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Abstract: We present a model of a financial market where some traders are “cursed” when 

investing in a risky asset, failing to fully appreciate what prices convey about others’ private 

information. Markets comprising cursed traders generate more trade than those comprising 

rationals; mixed markets can generate even more trade because rationals exploit return pre- 

dictability caused by cursed. Per-trader volume in cursed markets increases with market size; 

volume may instead disappear when traders infer others’ information from prices but dismiss it 

as noisier than their own. Public-information revelation raises rational and “dismissive” volume, 

but lowers cursed volume given moderate non-informational trading motives. 
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1 Introduction 
 

Ever since Milgrom and Stokey (1982) and Tirole (1982), researchers have understood that common 

knowledge of rationality combined with a common prior precludes purely speculative trade. Of 

course, people might rationally trade financial assets for a variety of non-speculative motives, such 

as portfolio rebalancing and liquidity. Yet even in settings where the presence of non-speculative 

motives allows for speculative trade, a rational understanding of the adverse-selection problem 

causes the overall volume of trade to be constrained by non-speculative motives. In many people’s 

estimation, trading volume in financial markets greatly exceeds what can be plausibly explained 

by models applying rational-expectations equilibrium (REE).1 

Researchers have sought to explain excessive trading volume by relaxing the common-prior 

assumption. Harrison and Kreps (1978) show how non-common priors about an asset’s payoff gen- 

erate volume in a dynamic model where risk-neutral traders cannot sell the asset short. Scheinkman 

and Xiong (2003) use Harrison and Kreps’ framework to explore traders who are “overconfident”: 

all traders observe all signals about the payoff, yet certain traders overestimate the information 

content of certain signals.2 In these models without private information, trade derives from traders 

agreeing to disagree about the relationship between payoff and public information; the lack of pri- 

vate information disencumbers traders from the need to invert market prices.3 A second approach 

incorporates non-common priors into incomplete-information models by assuming that privately 

informed traders agree to disagree about the precision of traders’ private information. Daniel, Hir- 

shleifer and Subrahmanyam (1998, 2001) and Odean (1998), for example, show how traders’ over- 
 

1For example, in his presidential address to the American Finance Association, French (2008) notes that the 
capitalized cost of trading exceeds 10% of market capitalization, and turnover in 2007 was 215%, creating a puzzle 
that “from the perspective of the negative-sum game, it is hard to understand why equity investors pay to turn their 
aggregate portfolio over more than two times in 2007” (page 1552). 

2Hong, Scheinkman and Xiong (2006) model overconfidence similarly, allowing also for heterogenous priors, in a 
model where the number of shares of a risky asset increases over time. 

3Other models of trade deriving from differences in beliefs include Lintner (1969) and Varian (1985), where traders 
have different subjective priors, DeLong, Shleifer, Summers, Waldmann (1990), where symmetrically informed traders 
disagree because some of them (“noise traders”) misperceive next-period prices for exogenous reasons, Harris and 
Raviv (1993) and Kandel and Pearson (1995), where traders disagree about the informativeness of public signals, 
and Biais and Bossaerts (1998), where traders are uncertain about others’ belief hierarchy. Hong and Stein (2007) 
summarize this literature. Eyster and Piccione (2013) model traders with incomplete theories of price formation, also 
in a complete-information setting. 
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confidence about the precision of their private information can increase trading volume. Similarly, 

Odean (1998), Banerjee, Kaniel and Kremer (2009), Banerjee and Kremer (2010), and Banerjee 

(2011) show that when traders downplay the precision of one another’s private signals—which we 

call dismissiveness —volume also increases.4 In this second class of agreeing-to-disagree models, 

the presence of private information infuses market prices with information content, and traders 

are assumed to fully invert market prices to uncover hidden information. Both types of agreeing- 

to-disagree models depict traders who recognize their disagreements in beliefs and trade based on 

them. 

This paper proposes a different conceptual approach to explaining speculative trade: people 

trade because they neglect disagreements in beliefs. We capture this idea in a simple and tractable 

model where some or all traders, when choosing their demands, do not fully invert prices to uncover 

others’ information.  This approach builds on extensive evidence that people do not sufficiently 

heed the information content of others’ behavior—even in the absence of intrinsic disagreements. 

Section 5 reviews this evidence, as well as the broader relevance of disagreement neglect for financial 

markets. 

Not inferring information from prices may appear observationally similar to inferring and then 

dismissing that information. We show that the implications for prices are indeed similar, but the 

implications for trading volume can differ sharply. In particular, disagreement neglect generates 

large volume in settings where natural forms of overconfidence or dismissiveness do not. Disagree- 

ment neglect also “enables” overconfidence and other biases to have large effects of volume, while 

the effects would be small in its absence.5 

Section 2 introduces our formal set-up, based on Grossman (1976), Hellwig (1980), and Diamond 

and Verrechia (1981). We consider a market in which traders can exchange a risky asset for a riskless 
 

4Banerjee, Kaniel and Kremer (2009), Banerjee and Kremer (2010), and Banerjee (2011) use the term “difference 
of opinion” to describe the heterogeneity in beliefs that drives their models. We use the term dismissiveness instead, 
to distinguish with overconfidence and other disagreements about signal structures which also create differences in 
opinion. 

5An important difference between our model of disagreement neglect and models of agreeing-to-disagree concerns 
the type of statistical relationships that people misperceive. In agreeing-to-disagree models, people’s disagreement 
about the correlations between exogenous variables (private signals and asset payoff) creates disagreement about the 
relationship between endogenous and exogenous variables (price and asset payoff). In our model of disagreement 
neglect, by contrast, people share common beliefs about correlations between exogenous variables and hold opposing 
beliefs only about the relationship between endogenous and exogenous variables (price and asset payoff). 
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asset over one period. Each trader observes a public and a private signal about the risky asset’s 

payoff, with all signals being independent conditional on that payoff. Each trader also receives a 

random endowment, whose covariance with the asset payoff he is the only one to observe. Random 

endowments furnish traders with a non-speculative (hedging) motive to trade. We define cursed- 

expectations equilibrium (CEE) by the requirement that some traders do not infer information 

from the asset price. We call traders who do not extract any information fully cursed and traders 

who extract some information partially cursed. CEE is the competitive-markets analogue of the 

game-theoretic concept of cursed equilibrium, defined by Eyster and Rabin (2005) and reviewed in 

Appendix A. For tractability, we assume that traders have constant-absolute-risk-aversion (CARA) 

preferences and that all relevant probability distributions are normal. 

Section 3 derives the main predictions of CEE in a simple version of our model, where traders 

are symmetric in private-signal precision, risk aversion, and cursedness, and there are no random 

endowments or public signals. The most important implication of CEE is also the most basic: 

cursedness produces substantial trade, with aggregate volume approaching infinity as the number 

of traders grows large. We show additionally that per-trader volume increases with the number of 

traders. This is because the discrepancy between each private signal and the average of all signals 

increases with the number of traders, and volume is proportional to this discrepancy since each 

cursed trader gives a constant positive weight to his own signal, failing to realize that the price 

reveals the average signal. Cursedness distorts not only volume, but also prices: because traders 

do not fully infer others’ information from the price, the price under-reacts to private signals, and 

hence price changes are positively autocorrelated. 

Section 3 next contrasts the implications of cursedness to those of overconfidence and dismis- 

siveness. Following Odean (1998), we model overconfident traders as exaggerating the precision of 

their own private signal, and dismissive traders as under-estimating the precision of other traders’ 

private signals. We allow for an additional form of dismissiveness, introduced by Banerjee (2011): 

traders treat the noise in others’ signals as correlated (while in fact it is independent), hence 

under-estimating the collective precision of others’ signals. As in previous literature, we assume 

that overconfident or dismissive traders fully understand the mapping between the price and other 
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traders’ private information. 

Because overconfident traders overweight their own signals and estimate correctly the preci- 

sion of others’ signals, the price over-reacts to private signals. When traders are dismissive, the 

price instead under-reacts to private signals. Hence, dismissiveness has similar implications to 

cursedness for prices, while overconfidence has opposite implications. Our over- and under-reaction 

results for overconfidence and dismissiveness are similar to those in, e.g., Daniel, Hirshleifer and 

Subrahmanyam (1998), Odean (1998), and Banerjee, Kaniel and Kremer (2009). 

The implications of cursedness differ sharply from those of dismissiveness and overconfidence for 

the question of trading volume. While per-trader volume increases with the number of traders under 

cursedness, it converges to zero under overconfidence. Intuitively, even though each overconfident 

trader thinks that he knows more than he does, he understands that the total amount of “valid” 

information revealed by the price in a large market swamps his own information. Hence, the same 

no-trade logic that prevails in REE also prevails in large markets of overconfident traders. The same 

is true for dismissive traders, provided that they understand correctly that others’ private signals 

are conditionally independent. Even when they mistakenly assume some correlation, per-trader 

volume can be decreasing, hump-shaped or increasing in the number of traders, while it is always 

increasing under cursedness. 

Additional differences concern the behavior of volume when private information is revealed 

publicly. Public revelation of traders’ private signals does not change overconfident or dismissive 

volume because such volume is generated by disagreements about signal precisions, which persist 

even when signals are made public. By contrast, cursed volume shrinks to zero because it stems 

from traders’ failure to infer the signals from the price, and this failure becomes irrelevant when 

signals are public.6 

In addition to generating large trading volume in the absence of other errors, cursedness enables 

overconfidence to have large effects on volume. Indeed, cursed overconfident traders fail to infer 

the average signal from the price, so they trade even in a large market—and more so the more 
 

6Our analysis would remain the same if the revealed information were the average of traders’ signals rather than 
each and every signal. This is because with symmetry and normality, the average is a sufficient statistic for all the 
signals. 
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overconfident they are. In this sense, cursedness and overconfidence work as complements, and 

cursedness helps vindicate the basic intuition from the literature that overconfidence can be a 

significant source of trading volume. Cursedness may similarly exacerbate other biases as well, as 

we argue in Section 6, where we conclude the paper. 

In Section 4, we extend the model in three different directions. First, we allow traders to 

differ in signal precision, risk aversion, or cursedness. Among other results, we show that the 

private information of cursed traders exerts a greater influence on the price relative to that of 

rational traders. This is because rational traders weight the private signals of cursed traders by 

inverting the price, whereas fully cursed traders do not weight the private signals of rational traders 

whatsoever. We also show that rational traders exploit the positive autocorrelation of price changes 

induced by cursed traders (at the cursed traders’ expense). Because of the predictability-induced 

trading by rationals, volume is larger in markets that include both rational and cursed traders than 

in those comprised solely of cursed traders. Our second extension is to allow traders to observe a 

public signal. Whereas private signals continue to affect price less than in REE, the public signal 

influences price more than it does in REE. This is because cursed traders use fewer signals than 

rational traders, so they attach larger weight to each signal that they use. 

Our third and final extension is to allow for random endowments. As in, e.g., Akerlof (1970) 

and Hirshleifer (1971), asymmetric information about asset values impedes non-speculative trade 

because traders worry that others’ trades reflect such information rather than hedging needs. Con- 

versely, public revelation of traders’ private signals causes volume to increase. Asymmetric infor- 

mation also impedes dismissive trade, but stimulates cursed trade when the variance of hedging 

needs is small. 

The link between non-inference from price and positively autocorrelated price changes was 

first shown in Hong and Stein (1999). Some or all of their traders are “newswatchers,” assumed 

to trade based on signals or news they watch without inverting price to infer unwatched news. 

Hong and Stein show that prices move predictably when information diffuses gradually, yielding 

positive autocorrelation. A key difference between our work and theirs is that we analyze trading 

volume and compare its level to that predicted by alternative models such as overconfidence and 
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dismissiveness. In a new working paper, Vives and Yang (2016) propose an optimal-inattention- 

style variant of partial cursedness in which each trader observes the price but employs a noisy signal 

of it to infer the information that it contains, and can pay a cost to reduce the noise. Although 

they replicate many of our results in their framework, the model of Vives and Yang (2016) does 

not make some of our predictions, including lower expected utility for better-informed traders. 

 
2 Model and Equilibrium Concept 

 
We begin this section by defining cursed-expectations equilibrium in a general version of our model. 

We then make more specific assumptions on traders’ utility functions and the distribution of their 

information that allow us to derive analytically tractable, linear equilibria. 

There are two periods, 1 and 2, and two assets that pay off in terms of a consumption good 

in Period 2. One asset is riskless and pays off one unit of the consumption good with certainty. 

The other asset is risky and pays d = d + ϵ + ζ units, where d is a constant and (ϵ, ζ) are random 

variables with mean zero. We use the riskless asset as the numeraire, and denote by p the price 

of the risky asset in Period 1. Our choice of numeraire implies that the price of the risky asset in 

Period 2 is d and the riskless rate is zero. We assume that the risky asset is in zero supply. 

There are N traders who can exchange the two assets in Period 1. Trader i = 1, .., N observes 

the private signal 

 
si = ϵ + ηi, (1) 

 
as well as the public signal 

 
s = ϵ + θ, (2) 

 

which is also observed by all other traders. The random variables ({ηi}i=1,..,N , θ) have mean zero. 

The signals are observed in Period 1. They provide information about the component ϵ of the risky 

asset’s payoff but not about ζ. 



7  

 

 

 

Trader i starts with a zero endowment of the riskless and the risky assets, and receives an 

endowment zid of the consumption good in Period 2. We refer to zi as the endowment shock, 

and assume that it is observed privately by trader i in Period 1 and has mean zero. Through its 

correlation with d, the endowment generates a hedging motive to trade. When zi > 0, for example, 

trader i is exposed to the risk that d will be low and wishes to hedge by selling the risky asset. We 

assume that the variables (ϵ, ζ, {ηi}i=1,..,N , θ, {zi}i=1,..,N ) are mutually independent. 

The budget constraint of trader i is 

 

ci = xi(d − p) + zid, (3) 

 
where xi denotes the number of shares of the risky asset that trader buys in Period 1 and ci denotes 

the trader’s consumption in Period 2. Negative values of xi correspond to shares sold. We impose 

no portfolio constraints, allowing xi to take any value in R. 

Traders maximize expected utility of consumption. We denote by ui(ci) the utility that trader 

i derives from consumption in Period 2. If the trader is rational, then he maximizes the expected 

utility 

 

E[ui(xi(d − p) + zid)|{si, s, zi, p}] 

 
in Period 1, where we use (3) to substitute for ci. A rational trader conditions his estimate of 

the asset payoff d on his private signal, the public signal, the endowment shock, and the price. If 

instead the trader is fully cursed, then he completely neglects the relationship between the price 

and other traders’ information, and maximizes the expected utility 

 

E[ui(xi(d − p) + zid)|{si, s, zi}], 

 
which differs from the rational utility because there is no conditioning on the price. Full cursed- 

ness can be viewed as a form of inattention: a fully cursed trader neglects to think through the 

information that the market price conveys. We also allow for behavior that lies between rationality 
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and full cursedness. If a trader is partially cursed, then he infers the information conveyed by price 

partially but not fully, and maximizes the utility 

 

E[ui(xi(d − p) + zid)|{si, s, zi, p}]1−χi E[ui(xi(d − p) + zid)|{si, s, zi}]χi , 

 

which is a geometric average of the rational expected utility with weight 1 −χi and the fully cursed 

expected utility with weight χi. The parameter χi ∈ [0, 1] measures the extent of cursedness: 

χi = 0 corresponds to rationality, χi = 1 to full cursedness, and χi ∈ (0, 1) to partial cursedness. 

We employ the geometric average of utilities rather than the arithmetic average as in Eyster and 

Rabin (2005) for tractability. 

The objective function of partially cursed traders involves two information sets, the one under 

rationality and the one under full cursedness. Hence, these traders may appear to have two con- 

flicted selves, a rational and a fully cursed one. Indeed, to the extent that they actively interrogate 

others’ trading motivations, traders may discern the information content in prices; but to the extent 

that they dwell upon their own private information, traders may overlook that connection. Conse- 

quently, a trader’s demand may vary with his focus. Under that interpretation, a partially cursed 

trader who reaches two different conclusions about demand when thinking about the problem in two 

different ways simply averages the two demand functions. Alternatively, we can interpret partially 

cursed traders’ objective function as an “as if” one: this objective function captures in a compact 

way the idea that traders partially neglect the information conveyed by price. Consistent with this 

interpretation, the maximization of the partially cursed traders’ objective yields a demand function 

that always lies between the rational and the fully cursed one. 

One could alternatively conceptualize partially cursed traders as perceiving the price correctly 

for budgeting while simultaneously overestimating its noisiness for the purpose of inference. That is, 

partially cursed traders observe p—and understand that the risky asset costs p—but for inference 

believe that they instead observe p + ϕ, where ϕ is noise. This alternative model maps closely 

to ours. In particular, rational behavior corresponds to zero variance of ϕ, fully cursed behavior 

to infinite variance, and partially cursed behavior to intermediate values. Vives and Yang (2016) 

analyze a model in a similar spirit.  They assume that when traders infer from the price, they 
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evaluate a noisy signal of price, p + ϕ, rather than price p. (In the interpretation sketched above, 

by contrast, traders treat the market price p as if it were p + ϕ.) 

Our definition of cursed-expectations equilibrium (CEE) combines utility maximization under 

cursed expectations with market clearing. As in the case of rational-expectations equilibrium 

(REE), the equilibrium involves a price function p that depends on all the random variables in the 

model. These are the private signals {si}i=1,...,N , the public signal s, and the endowment shocks 

{zi}i=1,...,N . 

Defi 1  A price function p({si}i=1,...,N , s, {zi}i=1,...,N )) and demand functions 

{xi(si, s, zi, p)}i=1,...,N are a cursed-expectations-equilibrium (CEE) if: 

(i) (Optimization) For each trader i = 1, . . . , N, and each (si, s, zi, p), 

 

xi ∈ arg max 
{
E[ui(x(d − p) + zid)|{si, s, zi, p}]1−χi E[ui(x(d − p) + zid)|{si, s, zi}]χi 

} 
,  (4) 

 

(ii) (Market Clearing) For each ({si}i=1,...,N , s, {zi}i=1,...,N ), 

 
N 
∑ 

xi = 0. (5) 
i=1 

 

We next specialize our analysis by making two assumptions that allow us to derive tractable 

linear equilibria. First, the variables (ϵ, ζ, {ηi}i=1,..,N , θ, {zi}i=1,..,N ) follow normal distributions, 

with variances denoted by (σ2, σ2, {σ2 }i=1,..,N , σ2, {σ2 }i=1,..,N ) and precisions, i.e., the inverses 
ϵ ζ ηi θ zi 

of the variances,  denoted by (τϵ, τζ, {τηi }i=1,..,N , τθ, {τzi }i=1,..,N ).   Second, traders have negative 

exponential, or constant absolute risk aversion (CARA), utility functions: ui(ci) = − exp(−αici), 

where αi is the coefficient of absolute risk aversion. 

A linear CEE price function has the form 
 

N N 

p = d + 
∑ 

Aisi + Bs − 
∑ 

Cizi, (6) 
i=1 i=1 

 

for coefficients ({Ai}i=1,..N , B, {Ci}i=1,..N ). For CARA utility, we can write the expectations in (4) 
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as 
 

— E [exp [−αi (xi(d − p) + zid)] |Ii] 

[ ( 
1

 
2 

)] 

= − exp −αi xi (E(d|Ii) − p) + ziE(d|Ii) − 
2 

αi(xi + zi) Var(d|Ii) 
, (7) 

 

where the information set Ii is equal to Iir ≡ {si, s, zi, p} for the first expectation that is exponen- 

tiated to 1 − χi (where r stands for rational) and to Iic ≡ {si, s, zi} for the second expectation that 

is exponentiated to χi (where c stands for fully cursed). The second step in (7) follows because all 

variables are normally distributed. Substituting (7) into (4) and maximizing, we find the demand 

function 
 

   (1 − χi)E(d|Iir ) + χiE(d|Iic) − p   
xi = 

i [(1 − χi)Var(d|Iir ) + χiVar(d|Iic 
)] 

− zi. (8) 

 

The demand function is the solution to a mean-variance problem. The conditional expectation of 

the asset payoff in that problem is the weighted average of the rational expectation with weight 

1 − χi and the fully cursed expectation with weight χi. The conditional variance of the asset payoff 

is the same weighted average of the rational and fully cursed variances. The geometric average 

formulation of utilities ensures that traders’ optimization problems retain a tractable mean-variance 

structure even under partial cursedness. Combining (8) with the market-clearing condition (5), we 

derive conditions in Proposition 1 so that (6) is an equilibrium price. Proposition 1 does not show 

existence or uniqueness of ({Ai}i=1,..N , B, {Ci}i=1,..N ) satisfying these conditions, both of which 

are instead demonstrated in the special cases studied in subsequent sections. 

To state Proposition 1, we introduce some notation. From the perspective of a rational trader 

i, the price (6) includes information on (si, s, zi), which the trader knows, and on ({si}j̸=i, {zi}j̸=i), 

which he does not. The latter information is summarized in the signal 
 ∑

j ̸=i   Ajsj  

− 
∑ 

∑
j ̸=i Cjzj 

 
, (9) 

j̸=i Aj 

 

which the trader can extract from the price. Using (1) and (2), we can write this signal as ϵ + ξi, 

α 
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− − 

 

 

 

where 
 

ξi ≡ 

∑
j ̸=i   Ajηj  

− 
∑ 

∑
j ̸=i Cjzj 

 
. (10) 

j̸=i Aj 

 

We denote the variance of ξi by σ2 and its precision by τξi . 

 

Proposition 1 The price  (6)  is an  equilibrium  price if  and  only  if ({Ai}i=1,..N , B, {Ci}i=1,..N ) 

satisfy the conditions 
 

  Ai   

τηi (τϵ + τηi + τθ + χiτξi ) − (1 − χi)τξi 
∑ 

k̸=i Ak 
(τϵ + τηi + τθ ) 

αi [(τϵ + τηi + τθ )(τϵ + τηi + τθ + τξi ) + τζ (τϵ + τηi + τθ + χiτξi )] 
  1   N 

= Ai 

∑
 
(τϵ + τηj  + τθ )(τϵ + τηj  + τθ + τξj ) (1 χj )τξj  

∑ 
k̸=j Ak 

(τϵ + τηj  + τθ ) , (11) 
 

j=1 
N 
∑ 

αj 

[
(τϵ + τηj + τθ )(τϵ + τηj + τθ + τξj ) + τζ (τϵ + τηj + τθ + χjτξj )

]
 

τθ (τϵ + τηi + τθ + χiτξi ) 
 

i=1 
αi [(τϵ + τηi + τθ )(τϵ + τηi + τθ + τξi ) + τζ (τϵ + τηi + τθ + χiτξi )] 

N 

= B 
∑

 (τϵ + τηj + τθ )(τϵ + τηj + τθ + τξj ) , (12) 

j=1 
αj 

[
(τϵ + τηj + τθ )(τϵ + τηj + τθ + τξj ) + τζ (τϵ + τηj + τθ + χjτξj )

]
 

(τϵ + τηi + τθ )(τϵ + τηi + τθ + τξi ) + τζ (τϵ + τηi + τθ + χiτξi ) 
Ci = Aiαi 

τζτηi (τϵ + τηi + τθ + χiτξi 

. (13) 
) 

 

In addition to the price, we are interested in trading volume. We define the volume generated 

by trader i as the absolute value of the number xi of shares of the risky asset that trader i buys 

in equilibrium, or sells if xi is negative. The aggregate volume is the sum of the volume generated 

by each trader. We compute expected volume, defined as the unconditional expectation of volume 

over the realizations of all random variables in the model. 

 
3 Equilibrium 

 
In this section, we solve for the equilibrium in the baseline case where traders are symmetric, receive 

no random endowments, and observe only their private signals and not the public one. We compute 

the price and trading volume, and compare cursedness to overconfidence and dismissiveness. 
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zi 

ζ ϵ η − η 

 

 

 

To specialize the equilibrium conditions derived in Proposition 1 to symmetric traders, we set 

private-signal precisions τηi , risk-aversion coefficients αi, and cursedness parameters χi to values 

(τη, α, χ) common for all traders. To dispense with random endowments, we set the variances 

{σ2 }i=1,..,N  to zero, so that the endowment shocks are equal to their mean which is zero.  To 

eliminate the public signal, we set its precision τθ to zero. We relax all these restrictions in Section 

4. 

 
3.1 Price and Trading Volume 

 

With symmetric traders, no random endowments, and no public signal, the price (6) simplifies to 
 

N 

p = d + A 
∑ 

si. (14) 
i=1 

 

Proposition 2 computes the coefficient A and draws implications for the predictability of price 

changes. The proposition also computes expected trading volume, and examines how price and 

volume depend on the cursedness parameter χ. 

Proposition 2 Suppose that traders are symmetric with cursedness parameter χ, receive no ran- 

dom endowments, and observe only their private signals. The price (14) is an equilibrium price if 

and only if 

 

A = 
τη ([N − χ(N − 1)] τϵ + N τη ) 

N (τϵ + τη )(τϵ + Nτη ) 
. (15) 

 

The coefficient A decreases in χ.  For χ > 0, price changes exhibit positive autocorrelation:  the 

regression 

 

d − p = γ(p − d) + ν, (16) 

 
yields coefficient γ > 0. The expected volume that each trader generates is 

χτ (τ  + Nτ )
√

2(N 1)τ    
. (17) 

α [τζ (τϵ + [1 + χ(N − 1)] τη ) + (τϵ + τη )(τϵ + Nτη )] 
√

πN 
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Volume increases in χ and N. 

 
When traders are rational (χ = 0), the price equals the expected value of the asset payoff 

d conditional on all the private signals. The result that the price aggregates the private signals 

efficiently is as in Grossman (1976). Moreover, trading volume is zero, consistent with the no- 

trade theorem of Milgrom and Stokey (1982) and Tirole (1982). The no-trade theorem applies 

because traders start with zero endowments in the risky asset and receive no random endowments, 

so no-trade is a Pareto-efficient allocation. 

When traders are fully cursed (χ = 1), they do not condition on the price, and hence the 

private signal si of a trader i receives no weight in other traders’ conditional expectations of the 

asset payoff. As a consequence, the weight of si on the price, i.e., the coefficient A, is smaller in the 

fully cursed case than in the rational case. The same logic carries through to partial cursedness: A 

is smaller when traders are partially cursed than when they are rational, and decreases in χ, i.e., 

is smaller when traders are more cursed. Since A is smaller than in the rational case, the price 

under-reacts to the private signals. 

The price under-reaction implies positively autocorrelated price changes: a price rise in Period 

1 predicts a further price rise, and vice-versa for a price drop. The positive autocorrelation corre- 

sponds to the coefficient γ in the regression (16) being positive. The dependent variable in (16) 

is the price change between Period 1, in which the asset trades at p, and Period 2, in which the 

asset pays off d. The independent variable is the price change between a Period 0, in which private 

signals have not yet been revealed and the asset trades at the unconditional expectation d of its 

payoff, and Period 1. 

Since fully cursed traders do not learn others’ signals from the price, they trade with each other 

even without random endowments. Moreover, the expected trading volume that each generates 

increases in market size as measured by the number N of traders. Intuitively, the weight that the 

private signal si of a fully cursed trader i receives in that trader’s conditional expectation of the 

asset payoff is independent of N , while the weight that it receives in the price decreases to zero as N 

increases. Hence, the discrepancy |E(d|Iic) − p| = |E(d|si) − p| between the conditional expectation 

and the price increases.  Moreover, in the absence of random endowments, this discrepancy is 
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proportional to the number of shares xi that the trader buys, as implied by (8). Since per-trader 

volume increases in N , aggregate volume converges to infinity when N becomes large. Hence, 

cursedness produces large volume in large markets with dispersed private information. 

The result that per-trader volume increases with N extends to partially cursed traders. Indeed, 

the discrepancy between the conditional expectation of a partially cursed trader i and the price is 

 

|(1 − χ)E(d|Iir ) + χE(d|Iic) − p| = χ |E(d|Iic) − p| , 

 

because E(d|si, p) = p. The discrepancy is therefore proportional to that for a fully cursed trader, 

with proportionality coefficient χ. As χ increases, the discrepancy increases and so does trading 

volume. 

Since there are no aggregate gains from trade and traders are symmetric, they are all made 

worse off by trading. Traders take on excessive risk: they hold risky positions while in fact they 

should be bearing no risk. 

 
3.2 Comparison to Overconfidence and Dismissiveness 

 

In this subsection, we examine the relationship between cursedness and other theories that have 

been used in the literature to explain large trading volume. Under all the alternative theories 

that we consider, traders exaggerate the precision of their own signals relative to the precision 

of others’ signals. Such beliefs have often been described as overconfidence, but we distinguish 

between different forms of overconfidence and use different terms to describe them. 

We reserve the term overconfidence for its seemingly most direct form, whereby traders exag- 

gerate the precision of their private signal. With symmetric traders, this means that each trader i 

perceives the precision of his own signal si to be κτη for κ > 1. When trader i is merely overconfi- 

dent, he correctly perceives the precision of all other traders’ signals sj , j ̸= i, to be τη . 

We use the term dismissiveness for beliefs under which traders underestimate the precision of 

others’ signals. With symmetric traders, this means that each trader i incorrectly perceives the 

precision of all other traders’ signals sj , j ̸= i, to be γτη for γ ∈ [0, 1). When trader i is  

merely 

dismissive, he correctly perceives the precision of his own private signal si to be τη . 
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We allow dismissive traders to not only underestimate the precision of others’ signals but to 

also overestimate the correlation of the noise terms. That is, trader i can perceive incorrectly that 

the noise terms ηj and ηj′ for j, j′ ̸= i are positively correlated with coefficient ρ > 0, while in fact 

they are independent. That traders perceive some non-existent positive correlation is a form of 

dismissiveness because it causes them to underestimate the information content of the collection of 

others’ signals (rather than of each signal separately). 

We distinguish between overconfidence and dismissiveness because they are conceptually differ- 

ent and yield different equilibrium properties. We consider dismissive beliefs over both precision 

and correlation because equilibrium properties also can differ. We assume that the beliefs of over- 

confident or dismissive traders about the probability distribution of signals are common knowledge, 

and hence traders agree to disagree. For example, it is common knowledge that each overconfident 

trader thinks that he is better informed than all other traders think he is. 

We nest overconfidence and dismissiveness in a single model, i.e., each trader can be both 

overconfident and dismissive, and his dismissive beliefs can concern both precision and correlation. 

Within that model we can isolate the effects of each bias by setting the parameters corresponding 

to the other biases to their values under rational expectations: κ and γ to one, and ρ to zero. 

Our modelling of overconfidence follows Odean (1998), whom we also follow in modelling dis- 

missiveness as underestimation of the precision of others’ signals. Modelling dismissiveness as 

overestimation of correlations follows Banerjee (2011), who also allows for underestimation of pre- 

cisions. In Banerjee, each trader i observes a private signal si = ϵ + ηi and assumes that the signal 

of each other trader j ̸= i is 

sj = ρϵ + 
√

(1 − ρ2)η̂i + ηj, 

where ρ ∈ [0, 1] and η̂i is a random variable independent of ϵ. If ρ < 1, then trader i underestimates 

precisions because he presumes trader j’s signal includes the additional noise term 
√

(1 − ρ2)η̂i. He 

also overestimates correlations because this assumed noise term is the same for all traders j ̸= i.7 
 

 

7Banerjee does not require the noise terms ηi  for i = 1, .., N to be independent, as in our model, and assumes 
instead a general correlation structure. An additional difference between our specification and his is that we assume 
that ϵ enters with a unit coefficient in si while the coefficient is ρ in his model. 
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Banerjee uses the term difference in opinions to describe the disagreement in his model. 

Proposition 3 is the counterpart of Proposition 2 for overconfident and dismissive traders. 

Proposition 3 Suppose that traders are symmetric and not cursed, receive no  random  endow- 

ments, and observe only their private signals. Suppose also that each trader perceives the precision 

of his private signal to be κτη  for κ ≥ 1, the precision of every other trader’s signal to be γτη  for 

γ ∈ [0, 1], and the correlation between the noise terms in others’ signals to be ρ ∈ [0, 1].  The price 

(14) is an equilibrium price if and only if 

(  ) 
  

κ + 
1+(N −2)ρ   

τ 
A = [ 

N τϵ + 

   

κ +  (N−1)γ 

1+(N−2)ρ 

] . (18) 
τη 

 

The coefficient A increases in κ and γ, and decreases in ρ. The expected volume that each trader 

generates is 

(  ) 
κ − γ

 

   
τζ 

√
2(N − 1)τη 

  1+(N −2)ρ 
 . (19)

 

α 
[
τϵ + τζ + 

(
 +  (N−1)γ 

1+(N−2)ρ 

) 
τη 

] √
πN 

 

Volume increases in κ and ρ, and decreases in γ. Volume decreases in N if 
 

   γ(κ − γ)τη   

τϵ + τη + 2κτη  
−

 

(κ    γ) [τ + τ  + (κ + γ)τ ] 
γρ > , (20) 

4(τϵ + τη + 2κτη ) 
 

increases in N if 

κρ [ρ(τϵ + τζ ) + (κρ + γ) τη ] 
>    

γ(κ − γ)τη   

 

 

 
γρ, (21) 

2(τϵ + τη + 2κτη ) τϵ + τη + 2κτη  
−

 
 

and is hump-shaped in N for values of γ(κ−γ)τη
 

ϵ η η 
— γρ in the intermediate region.  If γ > 0 and 

ρ = 0, then volume converges to zero as the number N of traders grows large, and aggregate volume, 

summed across traders, converges to a positive limit.  If γ = 0 or ρ > 0, then volume converges to 

a positive limit as N grows large, and aggregate volume converges to infinity. 

Overconfidence and dismissiveness have opposite effects on the price. Fixing the dismissiveness 
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parameters (γ, ρ), more overconfidence (larger κ) causes traders to attach larger weight to their 

own private signals. As a consequence, the weight of the signals on the price, i.e., the coefficient A, 

increases. Fixing instead the overconfidence parameter κ, more dismissiveness (smaller γ or larger 

ρ) causes traders to attach smaller weight to other traders’ private signals, as revealed by the price. 

This causes A to decrease. 

The effect of dismissiveness on the price goes in the same direction as that of cursedness. Indeed, 

in both cases the coefficient A decreases relative to the rational case, and this happens because 

traders underweight others’ signals. Cursed traders underweight others’ signals because they fail 

to infer them from the price. Dismissive traders infer those signals from the price, but view them 

as less informative than they actually are. In both cases the price under-reacts to the signals, and 

price changes are positively autocorrelated. 

Cursedness and dismissiveness have different implications for trading volume. The differences 

are sharpest when γ > 0 and ρ = 0, i.e., dismissive traders do not treat others’ signals as pure noise 

and perceive correctly that the noise terms in those signals are independent. Recall from Propo- 

sition 2 that per-trader volume under cursedness increases as the number N of traders increases. 

Hence, when N grows large, per-trader volume converges to a positive limit and aggregate volume 

converges to infinity. Proposition 3 shows instead that per-trader volume under overconfidence or 

dismissiveness converges to zero, and aggregate volume converges to a finite limit. Thus, overcon- 

fidence and dismissiveness do not generate large aggregate volume in large markets with dispersed 

information, in contrast to cursedness. 

The ability of overconfident or dismissive traders to infer others’ signals from the price is key to 

why they trade little in large markets. Indeed, such traders realize that the price fully reveals the 

average signal of all other traders. And while they underestimate the precision of others’ signals 

relative to their own signal, they understand that their own signal carries much less information 

than the average of a large number of other, even less precise, signals. In large markets, therefore, 

overconfident or dismissive traders base their expectations about the asset payoff almost exclusively 

on the price. As a result, the difference between any two traders’ expectations converges to zero, 

and so does per-trader volume. By contrast, cursed traders do not fully realize that the price reveals 
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the average signal of other traders. Hence, they give their signal non-negligible weight even in large 

markets when forming their expectations about the asset payoff, and per-trader volume does not 

converge to zero. 

The different implications that cursedness and dismissiveness have for trading volume concern 

not only the large N limit but also the comparative statics with respect to N . The differences 

in comparative statics for large N follow directly from previous results. Since per-trader volume 

under overconfidence and dismissiveness converges to zero when N grows large, it decreases with 

N for large N . By contrast, per-trader volume under cursedness increases in N for all values of 

N , so for large N changes in N have opposite effects on volume. These differences carry through 

to all values of N if signals are precise enough (τη large) and overconfidence and dismissiveness are 

not too extreme (γ is not close to zero and κ is not much larger than one). Indeed, Proposition 3 

shows that overconfident and dismissive volume are decreasing in N if (3γ − κ)τη > τϵ + τζ and are 

hump-shaped in N otherwise. 

Cursed and dismissive volume become more similar when γ = 0 or ρ > 0. When γ = 0, 

dismissive traders perceive others’ signals as being pure noise, and hence ignore them completely 

when forming their expectations of the asset payoff. This is observationally equivalent, in the 

context of our model, to fully cursed traders failing to infer the signals from price. (As we note below, 

however, the observational equivalence breaks down when private signals are revealed publicly to 

all traders.) In particular, price and trading volume are identical when χ = 1 (full cursedness) and 

when κ = 1 and γ = 0 (no overconfidence and extreme dismissiveness). Hence, per-trader volume 

increases in N , and aggregate volume converges to infinity when N grows large. The result that 

per-trader volume under dismissiveness converges to zero, shown for γ > 0 and ρ = 0, breaks down 

because traders view the average of pure-noise signals also as pure noise. 

When ρ > 0, dismissive traders perceive incorrectly that the noise terms in others’ signals are 

correlated, and hence do not view the average of a large number of such signals as much more 

informative than their own signal. As a result, per-trader volume under dismissiveness does not 

converge to zero when N grows large, but converges instead to a positive limit that is increasing in 

ρ. Proposition 3 also implies that volume is decreasing or hump-shaped in N when ρ is small but 
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becomes increasing in N when ρ is close to one. 

The assumptions γ = 0 and ρ > 0 are somewhat strong: under γ = 0 each trader treats informa- 

tive signals as pure noise, and under ρ > 0 he treats independent errors by others as correlated and 

assumes that he is the only one to avoid the common error. Since these assumptions are required 

for dismissive volume to be large in large markets with dispersed information, cursedness may be 

a more plausible explanation for large volume.8 

Even when γ = 0 or ρ > 0, cursedness and dismissiveness can be distinguished in terms of 

their implications for trading volume. Suppose that private signals are revealed publicly to all 

traders. Cursed traders would then learn those signals, and their failure to infer from the price 

would be inconsequential because the price would not contain any additional information. Hence, 

cursed volume would decline to zero. By contrast, dismissive volume would remain the same. 

Indeed, dismissive traders infer others’ signals from the price, and trade because they view them 

as less informative than they actually are. Revealing the signals publicly would not change their 

information. 

 

Corollary 1 Suppose that traders are symmetric, receive no random endowments, and observe 

only their private signals. If all private signals are publicly revealed, then volume between cursed 

traders declines to zero, while volume between overconfident or dismissive traders does not change. 

 
3.3 Cursedness as an Enabling Bias 

Cursedness not only generates large volume in large markets, but can also act as an “enabling 

bias,” amplifying the effects that other biases may have on volume. Recall from Proposition 3 that 

per-trader volume when overconfidence is the only bias (κ ≥ 1, χ = 0, γ = 1, ρ = 0) converges to 

zero as market size N grows large. Key to this result is that while overconfident traders exaggerate 

the information content of their signal, they realize that the average signal of all other traders, as 
 

 

8Alternatively, overconfident or dismissive volume could be large in large markets if information dispersion is 
limited and does not increase with market size. Suppose that there is a fixed number M of signals that does not 
increase with the number N of traders, and that different groups of traders, of size N/M each, observe a different 
signal. Increasing market size would not make the average of the signals more informative because the number of 
distinct signals in the average would not change. Assumptions along these lines are made, for example, in Odean 
(1998), Scheinkman and Xiong (2003), and Banerjee and Kremer (2010). 
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revealed by the price, conveys much more information. This effect is suppressed when overconfident 

traders are also cursed, because there is no learning from the price. Hence, traders who are both 

overconfident and cursed give their signal non-negligible weight even in large markets, and that 

weight increases with the extent of overconfidence. Accordingly, per-trader volume in markets with 

such traders converges to a positive limit as N grows large, and that limit is larger when traders 

are more overconfident. Cursedness and overconfidence work as complements in generating trade: 

overconfidence on its own does not generate large volume in large markets but does so in the 

presence of cursedness. 

Proposition 4 Suppose that traders are symmetric with cursedness parameter χ, receive no ran- 

dom endowments, and observe  only  their  private  signals.  Suppose  also  that  each  trader  perceives 

the precision of his private signal to be κτη for κ ≥ 1, the precision of every other trader’s signal to 

be γτη for γ ∈ [0, 1], and the correlation between the noise terms in others’ signals to be ρ ∈ [0, 1]. 

The expected volume that each trader generates is 

(    
κ − γ

 

  ) 

+ χγ(τϵ+Nκτη  ) τζ 

√
2(N − 1)τη

 

  1+(N −2)ρ [1+(N −2)ρ](τϵ+κτη ) 
 . (22)

 

α 
[
τϵ + τζ + 

(
 +  (N−1)γ 

1+(N−2)ρ 

) 
τ  + (N−1)χγτζτη 

[1+(N−2)ρ](τϵ+κτη  ) 

] √
πN 

 

If χ > 0, then volume converges to a positive limit as the number N of traders grows large, and 

that limit increases in the overconfidence parameter κ. 

 

4   Extensions 

 
4.1   Heterogeneous Traders 

 

Section 3 assumes that traders are symmetric in terms of their private-signal precision, risk-aversion 

coefficient, and cursedness parameter. In this section we examine the effects of heterogeneity. We 

maintain the other assumptions of Section 3 that traders receive no random endowments and 

observe no public signal. 

We start by allowing traders to differ in their cursedness parameter χi, and for analytical 

simplicity assume that some are rational (χi = 0) and the rest are fully cursed (χi = 1). We denote 
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by Nr and Nc = N − Nr , respectively, the numbers of rational and fully cursed traders, and by R 

and C the sets of these traders. The price (6) takes the form 
 

p = d + Ar 

∑ 
si + Ac 

∑ 
si. (23) 

i∈R i∈C 

 

Proposition 5 computes the coefficients (Ar, Ac). The proposition also derives the differences be- 

tween rational and cursed order flow, and how volume depends on the fraction of rational traders.9 

Proposition 5 Suppose that Nr traders are rational and Nc = N − Nr traders are fully cursed. 

Traders are otherwise symmetric, receive no random endowments, and observe only their private 

signals.  The price (23) is an equilibrium price if and only if 

 

Ar = xAc, (24) 
  Nr τξ     τη   

[(Nr−1)x+Nc](τϵ+τζ +τη +τξ ) 
+ 

τϵ+τζ +τη 

Ac = Nr (τϵ+τη +τξ ) Nc(τϵ+τη ) , (25) 
τϵ+τζ +τη +τξ  

+ 
τϵ+τζ +τη 

 

where  
[(Nr  − 1)x + Nc]

2 
τη 

τξ ≡ (Nr − 1)x2 + Nc 
, (26) 

 

and x ∈ (0, 1) is the unique solution of 
 

  N (1   x)(τ + τ  + τ )   
x = . (27) 

[(Nr − 1)x2 + Nc] (τϵ + τζ  + τη ) + [(Nr − 1)x + Nc]
2 

τη 

 

When both rational and fully cursed traders are present in the market (1 ≤ Nr ≤ N − 1), the former 

trade in the direction of price movements and the latter in the opposite direction: the regression 

 

xi = γi(p − d) + ν, (28) 
 

 

9The order flow associated to a trader i is the number xi  of shares of the risky asset that the trader buys in 
equilibrium, or sells if xi is negative. Order flow is the signed volume that the trader generates. 
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yields coefficient γi > 0 for i ∈ R and γi < 0 for i ∈ C.  Expected aggregate volume, viewed as a 

function of Nr, is maximum at an interior point 1 ≤ Nr ≤ N − 1 if 
 

    1 
( 

τϵ + N τη 
)2

 

[   
2(τϵ + τζ + N τη )   

+ 

] 
τϵ + N τη 

− 1 

( 
τϵ + τζ + N τη 

)2
 

+ 
 

< 0.  (29) 
N − 1 τϵ + τη (N − 1)(τϵ + τζ + τη ) τϵ + τη τϵ + τζ + τη 

 

When the shock ζ has zero variance, (29) holds if N exceeds a threshold N̄ . 

 
As in Section 3, the price under-reacts to traders’ private signals. When traders differ in their 

cursedness parameter, price inefficiency takes an additional form. While the price should give the 

same weight to all signals because they all have the same precision, it overweights the signals of 

the fully cursed traders relative to those of the rational traders (x = Ar
 

c 
< 1).  This is because 

rational traders give weight both to their signals and to those of cursed traders when forming their 

expectations about the asset payoff, while fully cursed traders give weight to their signals only. 

The price under-reaction implies positively autocorrelated price changes. Rational traders ex- 

ploit this predictability by buying following a price rise and selling following a price drop. This is 

reflected in a positive coefficient γ in the regression (28) of order flow on the price change between 

Periods 0 and 1. Conversely, the coefficient is negative for cursed traders, who are on the losing 

side of this trade. 

The expected utility of rational traders is higher than of cursed traders because they learn from 

the price. In addition, because rational traders have the option not to trade, they are better off 

relative to not trading. Cursed traders are instead worse off because there are no aggregate gains 

from trade. Cursed traders are thus “exploited” by rational traders. 

Because the predictability-induced trading by rational traders adds to trading volume, a market 

in which some traders are rational and some are fully cursed can have higher volume than an 

otherwise identical market where all traders are fully cursed. To show this result, we hold constant 

the total number N of traders and change the number Nr of rational traders. When (29) holds, 

volume increases when some rational traders enter the market (Nr > 0). A sufficient condition 

for (29) to hold is that the total number N of traders is large: with a large number of cursed 

traders, the predictability of price changes induces rational entrants to engage in a sizeable amount 
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of trading. 

We next allow traders to differ in their risk aversion coefficient αi and private-signal precision 

τηi . For analytical simplicity, we assume that all traders all fully cursed. The price (6) takes the 

form 

 
N 

p = d + 
∑ 

Aisi. (30) 
i=1 

 

Proposition 6 computes the coefficients {Ai}i=1,..N . The proposition also computes expected trading 

volume for each trader, assuming for simplicity that traders have the same risk-aversion coefficient 

α and the shock ζ has zero variance. 

 
Proposition 6 Suppose that traders differ in their risk-aversion coefficients αi and private-signal 

precisions τηi , are fully cursed, receive no random endowments, and observe only their private 

signals.  The price (30) is an equilibrium price if and only if 

 
Ai = 

τηi 

αi(τϵ+τζ +τηi ) 

 

. (31) 
∑N τϵ+τηj 

j=1 αj (τϵ+τζ +τηj ) 

 

If all traders have the same risk-aversion coefficient α and the shock ζ has zero variance, then the 

expected trading volume generated by trader i is 
√

2 
[
τ 2[τη + (N − 2)τη ] + τϵ 

[
Nτ 2 + (N − 2)τ 2 

] 
+ (Nτη − τη )τητη 

]
 

ϵ i η ηi 

α(τϵ + τη )
√

πN 

i i 

, (32) 

 

where τη  denotes the average precision of private signals.  Trader i generates more volume than 

trader j if and only if he observes a more precise private signal (τηi  > τηj ). 

As in Proposition 5, the price is inefficient both because it under-reacts to traders’ private 

signals and because it does not give the correct relative weights to the signals. In the rational case, 

where the price equals the expected value of the asset payoff d conditional on the signals, the weight 

of a signal i is proportional to its precision τηi and does not depend on any other characteristic 

of trader i (Grossman 1976). Proposition 6 shows that when traders are fully cursed, the weight 
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is increasing in τηi but not proportionately, and depends on trader i’s risk aversion coefficient αi. 

In particular, a trader who is less risk averse trades more aggressively on his signal, failing to 

realize that he trades against others’ signals and that his trading activity causes his signal to be 

overweighed. 

Proposition 6 shows additionally that traders with more precise signals trade more. One may 

conjecture that these traders are better off relative to those with less precise signals, in the same 

way that rational traders are better off than cursed traders. Surprisingly, however, this conjecture 

turns out not to be always true, as shown in an earlier version of this paper (Eyster, Rabin and 

Vayanos 2015). On the one hand, cursed traders with more precise signals do not lose as much by 

trading against others’ signals because their signal aligns better with the asset value, e.g., is more 

likely to be negative when others’ signals are negative. On the other hand, they can overtrade, 

taking on excessive risk, and this effect can dominate. 

 
4.2 Public Signal 

 

In this section we re-introduce the public signal s = ϵ + θ that was allowed for in our general model 

but excluded from Section 3. We maintain the other assumptions of Section 3 that traders are 

symmetric and receive no endowment shocks. The price (6) takes the form 

 

N 

p = d + A 
∑ 

si + Bs. (33) 
i=1 

 

Proposition 7 computes the coefficients (A, B) and draws implications for the predictability of 

price changes. The proposition also computes expected trading volume, and examines how price 

and volume depend on the cursedness parameter χ. 

 

Proposition 7 Suppose that traders are symmetric with cursedness parameter χ, receive no ran- 

dom endowments, and observe their private signals and the public signal.  The price (33) is an 
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equilibrium price if and only if 
 

A = 
τη ([N − (N − 1)χ] (τϵ + τθ ) + N τη ) 

N (τϵ + τη + τθ )(τϵ + Nτη + τθ ) 
τθ (τϵ + [1 + (N − 1)χ] τη + τθ ) 

, (34) 

B = 
(τϵ + τη + τθ )(τϵ + Nτη + τθ ) 

. (35) 

 

The coefficient A decreases in χ and the coefficient B increases in χ. For χ > 0, the regression 

 

d − p = γ1(p − d) + γ2s + ν, (36) 

 
yields coefficients γ1 > 0 and γ2 < 0. The expected volume that each trader generates is 

χτζ (τϵ + Nτη + τθ )
√

2(N − 1)τη 

α [τζ (τϵ + [1 + χ(N − 1)] τη + τθ ) + (τϵ + τη + τθ )(τϵ + Nτη + τθ )] 
√

πN 
, (37) 

 

and is lower that when traders do not observe the public signal. 

 
As in Section 3, traders’ private signals enter the price with a smaller weight than in the rational 

case. The public signal, however, enters the price with a larger weight. The intuition is easier to 

understand in the case where traders are fully cursed. Since they form their conditional expectations 

of the asset payoff using fewer signals than rational traders, they attach larger weight to each signal 

they use. The public signal thus receives larger weight in each trader’s conditional expectation, 

and enters the price with a larger weight. The same logic carries through to partial cursedness: B 

is larger when traders are partially cursed than when they are rational, and increases in χ, i.e., is 

larger when traders are more cursed. 

Because the public signal enters the price with a larger weight than in the rational case, it 

predicts future price changes negatively. This predictability is revealed from a bivariate regression 

of the price change between Periods 1 and 2 on the public signal and on the price change between 

Periods 0 and 1. The regression coefficient γ2 on the public signal is negative. The coefficient 

becomes zero, however, if the price change between Periods 0 and 1 is not controlled for. This is 

because cursed traders observe the public signal, so if they were to condition their expectation of 

the asset payoff on that information alone, they would do so correctly. 
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The last result of Proposition 7 is that observing the public signal lowers volume. The intuition 

is that cursed traders trade with each other because they observe different private signals and do 

not learn others’ signals from the price. When they observe also the public signal, they give their 

private signals less weight and hence trade less. This result is in the spirit of Corollary 1 that public 

revelation of information reduces cursed trade. 

 
4.3 Random Endowments 

In this section we re-introduce the random endowments that were allowed for in our general model 

but excluded from Section 3. We maintain the other assumptions of Section 3 that traders are 

symmetric and observe no public signal. We assume that the symmetry extends to the precision of 

endowment shocks {zi}i=1,..,N , which takes a value τz common to all traders. The price (6) takes 

the form 
 

N N 

p = d + A 
∑ 

si − C 
∑ 

zi. (38) 
i=1 i=1 

 

Proposition 8 computes the coefficients (A, C). 

 
Proposition 8 Suppose that traders are symmetric with cursedness parameter χ, receive random 

endowments, and observe only their private signals and endowment shocks. The price (38) is an 

equilibrium price if and only if 

τ  
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and C  > 0 is the unique solution to the cubic equation 
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The expected volume that each trader generates is 
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Volume increases in N, for χ ∈ {0, 1}. 

Random endowments generate trade even among rational traders. This can be confirmed by 

setting χ = 0 in (41): when there are no random endowments (τz = ∞) rational volume is zero 

consistent with Proposition 2, and when there are random endowments (τz finite) rational volume 

is positive. Eq. (41) implies additionally that per-trader volume in the rational case increases in 

the number N of traders. Hence aggregate volume goes to infinity when N grows large. 

Since rational volume is generated by random endowments, Proposition 8 suggests that these 

endowments should generate large aggregate volume in large markets in all the cases that we 

consider: rationality, cursedness, overconfidence, and dismissiveness.10 Eq. (41) indeed implies that 

per-trader volume converges to a positive limit for all χ ∈ [0, 1], and hence aggregate volume in the 

rational and cursed cases is large in large markets. The same result holds for overconfidence and 

dismissiveness, as we show in the appendix, where we compute the equilibrium with overconfident 

and dismissive traders who receive random endowments (Proposition B.1). 

While the limit behavior of volume when traders receive random endowments is the same under 

cursedness and under dismissiveness, other properties of volume can differ. Section 3 emphasizes 

two such properties in the absence of random endowments: the dependence of volume on N , and 

the effect of revealing private signals publicly. The differences on how cursed and dismissive volume 

depend on N , shown in Section 3, extend to small endowment shocks by continuity. Corollary 2 

examines how cursed and dismissive volume change when private signals are revealed publicly. 

Continuity does not pin down the effect on dismissive volume because there is no effect in the 

absence of random endowments. Continuity also does not pin down the effect on rational volume 
 

10Although rational traders trade both because of random endowments and private information, random endow- 
ments generate rational volume in the sense that volume would be zero in their absence. The contribution of private 
information to rational volume is, in fact, negative, as shown in Corollary 2: when private signals are revealed publicly, 
traders trade only because of random endowments and volume goes up. 
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because that volume is zero in the endowments’ absence. 

 
Corollary 2  Suppose that traders are symmetric,  receive random endowments,  and observe  only 

their private signals and endowment shocks.  If all private signals are publicly revealed, then: 

• Volume between rational traders increases. 

• Volume between cursed traders increases when χ is close to zero and decreases when χ is close 

to one. 

• Volume between non-fully dismissive traders (κ = 1, γ ∈ (0, 1), and ρ ≥ 0) increases, but can 

decrease if traders are also overconfident (κ > 1). 

• Volume does not change when traders are fully dismissive (γ = 0) or fully overconfident 

(κ = ∞). 

 
Recall from Corollary 1 that in the absence of random endowments, cursed volume drops to zero 

if signals are publicly revealed because traders learn the average signal and no longer trade on their 

own signal. In the presence of random endowments, a similar effect appears for both rational and 

cursed traders: public revelation of the signals induces traders to no longer trade on their own signal 

because they learn the average signal, rather than a noisy version of it from the price. We term 

this the information-trading effect. At the same time, a new effect appears: public revelation of the 

signals induces traders to trade more aggressively when the price moves in response to endowment 

shocks because they are not worried that these movements may instead be due to information. We 

term this the risk-sharing effect. 

When traders are rational, the risk-sharing effect dominates the information-trading effect, 

and public revelation of the signals raises volume. This is a standard result in adverse-selection 

models (e.g., Akerlof 1970, Hirshleifer 1971). When traders are fully cursed, the risk-sharing effect 

is not present, and public revelation of the signals lowers volume. Put differently, not revealing 

information and keeping it asymmetric impedes trade between rational traders but stimulates trade 

between fully cursed ones. The case of partial cursedness is in-between the two extremes: public 
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revelation of the signals causes volume to increase when χ is close to zero and to decrease when χ 

is close to one. 

The information-trading and risk-sharing effects are also at play under overconfidence and dis- 

missiveness. Recall from Corollary 1 that in the absence of random endowments, public revelation 

of the signals has no effect on overconfident or dismissive volume because traders can infer others’ 

signals from the price even when they do not observe them. This neutrality result continues to hold 

with random endowments only in the extreme cases where traders are fully dismissive (γ = 0) or 

fully overconfident (κ = ∞). This is because in both cases they believe that they do not learn useful 

new information (for γ = 0 they view others’ signals as noise, and for κ = ∞ they believe that they 

observe a perfectly informative signal). Between the two extreme cases, the information-trading 

and risk-sharing effects come into play and neutrality does not hold. When traders are non-fully 

dismissive, the latter effect dominates, and public revelation of the signals increases volume. The 

former effect instead dominates when traders are also sufficiently overconfident. 

Corollary 2 implies that the contrast between cursed and dismissive volume is sharpest when 

the variance of endowment shocks is small. In that case, public revelation of information lowers 

cursed volume for most values of χ (all values when the variance of endowment shocks is zero) but 

raises dismissive volume. 

 
5 Evidence on Cursedness 

 
Cursed equilibrium, as defined by Eyster and Rabin (2005), captures the psychology behind the 

winner’s curse in common-value auctions—the average price paid by the auction winner exceeds the 

average value of the object being auctioned—in a manner sufficiently general to be applied across 

strategic settings. It assumes that people fail to correctly infer other people’s private information 

from those other people’s actions. In the context of common-values auctions, bidders fail to fully 

appreciate the bad news inherent in winning, namely that their opponents have found it optimal to 

bid lower. The winner’s curse has been documented empirically as well as in controlled laboratory 

settings. Capen, Clapp and Campbell (1971) is an early empirical study in the context of auctions 

for oil-drilling rights. Roll (1986) documents the winner’s curse in corporate takeovers. Kagel and 



30  

 

 

 

Levin (2002) review the voluminous laboratory evidence on the winner’s curse. 

The same kind of failure of inference that characterizes bidding in common-values auctions 

has been uncovered in other strategic settings. Esponda and Vespa (2014) report on a laboratory 

experiment on voting in which people fail to draw the correct inference from the event that their 

vote is pivotal. Samuelson and Bazerman (1985) and Holt and Sherman (1994) find that people 

under-infer each other’s private information in laboratory experiments on positive-sum bilateral 

trade. Carrillo and Palfrey (2011) find the same in zero-sum bilateral-trade experiments. Failure 

of inference in bilateral-trade settings implies excessive trade. Weizsäcker (2010) presents a meta- 

study of a social-learning experiment that documents that people do not learn as much as they 

should from their predecessors’ choices. 

More closely related to our paper are experimental papers that have tested for REE. Plott and 

Sunder (1988) devise an experimental asset market in which an asset’s payoff takes one of three 

possible values: v ∈ {50, 240, 490}. Given true value v, one-half of the subjects learn that the value 

is not v′ ̸= v, and the other half learn that the value is not v′′ ̸= v, v′. For example, when v = 50, 
one-half of the people learn v ̸= 240, and the other half that v ̸= 490; collectively, people’s 
private 

information reveals the state. Plott and Sunder show that after several experimental rounds, the 

prices generated by an oral double auction closely approximate REE prices, namely the true value. 

Biais et al. (2005) essentially replicate Plott and Sunder’s design but find substantial deviations 

from REE. Corgnet et al. (2017) also replicate the same design and identify prices very different 

from REE prices. They show that CEE with fully cursed traders, fits their own data as well as the 

data of Biais et al. better than REE.11 

Magnani and Oprea (2017) conduct an experiment intended to identify whether cursedness or 

dismissiveness drives trade. They estimate that 80% of subjects employ cursed reasoning, but also 

argue that most subjects are dismissive of others’ private information. 

Our results suggest testable ways to distinguish between cursedness and dismissiveness. We 
 

 

11Biais et al. (2005) convincingly argue that overconfidence in one’s private information should play no role in 
the information structure that they consider: how could someone who learns that v ̸= 240 be overconfident about 
that information? In the same way, dismissiveness does not seem a likely explanation for non-REE prices. Would 
a subject who learns that v ̸= 240 and hears from the experimenter that one-half of the other subjects learn either 
v ̸= 50 or v ̸= 490 really believe that despite the experimenter’s instructions other subjects hold no payoff-relevant 
information? 



31  

 

 

 

show that as market size increases, volume per trader always increases under cursedness, while it 

can also decrease or be hump-shaped under dismissiveness. Moreover, public revelation of private 

information lowers cursed volume when the variance of endowment shocks is small, but raises 

dismissive volume. 

Cursedness can have implications for financial markets beyond those that we consider in this 

paper. Célérier and Vallée (2017) find that structured products with complex payoff structures 

and high headline rates (payoffs in the best-case scenario) offer systematically low returns. These 

findings suggest that retail investors, to whom these products are marketed, seem unable to connect 

the products’ pricing and structure to their future returns. Kondor and Kőszegi (2017) develop a 

model of financial innovation with cursed investors. Issuers in that model design securities using 

their payoff-relevant private information, which investors fail to infer. Investors are worse off when 

issuers can securitize a larger pool of underlying assets or can create more securities out of the 

pool—a result reversing the traditional logic that diversification benefits investors. 

While small investors may be particularly prone to under-inference from price, as, e.g., in the 

security-design settings of Célérier and Vallée (2017) and Kondor and Kőszegi (2017), even large 

players may succumb to the same error. On his book Flash Boys, Michael Lewis describes how 

sophisticated investors, including hedge funds, were enticed by low (or even negative) trading com- 

missions to trade in such a way that high-frequency traders could pick off their orders. Investors 

failed to think through the logic as to why stock exchanges had moved away from simple fixed com- 

missions to more complex pricing schemes.12 Despite not thinking through the logic of exchanges’ 

esoteric prices, investors did recognize that that were systematically losing substantial amounts of 

money.13 

 

12“It was not obvious to Brad why some exchanges paid you to be a taker and charged you to be a maker, while 
others charged you to be a taker and paid you to be a maker. No one he asked could explain it either. ‘It wasn’t like 
there was anyone saying, “Hey, you should really be paying attention to this.” Because no one was paying attention 
to this.’” (p.42, iPad version) 

13“[T]he president of a $9 billion hedge fund—recalls the encounter this way: ‘I know I have a three-hundred 
million-dollar problem on a nine-billion-dollar hedge fund.’” (p.80, iPad version) 
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6 Conclusion 
 

In this paper, we propose a new market equilibrium concept, cursed expectations equilibrium (CEE), 

in which traders fail to fully infer information from market prices. Unlike agreeing-to-disagree 

models in which traders have differences of opinion about the informativeness of exogenous private 

signals but correctly infer others’ private signals from price, cursed traders correctly perceive the 

relationship between all exogenous variables and simply misperceive the relationship between the 

endogenous price and traders’ exogenous private signals. 

Cursed traders trade significant quantities and take on excessive risk. We show that cursed 

volume per trader grows with the size of the market, whereas per-trader volume under overcon- 

fidence or dismissiveness may decline to zero. Absent endowment shocks, revealing all private 

signals would not affect trade due to overconfidence or dismissiveness, but would eliminate cursed 

trade. Cursedness amplifies trading volume due to overconfidence, thus enabling that bias to have 

a more significant effect. Markets comprised entirely of cursed traders generate more trade than 

those comprised entirely of rational traders; mixed markets can generate more trade still, because 

rationals exploit the predictability of returns caused by cursed traders. 

In Section 3, we showed the necessity in some settings of cursedness to “enable” overconfidence 

to explain appreciable per-trader volume of trade. We conclude by speculating how cursedness 

may similarly enable the study of various other biases in asset markets. Researchers have recently 

proposed that a number of statistical errors may be relevant for financial decisions, including over- 

inference from small samples (see Rabin (2002) and Rabin and Vayanos (2010)) and non-belief in the 

law of large numbers (see Benjamin, Rabin, and Raymond (2016)). Predicting the consequences of 

these and other biases for markets where traders extract information from prices requires additional 

assumptions about traders’ theories of one another’s errors. Yet relatively little is known about how 

people reason about others’ errors. In its extreme, cursedness provides a simple assumption about 

what people think of others’ errors: they don’t think about them at all.  If models of errors are 

instead closed by assuming that people do agree to disagree about the meaning of private signals, 

then, much like with overconfidence in Section 3.3, we suspect that the per-trader volume of trade 

will be small in information-rich settings where each trader values the sum total of others’ private 
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information far more heavily than his own private signal. 
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ONLINE APPENDIX 
 

A Cursed Equilibrium 
 

Based on evidence from strategic situations, Eyster and Rabin (2005) define cursed equilibrium in 

Bayesian games by the requirement that every player correctly predicts the behavior of others but 

fails to fully attend to its informational content. In this appendix, we define cursed equilibrium 

and illustrate its workings in a simple zero-sum game of speculative trade. 

Cursed equilibrium is defined in finite Bayesian games of the form 

({Ai}i=1,...,N , {Ti}i=0,...,N , p, {ui}i=1,...,N ) . 

For each player i = 1, . . . , N , Ai  is a finite set of available actions and Ti  is a finite set of types, 

including one, T0, for nature. We denote the set of action profiles by A ≡ × 
i=1,...,N 

Ai and the set 

of type profiles by T ≡ × 
i=0,...,N 

Ti. We assume that all players share the common prior probability 

distribution p over T . Player i’s utility function is ui : A × T → R. 

A strategy for player i, σi : Ti → △Ai, specifies a probability distribution over actions for each 

type. We denote by σi(ai|ti) the probability that type ti plays action ai when he follows strategy 

σi. We denote the set of action profiles for players other than i by A−i ≡  × 
j̸=0,i 

Aj , and the set of 

type profiles for nature and players other than i by T−i ≡ × Tj . We denote by a−i and t−i generic 
j̸=i 

elements of these sets. We denote by σ−i(a−i|t−i) the probability that types t−i play action profile 

a−i when they follow strategy σ−i ≡ {σj}j̸=0,i. Finally, we denote by p(t−i|ti) the distribution of 

player i’s beliefs about other players’ types conditional on his own type ti. The standard solution 

concept for these games is Bayesian Nash equilibrium. 

 

Defi 2 A strategy profile σ is a Bayesian Nash equilibrium if for each player i, each type 

ti ∈ Ti, and each a∗ such that σi(a∗|ti) > 0: 
i i 

 

i ∈ arg max 

 
∑ 

p(t−i|ti) 
∑

 

 

σ−i(a−i|t−i)ui(ai, a−i; ti, t−i)  . (A.1) 
ai∈Ai 

−i a−i 
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To define cursed equilibrium, we compute for each type of each player the average strategy of 

other players, averaged over the other players’ types. For type ti of player i we define 

 

σ−i(a−i|ti) ≡ 
∑

 

t−i∈T−i 

pi(t−i|ti)  · σ−i(a−i|t−i). 

 

This is the marginal probability that other players play action profile a−i, and is derived by aver- 

aging over type profiles t−i the probabilities σ−i(a−i|t−i) that other players play a−i conditional on 

t−i. We associate to each player i a cursedness parameter χi ∈ [0, 1]. 

Defi 3 A strategy profile σ is a cursed equilibrium if for each player i, each type ti ∈ Ti, 

and each a∗ such that σi(a∗|ti) > 0: 
i i 

 

i ∈ arg max 

 
∑ 

p(t−i|ti)  
∑

(1 − χi)σ−i(a−i|t−i)ui(ai, a−i; ti, t−i) 
ai∈Ai 

−i 
a−i 

 
 

+ χiσ−i(a−i|ti)ui(ai, a−i; ti, t−i)  . (A.2) 

 

Player i best-responds to beliefs that with probability 1 − χi the other players’ actions depend 

on their types (the probability of action profile a−i in (A.2) is conditional on type profile t−i) and 

with probability χi actions do not depend on types (the probability of a−i in (A.2) is the marginal). 

When χi = 0, player i is rational, and his objective is as in Bayesian Nash equilibrium (Eq. (A.1)). 

When χi = 1, player i is fully cursed, and neglects entirely the relationship between the other 

players’ actions and their types. Note that while cursed players fail to map actions to types, they 

assess correctly the probability distribution of other players’ actions. 

To illustrate the concept, consider the following trading game. A seller owns an asset that he 

knows to be worth s both to himself and to a potential buyer. The buyer does not know s, but 

believes that it is randomly drawn from [0, 1] with a cumulative distribution function F . The buyer 

makes the seller a take-it-or-leave-it offer p for the asset. 

The seller’s optimal strategy is to accept the buyer’s offer p if and only if s ≤ p. In a Bayesian 

Nash equilibrium the buyer understands this, and so chooses p to maximize F (p) × (E[s|s ≤ p] − p). 
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This objective is the probability F (p) that the seller accepts the offer p, times the buyer’s expected 

surplus from acquiring the asset conditional on seller acceptance. Because E[s|s ≤ p] < p for each 

p > 0, the buyer’s optimal offer is p∗ = 0.  Thus, no trade occurs, consistent with the no-trade 

theorems of Milgrom and Stokey (1982) and Tirole (1982). 

In a cursed equilibrium players fail to appreciate the informational content of others’ behavior. 

This does not matter for the seller, who knows s perfectly and hence has nothing to learn, but 

matters for the buyer. A buyer who is fully cursed completely neglects the relationship between the 

seller’s willingness to sell at price p and the seller’s private information s, but correctly predicts the 

probability distribution over the seller’s actions. As a consequence, a fully cursed buyer perceives 

the expected value of an asset traded at price p to be its unconditional expectation, E[s]. A fully 

cursed buyer thus chooses p to maximize F (p) × (E[s] − p). A partially cursed buyer appreciates 

that the seller’s willingness to sell correlates with his private information but underestimates that 

relationship. A buyer who is partially cursed with coefficient χ perceives the expected value of an 

asset traded at price p to be (1 − χ)E[s|s ≤ p] + χE[s]. This is the weighted average of the rational 

belief with weight 1 − χ and the fully cursed belief with weight χ. In effect, the buyer believes 

that with probability 1 − χ the seller’s decision to sell conveys information about the asset, and 

with probability χ it does not. The coefficient χ measures the buyer’s naivety: χ = 0 corresponds 

to full rationality, while χ = 1 corresponds to full cursedness. A χ-cursed buyer thus chooses p to 

maximize F (p) × ((1 − χ)E[s|s ≤ p] + χE[s] − p). Since E[s] > 0, the buyer’s optimal offer exceeds 

zero for any χ > 0. Moreover, since the buyer’s objective function is supermodular in (p, χ) for 

p ∈ [0, E[s]], Topkis’ Theorem implies that p∗ increases in χ. In summary, cursedness produces 

trade in no-trade settings, and the more cursed the buyer, the higher the volume of trade. 

 
 

B Proofs 
 
We first prove the following lemma, which we use for proving Proposition 1. 

 

Lemma B.1 Suppose that the variables (x, {yi}i=1,..,K ) are normal, independent, with mean zero 

and precisions (τx, {τyi }i=1,..,K ).  Then, the distribution of x conditional on {x+yi}i=1,..,K  is normal 
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i 

j=1 

j=1 

∑K 

K 

 
 
 
 

with mean 
 
 

K 
τy

 

E (x |{x + yi}i=1,..,K ) = 
∑

 i (x + yi) (B.1) 

i=1 
τx + 

∑
j=1 τyj 

 

and precision 
 

K 

τ (x |{x + yi}i=1,..,K ) = τx + 
∑ 

τy  . (B.2) 
i=1 

 

Proof. The conditional mean and variance can be computed from the regression 
 

K 

x = 
∑ 

βi(x + yi) + e, 

i=1 

 

where {βi}i=1,..,K are the regression coefficients and e is the error term. Taking covariances of both 

sides with x + yi and noting that (x, {yi}i=1,..,K, e) are independent, we find 
 

K 

Cov(x, x + yi) = 
∑ 

βj Cov(x + yj, x + yi) 
j=1 

1 

⇒ 
τx

 

( 
1

 
= βi 

x 

 

1 
) 

+ 
τyi 

K 

+ 
∑ 

βj 
τx 

j̸=i 
 

⇒ βi = 
τyi 

 

τx 
1 − 
∑ 
 
j=1 

βj  . (B.3) 

 

Summing (B.3) across i and solving for 
∑K

 βj , we find 

 
K ∑ 

βj = 
∑K 

j=1 τyj 
 

. (B.4) 
 

j=1 
∑K 

j=1 τyj 

 

Substituting 
∑K

 βj  from (B.4) into (B.3), we find 
 

βi = 
 
τx + 

τyi 

j=1 τyj 

. (B.5) 

τx + 

τ 

1 
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j 

τx + 

i 

τ 

 

 

 

Since 
 

K 

E (x |{x + yi}i=1,..,K ) = 
∑ 

βi(x + yi), 
i=1 

 

(B.5) implies (B.1). Taking variances of both sides and noting that (x, {yi}i=1,..,K, e) are indepen- 

dent, we find 
 

 
Var(x) = 

( 
K 

)2 

∑ 
βi

 

K 

Var(x) + 
∑ 

β2Var(yi) + Var(e) 
i=1 

 ( ∑K
 

i=1 
)2

 
K 

( )2 
1 1  τy   ∑ 1   τy   

⇒ 
τe

 

τx 

 

i=1 i 

τx + 
∑K   

τy 

 −
 τyi 

i 

τx + 
∑K   

τy 
i=1 i 

1 1 
i=1 j=1 j 

⇒ 
τe

 
= ∑K

 

i=1 τyi 

, (B.6) 

 

where the second step follows from (B.4) and (B.5). Since 

 

τ (x |{x + yi}i=1,..,K ) = τe, 

 
(B.6) implies (B.2). 

 

Proof of Proposition 1.  We first determine traders’ demand functions using (8).  Since d = 

d + ϵ + ζ and ζ is independent of traders’ information Ii, 

 

E(d|Ii) = d + E(ϵ|Ii), (B.7) 

1 1 

Var(d|Ii) = Var(ϵ|Ii) + Var(ζ) = 
τ (ϵ|I ) 

+ 
τ
 

. (B.8) 

 

Using Lemma B.1 with x = ϵ, K = 3 and {yj}j=1,2,3 = (ηi, η, ξi), we find 
 

τηi   τθ   τξi 

E(d|Iir ) = d + 
ϵ + τηi 

1 
+ τθ + τξi 

si + 
ϵ 

1 
+ τηi + τθ 

s + 
+ τξi τϵ + τηi + τθ + τξi 

(ϵ + ξi), (B.9) 

Var(d|Iir ) = 
ϵ + τηi + τθ + τξi 

+ . (B.10) 
τζ 

= 1 − 

ζ 

τ 

τ 
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+ χi  
ηi  i θ 

α 

( ∑ ) = (N − 1)τη, (B.15) 

∑ 

∑ 

 

 

 
 

Using Lemma B.1 with x = ϵ, K = 2 and {yj}j=1,2 = (ηi, η), we find 
 

τηi   τθ   

E(d|Iic) = d + 
ϵ + τηi 

1 
+ τθ 

si + 
ϵ 

1 
+ τηi + τθ 

s, (B.11) 

Var(d|Iic) = 
ϵ + τηi + τθ 

+ . (B.12) 
τζ 

 

Substituting (B.9), (B.10), (B.11) and (B.12) into (8), we can write the demand of trader i as 
 

d + (1 − χi) τηi si+τθs+τξi 
(ϵ+ξi) 

τϵ+τη  +τθ +τξ 

τ   s +τ s 

τϵ+τη  +τθ  
− p 

xi = i 

αi 

[
(1 − χi) 1

 

i 

+ χi
 1 

i 

+ 1 
] 

− zi. (B.13) 

τϵ+τηi +τθ +τξi
 τϵ+τηi +τθ τζ 

We next substitute (B.13) into the market-clearing condition (5), use (6) to write p in terms of 

({si}i=1,..,N , s, {zi}i=1,..,N ), and use (9) to write ϵ + ξi in terms of ({si}j̸=i, {zi}j ̸=i). This yields an 

equation that is linear in ({si}i=1,..,N , s, {zi}i=1,..,N ). Identifying terms in si yields (11).  Identifying 

terms of s yields (12). Identifying terms in zi yields 

  Ci   

(1 − χi)τζτξi 
∑ k̸=i Ak (τϵ + τηi + τθ ) 

1 
i [(τϵ + τηi + τθ )(τϵ + τηi + τθ + τξi ) + τζ (τϵ + τηi + τθ + χiτξi )] 

  1   N 

= Ciτζ 

∑
 (τϵ + τηj + τθ )(τϵ + τηj + τθ + τξj ) − (1 − χj )τξj 

∑ 
k̸=j Ak 

(τϵ + τηj  + τθ ) . (B.14) 

j=1 αj 

[
(τϵ + τηj + τθ )(τϵ + τηj + τθ + τξj ) + τζ (τϵ + τηj + τθ + χjτξj )

]
 

Combining (B.14) with (11) yields (13). 

Proof of Proposition 2. Eq. (10) implies that 

( )2 

j̸=i Aj   1   
τξi = 

Va

r 

( ) = 

j̸=i Ajηj Va

r 

   
j ̸=i ηj 

N−1 

where the first step follows because zj = 0 for all j, the second because Aj = A for all j, and the third 

because {ηj}j=1,..,N are i.i.d. with precision τη . Setting (χi, αi, τηi , τθ, τξi , Ai) = (χ, α, τη, 0, (N − 

1)τη, A) for all i in (11), we find (15). Eq. (15) implies that A decreases in χ. 

τ τ 

τ 

− 
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N 

A + χ 

α (1 − χ) + χ + 

α (1 − χ) + 

α (1 − χ) + 

 

 

 

The coefficient γ in the regression (16) is proportional to 

 

Cov(d − p, p − d) 

= (1 − NA)NAσ2 − NA2σ2 
ϵ η 

= NA 
[
(1 − NA)σ2 − Aσ2

]
 

ϵ η 

 

= NA 
(τϵ + τη )(τϵ + Nτη ) − τη ([N − χ(N − 1)] τϵ + Nτη ) − τϵ  ([N − χ(N − 1)] τϵ + Nτη ) 

τϵ(τϵ + τη )(τϵ + Nτη ) 

= A
χ(N − 1)(τϵ + N τη ) 

(τϵ + τη )(τϵ + Nτη ) 
> 0, 

 

where the first step follows from (1) and (14), and the third from (15). 

Setting (χi, αi, τηi , τθ, τξi , Ai, zi) = (χ, α, τη, 0, (N − 1)τη, A, 0) in (B.13), we can write the de- 

mand of trader i as 

 
 

d + (1 − χ) τηsi+τη 
p−d−Asi 

τ +Nτ 

τηsi 

τ +τ   
− 

xi = ϵ η ϵ η 

[ 
1

 
τϵ+Nτη 

 
 

τη 
p−d 

1 1 
]
 

τϵ+τη τζ 

τηsi 
d + (1 − χ) τ + 

A + χ − p 

= ϵ   Nτη τϵ+τη , (B.16) 
[ 

1
 

τϵ+Nτη 

1 1 
]
 

τϵ+τη τζ 

 

where we use (9) and (14) to write ϵ + ξi as a function of p. Summing over i and dividing by N , 

we find 

∑N   s
 

τη 
p−d τη   

i=1  i ∑N d + (1 − χ) τ + 
A

 + χ  τ   
N − p 

i=1 xi = ϵ   Nτη ϵ+τη . (B.17) 
N 

[
 1 

τϵ+Nτη 

1 1 
]
 

τϵ+τη τζ 

+ χ 

+ χ 

p 
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χ s 
sj 

+ 1 

∑N 

τζ 
τϵ+[1+χ(N−1)]τη π 

τ  +Nτ decreases in N and N −1 

( ∑ ) = 

] 

 

 

 
 

Subtracting (B.17) from (B.16), and using the market-clearing condition (5), we find 
 

   τη    

(
 

τϵ+τη i − 
∑N 

) 
j=1 

N 

xi =    
1 

τϵ+Nτη 

      
1 

τϵ+τη τζ 

χτζτη (τϵ + Nτη ) 
= 

( 

si − 
∑N 

j=1 

N sj 

)  
 

. (B.18) 
α [τζ (τϵ + [1 + χ(N − 1)] τη ) + (τϵ + τη )(τϵ + Nτη )] 

 

Since xi is normal, 

√ 
2Var(xi) 

E (|xi|) = . (B.19) 
π 

 

Substituting xi from (B.18) into (B.19), and noting that symmetry and (1) imply that 
 

 

Var 

( 

si − 
      j=1 sj 

)

 
= 

N 

N − 1 

Nτη 

 

, (B.20) 

 

we find (17). Eq. (17) implies that E (|xi|) increases in χ. It also implies that E (|xi|) increases in 

N , as can be seen by noting that 
 

E (|xi|) = 
χτζ 

√
2τη 

[    

α τϵ+Nτη 
+ τϵ + τη 

√ 
N − 1 

] √ N 

 

and that τϵ+[1+χ(N −1)]τη 

ϵ η N increases in N . 
 

Proof of Proposition 3. The coefficient A can be deduced from (11) by setting (χi, αi, τθ, Ai) = 

(0, α, 0, A) for all i and deriving (τηi , τξi ) based on traders’ subjective assessments of the precision 

of private signals. Overconfidence implies that τηi = κτη for all i. Dismissiveness, combined with 

symmetry and no random endowments, implies that 
 

  1     1     (N − 1)γτη   

τξi = Var       
j ̸=i ηj 1 (N−2)ρ 

= . 1 + (N − 2)ρ 

N−1 (N−1)γτη 
+ 
(N−1)γτη 

(1 − χ) 
[ 

+ χ α 
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τ +κτ + 

τ +κτ + 

τ +κτ + 

− 
γ 

( ) 

 

 

 
 

Substituting into (11), we find (18). Eq. (18) implies that A increases in κ and γ, and decreases in 

ρ. 

Making the same substitutions, as well as zi = 0, in (B.13), we can write the demand of trader 

i as 

 
 

κτηsi+        γτη  p−d−Asi 

 

xi = 

  1+(N −2)ρ  A   

(N −1)γτη 
ϵ η     1+(N−2)ρ 

[ 

— p 

] . (B.21) 
α 1 + 1 

(N −1)γτη τζ 
ϵ η     1+(N−2)ρ 

 

Following the same steps as in the proof of Proposition 2, we can write (B.21) as 
 

(
κ− γ

 )
τη  

( ∑N    s 
) 

 

xi = 

1+(N −2)ρ   

τϵ+κτη + 
(N−1)γτη 

1+(N−2)ρ 

[ 

si − 
j=1  j 

N 

] 

α 1 + 1 
(N −1)γτη τζ 

ϵ η     1+(N−2)ρ 

(  ) 
κ 

1+(N−2)ρ 
τζτη 

( 

si − 
∑N 

j=1 

N sj 

) 

= [ 

α  τϵ + τζ + 

   

κ +  (N−1)γ 

1+(N−2)ρ 

] . (B.22) 
τη 

 

Substituting xi from (B.22) into (B.19), and using (B.20), we find (19). Eq. (19) implies that 

E (|xi|) increases in κ and ρ, and decreases in γ. Eq. (19) also implies that the asymptotic behavior 

of E (|xi|) and of aggregate volume NE (|xi|) when N grows large is as described in the proposition. 

d + 
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[ ] 

√ 

dN 

κ γ 

τ η 

 

 

 

To derive the comparative statics of E (|xi|) with respect to N , we treat N as a continuous 

variable and differentiate: 

 (  ) 
− 

   
τζ 

√
2(N − 1)τη  

dE (|xi|) 
=  

d   1+(N −2)ρ   

dN dN 
 

α 
[
τ + τζ + 

(
κ +  (N−1)γ 

1+(N−2)ρ 
) ] √

πN 
 

  d {κ [1 + (N − 2)ρ] − γ} τζ 

√
2(N − 1)τη    

= √ 
dN α {[1 + (N − 2)ρ] (τϵ + τζ + κτη ) + (N − 1)γτη} πN 

[γρ(τϵ + τζ + 2κτη ) − γ(κ − γ)τη ] τζ 

√
2(N − 1)τη   

= √ 
α {[1 + (N − 2)ρ] (τϵ + τζ + κτη ) + (N − 1)γτη}

2 
πN 

√   
  {κ [1 + (N − 2)ρ] − γ} τζ    τη     

α {[1 + (N − 2)ρ] (τϵ + τζ + κτη ) + (N − 1)γτη} N 2π(N − 1)N 

√ 
N −1 

(B.23) 

where the third equality follows by writing E (|xi|) as the product of 
N and the remaining 

terms, and differentiating using the product rule. Eq. (B.23) implies that dE(|xi|) has the same sign 

as 
 

G(N ) ≡ 2N (N − 1) [γρ(τϵ + τζ + 2κτη ) − γ(κ − γ)τη ] 

+ {[1 + (N − 2)ρ] (τϵ + τζ + κτη ) + (N − 1)γτη} {κ [1 + (N − 2)ρ] − γ} . 

 
The function G(N ) is quadratic in N . To determine its sign, we distinguish cases according to the 

sign of ρ(τϵ + τζ  + 2κτη ) − (κ − γ)τη . 

Suppose first that 

 

ρ(τϵ + τζ + 2κτη ) − (κ − γ)τη  < 0. (B.24) 

+ 

ϵ 
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For N ∈ [0, 2], 

 

H(N ) ≡ κ [1 + (N − 2)ρ] − γ 
[ 

(N − 2)(κ − γ)τη 
]
 

≥ κ  1 + τϵ + τζ + 2κτη 
−

 

= 
(κ − γ)[τϵ + τζ + 2κτη + (N − 2)τη ] 

τϵ + τζ + 2κτη 
> 0, (B.25) 

 

where the first inequality follows from (B.24) and N ≤ 2, and the second is strict because (B.24) 

implies κ > γ. Eq. (B.25) implies, in particular, that H(1) > 0. Since, in addition, ρ ≤ 1, G(1) ≥ 0. 

We next show that G(N0) < 0 for some N0 < 0. If ρ = 0, then the existence of N0 follows from 

limN→−∞ G(N ) = −∞. If ρ > 0, then we define N0 by H(N0) = 0. Since H(N ) is linear, N0 is 

uniquely defined, and is negative because H(N ) > 0 for N > 2 and because (B.25) implies that 

H(N ) > 0 for N ∈ [0, 2].  Since N (N − 1) > 0 for N < 0, G(N0) < 0.  Since G(N ) is quadratic in 

N , negative for N = N0 < 0, and non-negative for N = 1, its sign for N ≥ 2 is as follows: 

• If limN→∞ G(N ) = ∞, then G(N ) > 0 for N ≥ 2. 

• If limN→∞ G(N ) = −∞ and G(2) > 0, then G(N ) is positive for N ∈ [2, N1) and negative 

for N > N1 for some N1 > 2. 

• If G(2) < 0, then G(N ) < 0 for N ≥ 2. 

The condition for limN→∞ G(N ) = ∞ is (21), and it implies that E (|xi|) increases in N . The 

condition for G(2) < 0 is (20), and it implies that E (|xi|) decreases in N . When these inequalities 

are strict in the opposite direction, then limN→∞ G(N ) = −∞ and G(2) > 0, and hence E (|xi|) is 

hump-shaped in N . 

Suppose next that 

 

ρ(τϵ + τζ + 2κτη ) − (κ − γ)τη  ≥ 0. (B.26) 

 

Since H(N ) > 0 for N ≥ 2, G(N ) > 0 for N ≥ 2, and hence E (|xi|) increases in N . Since (B.26) 

implies that the right-hand side of (21) is non-positive, this case is covered by (21). 

γ 
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j=1 

∑N 

j=1 sj 

∑ ) 

ϵ η ϵ η 

ϵ η 

∑N 

 

 

 

Proof of Corollary 1. Consider first the case where traders are cursed. When all private signals 

are publicly revealed, the information sets Iir and Iic coincide, and are also equivalent to 
{∑N

 

sj 

} 

because symmetry and normality imply that the sum of the signals is a sufficient statistic for all of 

them. Using Lemma B.1 with x = ϵ, K = 1 and y1 = j=1 ηj 

N 
, we find 

 

E(d|Iiϕ) = d + 
ϵ 

Nτη 

+ Nτη 

1 

j=1 sj 
, (B.27) 

N 
1 

Var(d|Iiϕ) = 
ϵ + Nτη 

+ , (B.28) 
τζ 

 

for ϕ = r, c. Substituting (B.27) and (B.28) into (8), and setting zi = 0, we can write the demand 

of trader i as 

 
xi = 

 

Nτη 

τϵ+Nτη 

[ 
1

 

∑N 

N − p 

1 
] . (B.29) 

α  
τϵ+Nτη  

+ 
τζ 

 

Since all traders have the same demand, there is no trade. 

Consider next the case where traders are overconfident or dismissive. When all private signals 

are publicly revealed, trader i’s information set is equivalent to 
{
si, 

∑
 j ̸=i sj 

}
. This is because trader 

i treats the signals of the other traders as symmetric, but not symmetric with his own signal. Using 

Lemma B.1 with x = ϵ, K = 2 and {yj}j=1,2 = 

of precision, we find 

(
ηi, j̸=i ηj 

N−1 , and trader i’s subjective assessments 

 

E(d|Ii) = d +   κτη   
si + 

(N −1)γτη 

1+(N−2)ρ 

∑
j ̸=i sj 

 
, (B.30) 

τ + κτ  + (N −1)γτη 

1+(N−2)ρ 

1 1 
τ + κτ  + (N −1)γτη 

1+(N−2)ρ 
N − 1 

Var(d|Ii) = 
τ + κτ  + (N −1)γτη 

1+(N−2)ρ 

+ . (B.31) 
τζ 

d + 

τ 

τ 
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τ +κτ + 

τ +κτ + 

d + (1 χ) + χ 

− + 

 

 

 
 

Substituting (B.30) and (B.31) into (8), and setting zi = 0, we can write the demand of trader i as 
 

(N −1)γτη ∑ 
s

 
d + κτη si +

 1+(N −2)ρ j̸=i  j 

τϵ+κτη + 
(N−1)γτη 

1+(N−2)ρ τϵ+κτη + 
(N−1)γτη 

1+(N−2)ρ 
N−1    

− p 

xi = [ 

α 1 + 1 

] . (B.32) 

(N −1)γτη τζ 
ϵ η     1+(N−2)ρ 

 

Summing over i and dividing by N , we find 

   
  κτη   

] 
 

 

  N  i 

(N−1)γτη ∑N    s
 

∑N d + (N −1)γτη  
+ 

1+( −2)ρ 

(N  1)γτ   
i=1 p 

ϵ+κτη + 
− η N −

 
      i=1 xi = 

N 
τϵ+κτη + 1+(N−2)ρ 

[ 
1 
(N −1)γτη 

1+(N−2)ρ 

] 
1 
τζ 

. (B.33) 

τϵ+κτη + 1+(N−2)ρ 

 

Subtracting (B.33) from (B.32), and using the market-clearing condition (5), we find 
 

(
κ− γ

 )
τη  

( ∑N    s 
) 

1+(N −2)ρ   

τϵ+κτη + 
(N−1)γτη 

1+(N−2)ρ 
si − 

j=1  j 

N 

xi = [ 

α 1 + 1 

] . (B.34) 

(N −1)γτη τζ 
ϵ η     1+(N−2)ρ 

 

Eq. (B.34) is identical to (B.22), and hence volume is the same as when the private signals are not 

publicly revealed. 

Proof of Proposition 4. We proceed as in the proof of Proposition 3, except that we set χi to 

χ instead of 0. Making the substitutions in (B.13), we can write the demand of trader i as 

 
 κτηsi+        γτη  p−d−Asi   1+(N −2)ρ A  κτη si   − 

xi = [ 
τϵ+κτη + 

(N−1)γτη 
1+(N−2)ρ 

τϵ+κτη   
− p 

] . (B.35) 
α  (1 χ) 1

 

τϵ+κτη + 
(N−1)γτη 

1+(N−2)ρ 

1 1 
τϵ+κτη τζ 

[ 

α + 

+ χ 

τ 
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( 

− 

− + 

η 

   

 

 

 
 

Following the same steps as in the proof of Proposition 2, we can write (B.35) as 
 [ 

κ− γ 
)
τη 

] ( ∑N 
) 

(1 χ) 1+(N −2)ρ   

τ +κτ  + 
(N−1)γτη 

   κτη   

τϵ+κτη si − 
j=1 sj 

N 

xi = 
ϵ η     1+(N−2)ρ 

[ ] 
α  (1 χ) 1

 

τϵ+κτη + 
(N−1)γτη 

1+(N−2)ρ 

1 1 
τϵ+κτη τζ 

( ∑N
 

sj 

) [
κ − γ + χγ(τϵ+N κτη ) 

] 

τζτη
 

si −   j=1   

1+(N−2)ρ [1+(N−2)ρ](τϵ+κτη  ) N 
= [ (  )  ]  . (B.36) 

α  τϵ + τζ + κ +  (N−1)γ 

1+(N−2)ρ 
τ  +  (N−1)χγτζ τη 

[1+(N−2)ρ](τϵ+κτη  ) 

Substituting xi from (B.36) into (B.19), and using (B.20), we find (22). Eq. (22) implies that when 

ρ = 0 

lim 
N→∞ 

E (|xi|) = 

 
χκ 

, 
α(τϵ + κτη + χτζ ) 

 

and when ρ > 0 
 

lim 
N→∞ 

E (|xi|) = 
  κρ(τϵ  + κτη ) + χγκτη   

. 
α ([ρ(τϵ + τζ ) + (κρ + γ)τη ](τϵ + κτη ) + χγτητζ ) 

 

In both cases the limit is positive and increasing in κ. 
 

Proof of Proposition 5. Setting τηi  = τη for all i, Ai = Ar for i ∈ R, and Ai = Ac for i ∈ C in 

the first equation in (B.15), we find 
 

[(Nr − 1)Ar + NcAc]
2

 [(Nr − 1)Ar + NcAc]
2 

τη 

τξi = ( 
) = 

(N − 1)A2 + N A2 ≡ τξ. (B.37) 
Var Ar 

∑
j∈R,j ̸=i ηj + Ac 

∑
j∈C ηj 

r r c   c 

 

for i ∈ R.  Setting (αi, τηi ) = (α, τη ) for all i, (χi, τξi , Ai) = (0, τξ, Ar ) for i ∈ R, and (χi, Ai) = 

(1, Ac) for i ∈ C in (11), we find 
 

( ) 
τη − τξ 

Ar
  

Nr

 τϵ + τη + τξ − τξ 
1   

(Nr−1)Ar +NcAc N (τ + τ ) 
(Nr−1)Ar +NcAc = Ar  + c   ϵ  (B.38) 

τϵ + τζ + τη + τξ τϵ + τζ + τη + τξ τϵ + τζ + τη 

+ χ 

+ χ 

η 
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   ϵ η ξ − ξ N (τ  + τ ) 

Ac 

η − ξ 

ϵ ζ η 

) 

 

 

 
 

for a rational trader, and 

   
 
Nr 

(  

  τη 
= A

 
τ + τ  + τ τ 1

 
(Nr −1)Ar +NcAc      

+ c   ϵ η (B.39) 
τϵ + τζ + τη 

c 
 τϵ + τζ + τη + τξ τϵ + τζ + τη  

for a fully cursed trader. The system of (B.37), (B.38) and (B.39) can be reduced into one equation 

in the unknown x ≡ Ar . Indeed,  using x, we can write (B.37) and (B.39) as (26) and (25), 

respectively. Moreover, dividing (B.38) by (B.39), we find 

(
1 − x[(Nr −1)x+Nc] 

) 
(τϵ + τζ + τη )

 
τ τ x 

(Nr−1)x+Nc 
τϵ + τζ + τη = x ⇒ x = (Nr−1)x2+Nc 

2 , (B.40) 
τϵ + τζ + τη + τξ τη τ + τ + τ  + [(Nr −1)x+Nc] τη 

(Nr−1)x2+Nc 

 

where the second step follows by (26). Equation (B.40) yields (27). 

For x ≤ 0, the left-hand side of (27) is non-positive and the right-hand side is positive.  For 

x ≥ 1 the left-hand side of (27) is positive and the right-hand side is non-positive. Therefore, a 

solution of (27) must belong to (0, 1). For x ∈ (0, 1), the left-hand side of (27) is increasing in x 

and the right-hand side is decreasing in x (because the numerator is decreasing, the denominator 

is increasing, and both are positive). Since the left-hand side is zero at x = 0, and the right-hand 

side is zero at x = 1, a solution of (27) exists and is unique. 

We next determine the sign of the coefficient γi in the regression (28). Because of symmetry, γi 

is equal to a common value γr for all rational traders and to a common value γc for all fully cursed 

traders. We show that γc < 0; this will imply that γr > 0 because market clearing (5) implies that 

Nrγr  + Ncγc  = 0. 

The coefficient γc is proportional to Cov(xi, p − d), which in turn is proportional to 

(   

Cov d + 

 
τηsi 

τϵ + τη 

  ) 

— p, p − d 

( 
τη

 
= 

) 
— Nr Ar − NcAc (Nr Ar + NcAc)σ2 + ( 

τη
 

) 
— NcAc Acσ

2 − Nr A
2σ2, 

τϵ + τη 
ϵ 

τϵ + τη 
η r   η 

 
(B.41) 
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r  η r  ξ 

  (Nr −1)Ar +NcAc 

 

 

 

where the first step follows by setting (χi, τηi , zi) = (1, τη, 0) in (B.13), and the second from (1) and 

(23). To determine the sign of (B.41), we compute some of the terms in that equation. 

Multiplying (B.38) by Nr , (B.39) by Nc, and adding the resulting equations, we find 
 

N τ + N τ (Nr −1)Ar +NcAc 
  (Nr −1)Ar +NcAc   Nc τη   

(Nr Ar + NcAc)D = τϵ + τζ + τη + τξ 
+ 

τϵ + τζ + τη 

=    
Nr (τη + τξ ) +

 
τϵ + τζ + τη + τξ 

  Ncτη   
, 

τϵ + τζ + τη 

 

where  
Nr (τϵ + τη + τξ ) 

+ 
Nc(τϵ + τη ) 

.
 

D ≡ 
τϵ + τζ + τη + τξ τϵ + τζ + τη 

 

Therefore, 
 

    τη   N A  − N A     τ 
   Nr (τη +τξ )     +      Ncτη   

= η − 
τϵ+τζ +τη +τξ τϵ+τζ +τη 

τϵ + τη 
− r   r

 
c   c 

τϵ + τη D 
Nr τη (τϵ+τη +τξ ) 

τϵ+τη 
− Nr (τη + τξ ) 

= 
(τϵ + τζ + τη + τξ )D 

  Nrτϵτξ   

= − 
(τ

 + τζ + τη + τξ )(τϵ + τη 

. (B.42) 
)D 

 

Multiplying (B.38) by Nr Ar , (B.39) by NcAc, and adding the resulting equations, we find 
 

2 2 

Nr Arτη + Nrτξ 
(Nr−1)Ar +NcAc (

Nr A
2 + NcA

2
) 
D =      Nc Ac τη   

+ 
r c 

τϵ + τζ + τη + τξ τϵ + τζ + τη 

= 
Nr Arτη + Nr [(Nr − 1)Ar + NcAc] τη 

τϵ + τζ + τη + τξ 
+  

NcAcτη   

τϵ + τζ + τη 

= 
Nr (Nr Ar + NcAc)τη 

τϵ + τζ + τη + τξ 

    NcAcτη   
+ , 

τϵ + τζ + τη 

ϵ 
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N (N A + N A ) 

∑ 

 

 

 
 

where the second step follows from (B.37). Therefore, 
 

Nr (Nr Ar +NcAc)     NcAc   (  
τη   

) 
NcAc Acσ

2 − Nr A
2σ2  =     Ac   

− τϵ+τζ +τη +τξ 
+ 

τϵ+τζ +τη 

τϵ + τη 
−

 η r   η 
τϵ + τη D 
Nr (τϵ+τη +τξ )Ac 

τϵ+τη 
− Nr (Nr Ar + NcAc) 

= . (B.43) 
(τϵ + τζ + τη + τξ )D 

 

Equations (B.42) and (B.43) imply that (B.41) is equal to 
 

  Nrτξ (Nr Ar + NcAc) 
+

 
— 

(τϵ + τζ + τη + τξ )(τϵ + τη )D 

Nr (τϵ+τη +τξ )Ac 

τϵ+τη 
− r r    r c   c 

(τϵ + τζ + τη + τξ )D 

= 
Nr (τϵ + τη + τξ )(Ac − Nr Ar − NcAc) 

.
 

(τϵ + τζ + τη + τξ )(τϵ + τη )D 
 

This is negative because Nc ≥ 1, Ar > 0 and Ac > 0. 

We finally show that if (29) holds, then expected aggregate volume when all N traders are fully 

cursed is larger than when N − 1 traders are fully cursed and one trader is rational. This will 

establish that expected aggregate volume is maximum at an interior point if (29) holds, because 

volume when all N traders are rational is zero. 

When all N traders are fully cursed, expected volume per trader can be derived from (17) by 

setting χ = 1, and expected aggregate volume can be derived by multiplying by N : 

Nτζ 

√
2(N − 1)τη   

NE (|xi|) = 
α(τ

 + τζ + τη 
)
√

πN 
. (B.44) 

 

To compute expected aggregate volume when N − 1 traders are fully cursed and one trader is 

rational, we start by computing the expected volume that one fully cursed trader generates. Setting 

(χi, αi, τηi , τθ, zi) = (1, α, τη, 0, 0) in (B.13), substituting p from (23), and denoting the rational 

trader by ir , we can write the quantity that trader i ̸= ir trades in equilibrium as 

 

    τζ (τϵ + τη )     
N

 

xi = 
α(τ + τζ + τη )  

j=1 

aijsj, (B.45) 

ϵ 

ϵ 
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ζ    ϵ η 
 

 

 

 

 

where 
 

    τη   

aii ≡ 
ϵ + τη 

− Ac, (B.46) 

aiir ≡ −Ar, (B.47) 

aij ≡ −Ac for j ̸= i, ir. (B.48) 

 
Using (1), we can write (B.45) as 

 

    τζ (τϵ + τη )   
 
N 

 
N 

 
∑ ∑ 

xi = 
α(τ + τζ + τη 

) 
 

 

j=1 

aij  ϵ +  
j=1 

aijηj  . (B.49) 

 

Substituting xi from (B.49) into (B.19), and using the independence between ϵ and {ηi}i=1,..,N , we 

find 

    

    τ (τ + τ )       2 
 
N 

2 
N 

 
∑ 1 ∑ 

2
 

E (|xi|) = 
α(τ

 + τζ + τη 

  

) 
I 

π 
 

 

j=1 

aij  + 
τ 

j=1 

aij 
η 

. (B.50) 

 

For Nr = 1 and Nc = N − 1, (26) implies that τξ = (N − 1)τη , (27) implies that 
 

  τϵ + τζ + τη   
x = , 

2(τϵ + τζ ) + (N + 1)τη 

 

and (24) and (25) become 
 

Ar = 
τη (τϵ + τζ + τη ) 

G 
, (B.51) 

Ac = 
τη [2(τϵ + τζ ) + (N + 1)τη ] 

G 
, (B.52) 

 

respectively, where 

 

G ≡ (N − 1)(τϵ + τη )(τϵ + τζ  + Nτη ) + (τϵ + Nτη )(τϵ + τζ  + τη ). 

τ 

ϵ 

1 

ϵ ϵ τ 



57  

∑ 
a2

 
η [ 

∑ ∑ 

ζ    ϵ η 
 

 

 

 

 
 

Substituting (Ar, Ac) from (B.51) and (B.52) into (B.46)-(B.48), we find 
 

τη [(N − 2)(τϵ + τη )(τϵ + τζ  + N τη ) + (N − 1)τη (τϵ + τζ  + τη )] 
aii = 

N 

(τϵ 

(N − 1)τϵτη (τϵ + τζ + τη ) 
+ τη 

, (B.53) 
)G 

∑ 
aij = − 

j=1 
(τϵ + τη )G , (B.54) 

N 

ij = 

j̸=i 

τ 2
 2 

2   
(N − 1)(τϵ + τζ + τη ) 

G 

+2(N − 2)(τϵ + τζ + τη )(τϵ + τζ + Nτη ) + (N − 2)(τϵ + τζ + Nτη )2
] 
. (B.55) 

 
Using (B.53), (B.54) and (B.55), we can write (B.50) as 

τζ 

√
2τη (τϵ + τη )Nc 

E (|xi|) = 
α(τ

 + τζ + τη 
)G

√
π 

, (B.56) 
 

where 

 

Nc  ≡(τϵ + Nτη )(τϵ + τζ  + τη ) [(N − 1)(τϵ + τζ  + τη ) + 2(N − 2)(τϵ + τζ  + Nτη )] 

+ (N − 2)(N − 1)(τϵ + τη )(τϵ + τζ  + Nτη )2. 

 
We next compute the expected trading volume that the rational trader ir  generates.   The 

market-clearing equation (5) implies that 

 

xir  = − 
∑ 

xj = − 

j̸=ir 

    τζ (τϵ  + τη )   

α(τϵ + τζ + τη ) 

N 
∑ ∑ 

ajksk = − 

j̸=ir k=1 

    τζ (τϵ  + τη )       
N

 
ajksk, (B.57) 

α(τϵ + τζ + τη ) 
k=1 j ̸=ir 

 

where the second step follows from (B.45), and the third by inverting the order of summation. 

Using (B.57) and proceeding as in the derivation of (B.50), we find 

    

    τ (τ + τ )       2 
 
N

 
∑ ∑ 2 

N  
 

1 ∑ ∑ 
2  

1 

E (|xir |) = 
α(τ

 + τζ + τη 

  

) 
I 

π 
 

 
k=1 j ̸=ir 

ajk  + 
τϵ 

k=1 

 
j ̸=ir 

ajk  . (B.58) 
η 

ϵ 

ϵ τ 
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r 

η 

+ 

 

 

 
 

Eq. (B.54) implies that 

 
N N 

 

(N − 1)2τϵτη (τϵ + τζ + τη ) 
∑ ∑ 

ajk = 
∑ ∑ 

ajk = − (τϵ + τη )G . (B.59) 

k=1 j ̸=ir j̸=ir k=1 

 

Equations (B.47) and (B.48) imply that 
 

N  
 2 

∑ ∑ 
ajk 

 = (N − 1)2A2 + (N − 1) 
(  

τη  

τϵ + τη 

)2 

− (N − 1)Ac 

k=1 j ̸=ir 

(N − 1)τ 2(τϵ + τζ + τη )2 
[
(N − 1)(τϵ + τη )2 + [τη − (N − 2)τϵ]

2
]
 

= 
(τϵ + τη )2G2 

 
 

, (B.60) 

 

where the second step follows from (B.51) and (B.52). Using (B.59) and (B.60), we can write (B.58) 

as 

E (|xir |) = 
τζ 

√
2(N − 1)τη (τϵ + Nτη )Nr 

αG
√

π 
, (B.61) 

 

where 

 

Nr ≡ (N − 1)2(τϵ + τη ) − (N − 2)(τϵ + Nτη ). 

 
Combining (B.44) with (B.56) and (B.61), we find that expected aggregate trading volume is 

larger when one trader is rational and N − 1 traders are fully cursed than when all N traders are 

fully cursed if and only if 
 √

N − 1    
N √ < (N − 1) 

√
(τϵ + τη )Nc 

√
(N − 1)(τϵ + Nτη )Nr 

(τϵ + τζ + τη )  N (τϵ + τζ + τη )G G 
√   

⇔ N < 

√
(N − 1)(τϵ + τη )Nc 

G 

(τϵ + τζ + τη )
√

(τϵ + Nτη )Nr 

G 
. (B.62) 

 

Equation (B.62) holds under the sufficient condition 
 

N < 
(N − 1)(τϵ + τη )Nc 

G2 

(τϵ + τζ + τη )2(τϵ + Nτη )Nr 

G2 

 

. (B.63) 

+ 

+ 
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τϵ 

i 

τ 

i 

N 

N 

 

 

 

Multiplying both sides by G2, using the definitions of (G, Nc, Nr ), and rearranging, we can write 

(B.63) as (29). 

When τζ = ∞, (29) becomes 

 

    1 
( 

τϵ + N τη 
)2

 

(  
2   

+ 

) 
τϵ + N τη 

− 1 
 

+ 1 < 0. (B.64) 
N − 1 τϵ + τη N − 1 τϵ + τη 

 

Setting y ≡ 
τη , we can write (B.64) as 

 

    1 
( 

1 + N y 
)2

 (N − 3)(1 + N y) 

N − 1 1 + y 
− + 1 < 0 

(N − 1)(1 + y) 

3 − (N 2 − 6N − 1)y + (4N − 1)y2 < 0. (B.65) 

 

The left-hand side of (B.65) converges to −∞ when N goes to ∞. Hence, (B.65) holds for N large 

enough. 
 

Proof of Proposition 6. Setting (χi, τθ ) = (1, 0) for all i in (11), we find (31). Setting (χi, τθ, zi) = 

(1, 0, 0) in (B.13), and substituting p from (31), we find 

 

τζ (τϵ + τηi ) ∑ 
xi = 

α (τ + τζ + τηi )  
j=1 

aijsj, (B.66) 

 

where 
 

aii ≡ 
ϵ 

τηi 

+ τηi 

− Ai, (B.67) 

aij ≡ −Aj for j ̸= i. (B.68) 

 
Proceeding as in the proof of Proposition 5, we find 

    

τζ (τϵ + τηi ) 
   

N 
2   

2 ∑ 1 
 

∑ 
2   1 

E (|xi|) = 
α (τ

 + τζ + τηi 

  

) 
I 

π 
 

 

j=1 

aij  + 
τ 

j=1 

aij 

ηj 

. (B.69) 

ϵ 

ϵ ϵ τ 
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ζ i N (τϵ+τη ) 

̸ 

i )
2τ j 

ϵ 

ϵ 

N 

] τ 

 

 

 

When αi = α for all i and τ  = ∞, (31) implies that A  = 
τηi . Substituting into (B.67) and 

(B.68), we find 
 

[(N − 1)τϵ + Nτη − τηi ] τηi 

aii = 
N (τϵ + τηi )(τϵ 

, 
+ τη ) 

τηj 

aij = −
N (τ

 + τη 

for j = i, 
) 

  (τη  − τη )τϵ   ∑ 
aij = 

j=1 

i . 
(τϵ + τηi )(τϵ + τη ) 

 

Substituting into (B.69), and using again αi = α for all i and τζ = ∞, we find 
 √ [ 

[(N −1)τϵ+Nτ η−τηi 

 

2 ηi 
(τϵ+τη η   

]
 

2  (τηi − τη )2τϵ + N 2 + 
∑

j≠ i N 2 

E (|xi|) = 
α(τϵ + τη )

√
π √ [ 

[(N  1)τ +Nτ τ  ]2
τ 

 
(τ +τ 

 
)2(Nτ τ   ) 

]
 — ϵ η− ηi ηi ϵ ηi η− ηi 

2  (τηi − τη )2τϵ + 
= 

N 2 + 
N 2 

√   
 

, (B.70) 
α(τϵ + τη )  π 

 

where the second step follows from the definition of τη . Eq. (32) follows from (B.70) by separating 

quadratic, linear and constant terms in τϵ.  Trader i generates more volume than trader j if and 

only if the difference between the term inside the squared root in (32) and the corresponding term 

for j is positive. The difference is 

 
[
(N − 2)τ 2 + (N − 2)τϵ(τη + τηj ) + (Nτη − τηi — τηj )τη 

] 
(τηi — τηj ). 

 

Since 
 

Nτη − τηi − τηj  = 

N 
∑ 
 
k=1 

τηk − τηi − τηj = 
∑ 

k ̸=i,j 

 

τηk  > 0, 

 

the difference is positive if and only if τηi  > τηj . 

i 
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(1 NA B)σ2 Bσ2 = 

 

 

 

Proof of Proposition 7. We proceed as in the proof of Proposition 2, except that we do not 

set τθ  to 0.  Setting (χi, αi, τηi , τξi , Ai) = (χ, α, τη, (N − 1)τη, A) for all i in (11) and (12), we find 

(34) and (35), respectively.  Eqs. (34) and (35) imply, respectively, that A decreases in χ and B 

increases in χ. 

The coefficients (γ1, γ2) in the regression (36) can be derived by taking covariances of both sides 

with p − d and s: 

 

Cov(d − p, p − d) = γ1Var(p − d) + γ2Cov(s, p − d), (B.71) 

Cov(d − p, s) = γ1Cov(p − d, s) + γ2Var(s). (B.72) 

Eqs. (B.71) and (B.72) form a linear system in (γ1, γ2). Its solution is 

γ1 = 
Cov(d − p, p − d)Var(s) − Cov(d − p, s)Cov(s, p − d) 

Var(p − d)Var(s) − Cov(s, p − d)2 
, (B.73) 

Cov(d − p, p − d)Cov(p − d, s) − Cov(d − p, s)Var(p − d) 
γ2 = − 

Var(p − d)Var(s) — Cov(s, p − 
. (B.74) 

d)2 

 

Eqs. (1), (2) and (33) imply that 

 
Cov(d − p, p − d) = (1 − NA − B)(NA + B)σ2 − NA2σ2 − B2σ2, (B.75) 

ϵ η θ 

Cov(d − p, s) = (1 − NA − B)σ2 − Bσ2. (B.76) 
ϵ θ 

 

Using (34) and (35), we find 

  τϵ + [1 + (N − 1)χ]τη + τθ   
− − − 

 

  τϵ + [1 + (N − 1)χ]τη + τθ    = 0.
 

ϵ θ (τϵ + τη + τθ )(τϵ + Nτη + τθ ) 
− 

(τϵ + τη + τθ )(τϵ + Nτη + τθ ) 
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α (1 − χ) + χ + 

α (1 − χ) + 

χ s 
sj 

+ 1 

] 

 

 

 

Hence, (B.76) implies that Cov(d − p, s) = 0, and (B.75) implies that 

 

Cov(d − p, p − d) = (1 − NA − B)NAσ2 − NA2σ2 
ϵ η 

= NA 
[
(1 − NA − B)σ2 − Aσ2

]
 

ϵ η 

= A   
χ(N − 1)(τϵ + N τη + τθ )   

(τϵ + τη + τθ )(τϵ + Nτη + τθ ) 
> 0, 

 
 

 

where the third equality follows from (34) and (35). Since Cov(d − p, s) = 0, Cov(d − p, p − d) > 0 

and V (s) > 0, (B.73) implies that γ1  > 0.  Since Cov(d − p, s) = 0, Cov(d − p, p − d) > 0 and 

Cov(p − d, s) > 0, (B.74) implies that γ2 < 0. 

Setting (χi, αi, τηi , τξi , Ai, zi) = (χ, α, τη, (N − 1)τη, A, 0) in (B.13), we can write the demand of 

trader i as 

 
 

τηsi+τθs+τη 
p−d−Asi−Bs τ s +τ s η  i θ d + (1 − χ) A 

τ +Nτ +τ 

+ χ
τ +τ +τ 

p 

xi = ϵ η θ ϵ η θ 
− 

[ 
1

 
τϵ+Nτη +τθ 

 
 

τθs+τη 
p−d−Bs 

1 1 
]
 

τϵ+τη +τθ τζ 

τη si+τθs 
d + (1 − χ) A τ +Nτ 

+ χ
τ +τ  +τ    

− p 

= ϵ η +τθ ϵ η θ , (B.77) 
[ 

1
 

τϵ+Nτη +τθ 

1 1 
]
 

τϵ+τη +τθ τζ 

 

where we use (9) and (33) to write ϵ + ξi  as a function of p.  Following the same steps as in the 

proof of Proposition 2, we can write (B.77) as 

  τη 

(
 

τϵ+τη +τθ 
i − 

∑N 
) 

j=1 

N 

xi =    
1 

τϵ+Nτη +τθ 

   
1 

τϵ+τη +τθ τζ 

( 

 
∑N   sj 

) 

χτζτη (τϵ + Nτη + τθ ) 
= 

si − 
j=1 

N  
. (B.78) 

α [τζ (τϵ + [1 + χ(N − 1)] τη + τθ ) + (τϵ + τη + τθ )(τϵ + Nτη + τθ )] 

+ χ 

(1 − χ) 
[ 

+ χ α 
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τζ 
τϵ+[1+χ(N−1)]τη +τθ 

τ  +Nτ  +τ increases in τθ . 

+ C
2 

τz + C
2 

τη 

A 

A 

∑ 

 

 

 

Substituting xi  from (B.78) into (B.19), and using (B.20), we find (37).   Eq. (37) implies that 

E (|xi|) decreases in τθ , as can be seen by noting that 

χτζ 

√
2(N − 1)τη 

E (|xi|) = [    

α τϵ+Nτη +τθ 
+ τϵ + τη + τθ 

] √   
πN 

 

and that τϵ+[1+χ(N −1)]τη +τθ 

ϵ η θ 
 

Proof of Proposition 8. With random endowments, (10) implies that 
 

( )2 

j̸=i Aj 

τξi = 
Va

r 

( 

j̸=i  Ajηj  

− 
1 

∑
j ̸=i Cjzj 

=       ( ∑ )    ( ∑ ) 

Var j ̸=i ηj 

N−1 

1 
A2 Var j ̸=i zj 

N−1 

=
 1  C2 1 

(N−1)τη 
+ 

A2 (N−1)τz 

(N  − 1)τητz 

= 2 
τz + C  τ , (B.79) 

A2   η 

where the second step follows because {ηj}j=1,..,N are independent of {zj}j=1,..,N , and the third step 

because {ηj}j=1,..,N  are i.i.d. with precision τη  and {zj}j=1,..,N  are i.i.d. with precision τz . Setting 
(N −1)τη τz 

(χi, αi, τηi , τθ, τξi , Ai, Ci) = (χ, α, τη, 0,    
A2 

, A, C) for all i in (11) and (13), we find (39) and 

(40), respectively. Eq. (40) is cubic in C , and hence has at least one solution. Any of its solutions 

satisfies 

C 

A
τζτη − α(τϵ + τζ + τϵ) ≥ 0. (B.80) 

Indeed, if C τζτη − α(τϵ + τζ + τη ) < 0, then χ C τζτη − α(τϵ + χτζ + τη ) < 0. Hence, the left-hand 
A A 

side of (40) would be negative rather than zero, a contradiction. Because of (B.80), the derivative 

of the left-hand side of (40) with respect to C
 is positive at any solution of (40). Hence, (40) has 

a unique solution. 

∑ ) 



64  

η  i ξ 

+ χ 

+ 1 

τξ 

N 

+ 1 

α 
[
(1 − χ) 1

 + 1 

N−1 

p 

] 

 

 

 

Setting (χi, αi, τηi , τθ, τξi , Ai, Ci) = (χ, α, τη, 0, τξ, A, C) in (B.13), we can write the demand of 

trader i as 

 
 

   

d + (1 − χ) τ  s +τ   
p−d−Asi+Czi 
(N−1)A 

τϵ+τη +τξ 

τηsi 

τϵ+τη   
− 

xi =    
1 

τϵ+τη +τξ 

   
1 

τϵ+τη 

   ] − zi (B.81) 
τζ 

 

where we use (9) and (38) to write ϵ + ξi  as a function of p.  Following the same steps as in the 

proof of Proposition 2, we can write (B.81) as 

( 
τη−  

) 

( 

∑
j=1 sj 

)
 

(1 − χ) 
 

 

N−1 
τϵ+τη +τξ 

τη 

τϵ+τη si − N 

xi =    
1 

τϵ+τη +τξ 

      
1 

τϵ+τη τζ 

 
C    τξ 

 
(1 − χ) A N−1 ( ∑N 

) 
  τϵ+τη  +τξ  i=1 zi 

1 −    

τϵ+τη +τξ 

   
1 

τϵ+τη 

   ]  

τζ 

zi − 
N

 

( 

 

∑N   sj 

) 

τζ 

[
(1 − χ)(τϵ + τη ) 

(
τη − 

τξ
 

= 

) 
+ χτη (τϵ + τη + τξ )

]
 si − 

j=1 

N 

α [τζ (τϵ + τη + χτξ ) + (τϵ + τη )(τϵ + τη + τξ )] ( 
(1 − χ) C τζ (τϵ + τη ) 

τξ
 ) ( ∑N

 

zj 

) 
− 1 − A N−1 zi − j=1 . (B.82) 

α [τζ (τϵ + τη + χτξ ) + (τϵ + τη )(τϵ + τη + τξ )] N 

 

Since for (χi, αi, τηi , τθ, τξi , Ai, Ci) = (χ, α, τη, 0, τξ, A, C), (13) implies that 
 

C 

α [τζ (τϵ + τη + χτξ ) + (τϵ + τη )(τϵ + τη + τξ )] = 
A

τζτη (τϵ + τη + χτξ ), 

(1 − χ) 
[ 

+ χ 

+ χ 

(1 − χ) 
[ 

+ χ 

+ χ 

α 

α 

− 
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τη 

τξ 

N−1 ξ 

A A 

A 

χ C 

( 

A 

2 

2 

 

 

 
 

we can write (B.82) as 
 

 

xi = 

[
(1 − χ)(τϵ + τη ) 

(
 

 
τξ 

− 
N−1 

C 

) 
+ χτη (τϵ + τη + τξ )

]
 

( 

si − 
∑N 

j=1 

N 
sj 

) 

A τη (τϵ + τη + χτξ ) 
( 

− 1 − 
(1 − χ)(τϵ + τη ) N−1 

τη (τϵ + τη + χτξ ) 

) ( 

zi − 

∑N 
j=1 

N 
zj 

) 

[
(τϵ + τη ) 

(
τη − 

τξ
 

= 

) 
+ χτ 

τϵ+Nτη 

]
 

N−1 
C 

[( 

si − 
∑N 

j=1 

N 
sj 

) 
C

 

— A 

( 

zi − 
∑N 

j=1 

N zj 

)]  

 
. (B.83) 

A τη (τϵ + τη + χτξ ) 
 

Substituting xi from (B.83) into (B.19), and using (B.79), (B.20) and its counterpart for {zi}i=1,..,N , 

and the independence between {si}i=1,..,N and {zi}i=1,..,N , we find (41). 

For χ = 0, (41) becomes 

C 
√

2(N − 1)τη 
A 

πN 
(
τz + C τ 

) 
τ 

. (B.84) 

A2   η z 

 

Eq. (B.84) implies that E (|xi|) increases in N if C
 increases in N . The result that C

 increases in 

N holds for all χ ∈ [0, 1), as can be seen from differentiating (40) implicitly. Indeed, the derivative 

of the left-hand side of (40) with respect to  C is positive at any solution of (40).  Moreover, 

the argument establishing (B.80) implies that this inequality is strict for all χ ∈ [0, 1).  Hence, 

A τζτη − α(τϵ + χτζ + τη ) < 0 at any solution of (40), and the derivative of the left-hand side of 

(40) with respect to N is also negative. 

For χ = 1, (41) becomes 
 

√ 
2(N − 1) τz + C τ 

)
 

A2   η 

C 
√

πNτητz 
. (B.85) 

 

Eq. (40) implies that C
 is equal to 

α(τϵ+τη +τζ ) . Since C
 is independent of N , (B.85) implies that 

A 

E (|xi|) increases in N . 

τζτη A 

√ 
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A2 

A2 

A 

κ
(
[1+(N−2)ρ]τz + C

2 
γτη 

)
 

2(N − 1)  τz + C 

A 

+ C
2 

τ 

 

 

 
 

Proposition B.1  Suppose that traders are symmetric and not cursed, receive random endowments, 

and observe only their private signals and endowment shocks.  Suppose also that each trader perceives 

the precision of his private signal to be κ × τη for κ ≥ 1, the precision of every other trader’s signal 

to be γ × τη  for γ ∈ [0, 1], and the correlation between the noise terms in others’ signals to be 

ρ ∈ [0, 1]. The price (38) is an equilibrium price if and only if 
 

 
A = [ 

(

κ + (N −1)γτz 

) 

τ
 

[1+(N−2)ρ]τz + C
2 

γτη 
η

 

( ) 

 
] , (B.86) 

N  τϵ + κ + (N −1)γτz τη
 

[1+(N−2)ρ]τz + C
2 

γτη 

 

and C  > 0 is the unique solution to the cubic equation 
 

( 
C2 

[1 + (N − 2)ρ]τz + 
A2 

γτη 

) ( 
C 

) 

κτζτη − α(τϵ + τζ + κτη ) − (N − 1)αγτητz = 0. (B.87) 

 

The expected volume that each trader generates is 
 

( ) √   

1 − γτz    

A2 

( 
2 

) 

A2   η 
 

. (B.88) 
C 
√

πNτητz 

 

Proof of Proposition B.1. The coefficients (A, C) can be deduced from Proposition 1 with the 

same substitutions as in Proposition 3 except for 

 

τξi = 
1 

      ( ∑ ) 
 

   ( ∑ ) 

Var 
 

= 

j ̸=i ηj 

N−1 A2 Var 

1 

j ̸=i zj 

N−1 

  1     (N −2)ρ   C2 1   

(N−1)γτη 
+ 
(N−1)γτη 

+ 
A2 (N−1)τz 

  (N − 1)γτητz   
= 2 

[1 + (N − 2)ρ] τz + C  γτ . (B.89) 

A2 η 

A 
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τ  +κτ  +τ 
− p 

ϵ 

sj 

C 

A 

C 

 

 

 
 

Setting (χi, αi, τηi , τθ, τξi , Ai, Ci) = (0, α, κτη, 0, τξ, A, C) in (B.13), we can write the demand of 

trader i as 

 
 

     κτηsi+τξ 
p−d−Asi+Czi 

d + (N −1)A   ϵ η ξ 

xi = [ 
1

 
1 

] − zi. (B.90) 
α  

τϵ+κτη +τξ  
+ 

τζ 

 

Following the same steps as in the proof of Proposition 2, we can write (B.90) as 
 

τζ 

(
κτη −  

τξ
 
) ( 

si − 
∑N 

j=1 sj 

) 
( 

 
C τξ   ) ( ∑N 

) 
N−1 N   A 

τζ N −1   j=1 zj 

xi = 
α(τϵ + τζ + κτη + τξ ) 

−
 

1 − 
α(τ + τζ + κτη + τξ ) zi − 

N
 

, (B.91) 

 

which is the same as (B.82) except that χ is set to zero and τη  is replaced by κτη .  Since for 

(χi, αi, τηi , τθ, τξi , Ai, Ci) = (0, α, κτη, 0, τξ, A, C), (13) implies that 

 

C 

α(τϵ + τζ + κτη + τξ ) = 
A

κτζτη, (B.92) 

we can write (B.91) as 
 

( 
τξ

 ) [( 
∑N 

) ( 
=1 

∑N 
)] 

xi = 
κτη − N−1 si − j C 

N 
− 

A 

A κτη 

zi − 
j=1 zj 

N . (B.93) 

 

Substituting xi from (B.93) into (B.19), and using (B.89), (B.20) and its counterpart for {zi}i=1,..,N , 

and the independence between {si}i=1,..,N and {zi}i=1,..,N , we find (B.88). For ρ = 0, (B.87) implies 
1 

that C
 converges to ∞ when N grows large, and is of order N 3 . For ρ > 0, (B.87) implies that 

A  converges to a positive limit. In both cases, (B.88) implies that E (|xi|) converges to a positive 

limit. 
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j=1 sj 

p 

τ  + τ 

 

 

 

Proof of Corollary 2. Consider first the case where traders are cursed. Proceeding as in the 

proof of Corollary 1, we find that the demand of trader i is 
 

 
xi = 

Nτη 

τϵ+Nτη 

[ 
1

 

∑N 

N − p 

1 
] − zi. (B.94) 

α  
τϵ+Nτη  

+ 
τζ 

 

Summing over i and dividing by N , we find 
 

∑N d + Nτη ∑N   si
 ∑N 

i=1 xi = τϵ+Nτη i=1 

N − 
i=1 zi 

. (B.95) 
[  ] − N α 1 1 N 

τϵ+Nτη 
+ 

τζ 

 

Subtracting (B.95) from (B.94), and using the market-clearing condition (5), we find 
 

xi = − 

( 

zi − 

∑N 

i=1 

N 
zi 

) 
 

. (B.96) 

 

Substituting xi from (B.96) into (B.19), and using the counterpart of (B.20) for {zi}i=1,..,N , we find 

√ 

2(N − 1) 

E (|xi|) = 
πNτz 

. (B.97) 

 

Eqs. (41) and (B.97) imply that volume increases when all private signals are publicly revealed if 

and only if 

[ 
C2

 

A2 τη (τϵ + τη ) + χ(τϵ + Nτη )τz 

] √ 
C2

 

z A2   η 
1 > [( 

2 
) 

A2    η ϵ η 
] 

C √
 

η  z   A η 

. (B.98) 

τz + C  τ (τ + τ ) + χ(N − 1)τ τ τ 

 

When χ = 0, (B.98) becomes 
 

C2 
√ 

C2 
√ 

2    

A2 τη 

1 > 

τz + A2 τη C C √ 

( 
2

 

A2   η 
) 

C √ ⇔ 
A η τz + 

A2 
τη > 

A
 τη, 

τz + C  τ τ 

d + 
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τ  + τ 

τ +κτ + 

ϵ ζ η 

  

ϵ ζ η 

 

 

 
 

and holds. By continuity, it also holds when χ is close to zero. When χ = 1, (B.98) becomes 
 

[ 
C2

 

A2 τη (τϵ + τη ) + (τϵ + Nτη )τz 
] √ 

C2
 

z A2   η 
1 > [( 

2 
) 

A2    η ϵ η 

] 
C √ , 

η  z   A η 

τz + C  τ (τ 

[( 
C2 ) 

+ τ ) + (N − 1)τ τ τ 
] 

C √   

[ 
C2 ] √ 

C2
 

⇔ τz + 
A2 

τη (τϵ + τη ) + (N − 1)τητz   
A

 
τη > 

A2 
τη (τϵ + τη ) + (τϵ + Nτη )τz τz + 

A2 
τη. 

 

Squaring both sides and rearranging, we find the equivalent inequality 
 

( 
C2 ) 

C2 

2 2 

[( 
C2 ) 2 2 C

2   
3

]
 

τz + 
A2 

τη 
A2 

τη (τϵ + τη ) τz + τz τz + 
A2 

τη 
(τϵ + Nτη ) − (N − 1) 

A2 
τη 

< 0, 

 

which does not hold. By continuity, it also does not hold when χ is close to one. 

Consider next the case where traders are overconfident or dismissive. Proceeding as in the proof 

of Corollary 1, we find that the demand of trader i is 
 

(N −1)γτη ∑ 
s

 
d + κτη si +

 1+(N −2)ρ j̸=i  j 

τϵ+κτη + 
(N−1)γτη 

1+(N−2)ρ τϵ+κτη + 
(N−1)γτη 

1+(N−2)ρ 
N−1    

− p 

xi = [ 

α 1 + 1 
] − zi 

(N −1)γτη τζ 
ϵ η     1+(N−2)ρ 

(  ) 
κ − γ

 τζτη 

( 
si − 

∑N 

j=1 sj 

) 
( ∑N 

) 
  1+(N −2)ρ N  zi

 
= (  ) − zi − i=1 . (B.99) 

α  τ + τ + κτ  + (N−1)γτη N 
1+(N−2)ρ 

 

Substituting xi from (B.93) into (B.19), and using (B.20) and its counterpart for {zi}i=1,..,N , as 

well as the independence between {si}i=1,..,N and {zi}i=1,..,N , we find 

    
  (  )2   

κ − γ
 

 
τ 2τη 

E (|xi|) =    
  1+(N −2)ρ  ζ   

2 + 1  2(N − 1) . (B.100) 
I  

α2 
(
τ + τ  + κτ  + (N −1)γτη 

)
 

1+(N−2)ρ 

τz 
 

πN 
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( 

( ) 

  

ϵ ζ η 

— η  z   

ϵ ζ η 

κ
(
[1+(N−2)ρ]τz + C

2 
γτη 

)
 

2 

A 

τ 

ϵ ζ η − η 

]
 

A 

f 
( 

C
 

  

  

 

A 

) 

) 

I  

A 

 

 

 
 

Eqs. (41) and (B.97) imply that volume increases when all private signals are publicly revealed if 

and only if 

    
(

 
 
 

γτz 

) √   
 

C2 

   2 

  γ τ 2 

 
1 − κ

(
[1+(N−2)ρ]τ + C

2 
γτη 

)
 τz + A2 τη 

  
I  

α2 
( 

κ − 
1+(N−2)ρ ζ τητz 

  )2 + 1
 
>  z   A2 

C √ 

τ + τ + κτ + (N−1)γτη 

1+(N−2)ρ A τη 

     
(  )2 

(
   (N    1)γτ  τ 

)2 
 

1 − γ
 τϵ + τζ + κτη + 

[1+(N 

2)ρ]τ + C
2 

γτ 

  
κ[1+(N−2)ρ] — z     A2 η  

   

⇔    

  
C2 (  )2 + 1  

I  
A2 τη τ + τ  + κτ  + (N−1)γτη  

1+(N−2)ρ 

( ) √   

1 − γτz    

A2 

> C √τ
 

( 
τz + C

2 τη 
 

, (B.101) 
A η 

 

where the second step follows from (B.89) and (B.92). Setting 
 

  γτz   

f (X) ≡ 
[1 + (N − 2)ρ] τ 

, 
+ X2γτη 

 

we can write (B.101) as 

    ( ) √   
 (  )2 

 
f ( C ) 

(
 

C2 
) 

f (0) [
τ + τ + κτ + (N 

1)f 
( 

C   τ   
2 1 −

 
τz + τ 

1 −  κ 
τz ϵ ζ η    

— A η 

] 

  
C2

 

A2   η [τϵ + τζ + κτη + (N − 1)f (0)τη ] + 1
 
>  

κ 

C √τη
 

A2   η 

 

[
τ + τ  + κτ  + (N 1)f 

( 
C   

) 
τ   2

 

( 
f ( C )

)2
 

1 − κ   C2 
τ   ( )2  

 

 

A − + A2   η 

) 
1 − 1 − A

 > 0, 

2 

) 

τz 

z 
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⇔ 
[τϵ + τζ + κτη + (N − 1)f (0)τη ] 

( 
f (0) 

)2 

1 −  κ 

( 
f (0) 

)2  

1 − κ τz κ 
 

 

(B.102) 

 

where the second step follows by squaring both sides and rearranging. 

2 
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A 

ϵ ζ η − A η 

]
 

A 

κ 

A 

C 

τ 

A 

κ A 

 

 

 

When γ = 0, (B.102) holds as an equality because f (X) = 0. In the limit when κ goes to ∞, 

(B.102) also holds as an equality because (B.87) implies that C
 takes a positive value. Using 

 

[
τ + τ  + κτ  + (N 1)f 

( 
C 

) 
τ  

2
 

( 
f ( C )

)2
 

1 − κ 

[τϵ + τζ + κτη + (N − 1)f (0)τη ]
2    

−
 

( 
f (0) 

)2 

1 −  κ 
2 

(
f 

( 
C 

) 
− f (0)

) 
(τϵ + τζ + Nκτη ) 

κ A 
 2 

[τϵ + τζ + κτη + (N − 1)f (0)τη ]
2 

(
1 − f (0) 

)
 

[ 

×  τϵ + τζ + κτη + 
f 
( 

C 
) 
+ f (0) 

2κ 
[(N − 2)κτη − (τϵ + τζ )] − 

N − 1 

κ 

 

f (0)f 
( 

C 
) ] 

τη 

A 

 

and  
( 

C 
) 

f 
A 

 

 

 

 
2 
2 τη 

− f (0) = − A 
z 

 

 

 

f (0)f 

 

( 
C 
) 

, 
A 

 

we next simplify (B.102) to 
 

— f (0)(τϵ + τζ + Nκτη ) 

[ 

τϵ + τζ + κτη + 
f 
( 

C 
) 
+ f (0) 

2κ 
[(N − 2)κτη − (τϵ + τζ )] 

N − 1 
f (0)f 

κ 

( 
C 
) ] ( 

τη    + 1 − 

( 
C 

)) 
A 

2κ 
[τϵ + τζ + κτη + (N − 1)f (0)τη ]

2
 

 
> 0. (B.103) 

 

(This simplification involves eliminating terms in 1 and f 
( 

C 
)
, which are zero when κ = ∞ and 

γ = 0, respectively, and which make (B.102) hold as an equality in those cases.) The left-hand side 

of (B.103) is linear in f 
( 

C 
)
, which varies from f (0) to 0 as C varies from 0 to ∞. For f 

( 
C 
) 

= f (0), 
A A A 

we can write the left-hand side of (B.103) as [τϵ + τζ + κτη + (N − 1)f (0)τη ] times 
 

( 

−f (0)   1 − 
f (0)

)
 

 

κ 

( 

(τϵ + τζ + Nκτη ) + 1 − 
f (0)

)
 

2κ 
[τϵ + τζ + κτη + (N − 1)f (0)τη ] .  (B.104) 

f 

= 

− A 
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A 

A 

η 

 

 

 

For f 
( 

C 
) 
= 0, we can write the left-hand side of (B.103) as 

 
[ 

f (0) 
]
 2 

−f (0)(τϵ+τζ +Nκτη ) τϵ + τζ + κτη + [(N − 2)κτη − (τϵ + τζ )] +[τϵ + τζ + κτη + (N − 1)f (0)τη ]  . 

(B.105) 

For κ = 1, (B.104) is equal to 

( 

− f (0)(1 − f (0))(τϵ + τζ + Nτη ) + 1 − 
f (0)

)
 

2 
[τϵ + τζ + τη + (N − 1)f (0)τη ] 

> (1 − f (0)) [τϵ + τζ + τη + (N − 1)f (0)τη − f (0)(τϵ + τζ + Nτη )] 

= (1 − f (0))2(τϵ + τζ + τη ) > 0, 

and (B.105) is equal to 

[ 
f (0) 

]
 2 

— f (0)(τϵ + τζ + Nτη ) τϵ + τζ + τη + [(N − 2)τη − (τϵ + τζ )] + [τϵ + τζ + τη + (N − 1)f (0)τη ] 

> [τϵ + τζ + τη + (N − 1)f (0)τη ] {−f (0)(τϵ + τζ + Nτη ) + [τϵ + τζ + τη + (N − 1)f (0)τη ]} 

= (1 − f (0)) [τϵ + τζ + τη + (N − 1)f (0)τη ] (τϵ + τζ + τη ) > 0. 

 

Since the left-hand side of (B.103) is positive at both ends of the interval, it is positive for all values 

of C , and hence (B.103) holds. For κ large, the largest term in (B.104) is κ[1 − Nf (0)]τη and the 

largest term in (B.105) is κ2[1 − Nf (0)]τ 2. Both are negative if 
 

1 − Nf (0) = 1 + (N − 2)ρ − N γ 
< 0.

 

1 + (N − 2)ρ 
 

Hence, for κ large and 1 + (N − 2)ρ − Nγ < 0, (B.103) does not hold. 

2κ 

2 


