ-bid robust symmetric monotone equilib- 
rium in the ascending-price auction with black-out level below sN . Suppose to the con- 
trary that there is an equilibrium with black-out level ŝ < sN so that any bidder with a 
signal st > ŝ stays in the auction until the price reaches δ. For a given realization of sig- 
nals, let n be the number of bidders who stay in the auction. Condition (2) implies that 
if n = 2 then in any monotone equilibrium any bidder st with st ∈ (ŝ, sN ] should drop 
out at price δ. If the other bidder also has a signal in the interval (ŝ, sN ] then each wins 
the auction with probability 1/2 and realizes a loss δ. Therefore, the expected loss for 

a bidder with signal st ∈ (ŝ, sN ] is at least L = δ × P r(ŝ < Y1,N −1 ≤ sN , Y2,N −1 ≤ ŝ)/2. 
As in the proof of Proposition 3 we assume that 

 
E (V − I|Y1,N = Y2,N = Y3,N  = ŝ) > 0, (A14) 

 

which implies that if n ≥ 3 the project is positive NPV. The bidder with signal s > ŝ 

can win the auction in two cases.  First, she wins if all other bidders have a lower 
signal than s.  As s → ŝ the probability of this event goes to zero.  Since the surplus 
is bounded there exists E > 0 such that for any s ∈ (ŝ, ŝ + E) the expected gain in this 
scenario is less than L/2. 

Second, because price increases are discrete, a bidder with signal s can win if bidders 
with higher signals will drop at the same price as she does. Notice that as δ goes to zero 
the probability of this event goes to zero while the maximum gain for a bidder with 
signal s is no more than the price increment δ. Therefore, there exists δ > 0 such that 

the expected gain is less than L/2. Thus, we have showed that for any s ∈ (ŝ, ŝ+ E) the 
expected loss is larger than the expected gain. Therefore, ŝ cannot be the equilibrium 
black-out level. 

Part 2. We now show that there is no ε-cost robust symmetric monotone equilib- 
rium in the ascending-price auction with black-out level below sN . Suppose now that 
the black-out level is ŝ < sN . Because we restrict our attention to monotone bidding 
strategies, an agent with the signal just above ŝ can win in the auction only if either 
all other players get a lower signal or if some players with a higher signal decide to 
leave the auction at the same time. In the former case, condition (4) implies that the 
expected benefits are lower than the cost of participation in the auction. Therefore, 
the player would be better off not participating in auction. In the latter case, similar to 
case of second-price auction, the higher type would be better off to deviate by staying 
a second longer. Q.E.D. 

 
Proof of Proposition 5: As before, π is the ex-ante probability of the project being 
good, z = π/(1 − π), VG = E[V − I|G], and VB = E[V − I|B]. Equations (4) and (2) 
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F N −1 G 

− − 
− − 

 

imply that sN and sN solve the following equations 
 

F N −1 

G (sN )fG(sN ) 
B (sN )fB (sN ) 

 VB 

=  − zV  , (A15) 
F N −2 2 

G (sN ) fG(sN )  VB =  − . (A16) F N −2 2 

B (sN ) fB (sN ) zVG 

Taking the logarithm of both parts of the above equations we have 
  

FG(sN ) 
 

 
  
fG(sN ) 

 
 

(N − 1) ln FB (sN ) 
+ ln fB (sN ) =  − ln(−zVG/VB ), (A17) 

  
FG(sN ) 

 
 

  
fG(sN ) 

 
 

(N − 2) ln FB (sN ) 
+ 2 ln fB (sN ) =  − ln(−zVG/VB ). (A18) 

 
Equations (A17) and (A18) imply that both sN and sN go to one as N goes to infinity. 
Taking Taylor series expansions of (A17) and (A18) and using that 

 
 

lim FG(s) = 1 fG(1)(1 s), 
s→1 
lim FB (s) = 1 fB (1)(1 s), 
s→1 

 
lim fG(s)  = λ, 
s→1 fB (s) 

 

we obtain that 
 

  
1 − sN = 

 
 
 
  a1 1 

+ o(1/N ), a  = 
f (1) N 1

 B 

ln(−λzVG/VB ) , (A19) λ − 1 
  a2 1 ln(−λ2zVG/VB ) 

1 − sN = + o(1/N ), a2 = 
fB (1) N 

. (A20) 
λ − 1 

 
The proposition’s statements then follow from Theorem 4.2.3 of Embrechts, Klüppelberg 
and Mikosch (2012). Q.E.D. 

 
Proof of Proposition 6: To prove the proposition we consider the comparative statics 
results with respect to N . To simplify the derivations we renormalize the densities fB 

and fG so that fB (1) ≡ 1 and fG(1) = λ. As before, π is the ex-ante probability of the 
project being good, z = π/(1 − π), VG = E[V − I|G], and VB = E[V − I|B]. Taking 
Taylor series expansions of (A17) and (A18) we obtain the following results: 

 
  a1 b1 2 

1 − sN = +  + o(1/N 
N N 2 

), (A21) 
a2 b2 2 

1 − sN = +  + o(1/N 
N N 2 

), (A22) 
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G 

G (sN ) fG(ϕ(sN )) − VB 

F N −1 
N −1 

G 

B 

− λ 

 

where a1  and a2  are given by (A19) and (A20) respectively, and 
 

λa2(f − λ(λ − 1)) − 4aif 
bi = i 2λ(λ − 1) , f = f t (1), i = 1, 2. (A23) 

 

In the least efficient equilibrium social surplus is 
 

UN (sN ) = πVG Pr(Y1,N > sN |G) + (1 − π)VB Pr(Y1,N > sN |B) = 
 

= πVG(1 − F N (sN )) + (1 − π)VB (1 − F N (sN )). (A24) 
G B 

 

Substituting (A21) into (A24) we obtain the following expression for the surplus 
 

1 1 
 

 
UN (sN ) = πVG + (1 − π)VB − (1 − π)VB (−λzVG/VB )− λ−1 1 

  1     a2(λ(λ − 1) − f ) 
(A25) 

− (1 − π)VB (−λzVG/VB ) λ−1 1 2λN 
+ o(1/N ). 

 
In the equilibrium with threshold sN the bidder who wins the auction with zero 

price invests if and only if his signal is higher than ϕ(sN ), where ϕ(sN ) is the largest 
solution of the following equation 

 

E(V − I|Y1,N  = ϕ(sN ), Y2,N  ≤ sN ) ≤ 0. (A26) 
 
 
Equation (A26) implies that ϕ(sN ) is defined by 

 
F N −1 

= 
F N −1 

B (sN ) fB (ϕ(sN )) zVG 
 

if 
G (sN ) 

 
VB , (A27) 

FB (sN ) 
≥ − 

λzVG 
 

and is equal to one otherwise. Using (A16) we can write condition (A27) as 
 

FG(sN ) 1 f 2 (sN )  . (A28) 
FB (sN ) 

≥ 
λ f 2 (sN ) 

 
As N goes to infinity, the LHS of (A28) is bounded by one, while the RHS of (A28) 
goes to λ > 1. Thus, inequality (A28) does not hold. Hence, for N sufficiently large 
ϕ(sN ) = 1. Therefore, social surplus is given by 

 

UN (sN ) = πVG Pr(Y2,N > sN |G) + (1 − π)VB Pr(Y2,N > sN |B). 
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f 

 

Notice that  
Pr(Y2,N > s) = 1 − N F N −1(s) + (N − 1)F N (s). (A29) 

 

Substituting (A22) into (A29) we obtain the following expression for the surplus 
 
 

UN (sN ) = πVG + (1 − π)VB − (1 − π)VB   −λ2zVG/VB  
− λ−1 

1 
1 − λ2 + a2(λ −1) 

 
 

λ 
 
 

− (1 − π)VB   −λ2zVG/VB  
λ−1 

 

 

a3(λ(λ − 1) − f ) 
2λN 

 
 
 
+ o(1/N ). 

(A30) 

 

Expressions (A25) and (A30) imply that both UN (sN ) and UN (sN ) decrease with N if 
f < λ(λ − 1). Notice that if fB (s) ≡ 1, then FG(s) fB (s)  = FG(s) . Taking the derivative 

 
of  FG(s) FB (s) fG(s) sfG(s) 

sfG(s)  at s = 1 we can see that it is positive if f < λ(λ − 1) and is negative if 
f > λ(λ − 1). Q.E.D. 

 
Proof of Proposition 8: Suppose all costs are zero. Then by Proposition 6 there is 
an N such that surplus decreases with N > N . Thus, the optimal size of the market 
cannot be larger than N . Because the MLRP holds strictly all bidders earn strictly 
expected profit. Fix any N > N . Let pN be the expected profit of an individual 
investor. It is clear then that if c < pN than the size of the market will be larger than 
socially optimal size N . To show that lowering information gathering costs can lead to 
a decrease in social surplus consider the following situation. Suppose that gathering 
costs are such that cN < pN +1 and cN +1 > pN +1. In this case, the market size is N . 
Suppose that the cost cN +1 is reduced so that the new cost ĉN +1 < pN +1. As a result, 
the new market size is N + 1 and social surplus is reduced. Q.E.D. 

 
Proof of Proposition 9: As before, π is the ex-ante probability of the project being 
good, z = π/(1 − π), VG = E[V − I|G], and VB = E[V − I|B]. We first prove that the 

expected surplus in the K-unit auction if K is finite is strictly lower than πVG, even 
if winning investors share their signals before the decision to invest is made. To prove 
this, we show that as N gets large the black-out level sK,N is 

 

1 aK 
1 − sK,N  = 

B 
+ o(1/N ). (A31) 

(1) N 
 
Theorem 4.2.3 of Embrechts, Klüppelberg and Mikosch (2012) then implies that 

 
K−1 (λa  )r 

lim Pr(Yk,N > sK,N |G) = 1 − e−λaK 
\ 

< 1, 
N →∞ r! 

r=0 
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F N −K 

B 

2 

f 

B 

 

which proves that the expected surplus is less than πVG  since the project is financed 
only if Yk,N   > sK,N . 

Suppose an investor who bids just above sK,N is among winning bidders. The most 
positive signal realization possible is that K − 1 investors get the top signal and the 
K + 1th  investor receive sK,N  signal.  In this case, the likelihood z = π/(1 − π) is 

updated as N −K−1 2 

zλK−1 FG (sK,N ) fG(sK,N ) . F N −K−1 2 

B (sK,N ) fB (sK,N ) 
Hence, the level of sK,N  that makes the project break-even is 

F N −K−1(sK,N ) f 2 (sK,N ) 
zλK−1VG

 G 
F N −K−1 

G = −VB . (A32) 
B (sK,N ) fB (sK,N ) 

Condition (A32) is similar to condition (A20).  Following similar steps as in the proof 
of Proposition 6 we obtain that 

   1 aK ln(−λK+1zVG/VB ) 
1 − sK,N  = 

B 
+ o(1/N ), aK = 

(1) N 
. (A33) 

λ − 1 

Next, we prove that if K/N → (1 − α), α ∈ (0, 1) as N → ∞ then the expected 

surplus in the least efficient equilibrium converges to πVG, even if bids are not revealed 
after the auction. We assume that the decision to start the project lies with the Kth 

highest bidder. 
The highest black-out level possible is such that 

 
Pr (G|YK,N  = sK,N ) VG + (1 − Pr (G|YK,N  = sK,N ))VB  = 0. (A34) 

 
 
If the black-out level ŝ is higher than sK,N  defined by (A34) then a bidder with signal 
s ∈ (sK,N , ŝ] will be better-off by deviating and bidding a strictly positive amount: If 
the auction results in zero price then the bidder does not loose anything. At the same 
time if the auction results in a positive price then there are at least K bidders with 
signal above the ŝ, which makes the project positive NPV. 

Equation (A34) implies that 
 

πVG G (sK,N )(1 − FG(sK,N )) K−1 fG(sK,N ) = −V 
 
. (A35) 

1 − π F N −K (sK,N )(1 − FB (sK,N ))K−1fB (sK,N ) 
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The project is started whenever YK,N  > sK,N .  If K/N = 1 − α then we can write 
equation (A35) as 

 
 

 πVG 

1 − π 

  
FG(sK,N )α(1 − FG(sK,N ))1−α   

FB (sK,N )α(1 − FB (sK,N ))1−α 

(1 −FB (sK,N ))fG(sK,N ) 
(1 − FG(sK,N ))fB (sK,N ) 

 

= −VB . 

 

As N goes to infinity sK,N  converges to the value sα, which solves 
 

FG(sα)α(1 − FG(sα))1−α = FB (sα)α(1 − FB (sα))1−α. (A36) 
 
 
Let sα,G and sα,B  be such that FG(sα,G) = α and FB (sα,B ) = α. Because of the MLRP 
sα,B  < sα,G.  Notice that xα(1 − x)1−α  is a single-peaked function that reaches its 
maximum at x = α. Therefore, sα,B < sα < sα,G. 

As N  → ∞ and k/N  → 1 − α, Yk,N  becomes an αth  sample quantile. It  is 
well-known that 

√
N (Yk,N  − sα) −→ N (0, α(1 − α)/f (sα)2), 

where f (x) and F (x) are pdf and cdf of observations and F (sα) = α. Hence, as N → ∞ 
the probability of undertaking the project goes to one if the project is good and goes 
to zero if the project is bad. Q.E.D. 

 
Proof of Proposition 10: 

Step 1.  We first prove that ti(R, A(R)) = 0 if A(R) /= i or if E(V − I|R) < 0, 
which implies bidders who expect never to receive any allocation when the project is 
positive NPV will have zero expected profits when revealing their signal. 

If A(R) /= i or E(V − I|R) < 0 bidder i will walk away from the mechanism if 
faced with a payment ti(R, A(R)) > 0 as an outcome of the mechanism. Hence, we 
have to have ti(R, A(R)) ≤ 0 whenever A(R) /= i or E(V − I|R) < 0. Next, suppose 
that ti(R, A(R)) < 0 when A(R) /= i for some R, ri ∈ R so that a losing bidder 
gets 
a strictly positive payment. This violates the fly-by-night condition, because a fly-by- 
night operator reporting ri can guarantee himself strictly positive expected profits by 
walking away from the mechanism for every outcome except when the vector of reports 
is R. Similar arguments apply if ti(R, A(R)) < 0 when E(V − I|R) < 0 because by 
renegotiation proofness condition the project is not started if it is negative NPV. 

Step 2. Suppose bidders with signal below sN do not reveal their signal. We prove 
next that all bidders with signal Si > sN always reveal their signal. To see this take 
any ε > 0, and suppose bidder i with signal si = sN + ε reveals his signal. In a truth- 
telling winner-take-all mechanism, bidder i then expects to always win when his signal 
is the highest, a positive probability event, plus potentially when his signal is not the 

46  



i 

i 

i 

i 

 

highest but bidders with higher signals do not reveal their signal. From the definition 
of sN , the project is therefore strictly positive NPV conditional on the information 
that bidder i wins the allocation. This implies that there must exist a set of reports 
R−i  by bidders other than bidder i that happen with positive probability such that 
E(V − I|R) > 0 and such that A(R) = i (i.e., bidder i wins the allocation when the 
project is positive NPV conditional on the observed reports). The regret free condition 
implies that E(V − I|R) − ti(R, i) ≥ 0. Now take some signal st > si. When bidder 
i observes Si = st but gives the false report si, he will have strictly positive expected 
profits by following the strategy of walking away except when the the vector of reports 
is R, since 

 

E(V − I|R−i, Si = st ) − ti(R, i) > E(V − I|R) − ti(R, i) ≥ 0, (A37) 
 
 
where the first inequality follows from MLRP. Incentive compatibility requires that 
bidder i is at least as well off when reporting st as when reporting si, which in turn 
implies that this bidder must strictly prefer to reveal his signal rather than not revealing 
it and getting zero expected profits. Since ε > 0 was picked arbitrarily, this proves 
that all bidders with signals above sN strictly prefer to reveal their signal. 

Step 3.  Suppose bidders below sN   do not reveal their signal.  Suppose that a 
bidder i with signal si < sN reveals his signal and wins an allocation. From Step 2 
and the definition of sN , and under the postulated expectations over the strategies 
of other bidders, this can only happen if the project is negative NPV. Hence, from 
Step 1, the bidder gets zero expected profits when revealing his signal. Thus, it is 
incentive compatible for him not to reveal his signal, which proves the first part of the 
proposition. 

Step 4. Next, we prove the second part of the proposition. We start by showing 
that any participation-cost robust equilibrium must be in cut-off strategies such that 
bidder i reveals his signal if Si > ŝ and does not reveal his signal if Si < ŝ. 

First, note that any equilibrium must be such that if bidder i reveals his signal 
at si, and if there is some equilibrium R with si  = ri  ∈ R at which the project is 
positive NPV and bidder i wins an allocation with positive probability, then it must 
be strictly optimal to reveal the signal when Si > si in the equilibrium. This follows 
from the same steps as in the proof of Step 2 above. In order for a player not to use 
a cut-off strategy in equilibrium on a non-zero measure set of signals, it must then 
be that there is a non-zero measure set of signals at which bidder i reveals his signal 
and at which the project is strictly negative NPV whenever he wins. Suppose such an 
equilibrium is participation-cost robust, contrary to the statement in the claim. Then, 
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there exists some participation cost c > 0 such that bidder i reveals his signal on a 
non-zero measure set at which the project is negative NPV whenever he wins. But 
then, bidder i makes strictly negative expected profits, and is better off not revealing 
his signal. 

Restricting attention to cut-off strategies, suppose contrary to the claim in the 
proposition that the lowest cut-off level amongst bidders in a participation-cost robust 
equilibrium is ŝN < sN . By the supposition that this is a participation-cost robust 
equilibrium, there is an equilibrium with a nonzero cost c and reporting strategies that 
are arbitrary close to the cut-off equilibrium with ŝN . In this equilibrium, the most 
optimistic scenario when the bidder with signal ŝN  (or bidders with signals arbitrary 
close to ŝN ) wins the auction is that bidders with the highest signals do not reveal 
their signals. However, because this set of bidders with highest signals can be made 
arbitrary small and by definition of sN , conditional on winning with signal ŝN the NPV 
of the project is negative. Hence, the bidder with signal ŝN strictly prefers not to reveal 
her signal, which contradicts that such an equilibrium exist. Q.E.D. 
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Internet Appendix 
 
 

In this Internet Appendix, we 
 

1. prove that in the first-price auction only the equilibrium with the highest black- 
out level sN is δ-bid and ε-cost robust. 

 
2. provide the full calculations for Example 1 in the paper. 

 
 
δ-bid and ε-cost robustness 

 
The proof for ε-cost robustness follows exactly the same steps as the one for the 

second-price auction given in the paper. Therefore, here we provide details for δ-bid 
robustness. 

Let ŝ be the largest signal at which the zero bid is submitted, ∆1 be such that signals 
(ŝ, ŝ + ∆1] induce submission of δ, and ∆2 be such that signals (ŝ + ∆1, ŝ + ∆1 + ∆2] 
induce submission of 2δ.17 We assume that ŝ is such that 

 

E (V − I|Y1,N −1 = ŝ + ∆1) < 0, (A38) 

E (V − I|Y1,N −1 = Y2,N −1 = ŝ) > 0, (A39) 
 
 
which means that if there is only one bidder who bids δ the project is negative NPV. 
However, the project is positive NPV if there are at least two bidders who bid δ. The 
proof easily extends to lower values of ŝ. Consider a bidder with signal S = ŝ. Let 

 

Pr0(ŝ, ∆1)  =  Pr (Y1,N −1 < ŝ|S = ŝ) ,  

U0(ŝ, ∆1)  =  E (V − I|Y1,N −1 < ŝ|S = ŝ) , 
 

For each i ∈ N define 
 

Pri(ŝ, ∆1)   =   Pr (Y1,N −1, . . . , Yi,N −1 ∈ (ŝ, ŝ + ∆1], Yi+1,N −1 ≤ ŝ|S = ŝ) , 

Ui(ŝ, ∆1)   =   E (V − I|Y1,N −1, . . . , Yi,N −1 ∈ (ŝ, ŝ + ∆1], Yi+1,N −1 ≤ ŝ, S = ŝ) . 
 
 
Pri(ŝ, ∆1) is the conditional probability that there are exactly i bidders with signal 
in the range (ŝ, ŝ + ∆1], and who therefore bid δ, and that the rest of the bidders 
get signals below or equal to ŝ. Ui(ŝ, ∆1) is the corresponding expected value of the 
project. 

17The proof follows similar steps if the lowest bid is not δ but kδ for some k ∈ N. 
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The indifference condition for the bidder with signal ŝ to bid 0 or δ is 
 

\ Pri(ŝ, ∆1) 

i + 1 × (max [Ui(ŝ, ∆1), 0] − δ) = 0. (A40) 
i=0 

 
 

Conditions (A38) and (A39) imply that U0(ŝ, ∆1) < 0 and Ui(ŝ, ∆1) > 0 for i > 0. In 
what follows, we let δ go to zero and show (equations (A42) and (A44)) that ∆1 ∼ δ 

and Pri(ŝ, ∆1) = o(δ) for i > 1. Therefore, the indifference condition (A40) takes the 
form: 

1 
− δ × Pr0(ŝ, ∆1) + 2 Pr1(ŝ, ∆1) × U1(ŝ, ∆1) + o(δ) = 0. (A41) 

Let π be the ex-ante probability of the project being good. Define z = π/(1 − π) 
and 

 

z(ŝ) = fG(ŝ) 
fB (ŝ) 

 

z, π(ŝ) = 
z(ŝ) 

. 
1 + z(ŝ) 

 

Because signals are conditionally independent using the mean value theorem we have 
 

Pri(ŝ, ∆1) = Ci ∆i   π(ŝ)f i (s̄g )F N −i−1(ŝ) + (1 − π(ŝ))f i (s̄b)F N −i−1(ŝ) . (A42) 
N −1 1 G G B B 

 
where s̄g and s̄b are in (ŝ, ŝ + ∆1) and are such that 

 
 

fG(s̄g )∆1 = 
ŝ+∆1 

ŝ 

 
fG(s)ds, fB (s̄b)∆1 = 

ŝ+∆1 

ŝ 

 
fB (s)ds. 

Let  
f i (s̄g )F N −i−1(ŝ) 

 
   zi(ŝ)   

zi(ŝ, ∆1) = z(ŝ) G 
f i 

G N −i−1 , πi(ŝ, ∆1) = , 

 

and let 
B (s̄b)FB (ŝ) 1 + zi(ŝ) 

 
 

VG =  E[V − I|G], 

VB =   E[V − I|B]. 
 
We have  

 
 

Ui(ŝ, ∆1) = πi(ŝ, ∆1)VG + (1 − πi(ŝ, ∆1))VB  = 

 
 
 

zi(ŝ, ∆1)VG + VB . 1 + z (ŝ, ∆ ) 
i 1 

Substituting expressions for Pr0(ŝ, ∆1), Pr1(ŝ, ∆1), and U1(ŝ, ∆1) into (A41) we have 
  

FG(ŝ)   1  FB (ŝ) 
 

 1 (X − z−1(ŝ, ∆1))∆1 
 

 
π(ŝ)ζg −δ + f (s̄  ) z (ŝ, ∆ ) f (s̄  ) + CN −1  2 +o(∆1) = 0, (A43) 

G    g  1 1 B b 
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1 − q  q 
 
 

. 

 

where 
 
 
 
Solving (A43) for ∆1 we have 

 
 
ξg = fG(s̄g )F N −2(ŝ). 

 
   

FG(ŝ)   1  FB (ŝ) 
\ 

2 fG(s̄g )  + z1(ŝ,∆1) fB (s̄b) 

∆1 = δ × 1 
N −1 (X − 

 

1   (ŝ, ∆1)) 
+ o(δ). (A44) 

 

The bidder with signal ŝ should be better off if she bids δ rather than 2δ. However, it 
is clear that it is not true in our case. If she bids 2δ she realizes a loss only if all other 
bidders’ signals are below ŝ. This loss is compensated by the increased probability of 
winning the auction for sure when there are bidders with signals in the interval ŝ+ ∆1. 
Q.E.D. 

 
 
Calculations for Example 1 

 

We assume that signals are binary: fB (s) = 1 and fG(s) = 0 for s ∈ [0, 1/2) 
and fG(s) = 2 for s ∈ [1/2, 1].  Also, assume that Pr(G) = 1/2, and E(V − I|G) = 

−E(V − I|B) = 1 so that the project is zero NPV ex ante. Define q = 1/2. 
If there is only one bidder then the auction can stipulate any reserve price between 

zero and E(V − I|s ≥ 1/2) > 0. The bidder bids the reserve price if and only if he 
receives a high signal. Hence, social surplus is U1 = Pr(s ≥ 1/2) × E(V − I|s ≥ 1/2). 

Note that this is equivalent to the first-best surplus with one signal. 
When there are two bidders then in the most efficient equilibrium each bidder 

submits a nonzero bid only if he receives a high signal. The project is started only if 

the auction price is greater than zero. Hence, social surplus is U2 = π − (1−π)q2 = 3/8, 
where (1 − π)q2  is the probability that the project is bad and both bidders get a high 
signal. This is equivalent to the first-best surplus with two signals. In the least efficient 
equilibrium each bidder submits a nonzero bid only if he receives a signal s ∈ [s2, 1] 
where s2 solves E(V − I|Y1,2 = s2) = 0, which using Bayes’ theorem can be calculated 
as 

   
s2 =    1 − q    = 2 . 1 − q2 1−π 3 

If N > 2, then the blackout level sN in the most efficient equilibrium can be calculated 
as: 

sN =   1 − q   
1 

2 1−π  N −2 
π 

 

From Equation A26 one can calculate that ϕ(sN )  =  1,  so a winner never invests 
unless the second-highest bidder puts in a strictly positive bid, which happens when 
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. 

 

Y2,N > sN . We can then calculate the surplus as: 
 

UN (sN ) = π Pr (Y2,N  > sN |G) − (1 − π) Pr (Y2,N  > sN |B) . 
 
Similarly, if N > 2, the blackout level sN  in the least efficient equilibrium can be 
calculated from (4) as: 

 
 
 
 
Therefore, 

 

sN =   1 − q   
1 

1−π  N −1 
π 

 
 

UN (sN ) = π Pr ({Y1,N > sN }|G) − (1 − π) Pr ({Y1,N > sN }|B) . 
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Figure 1.  Bids in the standard setting. Figure 1 shows the equilibrium bidding function in the 

standard setting for four bidders. 
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Figure 2. Bids in the setting with investments. Figure 2 shows the equilibrium bidding function 

in the setting with investments for four bidders. 
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Figure 3.  The effect of market size on bidding functions.  Panel A shows bidding functions 

for a smaller market and panel B for a larger market. 
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Figure 4. Market size and social surplus. Figure 4 plots social surplus as a function of number 

of bidders in the setting with binary signals: fB (s) = 1 for all s ∈ [0, 1], fG(s) = 0 for s ∈ [0, 1/2] and 

fG(s) = 2 for s > 1/2. The red (blue) line corresponds to the most (least) efficient robust equilibrium. 

54  



5 10 15 20 25  5 10 15 20 25 

 Number of Bidders     Number of Bidders   
 

 

0.013 
 

0.012 
 

0.011 

 

 
Surplus 

Revenue 

0.0001 
 

0.00008 
 

0.00006 

 

 
Profit per bidder 

Bidder i's cost 

 
 

0.010 0.00004 
 
 

0.009 0.00002 
 

0.008 
 

0.0000 
 
 

Panel A Panel B 
 

Figure 5. Equilibrium market size. Panel A of Figure 5 shows social surplus gross of investor 

costs and the expected revenues to the entrepreneur as a function of the size of the market. Panel 

B shows expected gross profits to investors from participating in the auction as a function of market 

size, as well as a particular specification for the cost ci of information gathering for each investor. The 

parameters are as follows: The project is good or bad with equal probabilities. A good project has 

net present value of 0.75 and a bad project has net present value of -1; fB (s) ≡ 1; fG(s) is the normal 

distribution with mean 1 and standard deviation 0.75 truncated to the interval [0, 1]. 
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