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Abstract 
 
 

Given a set of asset returns, an information-theoretic approach is used to estimate 
non-parametrically the pricing kernel to price the given cross-section out-of-sample. 
Compared to leading factor models, this information SDF delivers smaller pricing 
errors and better cross-sectional fit, and identifies the maximum Sharpe ratio port- 
folio out-of-sample. Moreover, it extracts novel pricing information not captured by 
Fama–French and momentum factors, leading to an ‘information anomaly.’ A tradable 
information portfolio that mimics this kernel has a very high out-of-sample Sharpe ra- 
tio, outperforming both the 1/N benchmark and the Value and Momentum strategies 
combined. These results hold for a wide cross-section of assets. 
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I Introduction 
 
Asset prices contain information about the stochastic discounting of possible future states, 
i.e., about the pricing kernel, or stochastic discount factor (SDF). Based on this simple 
observation, and an information theoretic approach, we propose a novel non-parametric 
method for the estimation of the pricing kernel, and we evaluate its out-of-sample empirical 
performance in pricing assets and guiding portfolio investment decisions. 

A non-parametric approach to the recovery of the pricing kernel is valuable for a number 
of reasons. Most importantly, since most tests of the efficient markets hypothesis (EMH) are 
joint tests of a particular asset pricing model and the EMH, it provides a model-free test of 
the EMH. Moreover, it provides a benchmark model relative to which both the performance 
of competing theories, as well as investment managers, can be evaluated. This is particularly 
important in light of the hundreds of risk factors proposed in the literature and the ensuing 
concern that many of them might be the result of data mining or spurious inference (see, e.g., 
Lewellen, Nagel, and Shanken (2010), Harvey and Liu (2015), McLean and Pontiff (2016), 
Bryzgalova (2015)). 

Building upon Ghosh, Julliard, and Taylor (2016), we show how the pricing kernel can 
be estimated in a non-parametric fashion using no arbitrage (Euler equation) restrictions. In 
particular, given time series returns data on a cross-section of assets, we rely on a model-free 
relative entropy minimization approach to estimate an SDF that prices the given cross- 
section. The solution to this problem is a non-linear function of the asset returns and the 
Lagrange multipliers associated with the assets’ cross-sectional pricing restrictions (i.e. the 
shadow value of slacking the Euler equation restrictions). This approach delivers a non- 
parametric maximum likelihood estimate of the SDF and can, therefore, be interpreted as 
the most likely one-factor pricing model for the cross-section used for its construction. 

We project the SDF out-of-sample for the purposes of cross-sectional pricing and opti- 
mal asset allocation. In particular, using the in-sample estimated Lagrange multipliers, we 
construct the out-of-sample SDF in a rolling fashion, and use it as the single factor to price 
the cross-section of test assets. Our approach does not require taking a stance on either 
the number or the identity of the underlying risk factors or on the functional form of the 
pricing kernel. Instead, the approach allows us to conveniently summarize all the relevant 
information contained in, possibly multiple, priced risk factors in the form of a single time 
series for the SDF. We refer to the out-of-sample SDF as the ‘Information SDF’ (I-SDF). 

We estimate the I-SDF for diverse sets of equity portfolios – including portfolios sorted on 
the basis of size, book-to-market-equity, momentum, industry, and long-term reversals – and 
analyse its ability to explain the cross-section of returns. Compared to leading multifactor 
models, such as the Fama–French 3-factor model (FF3) or the Carhart 4-factor model (which 
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adds the momentum factor to the FF3), the I-SDF delivers smaller pricing errors on all the 
different sets of test assets despite being only a one-factor model. Moreover, it explains a 
larger fraction of the cross-sectional variation of the returns. These results hold for a variety 
of measures of cross-sectional fit as well as the standard OLS R2. Most importantly, we show 
that the I-SDF (unlike the other factor models considered) seems to correctly identify – out- 
of-sample – the tangency portfolio, i.e. the maximum Sharpe ratio portfolio. Furthermore, 
we find that the I-SDF extracts novel pricing information not captured by the FF3 or Carhart 

4-factor models: it leads to an ‘information anomaly,’ generating high αs of 6.8% − 16.0% 
per annum relative to the FF3 and Carhart factor models, and these factors cannot explain 
more than one-fourth of its time series variation. 

The I-SDF, being a nonlinear function of the asset returns used in its construction, is not 
a traded factor. Therefore, in order to exploit its ability to identify the tangency portfolio, 
we also construct a tradable portfolio that mimics the estimated kernel, by projecting the 
I-SDF onto the set of test assets in sample, and using the projection coefficients (normalized 
to be in the scale of portfolio weights) to construct, out-of-sample, what we refer to as the 
‘Information  Portfolio’  (I-P). 

We show that the I-P consistently outperforms a number of standard benchmarks out- 
of-sample in terms of Sharpe ratios and certainty-equivalent (CEQ) returns. For example, 
when the 25 size and book-to-market-equity sorted portfolios are used as test assets, the I-P 
produces an annualized Sharpe Ratio of about 1.0. That is, the I-P delivers a Sharpe ratio 
that is more than three times the Market portfolio one, more than twice what is achievable 
with the näıve 1/N diversification strategy1 or with a “value” strategy, about 3.5 times what 
is delivered by a “momentum” strategy, and about one-third more than what can be achieved 
combining value and momentum strategies.2 And even after hedging with respect to the FF3 
and momentum factors, the I-P produces an annualized hedged Sharpe ratio of about 0.47- 
0.73 and an annualized α of about 11.8%–17.7%. Moreover, the data never reject the null 
hypothesis of the I-P delivering out-of-sample the maximum Sharpe ratio achievable using the 
cross-section of assets used to construct it. Furthermore, using the CEQ metric of DeMiguel, 
Garlappi, and Uppal (2009), we find that the I-P delivers annualized certainty-equivalent 
returns of about 14.0%–29.8%, while the other strategies considered deliver CEQ returns in 
the 2.4%–7.4% range, i.e. one order of magnitude smaller than the I-P. Interestingly, the 
I-P delivers such a strong investment performance with only yearly rebalancing (hence low 

 
1DeMiguel, Garlappi, and Uppal  (2009)  show that  the  out-of-sample performance  of commonly  used 

mean–variance portfolio selection methods are typically worse than that of the 1/N rule in terms of Sharpe 
ratio and CEQ returns. 

2Asness, Moskowitz, and Pedersen (2013) document consistent value and momentum return premia. 
Moreover, they show that, thanks to the substantial Sharpe ratios of these strategies and their strong 
negative correlation, an extremely high Sharpe ratio can be achieved by combining the two. 
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trading costs), and a substantially smaller tail risk (as measured by skewness and kurtosis) 
than all the other strategies considered. 

Our paper is close in spirit to, and innovates upon, the long tradition of using asset prices 
to estimate the risk neutral probability measure (see, e.g. Jackwerth and Rubinstein (1996) 
and Ait-Sahalia and Lo (1998)) and use this information to extract an implied pricing kernel 
(see, e.g. Ait-Sahalia and Lo (2000), Hansen (2014), Rosenberg and Engle (2002), and Ross 
(2015)). The main advantages of our approach relative to this literature are that a) we do 
not need to use option data and b) we can construct an out-of-sample pricing kernel and 
maximum Sharpe ratio portfolio. Moreover, while the analysis in this paper focuses on equity 
portfolios, our method is very general and could be applied to other asset classes including 
bonds, derivatives, and currencies. 

The use of an entropy metric is also closely related to Stutzer (1995, 1996) and Kitamura 
and Stutzer (2002), who first suggested using this information-theoretic alternative to the 
standard GMM approach to conduct inference for asset pricing models. Julliard and Ghosh 
(2012) relies on this entropy based inference approach to assess the empirical plausibility of 
the rare events hypothesis in explaining the equity premium puzzle. Moreover, our work is 
related to Ghosh, Julliard, and Taylor (2016), who use a relative entropy minimization to 
derive entropy bounds for the stochastic discount factor of consumption-based asset pricing 
models (see also Backus, Chernov, and Zin (2014)). 

Our paper also contributes to the extensive cross-sectional asset pricing literature that 
seeks to identify priced risk factors to explain the cross section of returns of different classes 
of financial assets. Harvey, Liu, and Zhu (2015) documents 316 risk factors discovered by 
academics. Lewellen, Nagel, and Shanken (2010) offer a critical assessment of asset pricing 
tests and conclude that although many of the proposed factors seem to perform well in terms 
of producing high cross-sectional R2 and small pricing errors, this result is largely driven by 
the strong factor structure of the size and book-to-market-equity sorted portfolio returns 
(which are often used as the only test assets), which makes it quite likely for an arbitrar- 
ily chosen two or three factors, which have little correlation with the returns, to produce 
these results. Moreover, Bryzgalova (2015) shows that the apparent good performance of 
several factor models proposed in the literature might be the spurious outcome of a weak 
identification problem. We show that our information factors are robust to these concerns 
and that our approach provides a reliable benchmark against which empirical models can be 
evaluated. 

Lastly, our paper contributes to the strategic asset allocation literature. While Markowitz 
(1952) derived the optimal portfolio rule in a static mean–variance setting, the implemen- 
tation of that approach requires the estimation of the inputs, namely the expected returns 
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and the variance–covariance matrix of the risky assets to be included in the portfolio. While 
extensive research effort has been dedicated to proposing approaches to reduce the estima- 
tion error in the inputs, DeMiguel, Garlappi, and Uppal (2009) show that the out-of-sample 
performance of the sample based mean–variance model, as well as its various extensions 
specifically designed to reduce the estimation error, is typically worse than that of the 1/N 
rule in terms of the Sharpe ratio and CEQ returns. We show that our approach robustly 
identifies the maximum Sharpe ratio portfolio out of sample and delivers very high CEQ 
returns. 

The remainder of this paper is organized as follows. Section II describes our method of 
extracting the pricing kernel from a vector of asset returns, as well as the different inference 
methods used in the empirical analysis. The data used in the empirical analysis are described 
in Section III. The empirical results are presented in Section IV. Section V concludes with 
suggestions for future research. 

 
 
II The Method 

 
Our relative-entropy minimizing approach enables us to recover, for a given cross-section 
of assets, what we refer to as the Information SDF. Section II.1 describes the information- 
theoretic method used to construct the SDF. Section II.2 discusses the econometric tests 
used to assess the pricing performance of the Information SDF and compare its performance 
to some leading empirical asset pricing models commonly used in the literature. 

 
 
II.1   Recovery of the Information SDF 

 
The absence of arbitrage opportunities implies the existence of a strictly positive pricing 
kernel (also known as the stochastic discount factor), M , such that the expectation of the 

product of the kernel and a vector of excess returns, Re  ∈ RN , is zero under the physical 
probability measure, P: r 

0 = EP [MtRe] = 

 
 
MtRedP, 

 

where 0 denotes a conformable vector of zeros. Under weak regularity conditions, the above 
restrictions on the SDF can be rewritten as 

r Mt 
r 0 = Re dP = 

 

Re dQ ≡ EQ [Re] , (1) 

M t t t 
 

where x̄  := E [xt], and Mt 
dQ  is the Radon–Nikodym derivative of Q with respect to P. 

This change of measure is legitimate if the measure Q is absolutely continuous with respect 
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to P. 
Given the above, an estimate of the risk neutral probability measure can be obtained as 

the minimizer of its relative entropy with respect to the physical measure, i.e. as3 
 
 

arg min D (Q||P) ≡ arg min 
r 

dQ 
ln dP 

   
dQ 
  

dP 
r 

dP s.t. 
 
Re dQ = 0, (2) 

Q Q 
 
where D (A||B) := 

[ 
ln dA dA ≡ 

[ dA ln dA dB denotes the relative entropy of A with respect 
dB dB dB 

to B, i.e. the Kullback–Leibler Information Criterion (KLIC) divergence between A and B 
(White (1982)). Note that D (A||B) is always non-negative, and has a minimum at zero that 
is attained when A is identical to B. This divergence measures the additional information 
content of A relative to B and, as pointed out by Robinson (1991), is very sensitive to any 
deviation of one probability measure from another. Therefore, the optimization in Equation 
(2) is a relative entropy minimization under the asset pricing restrictions coming from the 
Euler equation (1). 

Ghosh, Julliard, and Taylor (2016) show that the above approach for the recovery of the 
pricing measure has desirable properties. First, the estimation in Equation (2) delivers a non- 
parametric maximum likelihood estimate of the risk neutral measure and the pricing kernel. 
Second, due to the presence of the logarithm in the objective functions in Equation (2), the 
use of relative entropy naturally enforces the non-negativity of the pricing kernel. Third, the 
approach satisfies Occam’s razor, or the law of parsimony, since it adds the minimum amount 
of information needed for the pricing kernel to price assets. Fourth, it is straightforward to 
add conditioning information: given a vector of conditioning variables Zt−1, one simply has 
to multiply (element by element) the argument of the integral constraint in Equation (2) by 
the conditioning variables in Zt−1. Fifth, there is no ex ante restriction on the number of 
assets that can be used in constructing M .4  Sixth, as implied by Brown and Smith (1990), 
the use of entropy is desirable if one believes that tail events are an important component 
of the risk measure.5 

In this paper we focus on the out-of-sample asset pricing and investment performance of 
an SDF constructed using the above relative entropy minimization.  In particular, note that 

 
3Minimizing the relative  entropy  to  recover  the  risk  neutral  probability  measure  was  first  suggested 

by Stutzer (1995). Ghosh, Julliard, and Taylor (2016) extended the method to recover the unobserved 
component of the SDF for a broad class of consumption-based asset pricing models as well as to construct 
entropy bounds on the SDF and its components that are tighter and more flexible than the seminal Hansen– 
Jagannathan bounds. 

4The approach does not require a decomposition of M into short- and long-run components (cf. Alvarez 
and Jermann (2005)), and it does not rely on the existence of a continuum of options price data (cf. Ross 
(2015)). 

5Based on this insight, Julliard and Ghosh (2012) used a relative entropy estimation approach to analyse 
the empirical plausibility of the rare events hypothesis to explain a host of asset pricing puzzles. 
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since Mt = dQ , the optimization in Equation (2) can be rewritten as 
 

arg min 
Mt 

EP [Mt ln Mt]  s.t. EP [MtRe] = 0, (3) 

 
where, to simplify the exposition (but without loss of generality), we have used the innocuous 
normalization M = 1. 

Given a sample of size T and a history of excess returns {Re  T
 , the above expression can 

t  t=1 

be made operational by replacing the expectation with a sample analogue, as is customary 
for moment based estimators,6  obtaining 

 

 
arg min 
{Mt}T

 

T ' 
Mt ln Mt   s.t. 

T 
t=1 

T ' 
MtRe = 0. (4) 

T 
t=1 

 

The above formulation is handy in that a solution is easily obtainable via Fenchel’s duality 
(see, e.g. Csiszar (1975)): 

 
 

M�t ≡ Mt 

 

θ�T , Re eθ    Re 
= , 

T '
eθ e 

 

∀t (5) 
 
 

t=1 

T Rt 

 
where θ� ∈ RN    is  the  vector  of  Lagrange  multipliers  that  solve  the  unconstrained  convex 
problem  

 θ�T  := arg min 
 1 '

eθ Rt , (6) 
e 

θ T 
t=1 

 

and this last expression is the dual formulation of the entropy minimization problem in 
Equation (4). The above duality result implies that the number of free parameters available 

in estimating {Mt}T is equal to the dimension of (the Lagrange multiplier) θ: that is, it is 
simply equal to the number of assets considered in the Euler equation.7 

We use the above method to recover the time series of the SDF in a rolling out-of-sample 
fashion. In particular, for a given cross section of asset returns, we divide the time series 
of returns into rolling subsamples of length T and final date Ti, i = 1, 2, 3, ..., and constant 
s := Ti+1 − Ti. In subsample i, we estimate the vector of Lagrange multipliers θ�Ti  by solving 
the minimization in Equation (6).  Using the estimates of the Lagrange multipliers, θ�Ti , 
the out-of-sample Information-SDF (I-SDF) M  θ�T , Re    is obtained for the subsequent s 

i t 
 

6This amounts to assuming ergodicity for both the pricing kernel and asset returns. 
7Note that since relative entropy is not symmetric, i.e., D (Q||P) /= D (P||Q), we can reverse the roles of 

the probability measures P and Q in Equation (2) to obtain an alternative definition of relative entropy and, 
therefore, a second approach to estimating the pricing kernel. This approach is described in Appendix A.1. 
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Ti t 

T , b R 

t = ω R 

a   
  

e 

periods, t = Ti + 1, Ti + 2, ..., Ti+1, using Equation (5). This process is repeated for each 
subsample to obtain the time series of the estimated kernel over the out-of-sample evaluation 
period. 

This procedure is analogous in spirit to the canonical approach of forming portfolios (e.g. 
the SMB portfolio) based on past asset return characteristics (e.g. by sorting on size in the 
past calendar year).  The key difference is that M   θ�T , Re     is a non-linear function of the 

i t 

portfolio   θ�, 

subsample. 
Re  and the weights θ are chosen to deliver an MLE of the SDF in each (past) 

The relative entropy minimizing pricing kernel, while being a function of asset returns, 
is not directly a traded asset or portfolio of assets. As a consequence, we create a mimicking 
portfolio, maximally correlated with the kernel, in a rolling out-of-sample fashion. We refer 
to this portfolio as the Information Portfolio  (I-P). The I-P is constructed as follows.  In 
subsample i, the estimates of the Lagrange multipliers, θ�Ti , are used to construct the in- 

e
    

sample SDF M�i,t ≡ M θ�Ti , Rt , t = Ti −T +1, Ti −T +2, ..., Ti. Then M�i,t is projected onto 
N 

the space of excess returns to obtain the vector of portfolio weights ωTi   ∈ R 
to sum to unity). That is, the mimicking portfolio weights ωTi  are given by 

(normalized 

 
 

ωTi  := −   
 

bTi   , 1 
,
 � i Ti 

l 
:= arg min 

1
 

Ti ' 
M�i,t 

 

— aTi 

 
2 

— bTi t 
 
, (7)  b, 

f
aT ,b  

L T 
t=T 

 
T +1 

Ti 
ι  i  Ti i− 

 
where ι denotes a conformable column vector of ones. Using the portfolio weights vector, 
the out-of-sample I-P is obtained as RIP , e 

Ti t for the subsequent s periods, i.e.  for 
t = Ti + 1, Ti + 2, ..., Ti+1. This process is repeated for each subsample to obtain the time 
series of the information portfolio over the out-of-sample evaluation period. Note that in the 
scenario that the pricing kernel extracted using the relative entropy minimization approach 
prices assets perfectly in-sample, its projection, namely the I-P, identifies the mean–variance 
tangency portfolio of the test assets. 

Note that the high degree of non-linearity of the I-SDF in θ generates a potential ampli- 
fication of small measurement errors for this parameter. As a consequence, the I-P has the 
additional advantage of reducing the potential impact of measurement error. 

In the empirical analysis, we set s = 12 months (4 quarters) for monthly (quarterly) data. 
This corresponds to an annual rebalancing of the portfolio. The size of the rolling window, 
T , is set to 30 years. 
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II.2   Asset Pricing Tests 
 
For a given cross-section of test assets, we construct the out-of-sample I-SDF and I-P using 
the procedure described in Section II.1. We evaluate the empirical performance of the I-SDF 
and I-P at monthly and quarterly frequencies. We compare the performance of these factors 
to that of the one-factor CAPM, the three factor Fama–French model, and the Carhart four 
factor model. 

We use the two-step method of Fama and MacBeth (1973) to assess the ability of each 
factor model to price the cross-section of test assets. In the first step, the factor loadings 
for the test assets are estimated from a time series regression of the excess returns on the 
factors: 

t = a + BFt + εt. 
 

In the second step, the factor risk premia are obtained from a cross-sectional regression of 
the average excess asset returns,  µ  ∈ RN ,  on the factor loadings estimated from the first 

stage: 
µ = zι + Bγ + α = Cλ + α,  C := [ι B] , λ, := [z γ,] , 

 
where ι denotes a conformable vector of ones, γ denotes a vector of regression slopes (that 
should be non-zero if the factors are priced), z is a scalar constant (that should be zero if the 

zero-beta rate matches the risk-free rate), and α ∈ RN  is the vector of pricing errors (that 
should be zero if the factors price assets accurately). 

Following  the suggestions  of Lewellen,  Nagel,  and  Shanken (2010),  we  present several 
alternative  measures  of  performance  for  the  above  cross-sectional  regressions. First,   we 
present the standard OLS cross-sectional adjusted R2  (hereafter denoted by R2

 ). This 
measure suffers from the shortcoming that if the returns have a strong factor structure (such 
as, e.g., the size and book-to-market-equity sorted portfolio returns), then an arbitrarily 
chosen set of two or three factors, that have little correlation with the returns, are quite 
likely to produce large values of this statistic. This is obviously less of an issue for our I-SDF 
and I-P since these are one-factor models, but it is likely to affect the performance of the 
other factor models that we consider for comparison. 

Second, we present the GLS adjusted R2  (hereafter denoted by R2
 ) that is obtained 

2 
from the cross-sectional regression of V� −1/2µ on V� −1/2 [ι B], where V := V ar (Re). The RGLS 

2 
for a model, unlike ROLS , is completely determined by the model-implied factor’s proximity 
to the minimum variance frontier and, in general, presents a more stringent hurdle for models. 

Third, we present the cross-sectional T 2  statistic of Shanken (1985), given by T 2   := 
α,   +α, where S+ is the pseudoinverse of the estimated Σa := 

(
1 + γ,Σ−1γ

) yΣy , y := I − 
� Sa � a F T 

C (C,C)−1 C,  and Σ := V ar(εt).  The T 2  statistic has an asymptotic χ2  distribution with 
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F  γ 

N − K − 1 degrees of freedom, where K denotes the number of factors, and noncentrality 
parameter α,Σ+α = α, (yΣy)+ α T , where ΣF  denotes the covariance matrix of the 

a (1+γ Σ−1   ) 
factors.  We compute the p-value of this statistic under the null hypothesis that the model 
explains the vector of expected returns perfectly, i.e., the vector of pricing errors α = 0. 

Fourth, we present the quadratic q := α, (yΣy)+ α which measures how far the factor 
is from the mean–variance frontier. In particular, it is equal to the difference between the 
squared Sharpe ratio of the tangency portfolio of the test assets and the maximum squared 
Sharpe ratio attainable from the model-implied factors (or their mimicking portfolios in the 
case of non-traded factors). 

Lastly, we present the simulated 90% confidence intervals for the statistics. The simu- 
lated confidence intervals are obtained using the approach suggested by Stock (1991) (see 
also Lewellen, Nagel, and Shanken (2010) for a detailed discussion).  Consider first the con- 

2 
struction of the confidence intervals for the ROLS .  The simulations have two steps.  First, 
we fix a true (population) cross-sectional R2 that we want the model to have and alter the 
(N × 1) vector of expected returns, µ, to be µ = hCλ + ε, where C ≡ [ι, B], B denotes the 
vector of factor loadings in the historical sample, and ε ∼ N (0, σ2). The constants h and σ2 

ε ε 

are chosen to produce the right cross-sectional R2 and maintain the historical cross-sectional 
dispersion of the average returns. Second, we jointly simulate an artificial time series of 
the factor and the returns of the same length as the historical data by sampling, with re- 
placement, from the historical time series. We then use the two-pass regression method to 
estimate the sample cross-sectional R2 of the simulated sample. We repeat the second step 
1, 000 times to construct a sampling distribution of the R2 statistic conditional on the given 
population R2. This procedure is repeated for all values of the population R2 between 0 and 
1. The 90% confidence interval for the true R2 represents all values of the population R2 for 
which the estimated R2 in the historical sample falls within the 5th and 95th percentiles of 
the sample distribution. 

A confidence interval for q is found using a method similar to that used to obtain the 
confidence interval for the true (population) cross-sectional  R2.  Specifically,  a  given  popu- 
lation R2  implies a specific value of q.  We plot the sample distribution  of the T 2  statistic 
as a function of q. The confidence interval for the true q represents all values of the q for 
which the estimated T 2 in the historical sample falls within the 5th and 95th percentiles of 
the  sample  distribution. 

For the T 2  statistic, we present its finite-sample p-value, obtained from the above simu- 
lations, as the probability that the T 2 statistics in the simulated samples exceed the value 
of the statistic in the historical data for q = 0. 
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III Data Description 
 
We assess the empirical performance of the extracted pricing kernel (the I-SDF) and its 
tradable counterpart (the I-P) at monthly and quarterly frequencies. The out-of-sample 
evaluation covers the period 1963:07–2010:12. The start date 1963:07 is chosen to coincide 
with that in Fama and French (1993), Lewellen, Nagel, and Shanken (2010), as well as 
DeMiguel, Garlappi, and Uppal (2009). This facilitates a useful comparison of our results 
with the existing literature. 

To illustrate the strength of our method, we analyse several cross-sections of equity 
portfolios. In particular, we consider the 25 size and book-to-market-equity sorted portfolios, 
the 10 momentum-sorted portfolios, the 10 and 30 industry-sorted portfolios, and the 25 
portfolios formed on long term reversal and size. We extract the I-SDF and the I-P from, 
and use them to price, each of these cross-sections, as well as several combinations of these 
cross-sections. 

Monthly returns data on the above portfolios are obtained from Kenneth French’s data 
library. Since we extract the kernel from a cross-section of excess returns, an estimate of 
the monthly risk free rate is subtracted from the portfolio returns to produce the excess 
returns. Our proxy for the risk-free rate is the one-month Treasury Bill rate, also obtained 
from Kenneth French’s data library. The quarterly returns on the equity portfolios as well 
as the quarterly risk free rate are obtained by compounding the monthly returns within each 
quarter. The excess returns on the portfolios are then computed by subtracting the risk free 
rate. 

 
 
IV Empirical Evidence 

 
In what follows, we evaluate the out-of-sample ability of the I-SDF and I-P to (a) explain 
the cross-section of returns and (b) deliver optimally diversified portfolios of the test assets. 
In particular, Section IV.1 presents the cross-sectional regression results for different sets 
of test assets, Section IV.2 presents the properties of the I-SDF and I-P, and Section IV.3 
presents the performance of the I-P as an investment strategy. 

 
 
IV.1  Cross-Sectional Pricing 

 
Table 1 presents the cross-sectional pricing results when the test assets consist of the 25 
size and book-to-market-equity sorted portfolios of Fama and French. Consider first Panel 
A, which presents the results at a monthly frequency. Row 1 shows that when the I-SDF 
is used as the sole factor, its estimated price of risk has the correct sign and is strongly 

10  



2 

2 

statistically significant with an absolute value of the t-statistic in excess of 7. Harvey, Liu, 
and Zhu (2015) argue that a t-statistic of around 2.0 is too low a hurdle to establish the 
statistical significance of a given factor in the presence of extensive data mining. Using a 
new framework that allows for multiple tests, they show that a t-statistic greater then 3.0 
would be required for a factor to be deemed as being statistically significant. Row 1 shows 
that the I-SDF has a t-statistic more than double the value needed to establish statistical 
significance even after taking into account the possibility of data mining. Since the regression 
uses the monthly excess returns as the dependent variable, the intercept can be interpreted 
as the estimated monthly zero beta rate over and above the risk free rate. The estimated 
annualized zero beta rate is 3.6%. Although this is statistically significant, part of it may 
be attributable to the differences in lending and borrowing rates (1%–2%). Moreover, rows 
3 and 4 show that the CAPM and the FF3 model produce substantially higher annualized 

2 2 
intercepts of 13.2%.  The I-SDF produces an ROLS  of 67.0% and, more importantly, RGLS 

is very similar to ROLS , at 56.6%. Note that the GLS R2 is high if and only if the factor 
is close to the mean–variance frontier and, in general, provides a more stringent hurdle for 
asset pricing models. The T 2 statistic shows that the model is not rejected at conventional 
significance levels. Lastly, the q statistic, which equals the difference between the squared 
Sharpe ratio of the tangency portfolio of the test assets and the squared Sharpe ratio of 
the factor-mimicking portfolio, is 0.077 and its 90% confidence interval includes 0, i.e., the 
I-SDF mimicking portfolio is statistically indistinguishable from the maximum Sharpe ratio 
portfolio of the test assets. 

Row 2 shows that the I-P, when used as the single factor in the cross-sectional regression, 
produces results similar to those obtained with the I-SDF in row 1. Note that while a factor 
and its mimicking portfolio produce the same intercept, R2, and pricing errors in a cross- 
sectional regression in-sample, the same does not hold out-of-sample. The small differences 
between rows 1 and 2 are because of the out-of-sample nature of the construction of the 
I-SDF and I-P. 

In row 3, we present the results for the unconditional CAPM. The market risk premium 
has the wrong sign and is not statistically significantly different from zero.  The intercept, 
on the other hand, is strongly significant with an annualized value of 13.2%. The OLS and 

2 
GLS R are much smaller at 3.97% and 28.8%, respectively, compared to those obtained 
with the I-SDF and I-P. The T 2 statistic is almost double those obtained with the I-SDF 
and I-P, and has a p-value of zero: i.e. the model is strongly rejected. The q statistic is 
closely related to the RGLS and the T 2 statistics and, therefore, not surprisingly, provides 
similar conclusions: the 90% confidence interval for the q statistic implies a large unexplained 
Sharpe ratio between 0.2 and 0.58, i.e. the model fails to identify the maximum Sharpe ratio 
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Table 1: 25 Fama–French Portfolios 
2 2 

Row const. λsdf λIP λRm λSM B λHM L ROLS (%) RGLS (%) T 2 q 
Panel A: Monthly 

(1) 0.003 
(5.73) 

(2) 0.003 
(5.70) 

(3) 0.011 
(3.40) 

(4) 0.011 
(2.50) 

−0.341 
(−7.06) 

 
 

0.023 
(7.32) 

 
 
 
−0.004 
(−1.41) 
−0.006 
(−1.53) 

 
 
 
 
 
 

0.002 
(3.86) 

 
 
 
 
 
 

0.004 
(6.87) 

67.0 
[39.5,100] 

68.6 
[45.7,100] 

3.97 
[−4.35,61.4] 

71.3 
[21.1,90.9] 

56.6 
[52.4,100] 

59.6 
[41.3,100] 

28.8 
[6.43,59.9] 

40.9 
[20.5,90.8] 

37.5 
(0.207) 
37.1 

(0.099) 
71.6 

(0.000) 
51.5 

(0.002) 

0.077 
[0.00,0.09] 

0.072 
[0.00,0.08] 

0.128 
[0.04,0.34] 

0.096 
[0.03,0.16] 

 (5) 0.003 
(0.865) 

−0.383 
(−4.39)  0.002 

(0.568) 
0.002 
(5.86) 

0.004 
(8.42) 

83.8 
[50.8,100] 

59.0 
[47.6,100] 

29.5 
(0.311) 

0.063 
[0.00,0.088] 

(6) 0.004  0.025 0.0004 0.003 0.004 86.1 62.2 29.3 0.058 
 (1.20)  (5.26) (0.132) (6.75) (8.48) [67.6,98.8] [38.2,100] (0.172) [0.00,0.077] 

     Panel B: Quarterly     
(1) 0.028 

(11.33) 
−5.46 
(−3.13) 

    26.8 
[−1.22,100] 

30.8 
[12.3,70.5] 

41.3 
(0.451) 

0.332 
[0.00,0.60] 

(2) 0.002  0.135    83.7 51.6 28.8 0.227 
[83.3,100] [46.9,100] (0.535) [0.00,0.13] 
−3.92 8.50 80.9 0.431 
−4.35,25.9] [−0.57,43.5] (0.000) [0.08,0.97] 

74.7 17.7 59.3 0.351 
[30.3,93.1] [−7.50,66.3] (0.003) [0.08,0.71] 

82.0 32.2 33.9 0.275 
[44.8,100] [13.3,100] (0.391) [0.00,0.21] 

83.4 46.5 31.1 0.217 
[46.0,100] [19.6,100] (0.309) [0.00,0.28] 

 (1.29)  (11.17)    (3) 0.024 
(2.79) 

  −0.002 
(−0.308) 

  
[ 

(4) 0.028 
(2.19) 

  −0.015 
(−1.15) 

0.007 
(4.95) 

0.013 
(7.20) 

(5) 0.002 
(0.180) 

−5.04 
(−3.19) 

 0.012 
(0.884) 

0.008 
(6.11) 

0.012 
(6.83) 

(6) 0.005  0.108 0.010 0.008 0.012 
 (0.403)  (3.71) (0.768) (6.60) (7.85) 

Cross-sectional regressions of average excess returns of the 25 Fama–French portfolios on the estimated factor 
loadings for different asset pricing models. Panel A presents the monthly results and Panel B the quarterly 
results. In each panel, the first row presents the results when the factor is the information SDF and the second 
row, for the information portfolio. The information SDF and information portfolio are extracted from the 
25 Fama–French portfolios using a relative entropy minimizing procedure, in a rolling out-of-sample fashion 
starting at 1963:07. Rows 3 and 4 present the results for the CAPM and the Fama–French 3-factor model, 
respectively. In row 5 the factors are the three FamaFrench factors plus the information SDF. In row 6 the 
factors are the three FamaFrench factors plus the information portfolio. For each model, the table presents 
the intercept and slopes, along with t-statistics in parentheses. It also presents the OLS adjusted R2 and the 
GLS adjusted R2, along with the 90% confidence intervals for the true underlying population adjusted R2 (in 
square brackets). The confidence intervals are constructed via simulations using the approach suggested by 
Stock (1991) and used by Lewellen, Nagel, and Shanken (2010). The last two columns present, respectively, 
Shanken’s (1985) cross-sectional T 2 statistic along with its asymptotic p-value in parentheses, and the q 
statistic that measures how far the factor-mimicking portfolios are from the mean–variance frontier. 

 
 
 
portfolio. 

Row 4 presents the results for the FF 3-factor model. The results show that the market 
risk premium is not statistically significant but the risk premia associated with the factors 
proxying for risks related to size and book-to-market-equity are both significantly positive. 
However, the intercept is statistically and economically large, with an annualized value of 

2 
13.2%, the same as that obtained with the market risk factor alone in row 3. The ROLS is high 
at 71.3%, consistent with existing empirical evidence that the 3 FF factors explain a large 
fraction of the time series and cross-sectional variation in the returns of the 25 FF portfolios. 
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2 
However, moving to a GLS cross-sectional regression, R 

 

drops sharply to 40.9%, consistent 
with the observation that a GLS regression offers a more stringent hurdle for models than 

2 
does the OLS. This is in stark contrast to the I-SDF and I-P, which deliver very similar R 
using both the OLS and GLS procedures. The T 2 statistic is larger than those obtained 
with the I-SDF (51.5 vs 37.5) and I-P (51.5 vs 37.1), and has a p-value of zero, implying a 
statistical rejection of the model. The q statistic is also larger than those obtained with the 
I-SDF (0.096 vs 0.077) and I-P (0.096 vs 0.072). Moreover, the 90% confidence interval of 
the q statistic does not include 0, i.e. the maximum Sharpe ratio obtainable from the 3 FF 
factors is statistically different from the Sharpe ratio of the tangency portfolio of the test 
assets. 

Row 5 presents the results when the I-SDF is used in conjunction with the 3 FF factors 
in the cross-sectional regression. Note that the risk premium for the I-SDF remains strongly 
statistically significant even in the presence of the 3 FF factors and its magnitude is very 

2 
similar to that obtained when the I-SDF is used as the sole factor in row 1. Although ROLS 

2 
is higher, at 83.8% compared to 67.0% in row 1, the RGLS  for the two rows are very similar 
(59.0% vs 56.6%). Similar results are obtained in row 6 when the I-P is used in conjunction 
with the 3 FF factors. 

Similar results are obtained at a quarterly frequency in Panel B. Both the I-SDF and 
I-P deliver a strongly significant λ, the T 2  statistic implies that these pricing models are not 
rejected, and the q statistic implies that the these factors seem to identify the maximum 

2 2 
Sharpe ratio portfolio.  Nevertheless, some of the ROLS  and RGLS  are somewhat reduced, 
but this reduction is not informative since the confidence intervals for this statistics include 

2 
values as high as 100%.  The CAPM, on the other hand, produces a negative ROLS , an 2 2 
RGLS  of 8.8%, and a T 2  statistic with a p-value of 0%. For the FF 3-factor, although ROLS 

2 
is high at 74.7% (but smaller than that for the I-P), the GLS R drops sharply, to only 
17.7% (whereas that for the I-P is 51.6%). Moreover, the T 2 test rejects the FF 3-factor 
specification while the q statistics suggests that this factor model fails to identify the capital 
market line (while both the I-SDF and I-P succeed in this task). Lastly, combining the 
information factors with the FF 3-factor leaves both the point estimates and the statistical 
significance of those information factors unaffected. 

Note that, as noted in Lewellen, Nagel, and Shanken (2010), it is relatively easy to 
2 

find factors that produce large ROLS for the 25 FF portfolios because of their strong factor 
structure. What is more impressive is that a single factor, namely the I-SDF or the I-P, does 
even better than the FF3 factors. Moreover, similar conclusions are obtained if, rather than 

2 2 
relying on ROLS  alone, more stringent hurdles are imposed on the model via the RGLS , T 2, 
and q statistics, and their confidence bands. 
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Table 2: 10 Momentum Portfolios 
2 2 

Row const. λsdf λIP λRm λSM B λHM L λM OM ROLS RGLS T 2 q 
Panel A: Monthly 

(1) 0.004 
(9.99) 

(2) 0.002 
(7.80) 

(3) 0.014 
(2.04) 

(4) 0.022 
(1.27) 

(5) 0.005 
(0.59) 

(6) 0.003 

−0.27 
(−9.16) 

 
 
 
 
 

−0.284 
(−3.05) 

 
 

0.034 
(13.66) 

 
 
 
 
 
 

0.039 

 
 
 
−0.009 
(−1.45) 
−0.013 
(−0.75) 
0.002 
(0.28) 
0.004 

 
 
 
 
 

−0.011 
(−0.61) 
−0.008 
(−1.03) 
−0.005 

 
 
 
 
 

−0.032 
(−1.18) 
−0.023 
(−1.90) 
−0.015 

 
 
 
 
 
 

0.007 
(6.02) 
0.006 
(10.48) 
0.006 

90.2 
[66.3,100] 

95.4 
[55.0,100] 

10.9 
[−12.5,78.6] 

78.9 
[−78.2,100] 

95.9 
[−62.0,100] 

97.7 

68.1 
[16.0,100] 

83.6 
[74.5,100] 

−2.0 
[−7.85,42.4] 

2.59 
[−25.5,92.2] 

69.6 
[−38.3,100] 

82.1 

12.37 
(0.325) 
6.37 

(0.665) 
40.15 
(0.000) 
8.81 

(0.386) 
3.25 

(0.640) 
2.61 

0.024 
[0.00,0.05] 

0.012 
[0.00,0.018] 

0.074 
[0.03,0.43] 

0.044 
[0.00,0.34] 

0.011 
[0.00,0.318] 

0.006 
  (0.42) (4.36) (0.60) (−0.80) (−1.60) (14.64) [14.5,100] [−30.9,100]     (0.605) [0.00,0.30]   

Panel B: Quarterly 
(1) 0.008 

(6.39) 
(2) 0.006 

(5.60) 
(3) 0.038 

(2.40) 
(4) 0.061 

(1.08) 

−1.07 
(−7.93) 

 
 

0.107 
(9.90) 

 
 
 
−0.024 
(−1.59) 
−0.050 
(−0.83) 

 
 
 
 
 
 

0.038 
(1.03) 

 
 
 
 
 
 

0.021 
(0.63) 

 
 
 
 
 
 

0.022 
(5.46) 

87.3 
[16.8,100] 

95.4 
[73.0,100] 

14.4 
[−12.5,80.9] 

75.4 
[−72.8,94.6] 

75.2 
[63.2,100] 

78.6 
[70.4,100] 

−6.49 
[−6.8,31.2] 

1.56 
[−23.6,77.3] 

8.12 
(0.529) 
7.36 

(0.589) 
39.55 
(0.000) 
9.55 

(0.188) 

0.056 
[0.00,0.19] 

0.047 
[0.00,0.07] 

0.226 
[0.05,1.15] 

0.131 
[0.00,0.96] 

 (5) 0.028 
(1.88) 

−1.13 
(−5.10)  −0.18 

(−1.13) 
0.035 
(3.72) 

0.011 
(1.31) 

0.023 
(22.58) 

98.4 
[41.5,100] 

85.8 
[12.7,100] 

1.21 
(0.849) 

0.015 
[0.00,0.194] 

(6) 0.036 
  (2.43)    0.084 

(3.69)   
−0.024 
(−1.54)   

0.032 
(3.28)   

0.0005 
(0.05)   

0.021 
(20.80)   

98.4 
[84.3,100]   

86.7 
[39.7,100]   

1.35 
(0.826)   

0.014 
[0.00,0.14]   

 

Cross-sectional regressions of average excess returns of the 10 momentum-sorted portfolios on the estimated factor loadings for different asset pricing 
models.  Panel A presents the monthly results and Panel B the quarterly results.  The first two rows in each panel present the results when the factor 
is the information SDF (row 1) and the information portfolio (row 2). The information SDF and information portfolio are extracted from the 10 momentum-
sorted portfolios using a relative entropy minimizing procedure, in a rolling out-of-sample fashion starting at 1963:07. Rows 3 and 4 present the results 
for the CAPM and the Carhart 4-factor model, respectively. In row 5 the factors are the four Carhart factors plus the information SDF. In row 6 
the factors are the four Carhart factors plus the information portfolio. For each model, the table presents the intercept and slopes, along with t-
statistics in parentheses. It also presents the OLS adjusted R2 and the GLS adjusted R2, along with the 90% confidence intervals for the true 
underlying population adjusted R2 (in square brackets). The confidence intervals are constructed via simulations using the approach suggested by Stock 
(1991) and used by Lewellen, Nagel, and Shanken (2010). The last two columns present, respectively, Shanken’s (1985) cross-sectional T 2 statistic 
along with its asymptotic p-value in parentheses, and the q statistic that measures how far the factor-mimicking portfolios are from the mean–variance 
frontier. 
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Table 3: 25 Portfolios Formed on Long-Term Reversal and Size 
2 2 

Row const. λsdf λIP λRm λSM B λHM L ROLS (%) RGLS (%) T 2 q 
Panel A: Monthly 

(1) 0.006 
(7.06) 

(2) 0.002 
(2.13) 

(3) 0.005 
(1.38) 

(4) 0.002 
(0.68) 

(5) −0.001 
(−0.291) 

(6) −0.002 

−0.22 
(−2.18) 

 
 
 
 
 

−0.370 
(−5.24) 

 
 

0.024 
(7.98) 

 

 
 
 
 
 

0.022 

 
 
 
 

0.002 
(0.78) 
0.002 
(0.93) 
0.005 
(2.40) 
0.006 

 
 
 
 
 
 

0.001 
(1.62) 
0.004 
(4.77) 
0.003 

 
 
 
 
 
 

0.007 
(4.96) 
0.003 
(2.35) 
0.004 

13.5 
[−4.35,100] 

72.3 
[48.9,100] 

−1.6 
[−4.35,37.4] 

74.3 
[34.9,100] 

86.0 
[71.2,100] 

84.5 

61.5 
[47.1,90.2] 

68.0 
[66.4,100] 

10.1 
[0.15,33.1] 

26.1 
[1.66,100] 

71.1 
[92.3,100] 

66.4 

25.07 
(0.603) 
18.35 
(0.830) 
58.14 
(0.001) 
40.37 
(0.019) 
13.93 
(0.862) 
16.69 

0.047 
[0.00,0.03] 

0.037 
[0.00,0.01] 

0.103 
[0.03,0.18] 

0.077 
[0.01,0.10] 

0.029 
[0.00,0.005] 

0.033 
  (−0.86) (5.50) (2.77) (3.99) (3.39) [59.2,100] [78.5,100] (0.723) [0.00,0.02]   

Panel B: Quarterly 
(1) 0.023 

(11.80) 
(2) 0.008 

(3.13) 
(3) 0.008 

(1.04) 
(4) 0.006 

(0.651) 
(5) 0.002 

(0.133) 
(6) 0.002 

(0.329) 

−0.33 
(−0.300) 

 
 
 
 
 

−2.75 
(−3.35) 

 
 

0.075 
(5.71) 

 

 
 
 
 
 

0.070 
(5.28) 

 
 
 
 

0.013 
(1.81) 
0.009 
(1.03) 
0.014 
(1.87) 
0.012 
(1.80) 

 

 
 
 
 
 

0.005 
(2.59) 
0.009 
(4.32) 
0.011 
(5.13) 

 

 
 
 
 
 

0.020 
(4.76) 
0.012 
(2.93) 
0.007 
(1.47) 

−3.94 
[−4.35,36.3] 

56.8 
[23.8,100] 

8.7 
[−4.35,70.8] 

77.8 
[18.9,100] 

84.2 
[58.0,100] 

86.7 
[56.8,100] 

27.2 
[21.1,45.3] 

56.5 
[48.7,100] 

1.33 
[−2.26,31.0] 

11.96 
[−7.61,84.3] 

32.8 
[−4.38,100] 

53.0 
[63.1,100] 

54.50 
(0.353) 
23.96 
(0.732) 
68.46 
(0.002) 
48.86 
(0.018) 
32.58 
(0.292) 
22.61 
(0.531) 

0.291 
[0.00,0.44] 

0.167 
[0.00,0.07] 

0.372 
[0.09,0.68] 

0.301 
[0.04,0.49] 

0.219 
[0.00,0.257] 

0.153 
[0.00,0.082] 

 
Cross-sectional regressions of average excess returns of the 25 long term reversal and size sorted portfolios on the estimated factor loadings for different 
asset pricing models. Panel A presents the monthly results and Panel B the quarterly results. The first two rows in each panel present the results when 
the factor is the information SDF (row 1) and the information portfolio (row 2). The information SDF and the information portfolio are extracted from 
the 25 long term reversal and size sorted portfolios using a relative entropy minimizing procedure, in a rolling out-of-sample fashion starting at 1963:07. 
Row 3 presents the results for the CAPM, and row 4, for the Fama–French 3-factor model. In row 5 the factors are the three FamaFrench factors 
plus the information SDF. In row 6 the factors are the three FamaFrench factors plus the information portfolio. For each model, the table presents 
the intercept and slopes, along with t-statistics in parentheses. It also presents the OLS adjusted R2 and the GLS adjusted R2, along with the 90% 
confidence intervals for the true underlying population adjusted R2 in square brackets below. The confidence intervals are constructed via simulations 
using the approach suggested by Stock (1991) and used by Lewellen, Nagel, and Shanken (2010). The last two columns present, respectively, Shanken’s 
(1985) cross-sectional T 2 statistic along with its asymptotic p-value in parentheses, and the q statistic that measures how far the factor-mimicking 
portfolios are from the mean–variance frontier. 
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Table 4: Small, Large, Growth, Value, Winners, Losers, 10 Industry 
2 2 

Row const. λsdf λIP λRm λSM B λHM L λM OM ROLS RGLS T 2 q 
Panel A: Monthly 

(1) 0.001 
(2.49) 

(2) 0.003 
(7.45) 

(3) 0.007 
(2.02) 

(4) 0.003 
(1.25) 

(5) −0.002 
(−1.12) 

(6) −0.003 

−1.12 
(−16.7) 

 
 
 
 
 

−1.49 
(−5.67) 

 
 

0.027 
(8.62) 

 

 
 
 
 
 

0.035 

 
 
 
−0.002 
(−0.70) 
0.002 
(1.09) 
0.006 
(4.30) 
0.007 

 
 
 
 
 
 

0.002 
(2.42) 
0.003 
(5.92) 
0.003 

 
 
 
 
 
 

0.002 
(1.92) 

0.0004 
(0.872) 
0.0003 

 
 
 
 
 
 

0.009 
(8.78) 
0.008 
(10.65) 
0.008 

94.9 
[99.9,100] 

83.0 
[74.3,100] 

−3.5 
[−7.14,57.1] 

84.8 
[11.4,100] 

95.1 
[94.0,100] 

94.7 

88.0 
[86.2,100] 

84.2 
[82.0,100] 

−1.17 
[−3.75,45.0] 

40.3 
[−19.2,91.7] 

88.6 
[81.6,100] 

84.8 

5.39 
(0.984) 
9.89 

(0.872) 
62.76 
(0.000) 
27.23 
(0.018) 
3.03 

(0.955) 
5.73 

0.013 
[0.00,0.013] 

0.019 
[0.00,0.009] 

0.112 
[.038,.413] 

0.052 
[0.005,0.262] 

0.009 
[0.00,0.014] 

0.012 
  (−1.58) (8.10) (4.45) (5.44) (0.51) (10.65) [56.5,100] [81.7,100] (0.891) [0.00,0.013]   

Panel B: Quarterly 
(1) 0.014 

(12.44) 
(2) 0.009 

(5.81) 
(3) 0.021 

(2.10) 
(4) 0.012 

(1.47) 
(5) 0.009 

(1.10) 
(6) −0.002 

−3.88 
(−6.92) 

 
 
 
 
 

−2.37 
(−2.54) 

 
 

0.100 
(6.61) 

 

 
 
 
 
 

0.107 

 
 
 
−0.005 
(−0.52) 
0.004 
(0.45) 
0.006 
(0.82) 
0.017 

 
 
 
 
 
 

0.006 
(2.50) 
0.007 
(2.94) 
0.008 

 
 
 
 
 
 

0.005 
(2.01) 
0.005 
(2.12) 
0.002 

 
 
 
 
 
 

0.027 
(7.97) 
0.026 
(7.94) 
0.024 

75.8 
[56.1,100] 

74.0 
[31.4,100] 

−5.1 
[−7.14,61.4] 

82.9 
[25.0,100] 

84.4 
[41.5,100] 

89.6 

60.9 
[28.6,100] 

79.9 
[68.1,100] 

0.73 
[0.83,65.9] 

37.3 
[−19.9,84.9] 

50.1 
[−20.5,100] 

75.8 

17.15 
(0.555) 
10.85 
(0.828) 
67.17 
(0.000) 
27.86 
(0.026) 
18.7 

(0.118) 
8.27 

0.145 
[0.00,0.554] 

0.077 
[0.00,0.181] 

0.358 
[0.093,1.345] 

0.178 
[0.015,1.323] 

0.129 
[0.00,0.520] 

0.062 
  (−0.26) (4.62) (2.16) (3.89) (1.10) (8.43) [49.0,100] [37.7,100] (0.701) [0.00,0.258]   

 
Cross-sectional regressions of average excess returns of the 10 industry portfolios and the top and bottom deciles of portfolios sorted on the basis of 
size, book-to-market-equity, and momentum on the estimated factor loadings for different asset pricing models. Panel A presents the monthly results 
and Panel B the quarterly results. In each panel, row 1 presents the results when the factor is the information SDF, and row 2, when the factor is 
the information portfolio. The information SDF and the information portfolio are extracted from the 10 industry portfolios and the top and bottom 
deciles of portfolios sorted on the basis of size, book-to-market-equity, and momentum, using a relative entropy minimizing procedure, in a rolling 
out-of-sample fashion starting at 1963:07. Rows 3 and 4 present the results for the CAPM and the Carhart 4-factor model, respectively. In row 5 
the factors are the three FamaFrench factors plus the information SDF. In row 6 the factors are the three FamaFrench factors plus the information 
portfolio. For each model, the table presents the intercept and slopes, along with the t-statistics in parentheses. It also presents the OLS adjusted R2 

and the GLS adjusted R2, along with the 90% confidence intervals for the true underlying population adjusted R2 (in square brackets). The confidence 
intervals are constructed via simulations using the approach suggested by Stock (1991) and used by Lewellen, Nagel, and Shanken (2010). The last two 
columns present, respectively, Shanken’s (1985) cross-sectional T 2 statistic along with its asymptotic p-value in parentheses, and the q statistic. 

 



We next show that the superior performance of our model holds not only for the size and 
book-to-market-equity sorted portfolios, but also for portfolios formed by sorting stocks on 
the basis of other characteristics, such as prior returns, industry, etc. Tables 2–4 present the 
cross-sectional regression results when the set of test assets consists of (a) the 10 momentum 
sorted portfolios, (b) the 25 portfolios formed on the basis of size and long-term reversal, 
and (c) the 10 industry portfolios and the smallest and largest deciles of portfolios formed 
on the basis of size, B/M, and momentum. The results, in each case, are very similar to 
those obtained with the 25 FF portfolios in Table 1. 

Overall, Tables 2–4 show that: the I-SDF and I-P tend to produce smaller pricing errors 
and larger cross-sectional R2s than the Fama–French 3-factor and the Carhart 4-factor mod- 
els, despite being only a one factor model; the risk premia associated with the I-SDF and 
I-P are statistically significant, even after controlling for the FF and Carhart factors; the 
T 2 statistics of the I-SDF and I-P imply that these factors are never rejected at standard 
confidence levels (while the other factor models considered are almost always rejected); the q 
statistics imply that the I-SDF and I-P successfully identify the capital market line, i.e. they 
are statistically undistinguishable from the maximum Sharpe ratio portfolio (while the other 
factor models considered fail in this respect); in 29 cases out of 32 (or 37 out of 40 if Table 
1 is included) the t-statistics of the information factors are larger than 3, hence clearing the 
higher hurdle for statistical significance recommended by Harvey and Liu (2015). Moreover, 
as an additional robustness check of the results in Tables 1 to 4, we have also run cross- 
sectional estimates using the Pen-FM (Penalized Fama–MacBeth) estimator of Bryzgalova 
(2015), that by design has the ability to detect spurious factors and shrinking (in a ‘lasso’ 
fashion) their λ’s to zero. Using this approach, we found virtually identical results, for the 
information factors, to those discussed above.8 

In Tables 1–4, the cross-section of assets used to extract the I-SDF and I-P coincide with 
the test assets that the model is then challenged to price. As described in Section II, if the 
I-SDF prices perfectly the cross-section in-sample, then the I-P is identical, in sample, to 
the mean–variance tangency portfolio of the test assets. However, this is not the case when 
the set of assets used to estimate the kernel differs from the set of test assets. The relative 
performance of the I-SDF and I-P in such a scenario is shown in Table 5. The cross-section 
used to estimate the I-SDF and I-P is the same as that in Table 4, i.e. the 10 industry 
portfolios and the smallest and largest deciles of portfolios formed on the basis of size, B/M, 
and momentum. The set of test assets consist of a larger set formed by finer sortings of 
stocks into portfolios on the basis of the same characteristics, namely, industry, size, B/M, 

 
8We are thankful to Svetlana Bryzgalova for providing us with the necessary computer code to implement 

this test. 
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Table 5: I-SDF and I-P Extracted from Small, Big, Growth, Value, Winner, Loser Portfolios 
plus 10 Industry Portfolios 

2 2 
Row Assets const. λsdf λIP ROLS (%) RGLS (%) T 2 q 

Panel A: Monthly 
(1) 25 ME & Mom .0014 

(2.84) 
−1.13 

(−11.10) 
 83.6 

[66.6,100] 
19.2 

[−1.22,50.6] 
65.5 

(0.028) 
.161 

[.021,.209] 
(2) 25 ME & Mom .0037  .031 82.2 24.2 76.1 .151 

  (9.79)  (10.58) [68.7,100] [5.64,59.2] (0.000) [.042,.221] 

(3) 25 FF + 30 Ind .0013 −1.03 35.2 31.2 100.4 .235 
  (1.45) (−5.51)  [23.6,100] [16.8,100] (0.238) [.000,.282] 

(4) 25 FF + 30 Ind .0020  .038 45.2 33.1 107.6 .226 
  (3.34)  (6.75) [31.7,100] [29.4,100] (0.058) [.000,.267] 
(5) 25 FF + 30 Ind + 10 Mom .0016 −.94  53.4 28.5 129.5 .291 

  (3.06) (−8.62)  [45.1,100] [22.8,100] (0.147) [.000,.341] 

(6) 25 FF + 30 Ind + 10 Mom .0030  .028 58.6 28.8 147.1 .288 
  (9.00)  (9.57) [53.3,100] [12.7,77.1] (0.002) [.032,.300] 

Panel B: Quarterly 
(1) 25 ME & Mom .018 

(19.70) 
−5.29 

(−11.78) 
 85.2 

[78.1,100] 
28.5 

[8.54,100] 
37.7 

(0.371) 
.326 

[.000,.598] 
(2) 25 ME & Mom .018  .108 75.0 18.4 51.7 .373 

  (15.51)  (8.54) [52.0,100] [3.11,45.3] (0.069) [.000,.318] 

(3) 25 FF + 30 Ind .014 −4.11 24.2 27.6 106.3 .776 
  (10.08) (−4.27)  [3.21,100] [7.36,92.4] (0.508) [.000,.680] 
(4) 25 FF + 30 Ind .013  .107 35.8 25.8 110.4 .795 

  (9.10)  (5.58) [9.32,100] [10.0,86.9] (0.526) [.000,.613] 

(5) 25 FF + 30 Ind + 10 Mom .014 −4.51 45.9 24.8 138.0  1.07 
  (14.88) (−7.44)  [37.0,100] [6.40,100] (0.512) [.000,.875] 
(6) 25 FF + 30 Ind + 10 Mom .014  .099 53.0 25.6 153.0 1.06 

  (14.97)  (8.56) [48.2,100] [3.31,90.5] (0.449) [.000,.431] 

 
Cross-sectional regressions of average excess returns listed in column 2 on the estimated factor loadings for 
the information SDF (odd rows) and portfolio (even rows). The information SDF and information portfolio 
are extracted from only a subset of the portfolios  (the Small, Big, Growth, Value, Winners and Losers 
portfolios plus the 10 industry portfolios) in a rolling out-of-sample fashion starting at 1963:07. Panel A 
presents the monthly results and Panel B the quarterly results. For each model, the table presents the 
intercept and slopes, along with t-statistics in parentheses. It also presents the OLS adjusted R2 and the 
GLS adjusted R2, along with the 90% confidence intervals for the true underlying population adjusted R2 (in 
square brackets). The confidence intervals are constructed via simulations using the approach suggested by 
Stock (1991) and used by Lewellen, Nagel, and Shanken (2010). The last two columns present, respectively, 
Shanken’s (1985) cross-sectional T 2 statistic along with its asymptotic p-value in parentheses, and the q 
statistic. 

 
 
and momentum. 

Consider first Panel A, which presents the results at a monthly frequency. In rows 1–2, 
the test assets consist of 25 portfolios formed on the basis of size and momentum. The I- 
SDF delivers a substantially smaller annualized intercept of 1.7% (row 1) compared to 4.4% 
(row 2) obtained with the I-P. Although the former intercept is statistically significant, its 
magnitude can, in principle, be fully explained by differences between lending and borrowing 
rates. The intercept obtained with the I-P, on the other hand, is economically large and is 
too big to be explained by differences between lending and borrowing rates. Similar results 
are obtained in rows 3–4, when the set of test assets consists of the 25 size and B/M sorted 
portfolios and the 30 industry-sorted portfolios:  the I-SDF delivers an intercept of 1.6% 
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that is not statistically different from zero, whereas the I-P produces a larger and highly 
statistically significant intercept of 2.4%. Lastly, rows 5–6, where the test assets consist of 
the combination of the 25 size and B/M sorted portfolios, the 30 industry-sorted portfolios, 
and the 10 momentum-sorted portfolios, produce, once again, similar results: the I-SDF and 
the I-P produce estimated intercepts of 1.9% and 3.6%, respectively. The results are less 
stark at the quarterly frequency: the estimated intercepts are similar for the I-SDF and the 
I-P, although the former produces smaller pricing errors, as indicated by the values of the 
T 2  and q statistics, than the latter for all three sets of test assets. 

The above results suggest that the I-SDF accurately identifies the underlying sources of 
priced risk. When the cross-section of assets used to extract the I-SDF and, therefore, the 
I-P is the same as the set of assets used in the cross-sectional tests, the I-SDF and I-P deliver 
similar cross-sectional fits. However, when the two sets of assets differ, the I-SDF delivers a 
better fit than the I-P, at least at a monthly frequency, and smaller pricing errors. This is 
because the I-SDF provides an estimate of the underlying kernel or sources of systematic risk 
while its projection, the I-P, isolates the component of the kernel most relevant for pricing 
that particular set of assets. This difference in performance suggests that the non-linearity 
of the I-SDF in asset returns (see Equation 5) is actually informative, and that part of this 
information is lost when working with the linear I-P. 

 
 
IV.2   Properties of the Information SDF 

 
We now show that the I-SDF and the I-P contain novel pricing information not captured 
by standard multifactor asset pricing models, such as the FF 3-factor and the Carhart 4- 
factor models. Table 6 presents the time series regressions of the I-SDF and I-P, constructed 
from each set of test assets in Tables 1–4 (and indicated in the second column), on the 
FF3 factors. Whenever the assets used to construct the information SDF and portfolio 
include momentum-sorted portfolios, we also include the momentum factor as a regressor in 
addition to the FF3 factors. If the factors fully explain the variation in the I-SDF and I-P, 
the intercepts from the time series regressions should be indistinguishable from zero and the 
R2 of the regressions should be high. 

Panel A presents the results at a monthly frequency. In rows 1–2, the 25 size and book- 
to-market-equity sorted portfolios are used to extract the kernel and its mimicking portfolio. 
Row 1 shows that the 3 FF factors explain only 17.6% of the variation in the I-SDF. Moreover, 
the estimated intercept is strongly statistically significant, with an annualized value of 14.0%. 
Note that since the I-SDF is not a tradeable factor, the intercept is not interpretable as an 
alpha. Row 2 shows that the FF factors can explain a larger fraction of the variation in the I-P 
than does the I-SDF (26.9% versus 17.6%). However, even in this case, about three-quarters 
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(1) FF25 1.17 
(35.5) 

 −4.65 
(−6.01) 

−1.36 
(−1.26) 

−12.25 
(−10.55) 

 17.6  
(2) FF25  1.31 0.47 0.21 1.30  26.9 0.211 

   (4.89) (7.44) (2.41) (13.82)    (3) 10 Momentum 1.19 
(31.8) 

 −5.00 
(−5.70) 

1.94 
(1.61) 

−3.88 
(−2.93) 

−12.06 
(−14.23) 

27.1  
(4) 10 Momentum  1.37 

(3.06) 
0.94 
(9.03) −0.30 0.26 

(1.67) 
1.67 

(16.52) 
36.1 0.135 

(5) 25 Long-Term Reversal & Size 1.16 
(28.3) 

 −3.89 
(−4.03) 

−1.49 
(−1.11) 

−9.23 
(−6.36) 

 7.34  

(6) 25 Long-Term Reversal & Size  0.69 0.40 0.35 0.92  20.7 0.121 
   (2.79) (6.92) (4.39) (10.56)    (7) S, B, G, V, W, L, 10 Industry 1.33 

(18.2) 
 −8.73 

(−5.09) 
−6.52 
(−2.77) 

−13.2 
(−5.10) 

−15.1 
(−9.09) 

16.1  
(8) S, B, G, V, W, L, 10 Industry  0.93 0.59 0.35 1.28 1.25 46.6 0.145 

   (3.28) (9.00) (3.90) (12.87) (19.70)   
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Table 6: Explaining I-SDF and I-P with FF3 and Momentum Factors 
2 

Row Assets αsdf αIP (%) βRm βSM B βHM L βM OM ROLS (%) Info-Ratio 
Panel A: Monthly 

 
 
 
 
 
 

(−2.09) 
 
 
 
 
 
 
 

Panel B: Quarterly 
(1) FF25 2.69 

(4.57) 
(2) FF25 5.49 

(4.01) 
(3) 10 Momentum 1.69 

(12.36) 
(4) 10 Momentum 2.63 

(1.77) 
(5) 25 Long-Term Reversal & Size

 2.39 
(4.61) 

(6) 25 Long-Term Reversal & Size 2.39 
(2.57) 

(7) S, B, G, V, W, L, 10 Industry
 3.22 

(8.66) 
(8) S, B, G, V, W, L, 10 Industry 3.21 

(2.77) 

6.61 
(0.86) 
0.59 
(3.29) 

−8.11 
(−4.80) 
1.20 
(6.52) 

−0.365 
(−0.054) 

0.50 
(4.16) 

−6.47 
(−1.40) 
0.67 
(4.70) 

−0.22 
(−0.02) 
0.43 
(1.72) 
4.82 
(2.02) 

−0.21 
(−0.82) 
9.67 
(1.01) 
0.01 
(0.06) 

−17.63 
(−2.71) 
0.29 
(1.42) 

−6.93 
(−0.70) 
1.12 
(4.85) 

−3.26 
(−1.46) 
0.43 
(1.76) 

−14.3 
(−1.62) 
0.93 
(5.94) 

−19.71 
(−3.24) 
1.16 
(6.15) 

 
 
 
−12.37 
(−7.57) 
1.92 

(10.76) 
 
 
 
−29.81 
(−6.70) 
1.23 
(8.89) 

−0.50 
 

15.4 0.310 
 

27.5 
 

42.6 0.147 
 

0.83 
 

18.0 0.199 
 

19.7 
 

33.6 0.230 

 
The table presents the intercept and slope coefficients, along with the t-statistics in parentheses, as well as the OLS adjusted R2, from time series 
regressions of the information SDF (odd rows) and portfolio (even rows) on the Fama–French and Carhart factors. Each row presents the results 
when the information SDF and portfolio are constructed using the cross-section of assets listed in column 2. Since the αIP is presented in percentage 
terms, αsdf is presented as the intercept multiplied by 100 for the sake of comparability. Panels A and B present the results at monthly and quarterly 
frequencies. 

 



of the variation is left unexplained by the FF factors. Moreover, the estimated intercept, 
which in this case has the interpretation of a standard α, is statistically and economically 
large, at 15.7% per annum. These results, together with the observation that the I-SDF and 
IP perform substantially better at pricing the cross-section of the 25 size and B/M sorted 
portfolios (Table 1), suggest that the FF factors do not fully capture the sources of priced 
risk even for the size and book-to-market portfolios. 

Similar results are obtained for the 10 momentum sorted portfolios (rows 3–4), the 25 
portfolios formed on the basis of size and long term reversal (rows 5–6), and the smallest 
and largest deciles of portfolios formed on the basis of size, B/M, and momentum and the 10 

2 
industry-sorted portfolios (rows 7–8). The ROLS  from the I-SDF regressions vary from 7.3% 
(for the size and long-term reversal sorted portfolios) to 27.1% (for the 10 momentum-sorted 
portfolios), showing that a substantial proportion of the variability in the I-SDFs cannot be 

2 
explained by the movements in the FF3 and momentum factors.  The corresponding ROLS 

from the I-P regressions are higher, varying from 20.7%–46.6%, but still a substantial fraction 
of the variability is left unexplained by the standard multifactor models. The estimated 
annualized intercepts are all statistically significant and economically large, varying from 
8.3%–16.4% for the I-SDF and from 13.9%–16.0% for the I-P. 

The last column for each I-P regression presents the so-called Information Ratio, defined 
as the estimated alpha divided by the standard deviation of the residual from each regression. 
The Information Ratio, therefore, measures the Sharpe ratio of a hedged strategy that has 
an alpha equal to the estimated alpha and that has no systematic risk with respect to the 
FF3 or momentum factors (i.e., its beta with respect to each of these factors is zero). The 
results reveal that the Information Ratios are economically large, varying from 0.42–0.73 
per annum. That is, a portfolio strategy that is long the I-P but perfectly hedged with 
respect to the market, size, book-to-market and momentum risk factors would deliver an 
annual return of 13.9%–16.0% and an annual Sharpe ratio of 0.42–0.73. Moreover, note that 
such a portfolio strategy would require rebalancing only once per year. This is remarkable if 
compared to the annualized excess return (less than 5%) and Sharpe ratio (about 0.31) on 
the U.S. stock market during the same period. This suggests that, as discussed extensively 
in the next section, the information SDF and portfolio are not only useful for pricing assets, 
but also as an asset allocation approach. 

The results obtained at the quarterly frequency in Panel B are largely similar. In fact, 
the FF3 or 4 factors explain an even smaller fraction of the variability of the I-SDF at a 
quarterly frequency compared to that at a monthly frequency.  For two out of the four sets 

2 
of test assets, ROLS  is less than 1%, and the estimated intercepts are statistically significant 

2 
in all four cases. For the I-P regressions, ROLS is lower at the quarterly frequency in three 
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out of the four sets of test assets. The estimated α’s are all statistically significant (with the 
exception of the momentum-sorted portfolios) and economically large, varying from 9.6% 
to 22.0% (annualized) and the Information Ratios are also economically large, varying from 
0.29 to 0.62 (annualized). 

 
 
IV.3  An Asset-Allocation Perspective 

 
The previous results show that both the I-SDF and I-P offer a good one-factor benchmark 
model for pricing broad cross-sections of equity portfolios. Moreover, our cross-sectional 
asset pricing tests suggest that (as one should expect from a good pricing model) I-SDF 
and I-P identify correctly the capital market line, i.e. the maximum Sharpe ratio portfolio. 
As a consequence, since the information portfolio is easily tradable, we next investigate the 
implications of the I-P for strategic asset allocation. 

Assuming that the investors’ utility functions depend only on the mean and variance of a 
portfolio’s return, Markowitz (1952) derived the optimal rule for allocating wealth across a set 
of risky assets. However, the practical implementation of that approach requires estimating 
the expected returns and the variance–covariance matrix of the assets. For instance, with 
N  = 25 risky assets, estimating these moments via their sample analogues requires the 
estimation of N + N (N +1)

 = 350 parameters. Not surprisingly, these optimal portfolios 
often have extreme weights on constituent assets that fluctuate substantially over time, and 
perform poorly out-of-sample. Given the widespread use of the mean–variance approach 
to asset allocation among both academics and practitioners, substantial research effort has 
been devoted to trying to reduce the estimation error and improving the performance of the 
model. DeMiguel, Garlappi, and Uppal (2009) evaluate the out-of-sample performance of 
the sample based mean–variance approach, as well as a broad set of its extensions designed 
to reduce the effect of estimation error, using several different sets of test assets. Using 
several performance evaluation measures, they conclude that optimally diversified portfolios 
constructed using these approaches typically underperform a näıve diversification strategy 
consisting of an equally-weighted (1/N ) portfolio of the test assets. 

We evaluate the out-of-sample performance of the I-P using the same performance mea- 
sures as in DeMiguel, Garlappi, and Uppal (2009), namely (i) the Sharpe ratio and (ii) the 
certainty-equivalent (CEQ) return for the expected utility of a mean–variance investor. The 
Sharpe ratio is defined as S�RI-P = µI-P /σI-P , where µI-P and σI-P are the sample mean and 
sample standard deviation, respectively, of the out-of-sample excess returns on the I-P. The 
CEQ return is defined as the risk free rate that would make an investor with mean–variance 
preferences and coefficient of risk aversion γ = 1 indifferent between the risky I-P and the 
risk free rate: C---EQI-P = µI-P 

γ σ2    . 
2 �I-P 
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For each cross-section of assets used to construct the information portfolio, we compute 
the Sharpe Ratio, the CEQ return, and the first four moments of the I-P. The results 
are presented in Table 7. Panels A and B use monthly and quarterly frequencies. As a 
benchmark to facilitate comparison, we also compute the corresponding statistics for the 1/N 
portfolio of the test assets. In addition to the equally-weighted portfolio, we also compare 
the performance of the I-P to other standard benchmarks, including: the market portfolio 
(row 2), the value and size portfolios (HML and SMB in rows 3 and 4 respectively) of Fama 
and French (1993) that are meant to exploit the value and size premia;  the momentum 
portfolio (row 6) of Carhart (1997); and the combined value and momentum portfolio that 
is meant to exploit the negative correlation between value and momentum strategies (see 
Asness, Moskowitz, and Pedersen (2013)). 

Consider first row 1 of Panel A, where the I-P is constructed from the 25 size and book- 
to-market sorted portfolios. Its 2.1% monthly (23.3% annual) return is about three times 
that of the 1/N portfolio (presented in parenthesis below), about 5 times that of the market 
and HML (rows 2 and 3) portfolios, 7 times that of the SMB portfolio (row 4), about three 
times that of the momentum portfolio (row 6), and about three and a half times that of 
the value and mometum strategies combined (row 9). These very high returns are obtained 
with a volatility that is only about two-thirds larger than that of the market and momentum 
portfolios. 

Moreover, the I-P monthly Sharpe ratio is 0.288 (about 1.0 annualized), while the Sharpe 
ratio of the corresponding 1/N benchmark (presented in parentheses below) is only 0.128 
monthly (or 0.44 annualized), i.e. less than one-half that of the I-P. The I-P’s Sharpe ratio 
not only outperforms the 1/N benchmark, but also the market portfolio, by a factor of more 
than three, the HML portfolio (row 3) by a factor of more than two, the SMB portfolio 
by a factor of 3.5, the momentum factor by a factor of 1.75, and the combined Value and 
Momentum portfolio (that has an annualized SR of about 0.8) by a factor of 1.25. Note also 
that this last comparison might seem unfair to the information portfolio since, in row 1, it is 
constructed without the potentially high returns achievable by exploiting jointly the value 
and momentum anomaly. And indeed, when we allow the I-P to exploit these features of 
the data (in row 8), the SR becomes one-third higher than what is achievable by combining 
the value and moment strategies (in row 9). 

Note that the very high returns and Sharpe ratio of the I-P in row 1 do not seem to be 
a compensation for negative skewness and tail risk: the I-P’s skewness is positive (about 
0.384), while that of the market, HML and momentum portfolios (both individually and 
combined) are all negative (and very large for momentum based strategies), and its kurtosis 
is similar to that of the market and HML portfolios, and much smaller than those of the 
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 (FF25) (0.007) (0.051) (0.128) (−0.575) (5.589) (0.006) 
(2) Market - Risk Free 0.004 0.045 0.091 −0.567 5.028 0.003 
(3) HML 0.004 0.029 0.139 −0.034 5.440 0.004 
(4) SMB 0.003 0.032 0.083 0.527 8.452 0.002 
(5) RIP 0.030 0.127 0.235 −0.352 8.022 0.022 
 (10 Momentum) (0.004) (0.048) (0.085) (−0.326) (4.793) (0.003) 

(6) Momentum Portfolio 0.007 0.044 0.164 −1.419 13.65 0.006 
(7) RIP 0.013 0.064 0.206 −0.212 5.111 0.011 

(25 Long-Term Reversal & Size) (0.007) (0.051) (0.137) (−0.444) (5.865) (0.006) 

(8) RIP 0.027 0.088 0.306 −0.679 6.180 0.023 
(S, B, G, V, W, L, 10 Industry) (0.005) (0.046) (0.106) (−0.490) (4.953) (0.004) 

 

 (FF25) (0.021) (0.103) (0.207) (−0.183) (3.576) (0.016) 
(2) Market - Risk Free 0.013 0.087 0.150 −0.435 3.635 0.009 
(3) HML 0.012 0.060 0.204 0.109 4.754 0.010 
(4) SMB 0.009 0.059 0.146 0.299 2.602 0.002 
(5) RIP 0.085 0.239 0.354 −0.090 5.295 0.056 
 (10 Momentum) (0.013) (0.093) (0.143) (−0.231) (3.805) (0.009) 

(6) Momentum Factor 0.020 0.081 0.254 −1.411 10.13 0.017 
(7) RIP 0.042 0.134 0.313 −0.168 3.833 0.033 

(25 Long-Term Reversal & Size) (0.023) (0.104) (0.220) (−0.057) (3.865) (0.018) 

(8) RIP 0.083 0.173 0.480 0.181 3.463 0.068 
(S, B, G, V, W, L, 10 Industry) (0.016) (0.090) (0.175) (−0.315) (3.794) (0.012) 

 

 

Table 7: Summary Statistics of Information Portfolio & Returns  
Row Assets Mean Volatility Sharpe Ratio Skewness Kurtosis CEQ 

 
(1) RIP 

 
0.021 

Panel A: Monthly 
0.073 

 
0.288 

 
0.384 

 
5.541 

 
0.018 

 
 
 
 
 
 
 
 
 
 
 

   (9) HML  &  Momentum 0.006 0.024 0.231 −0.961 10.59 0.006   
Panel B: Quarterly 

(1) RIP 0.080 0.194 0.413 0.410 3.955 0.061 
 
 
 
 
 
 
 
 
 
 
 

   (9) HML & Momentum 0.019 0.042 0.443 −0.070 5.350 0.018   
 

Mean, volatility, Sharpe ratio, skewness, kurtosis, and CEQ statistic for the portfolios listed in column 2: the 
information portfolio, RIP , constructed from various cross-sections of assets (listed in parentheses) with the 
corresponding statistics for an equally-weighted portfolio of the underlying assets presented in parentheses 
below; the market minus the risk free rate portfolio; the value portfolio (HML); the size portfolio (SMB); 
the momentum portfolio; and the value and momentum portfolio. Panels A and B present the results at 
monthly and quarterly frequencies. 

 
 
 
momentum, HML plus momentum, and SMB strategies. 

 

Similar conclusions are obtained using the CEQ return as the measure of performance. 
A mean–variance investor with γ = 1 would need an annualized risk free rate of 22.0% (or 
about 1.8% monthly) in order to not invest in the I-P, whereas a risk free rate of only 7.2% 
(or about 0.6% monthly) is required for such an agent to not invest in the 1/N portfolio. 
Similarly, annual (monthly) risk free rates of only 3.6% (0.3%), 4.8% (0.4%), 7.2% (0.6%), 
and 7.1% (0.6%), respectively, are required in order to be indifferent between the risk free 
rate and the market, the HML, the momentum, and the HML plus momentum portfolios. 

To show that the performance of the I-P in row 1 is not driven by just a subset of the 
data, panel A of Figure 1 plots the path of $1 invested in the I-P over the entire out-of- 
sample evaluation period. Note that because we use excess returns in the construction of the 
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Panel B: Path of $1 Levered to Have Same Volatility as IP 
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Figure 1: Panel A: cumulated log returns of a zero wealth $1 invested in: information portfolio (red solid 
line); market portfolio in excess of the risk free rate (green dotted line); SMB portfolio (dark blue dash-dot 
line); HML portfolio (pale blue long-dash line); 1/N portfolio (yellow dashed line). Panel B: same series as 
Panel A but with portfolios leveraged to the same volatility as the information portfolio. The information 
portfolio is non-parametrically extracted at a monthly frequency from the 25 Fama–French portfolios using a 
relative entropy minimization procedure in a rolling out-of-sample fashion starting at 1963:07. Shaded areas 
indicate NBER recession dates while the vertical dot-dashed lines indicate market crashes identified using 
the Mishkin and White (2002) approach. 
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I- P, this corresponds to a long–short strategy that is short $1 in the risk free rate and uses 
the proceeds to invest in the optimal portfolio of risky assets. For comparison, and since 
the plotted I-P is constructed using the FF25 portfolios (hence it might exploit the size and 
value premia), we also plot the path of $1 invested in the HML and SMB portfolios, as well 
as the excess return on the market and the equally weighted portfolios. Note also that the 
graph is in log scale, so that the slopes of the various lines are directly comparable across the 
various strategies at each point in time. As is evident from the figure, the I-P outperforms, 
by a wide margin, each of the benchmarks. Moreover, the I-P outperformance is robust 
across sub-periods: the average slope of the I-P line is higher in virtually all the 10-year 
sub-periods. For robustness, Panel B of Figure 1 presents the same cumulated returns as 
Panel A but with the benchmark portfolios leveraged in order to have the same volatility 
as the Information Portfolio. The figure shows that only for a very brief period at the end 
of the 60s did the leveraged SMB and 1/N outperform the I-P, and that only in the late 
70s did the leveraged HML have a similar performance as the I-P. In all other periods, I-P 
clearly outperforms the various benchmarks. Moreover, the I-P tends to have less severe 
contractions in returns than the other portfolios during, and following, market-wide crashes 
(vertical dot-dashed lines in the figure).9 

The I-P in row 1 of Table 7 and Figure 1 is an optimally weighted portfolio of the 25 
size and book-to-market sorted portfolios. Therefore, the question arises as to whether our 
approach relies on extreme weights on the constituent portfolios that also fluctuate wildly 
over time. Figure 2a plots the time series of weights on each of the 25 portfolios in the I-P. 

The figure makes clear that the vast majority of the weights lie in the [−2, 2] interval and, 
therefore, are not extreme. Moreover, these weights evolve smoothly, implying that the I-P 
has low turnover and, therefore, low trading costs (note also that the rebalancing is done 
once a year, in June). 

In order to provide more intuition regarding the composition of the I-P in row 1 of Table 
7, Figure 2b plots the aggregate weights on portfolios of small, big, growth, and value stocks 
in the I-P. For instance, writing (1, 5) for the portfolio with stocks in the smallest size quintile 
and the largest book-to-market-equity quintile, the line labeled ‘Small’ in the figure plots 
the sum of the weights on portfolios (1, 1), (1, 2), (1, 3), (1, 4), and (1, 5) at each date. The 
‘Big,’ ‘Growth,’ and ‘Value’ curves are similarly defined. The Growth and Value curves 
reveal that the I-P typically takes a long position in value stocks and a short position in 
growth stocks, much like the HML factor of Fama–French. However, unlike the latter, the 
weights on the long and short ends are not constant in the I-P. Although the weights almost 

 
9We follow Mishkin and White (2002) and identify a stock market crash as a period in which either the 

Dow Jones Industrial, the S&P500, or the NASDAQ index drops by at least 20 percent in a time window of 
either one day, five days, one month, three months, or one year. 
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(a) portfolio weights (b) Small, Big, Value and Growth weights 
 
Figure 2: Portfolio weights of the information portfolio extracted monthly from the 25 Fama–French 
portfolios. Panel (a): time series of weights assigned to each of the 25 size and book-to-market-equity sorted 
portfolios. Panel (b): time series of weights assigned to the ‘Small’, ‘Big’, ‘Growth’, and ‘Value’ portfolios. 

 
always lie between −2 and +2, they do vary over time. The Small and Big curves offer a less 

clean interpretation as a long–short strategy and resemble less the SMB factor. Overall, the 
weights on the small, large, growth, and value stocks in the I-P are quite different from those 
implied by the SMB and HML factors. Moreover, our results suggest that this alternative 
weighting scheme leads to substantially better performance, both in terms of out-of-sample 
pricing as well as constructing optimally diversified portfolios. 

But the I-P outperforms the various benchmark portfolios not only when it is constructed 
using the FF25 portfolios, but also when different cross-sections are used. In particular, row 
5 of Table 7 presents the results when the I-P is constructed from the 10 momentum sorted 
portfolios. In this case, the returns on the I-P are even higher: about 3% per month. 
Moreover, once again, the I-P has a Sharpe ratio almost triple that of the 1/N portfolio 
and a CEQ return more than 7 times higher, and similarly outperforms the market, HML, 
momentum, and HML plus momentum strategies, with neither a large negative skewness 
risk nor extremely thick tails in the returns distribution. Similar results are obtained when 
the I-P is constructed from the 25 long-term reversal and size sorted portfolios (row 7). 

Moreover, the I-P portfolio shows an even stronger performance (in terms of SR and 
CEQ) when it is constructed using the the Small, Big, Growth, Value, Winners, and Losers 
portfolios as well as the 10 industry sorted portfolios (row 8). To show once again that this 
result is not driven by a particular sub-sample, and in order to offer a time series comparison 

27  



P
at

h 
(lo

g)
 

P
at

h 
(lo

g)
 

0 
2 

4 
6 

8 
10

 
12

 
0 

2 
4 

6 
8 

10
 

12
 

Panel A: Path of $1 
 

Information Portfolio 
Equally Weighted Portfolio 
Market-Rf 
Mom 
HML & Mom 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1970 1980 1990 2000 2010 
 

Time 
 
 

Panel B: Path of $1 Levered to Have Same Volatility as IP 
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Figure 3: Panel A: cumulated log returns of a zero wealth $1 invested in: information portfolio (red solid 
line); market portfolio in excess of the risk free rate (green dotted line); 1/N portfolio (yellow dashed line); 
momentum portfolio (purple long-dash-dot line); value and momentum portfolio (dark blue dash-dot line). 
Panel B: same series as Panel A but with portfolios leveraged to the same volatility as the information 
portfolio. The information portfolio is extracted monthly from the  Small,  Big,  Value,  Growth,  Winners, 
Losers and 10 Industry portfolios, using a rolling out-of-sample fashion starting at 1963:07. Shaded areas 
indicate NBER recession dates. Vertical dot-dashed lines indicate market crashes identified using the Mishkin 
and White (2002) approach. 
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of this portfolio with the momentum, and the joint value and momentum strategies, Figure 
3 plots the path of $1 invested in the I-P (from row 8 of Table 7) over the entire out- 
of-sample evaluation period. Comparing unleveraged strategies (in Panel A), it is clear 
that the I-P outperforms the momentum, and value plus momentum, strategies in each 
10-year sub-period. Comparing leveraged strategies, the momentum based strategies have 
a performance comparable to the I-P one in the first ten years or so of the data, but are 
strongly outperformed by the I-P from the mid 70s onward. Moreover, the I-P tends to 
have less severe contractions in its returns than the other portfolios during, and following, 
market-wide crashes (vertical dot-dashed lines in the figure), consistently with the smaller 
negative skewness and tail risk for this portfolio found in Table 7. 

Furthermore, Panel B of Table 7 shows that results similar to those discussed above 
are obtained when the information portfolio is estimated using quarterly data. This is an 
important robustness check, since the method proposed in this papers relies on a large time 
series dimension (T ) relative to the cross-sectional one (N ). Hence, the stability of the results 
when the information factor is estimated quarterly is reassuring about the performance of 
the approach with smaller time series of returns data. 

 

Overall, our results show that the I-P typically outperforms the näıve 1/N portfolio as 
well as other standard benchmarks out-of-sample, in terms of the Sharpe ratio and CEQ 
return. Moreover, these results seem quite robust with respect to the set of risky assets used 
for its construction, the data frequency, and the subsample considered. This is consistent 
with the findings in Section IV.1 that the I-SDF correctly identifies the tangency portfolio 
and that the I-P is statistically indistinguishable from the ex post maximum Sharpe ratio 
portfolio of the test assets out-of-sample. Therefore, the I-P offers an attractive procedure 
for optimal asset allocation across risky assets. Moreover, note that the above results have 
been obtained using i) a very simple approximation of the I-SDF with the I-P and ii) without 
searching for either an optimal rolling window or an optimal rebalancing frequency. As a 
consequence, the strong performance of the I-P for investment purposes outlined in this 
section should probably be interpreted as a lower bound on the potential performance of a 
tradable version of the I-SDF. 

 
 
V Conclusion and Extensions 

 
Given a set of test assets, we show how an information-theoretic approach can be used to 
estimate the ‘most likely’ pricing kernel that prices the given cross-section. We show that this 
‘information SDF’ prices out-of-sample asset returns as well as, or better than, commonly 
employed multi-factor models (FF3 and Carhart 4-factor models) and that, unlike these 
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factor models, it seems to correctly pin down the tangency portfolio out-of-sample, as a 
correct SDF should. Moreover, the I-SDF extracts novel pricing information not captured 
by the Fama–French and momentum factors (which explain only a small share of its time 
variation). These results hold independently of the set of test assets used. 

Furthermore, a (low turnover) tradable portfolio that mimics this kernel, which we have 
referred to as the ‘information portfolio’, has several interesting out-of-sample properties. 
First, it delivers smaller pricing errors than the canonical multi-factor models, despite being 
only a one-factor model. Second, it has a very high Sharpe ratio (about 1 in annualized 
terms), consistently outperforming the 1/N benchmark out-of-sample as well as the value 
and momentum strategies (whether combined or separate). Third, it leads to an ‘information 

anomaly’, generating high alphas of around 8.6% − 23.8% per annum relative to the FF3 and 
momentum factors. Lastly, these results hold for a wide cross-section of assets consisting of 
size, book-to-market-equity, momentum, industry, and long term reversal sorted portfolios. 

The analysis so far has focused on the construction of the pricing kernel and the mimicking 
information portfolio for a given set of assets. While this is undoubtedly an important step, 
the broader economic question is whether there exists a pricing kernel that can successfully 
price all the assets. While the absence of arbitrage opportunities implies the existence of an 
SDF, the SDF is unique only under the additional condition of market completeness. Our 
information-theoretic method can help shed light on how the pricing kernels constructed 
from different asset classes differ from one another, thereby offering guidance regarding the 
reasons (if any) for market incompleteness. 

Lastly, the present paper focuses on common stocks. However, our method is very general 
and could be applied to other asset classes, including bonds, derivatives, and currencies. 
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A Appendix 
 
 
A.1 An Alternative Minimum Entropy Pricing Kernel 

 
The definition of relative entropy, or KLIC, implies that this discrepancy metric is not 
symmetric, that is, generally D (A||B) /= D (B||A) unless A and B are identical (in which 
case 
their divergence would be zero). This implies that for measuring the information divergence 
between Q and P, we can also interchange the roles of Q and P in Equation (2) to recover 
Q as r 

arg min D (P||Q) ≡ arg min ln 
dP 

dP s.t. 
r
 dQ 
 

Re dQ = 0. (8) 
Q Q 

 

Since Mt 

 

= dQ , the optimization in Equation (8) can be rewritten as 
 

arg min 
Mt 

EP [ln Mt]  s.t. EP [MtRe] = 0. 

 
where, to simplify the exposition, we have used the innocuous normalization M = 1. Re- 
placing the expectation with a sample analogue yields 

 

 
arg min 
{Mt}T

 

T ' 
ln Mt   s.t. 

T 
t=1 

T ' 
MtRe = 0. (9) 

T 
t=1 

 
Thanks to Fenchel’s duality theorem (see, e.g. Csiszar (1975)) this entropy minimization is 
solved by 

M�t ≡ Mt θ�T , Re 
1 

= T (1 + θ�, Re) , ∀t (10) 
T t 

where θ�T  ∈ RN  is the solution to 
 

1  T 

arg min 
θ 

  ' 
− T 

t=1 

log(1 + θ,Re), 

 

and this last expression is the dual formulation of the entropy minimization problem in 
Equation (9). Note also that this dual problem is analogous to the estimation of the so- 
called growth-optimal portfolio. 

Since the correlation of the SDF estimates obtained with either Equations (5) or (10) 
is extremely high (more than 95%), and the pricing performances of the two are almost 
indistinguishable, we, to simplify the exposition, present only the results based on the former. 
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