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Abstract 
 

We develop a model in which financially constrained arbitrageurs exploit price discrepancies 

across segmented markets. We show that the dynamics of arbitrage capital are self-correcting: 

following a shock that depletes capital, returns increase, and this allows capital to be grad- 

ually replenished. Spreads increase more for trades with volatile fundamentals or more time 

to convergence. Arbitrageurs cut their positions more in those trades, except when volatility 

concerns the hedgeable component. Financial constraints yield a positive cross-sectional rela- 

tionship between spreads/returns and betas with respect to arbitrage capital. Diversification of 

arbitrageurs across markets induces contagion, but generally lowers arbitrageurs’ risk and price 

volatility. 
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1 Introduction 

 
The assumption of frictionless arbitrage is central to finance theory and all of its practical ap- 

plications. It is hard to reconcile, however, with the large body of evidence on so called market 

anomalies, notably those concerning price discrepancies between assets with almost identical pay- 

offs. Such discrepancies arise in a variety of markets, during both crises and more tranquil times. 

For example, large and persistent violations of covered interest parity have been documented for 

all major currency pairs, both during and after the global financial crisis. Price discrepancies that 

are hard to reconcile with frictionless arbitrage have also been documented for stocks, government 

bonds, corporate bonds, and credit default swaps.1 

One approach to address the anomalies has been to abandon the assumption of frictionless 

arbitrage and study the constraints faced by real-world arbitrageurs, e.g., hedge funds or trading 

desks in investment banks. Arbitrageurs have limited capital, and this can constrain their activity 

and ultimately affect market liquidity and asset prices. Empirical studies have constructed various 

measures of arbitrage capital and shown them to be related to the magnitude of the anomalies. 

Since arbitrage capital can be targeted at multiple anomalies, the returns to investing in the 

anomalies are interdependent and so are arbitrageurs’ positions. In this paper we develop a model 

to address a number of questions that this interdependence raises. How should arbitrageurs allo- 

cate their limited capital across anomalies, and how should this allocation respond to shocks to 

capital? Which anomalies’ returns are more sensitive to changes in arbitrage capital? How do the 

expected returns offered by the different anomalies relate to sensitivity to arbitrage capital and 

other characteristics? How do the expected returns offered by anomalies evolve over time, and how 

do these dynamics relate to those of arbitrage capital? 

We consider a discrete-time, infinite-horizon economy, with a riskless asset and a number of 

“arbitrage opportunities” (the anomalies within our model) each consisting of a pair of risky assets 

with correlated payoffs. Each risky asset is traded in a different segmented market by risk-averse 

investors who can trade only that asset and the riskless asset. Investors experience endowment 

shocks that generate a hedging demand for the risky asset in their market. Shocks are opposites 

within each pair, so a positive hedging demand for one asset in the pair is associated with a 

negative hedging demand of equal magnitude for the other. This simplifying assumption ensures 

that arbitrageurs trade only on the price discrepancy between the two assets. Market segmentation 

is exogenous in our model, but could arise because of regulation, agency problems, or lack of 

specialized  knowledge. 
 

 

1References to the empirical literature are in Sections 2.2.3 and 4.3.2. In these sections we also explain how to 
map our model and results to the empirical settings. 
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We make two key assumptions. First, unlike other investors, arbitrageurs can trade all as- 

sets. Thus, they have better opportunities than other investors. By exploiting price discrepancies 

between paired assets, they intermediate trade between otherwise segmented investors, providing 

them with liquidity: they buy cheap assets from investors with negative hedging demand, and sell 

expensive assets to investors with positive hedging demand. We term the price discrepancies that 

arbitrageurs seek to exploit “arbitrage spreads” and use them as an inverse measure of liquidity. 

Second, we assume that arbitrageurs are constrained in their access to external capital. We 

derive their financial constraint following the logic of market segmentation and assuming that they 

can walk away from their liabilities unless these are backed by collateral. Consider an arbitrageur 

wishing to buy an asset and short the other asset in its pair. The arbitrageur could borrow the 

cash required to buy the former asset, but the loan must be backed by collateral. Posting the asset 

as collateral would leave the lender exposed to a decline in its value. The arbitrageur could post 

as additional collateral the short position in the other asset, which can offset declines in the value 

of the long position. Market segmentation, however, prevents investors other than arbitrageurs 

from dealing in multiple risky assets. Hence, the additional collateral must be a riskless asset 

position. We assume that collateral must be sufficient to protect the lender fully against default. 

This implies, in particular, that positions in assets with more volatile payoffs require more collateral 

so that lenders are protected against larger losses. The need for collateral limits the positions that 

an arbitrageur can establish, and that constraint is a function of his wealth. The positions that 

arbitrageurs can establish as a group are constrained by their aggregate wealth, which we also refer 

to as arbitrage capital. 

When assets in each pair have identical payoffs, arbitrage is riskless. This case is a natural 

benchmark, and we analyze it first. If spreads are positive, then the riskless return offered by 

arbitrage opportunities exceeds the riskless rate. Arbitrageurs, however, may not be able to scale 

up their positions to exploit that return because of their financial constraint. Their optimal policy 

is to invest in the opportunities that offer maximum return per unit of collateral. Equilibrium is 

characterized by a cutoff return per unit of collateral: arbitrageurs invest in the opportunities above 

the cutoff, driving their return down to the cutoff, and do not invest in opportunities below the 

cutoff. The cutoff is inversely related to arbitrage capital. When, for example, capital increases, 

arbitrageurs become less constrained and can hold larger positions. This drives down the returns 

of the opportunities they invest in. 

The inverse relationship between returns and capital implies self-correcting dynamics and a 

deterministic steady state. If arbitrage capital is low, then arbitrageurs hold small positions, 

returns are high, and capital gradually increases. Conversely, if capital is high, then returns are 

low and capital decreases because of arbitrageurs’ consumption. In steady state, arbitrage remains 
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profitable enough to offset the natural depletion of capital due to consumption. 

We next analyze the case where payoffs within each asset pair consist of a component that is 

identical across the two assets and hedgeable by arbitrageurs, and a component that differs. Because 

asset payoffs are not identical, arbitrage is risky. As in the riskless-arbitrage case, arbitrageurs invest 

in the opportunities that offer maximum return per unit of collateral. Unlike in that case, however, 

the relevant return is the expected return net of a risk adjustment that depends on arbitrageur risk 

aversion and position size. The financial constraint binds when the risk-adjusted return exceeds 

the riskless rate. 

To compute the equilibrium under risky arbitrage in closed form, we specialize our analysis to 

the case were asset payoffs are near-identical and hence arbitrage risk is small. In the stochastic 

steady state, the financial constraint always binds and arbitrage capital follows an approximate 

AR(1) process. Moreover, the first-order effect of arbitrage risk on equilibrium variables operates 

through the financial constraint rather than through risk aversion. Indeed, price movements caused 

by shocks to arbitrage capital represent an additional source of risk for a collateralized position. 

The required collateral must then increase by an amount proportional to the standard deviation of 

these movements. On the other hand, the risk adjustment induced by risk aversion is proportional 

to the variance because it is an expectation of gains and losses weighted by marginal utility. 

Using our closed-form solutions, we can determine the cross-section of expected returns and 

arbitrageur positions. We show that expected returns are high for arbitrage opportunities involving 

assets with volatile payoffs because these opportunities require more collateral. They are also high 

for “long-horizon” opportunities, i.e., opportunities for which price discrepancies take longer to 

disappear because endowment shocks have longer duration. Indeed, because spreads for these 

opportunities are more sensitive to shocks to arbitrageur wealth, the losses that arbitrageurs can 

incur are larger, implying higher collateral requirements. 

The characteristics associated with high expected returns are also associated with high sensi- 

tivity of spreads to arbitrage capital, i.e., high “arbitrage-capital betas.” Since opportunities with 

volatile payoffs require more collateral, they must offer high expected returns. Since, in addition, 

changes in capital impact the return per unit of collateral, arbitrage-capital betas for the same 

opportunities are high. In the case of long-horizon opportunities, the causal channel is different: 

high arbitrage-capital betas result in high collateral requirements, which in turn result in high 

expected returns. Our results are consistent with the relationship between expected returns or 

spreads on one hand and arbitrage-capital betas on the other being increasing in the cross-section, 

as documented in Avdjiev, Du, Koch, and Shin (2016) in the context of covered-interest arbitrage 

and Cho (2016) in the context of stock-market anomalies. 
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The cross-section of arbitrageur positions differs from that of expected returns. Arbitrageurs 

hold larger positions in opportunities where the hedgeable component of payoff volatility is larger, 

but smaller positions in opportunities where the unhedgeable component is larger or where horizon 

is longer. Intuitively, volatility has two countervailing effects on arbitrageur positions: it lowers 

them because it raises collateral requirements, but it raises them because it raises investors’ hedging 

demand and need for intermediation. The effect of each component of volatility on collateral 

requirements is proportional to its standard deviation, while that on hedging demand is proportional 

to its variance. The former is larger in the case of small unhedgeable volatility, i.e., small arbitrage 

risk. The effect of volatility on the dynamics of positions parallels that on average positions. 

Following drops to arbitrage capital, positions in opportunities with higher unhedgeable volatility 

are cut by more, while positions in opportunities with higher hedgeable volatility are cut by less. 

We finally use our model to study how the degree of mobility of arbitrage capital affects market 

stability: does capital mobility stabilize markets, or does it propagate shocks causing contagion 

and instability? To do so, we consider the possibility that any given arbitrageur can allocate his 

wealth to exploit only one opportunity. That is, arbitrage markets themselves are segmented so 

that arbitrage capital cannot be reallocated from one opportunity to another. For simplicity we 

take opportunities to be symmetric with independent payoffs. If an arbitrageur can diversify across 

opportunities but others remain undiversified, then the variance of his wealth decreases because 

spreads are independent. If instead all arbitrageurs can diversify, then spreads become perfectly 

correlated, as arbitrageurs act as conduits transmitting shocks in one market to all markets—a 

contagion effect. We show, however, that because collective diversification causes the variance 

of each spread to decrease, the variance of each arbitrageur’s wealth decreases. In fact, collective 

diversification lowers wealth variance by as much as individual diversification. In that sense, capital 

mobility stabilizes markets. 

Our paper belongs to a growing theoretical literature on the limits of arbitrage, and more 

precisely to its strand emphasizing arbitrageurs’ financial constraints.2 We contribute to that 

literature by deriving the cross section and dynamics of arbitrageur returns and positions in a 

setting where arbitrageurs exploit price discrepancies between assets with similar payoffs. 

Shleifer and Vishny (1997) are the first to derive a two-way relationship between arbitrage 

capital and asset prices. Gromb and Vayanos (2002) introduce some of our model’s building blocks: 

arbitrageurs intermediate trade across segmented markets, and are subject to a collateral-based 

financial constraint. They assume, however, a single arbitrage opportunity and a finite horizon. 

These assumptions rule out, respectively, cross-sectional effects and self-correcting dynamics. 

Our result that arbitrage opportunities with higher collateral requirements offer higher returns 
 

 

2For a survey of this literature, see Gromb and Vayanos (2010). 
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is related to a number of papers. In Geanakoplos (2003), Garleanu and Pedersen (2011), and 

Brumm, Grill, Kubler, and Schmedders (2015), multiple risky assets differ in their collateral value, 

i.e., the amount that agents can borrow using the asset as collateral. Assets with low collateral 

value must offer higher expected returns, and violations of the law of one price can arise.3 These 

violations, however, are different in nature from those in our model: we assume that both assets 

in a pair have the same collateral value but differ in investors’ hedging demand. Empirical studies 

confirm that hedging demand (or more generally demand unrelated to collateral value) is a key 

driver of arbitrage spreads.4 

In Brunnermeier and Pedersen (2009), collateral-constrained arbitrageurs invest in assets with 

maximum return per unit of collateral. Since volatile assets require more collateral, their returns 

are higher and more sensitive to changes in arbitrage capital. In that paper, however, there is no 

segmentation and the law of one price holds. Moreover, the analysis does not address dynamic 

issues such as the effect of horizon or the recovery from shocks. 

Our results on self-correcting dynamics are related to several papers. In Duffie and Strulovici 

(2012), capital recovers following adverse shocks because new capital enters the market. In Xiong 

(2001), He and Krishnamurthy (2013), and Brunnermeier and Sannikov (2014), recovery instead 

occurs because existing capital grows faster—the same channel as in our model. In these papers, 

however, arbitrageurs invest in a single risky asset. This rules out cross-sectional effects and 

violations of the law of one price.5 

Finally, our analysis of integration versus segmentation relates to Wagner (2011), who shows 

that investors choose not to hold the same diversified portfolio because this exposes them to the 

risk that they all liquidate at the same time, and to Guembel and Sussman (2015) and Caballero 

and Simsek (2017), who show that segmentation generally raises volatility and reduces investor 

welfare. Contagion effects resulting from changes in arbitrageur capital or portfolio constraints are 

also derived in, e.g., Kyle and Xiong (2001) and Pavlova and Rigobon (2008). 

The rest of the paper is organized as follows. Section 2 presents the model. Section 3 derives 

the equilibrium when arbitrage is riskless because assets in each pair have identical payoffs. Section 

4 analyzes risky arbitrage, and derives the cross-sectional properties of prices and positions, as well 

as the effects of capital mobility. Section 5 concludes, and proofs are in the Appendix. 
 

 

3Detemple and Murthy (1997), Basak and Croitoru (2000, 2006), and Chabakauri (2013) derive related results for 
more general portfolio constraints. 

4See, for example, the literature on covered interest arbitrage, summarized in Section 2.2.3. 
5Kondor and Vayanos (2016) derive self-correcting dynamics in a setting where arbitrageurs can invest in multiple 

risky assets. Arbitrageurs in their setting, however, do not intermediate trades because there is no segmentation, and 
the law of one price holds. Greenwood, Hanson, and Liao (2015) assume gradual rebalancing of arbitrageur portfolios 
across markets, in the spirit of Duffie (2010) and Duffie and Strulovici (2012), and allow for multiple risky assets 
within each market. Arbitrageurs in their setting, however, face no financial constraints. 
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2 The Model 

 
2.1 Assets 

 

There is an infinite number of discrete periods indexed by t ∈ N. There is one riskless asset with 

exogenous return r > 0. There is also a continuum I of infinitely lived risky assets, all in zero 

supply. Risky assets come in pairs. Asset i’s payoff per share in period t is 

 

di,t ≡ di + ϵi,t + ηi,t, (1) 

 
where di is a positive constant, and ϵi,t and ηi,t are random variables distributed symmetrically 

around zero in the respective intervals [−ϵi, ϵi] and [−ηi, ηi]. The other asset in i’s pair is denoted 

by −i and its payoff per share in period t is 

 

d−i,t ≡ di + ϵi,t − ηi,t. (2) 

 

If ηi = 0, then assets i and −i have identical payoffs, and a trade consisting of an one-share long 

position in one asset and an one-share short position in the other involves no risk. If instead ηi > 0, 

then payoffs are not identical and the long-short trade is risky. In both cases, we refer to asset pair 

(i, −i) as an arbitrage opportunity. This corresponds to textbook arbitrage when ηi = 0 and the 

two assets trade at different prices. 

We assume that the variables 
ϵi,t

 
i 

are i.i.d. across time and identically distributed across asset 

pairs (but correlation across pairs is possible). We make the same assumption for the variables 
ηi,t , 

i 

which we also assume independent of 
ϵi,t . Because distributions are identical across asset pairs, ϵi 

and ηi are proportional to the standard deviations of ϵi,t and ηi,t, respectively, and we refer to them 

as volatilities. We restrict di to be larger than ϵi + ηi so that asset payoffs are non-negative. We 

denote by pi,t the ex-dividend price of asset i in period t, and define the asset’s price discount by 

 
 

ϕi,t ≡ 
di 

r 
− pi,t, (3) 

 

i.e., the present value of expected future payoffs discounted at the riskless rate r, minus the price. 
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2.2 Outside Investors 

 
2.2.1 Market Segmentation 

 
For some agents, who we term outside investors, the markets for the risky assets are segmented. 

Each outside investor can invest in only two assets: the riskless asset and one specific risky asset. 

We refer to the outside investors who can invest in risky asset i as i-investors. We assume that 

i-investors are competitive and infinitely lived, form a continuum with measure µi, consume in each 

period, and have negative exponential utility 

 

−Et 

[ 
∞

 
∑ 

 
s=t+1 

] 

γs−t exp (−αci,s) 

 

, (4) 

 

where α is the coefficient of absolute risk aversion and γ is the subjective discount factor. In period 

t, an i-investor chooses positions {yi,s}s≥t in asset i and consumption {ci,s}s≥t+1 to maximize (4) 

subject to a budget constraint.  We denote the investor’s wealth in period t by wi,t.  We study 

optimization in period t after consumption ci,t has been chosen, which is why we optimize over 

ci,s  for s ≥ t + 1.  Accordingly, we define wi,t  as the wealth net of ci,t.  We assume that i- and 

−i-investors are identical in terms of their measure, i.e., µi = µ−i. Negative exponential utility 

of outside investors simplifies our analysis because it ensures that their demand for risky assets is 

independent of their wealth. The only wealth effects in our model concern the arbitrageurs. 

 

2.2.2 Endowment Shocks 

 
Outside investors receive random endowments, which affect their appetite for risky assets. In period 

t each i-investor receives an endowment equal to 

 
ui,t−1(ϵi,t + ηi,t), (5) 

where ui,t−1 is known in period t − 1. We assume that ui,t is equal to zero, except over a sequence 

of Mi periods t ∈ {hi −Mi, .., hi − 1} during which it can become equal to a constant ui. When this 

occurs, we say that i-investors experience an endowment shock of intensity ui and duration Mi. 

An endowment shock in market i is accompanied by one in market −i. If the shocks were 

identical, then assets i and −i would be trading at the same price in the absence of arbitrageurs 

because of symmetry. To ensure a difference in prices and hence a role for arbitrageurs, we assume 

that endowment shocks differ. We further restrict the shocks to be opposites, i.e., ui = −u−i. 

This assumption, together with that of zero supply, ensures that the price discounts of assets i and 
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−i are opposites in equilibrium. With opposite price discounts, arbitrageurs (described in Section 

2.3) find it optimal to hold opposite positions in the two assets, hence trading only on the price 

discrepancy between them. This simplifies the equilibrium because arbitrageurs are not exposed to 

the shock ϵi,t, and hence earn a riskless return when assets i and −i have identical payoffs. 

Arbitrageurs exploit price discrepancies, and in doing so they intermediate trade between in- 

vestors and provide liquidity to them. Suppose, for example, that i-investors experience a shock 

ui > 0. Their endowment then becomes positively correlated with ϵi,t + ηi,t and hence with asset 

i’s payoff. As a consequence, asset i becomes less attractive to them. Conversely, asset −i becomes 

more attractive to −i-investors, who experience a shock u−i < 0. In the absence of arbitrageurs, 

the equilibrium price of asset i would decrease and that of asset −i would increase. Arbitrageurs 

can exploit this price discrepancy by buying asset i from i-investors and selling asset −i to −i- 

investors. In doing so, they intermediate trade between the two sets of investors, which market 

segmentation prevents otherwise. Because of arbitrageurs, prices are less sensitive to endowment 

shocks and price discrepancies are smaller.6 

When investors i and −i experience endowment shocks, we say that arbitrage opportunity (i, −i) 

is active. We identify active opportunities with the assets with the positive endowment shocks: we 

set 

 

At ≡ {i ∈ I : ui,t > 0} , 

 

and refer to active opportunity (i, −i) for i ∈ At as opportunity i. We assume that the set At 

of active opportunities is finite. We also assume that the probability of an opportunity becoming 

active (an event that may occur in period hi − Mi for opportunity i) is arbitrarily small. This is 

consistent with opportunities forming a continuum and a finite number being active in each period. 

This also ensures that endowment shocks do not affect prices until they actually hit investors. 
 

 

6If endowment shocks for i- and −i-investors were not opposites, then arbitrageurs would not hold opposite 
positions in assets i and −i. They would still intermediate trade between investors, however, if they are sufficiently 
risk averse. Suppose, for example, that i-investors experience a shock ui > 0 but −i-investors do not, i.e., u−i = 0. 
Arbitrageurs would buy asset i from i-investors to benefit from its positive price discount. If they are sufficiently risk 
averse, they would hedge that position by selling asset −i to −i-investors, hence intermediating trade between i- and 
−i-investors. Because buying asset i yields a higher expected excess return than selling asset −i, arbitrageurs would 
choose not to be fully hedged, and hence would be exposed to the risk that ϵi,t is low. 

If assets i and −i were in positive rather than in zero supply, then arbitrageurs would hold a larger long position 

in asset i and would be more exposed to the risk that ϵi,t is low. If assets without endowment shocks were also 
in positive supply then they would trade at a positive price discount but one that would be smaller than asset i’s. 
Because positions in the no-endowment-shock assets require a comparable level of collateral as in assets i and −i but 
earn a lower expected return, arbitrageurs would not trade those assets if their wealth were small enough. 
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2.2.3 Interpretation 

 
Our assumptions fit settings where assets with similar payoffs trade in partially segmented markets. 

These include Siamese-twin stocks, covered interest arbitrage across currencies, government bonds, 

corporate bonds, and credit-default swaps (CDS). 

Siamese-twin stocks have identical dividend streams but differ in the country where most of 

their trading occurs. Rosenthal and Young (1990) find that price differences between Siamese 

twins can be significant. Dabora and Froot (1999) show that a stock tends to appreciate relative to 

its Siamese twin when the aggregate stock market in the country where that stock is mostly traded 

goes up. They argue that one reason why Siamese-twin stocks differ in their main trading venue 

is that each stock belongs to a different country’s main stock index. Thus, index funds in each 

country can only invest in one of the stocks. Index funds in that setting correspond to our model’s 

outside investors, flows in or out of these funds correspond to our model’s endowment shocks, and 

market segmentation arises from restricted fund mandates (which are possibly a response to agency 

problems). 

Covered interest arbitrage exploits violations of covered interest parity (CIP), the relationship 

implied by absence of arbitrage between the spot and forward exchange rates for a currency pair 

and the interest rates on the two currencies. Violations of CIP can be measured by the cross- 

currency basis (CCB). Taking one of the currencies to be the dollar, the CCB is the difference 

between the dollar interest rate minus its CIP-implied value. A negative CCB indicates that the 

dollar is cheaper in the forward market than its CIP-implied value. 

Violations of CIP have been small from 2000 until the global financial crisis, but have become 

large both during and after the crisis.  Explanations of CIP violations during the crisis have fo- 

cused on increased counterparty risk and difficulty to borrow in dollars.7 These factors, however, 

have subsided after the crisis, and explanations of CIP violations since then have instead focused 

on hedging pressure in the forward market combined with financially constrained arbitrage. Bo- 

rio, McCauley, McGuire, and Sushko (2016) construct measures of the hedging demand of banks, 

institutional investors (such as pension funds and insurance companies), and non-financial firms. 

Consistent with the hedging pressure explanation, they find that a negative CCB is more likely 

when these institutions seek to hedge against a drop in the dollar.  Du, Tepper, and Verdelhan 

(2016) argue that the demand for hedging against a drop in the dollar should be high for currencies 

with low interest rates relative to the dollar, and find that a negative CCB is indeed more likely 

for those currencies. They also relate the CCB to measures of arbitrageurs’ financial constraints.8 
 

 

7See, for example, Baba and Packer (2009), Coffey, Hrung, and Sarkar (2009), and Mancini Griffoli and Ranaldo 
(2012). 

8Other related work on CIP violations after the crisis includes Avdjiev, Du, Koch, and Shin (2016), Iida, Kimura, 
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Our model can be applied to covered interest arbitrage by interpreting the two assets in a 

pair as a currency forward and its synthetic counterpart. Outside investors in the forward market 

are the hedgers that Borio, McCauley, McGuire, and Sushko (2016) consider: these agents may 

lack the specialized knowledge or trading infrastructure to access synthetic forwards. Likewise, 

outside investors in the synthetic forward market may be prevented from trading forwards because 

of restricted mandates.9 

Bonds with similar coupon rates and times to maturity can trade at significantly different 

yields. Fontaine and Garcia (2012) and Hu, Pan, and Wang (2013) aggregate such deviations 

across the nominal term structure by fitting it to a smooth curve. They find that the fit worsens 

when arbitrageurs’ financial constraints tighten, e.g., during financial crises or when the leverage 

of shadow banks decreases. In that context, outside investors can represent investors who must 

hold bonds with specific coupon rates and times to maturity. Such investors might be insurance 

companies or pension funds, and their preferences could be driven by asset-liability management 

or tax considerations. 

Fleckenstein, Longstaff, and Lustig (2014) find that nominal government bonds tend to be 

significantly more expensive than their synthetic counterparts formed by inflation-indexed bonds, 

inflation swaps, and zero-coupon bonds. Moreover, price discrepancies become larger when arbi- 

trage capital, measured by hedge-fund assets, is depleted. The additional finding that nominal and 

inflation-indexed bonds are owned by different types of institutions suggests a degree of market 

segmentation. 

Duffie (2010) documents price discrepancies between corporate bonds and matched CDS. These 

discrepancies became particularly large during the global financial crisis, but remained significant 

afterwards. One driver of market segmentation in that setting is that individual investors can trade 

corporate bonds but not CDS. 

 
2.3 Arbitrageurs 

 
2.3.1 Better Investment Opportunities 

 
Arbitrageurs can invest in all risky assets and in the riskless asset. Hence, only they can overcome 

market segmentation. We assume that they are competitive and infinitely lived, form a continuum 
 

 

and Sudo (2016), Liao (2016), and Sushko, Borio, McCauley, and McGuire (2016). 
9Consider, for example, US non-financial firms that issue debt in euros to benefit from lower credit spreads in the 

euro area relative to the US (Borio, McCauley, McGuire, and Sushko (2016)). Those firms seek to hedge against a 
drop in the dollar as they earn most of their profits in dollars but must pay euro-denominated debt. They can hedge 
in the forward market, but trading synthetic forwards may be too complicated or impossible for them: in particular, 
they would have to borrow dollars without paying a credit spread. Conversely, bond mutual funds can invest in euro- 
or dollar-denominated bonds but may be prevented by their mandates from trading currency forwards. Liao (2016) 
links CIP violations to the hedging demand of non-financial firms using a segmented-markets model. 
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∈I 

with measure one, consume in each period, and have logarithmic utility 

 
[ 

∞
 

Et 

∑ 

s=t+1 

] 

βs−t log (cs) 
 

, (6) 

 

where β is the subjective discount factor.10 In period t, an arbitrageur chooses positions {xi,s}i ,s≥t 

in all risky assets and consumption {cs}s≥t+1  to maximize (6).  The arbitrageur is subject to a 

financial constraint (see section 2.3.2) and a budget constraint. We denote the arbitrageur’s wealth 

in period t by Wt and assume that W0 > 0. Since arbitrageurs have measure one, Wt is also their 

aggregate wealth, which we also refer to as arbitrage capital. Logarithmic utility of arbitrageurs 

simplifies our analysis because it ensures that their consumption is a constant fraction of their 

wealth. 

 
2.3.2 Financial Constraint 

 
We assume that agents must collateralize their asset positions. Consider an agent who wants to 

establish a long position in a risky asset. If the agent needs to borrow cash to buy the asset, 

then he must post collateral to commit to repay the cash loan. Consider next an agent who wants 

to establish a short position in a risky asset. The agent must borrow the asset so that he can 

sell it subsequently, and must post collateral to commit to return the asset. We assume that i- 

investors have enough wealth to collateralize any position they may want to establish, i.e., up to 

µiui. Arbitrageurs, however, may be constrained by their wealth.11
 

Standard asset pricing models assume that agents can establish any combination of asset posi- 

tions provided they have sufficient wealth to cover any liabilities that their positions generate. One 

interpretation of this constraint is that a central clearinghouse registers all positions and prevents 

agents from undertaking liabilities that they cannot cover. The constraint is formally equivalent 

to requiring wealth to be always non-negative, and is thus redundant for agents with logarithmic 

utility. 

We assume that arbitrageurs are subject to a stronger constraint.  We require them to have 

sufficient wealth in each market to cover any liabilities that their positions in that market generate. 
 

 

10By fixing the measure of arbitrageurs, we are ruling out entry and are focusing the evolution of the wealth of 
existing arbitrageurs as the driver of price dynamics. Duffie and Strulovici (2012) study how entry impeded by search 
frictions affects price dynamics. Their analysis provides a complementary perspective to ours. Note that the duration 
Mi of endowment shocks can be interpreted as the time it takes for enough new arbitrageurs to enter the market for 
arbitrage opportunity (i, −i) and eliminate that opportunity. 

11Our assumption that outside investors are unconstrained does not necessarily imply that they are wealthier 
than arbitrageurs because their positions could be smaller. This could be the case for two distinct reasons. First, 
the position that arbitrageurs as a group establish in asset i is the opposite to that of i-investors. Therefore, if 
arbitrageurs are in smaller measure than i-investors, then they hold a larger position per capita in asset i. Second, 
each arbitrageur can trade more risky assets than each outside investor, leading to a larger aggregate position. 
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zi,t+1 = z0
 

The positions of arbitrageurs in market i consist of a position in asset i and a position in the 

riskless asset. We require this combined position to always have non-negative value. Thus, liability 

is calculated market-by-market rather than by aggregating across all markets. This is in the spirit 

of market segmentation: the same informational or regulatory frictions that prevent i-investors for 

investing in risky assets other than asset i could also be preventing arbitrageurs’ lenders in market 

i from accepting such assets as collateral.12
 

To derive the financial constraint of an arbitrageur, we denote by xi,t his position in asset i, by 

z0 0 

i,t his investment in the riskless asset held in market i, and by zi,t = xi,tpi,t + zi,t the value of his 

combined position in market i, all in period t. The value of the arbitrageur’s combined position in 

market i in period t + 1 is 
 

i,t(1 + r) + x 
 
i,t [di,t+1 + pi,t+1] 

 

= zi,t(1 + r) + xi,t [di,t+1 + pi,t+1 − (1 + r)pi,t] (7) 

 
and must be non-negative. Requiring (7) to be non-negative for all possible realizations of uncer- 

tainty in period t + 1 yields 

 

zi,t ≥ max 
{ϵj,t+1,ηj,t+1}j∈I 

{ 

xi,t 

( 

pi,t − 
di,t+1 + pi,t+1 

)}
 

1 + r 

 

. (8) 

 

The right-hand side of (8) represents the maximum loss, in present-value terms, that the arbitrageur 

can realize in market i between periods t and t + 1. This loss must be smaller than the value of 

the arbitrageur’s combined position in market i in period t. Thus, the arbitrageur can finance a 

long position in asset i by borrowing cash with the asset as collateral, but must contribute enough 

cash of his own to cover against the most extreme price decline. Conversely, the arbitrageur can 

borrow and short-sell asset i using the cash proceeds as collateral for the loan, but must contribute 

enough cash of his own to cover against the most extreme price increase. 

Aggregating (8) across markets yields the financial constraint 

 

Wt = 
∑ 

zi,t ≥ 
∑

 
 

max 
{ 

xi,t 

( 
pi,t − 

di,t+1 + pi,t+1 

)}
 

 

(9) 

i∈I 
i∈I 

{ϵj,t+1,ηj,t+1}j∈I 
1 + r 

 
 

12Using one asset as collateral for a position in the other is known as cross-netting. One situation where cross- 
netting is generally not possible is when one asset is traded over-the-counter and the other in an exchange, e.g., US 
bonds are traded over the counter and US bond futures in the Chicago Mercantile Exchange. For a more detailed 
description of the frictions that hamper cross-netting see, for example, Gromb and Vayanos (2002) and Shen, Yan, 
and Zhang (2014). While our model rules out cross-netting, it can be generalized to allow for partial cross-netting. 
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since the value of the arbitrageur’s positions summed across markets is his wealth Wt. The con- 

straint (9) requires the arbitrageur to have enough wealth to cover his maximum loss in each market 

separately.13
 

Our formulation of the financial constraint assumes that the only assets that arbitrageurs can 

trade with i-investors, or use as collateral in market i, are asset i and the riskless asset. Under a more 

general formulation, arbitrageurs could trade with i-investors any contracts that are contingent on 

future uncertainty. These contracts could be collateralized by the riskless asset, by asset i, or by any 

other contracts traded in market i. Moreover, contracts could extend over any number of periods. 

In Appendix B we formulate equilibrium in our model under such general contracts. The only 

restrictions that we are maintaining are that i-investors cannot contract directly with j-investors 

for j ̸= i (only indirectly through arbitrageurs), and that arbitrageurs cannot use contracts 

traded with j-investors as collateral for contracts traded with i-investors. These restrictions are 

consistent with the logic of market segmentation. 

We show in Appendix B that without loss of generality, contracts can be assumed to be fully 

collateralized and hence default-free. Moreover, when assets in each pair have identical payoffs 

(ηi = 0) and distributions are binomial (ϵi,t binomial), contracts can be restricted to those studied 

in this section: only asset i and the riskless asset are traded and used as collateral in market i. 

This generalizes, within our setting, the no-default result of Fostel and Geanakoplos (2015), shown 

under the assumption that contracts extend over one period.14 Thus, the financial constraint (9) 

can be derived under general contracts that are consistent with market segmentation. 

 
2.4 Symmetric Equilibrium 

 

We look for a competitive equilibrium that is symmetric in the sense that price discounts and 

agents’ positions are opposites for the assets in each pair. 

Defi 1. A competitive equilibrium consists of prices pi,t and positions in the risky assets yi,t 

for the i-investors and xi,t for the arbitrageurs, such that positions are optimal given prices and the 

markets for all risky assets clear: 

 

µiyi,t + xi,t = 0. (10) 
 

 

13The constraint (9) can extend to a continuous-time limit of our model if that limit involves jumps. With jumps, 
the support of {ϵj,t+1, ηj,t+1}j∈I does not converge to zero and neither does the maximum loss in period t + 1. If 
instead the support of {ϵj,t+1, ηj,t+1}j∈I converges to zero, as it would in a Brownian limit, then the maximum loss 
converges to zero and (9) is always met. For a derivation of a financial constraint in a continuous-time limit with 
jumps, see Chabakauri and Han (2017). 

14Besides allowing for dynamic contracts, we allow a contract to serve as collateral for other contracts, in a recursive 
manner. A similar recursive construction is in Gottardi and Kubler (2015). Simsek (2013) characterizes default rates 
in collateral equilibrium for general distributions in a static setting. For more references on leverage and collateral 
equilibrium, see the survey by Fostel and Geanakoplos (2015). 
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Defi 2. A competitive equilibrium is symmetric if for the assets (i, −i) in each pair the 

price discounts are opposites (ϕi,t = −ϕ−i,t), the positions of outside investors are opposites (yi,t = 

−y−i,t), and so are the positions of arbitrageurs (xi,t = −x−i,t). 

 
Symmetry implies that the price discount of each asset is one-half of the difference between its 

price and the price of the other asset: 

 

ϕi,t = 
pi,t − p−i,t 

.
 

2 
 

Since the price discount measures the price difference between paired assets, we also refer to it as 

the spread. The spread is an inverse measure of the liquidity that arbitrageurs provide to outside 

investors. 

 
2.5 Optimization Problems 

 
2.5.1 Outside Investors 

 
The budget constraint of an i-investor is 

 

wi,t+1 = yi,t(di,t+1 + pi,t+1) + (1 + r)(wi,t − yi,tpi,t) + ui,t(ϵi,t+1 + ηi,t+1) − ci,t+1. (11) 

 
The investor holds yi,t shares of asset i in period t, and these shares are worth yi,t(di,t+1 + pi,t+1) in 

period t + 1. The investor also holds wi,t − yi,tpi,t units of the riskless asset in period t, i.e., wealth 

wi,t minus the investment yi,tpi,t in asset i. This investment is worth (1 + r)(wi,t −yi,tpi,t) in period 

t + 1. Finally, the random endowment ui,t(ϵi,t+1 + ηi,t+1) is added to the investor’s wealth in period 

t + 1, while consumption ci,t+1 lowers wealth. 

We can simplify (11) by introducing the return per share of asset i in excess of the riskless asset. 

This excess return is 

Ri,t+1 ≡ di,t+1 + pi,t+1 − (1 + r)pi,t 

= (1 + r)ϕi,t − ϕi,t+1 + ϵi,t+1 + ηi,t+1, (12) 

 
where the second step follows from (1) and (3). The expected excess return of asset i is 

 

Φi,t ≡ Et (Ri,t+1) = (1 + r)ϕi,t − Et (ϕi,t+1) . (13) 
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Using (12) and (13), we can write (11) as 

wi,t+1  = (1 + r)wi,t + yi,tΦi,t + (yi,t + ui,t)(ϵi,t+1 + ηi,t+1) + yi,t [Et(ϕi,t+1) − ϕi,t+1] − ci,t+1.  (14) 

The investor’s wealth in period t + 1 is uncertain as of period t because of the payoff shock ϵi,t+1 + 

ηi,t+1 and the price discount ϕi,t+1. The investor’s exposure to the payoff shock is the sum of her 

asset position yi,t and endowment shock ui,t, while her exposure to the price discount is yi,t. 

We conjecture that the investor’s value function in period t is 
 

Vi,t(wi,t) = − exp (−Awi,t − Fi,t) , (15) 

 
where Fi,t is a possibly stochastic function and A is a constant.  The value function is negative 

exponential in wealth because the utility function depends on consumption in the same manner. 

 
2.5.2 Arbitrageurs 

 
The budget constraint of an arbitrageur is 

 

Wt+1 = 
∑ 

xi,t(di,t+1 + pi,t+1) + (1 + r) 

i∈I 

( ) 

Wt − 
∑ 

xi,tpi,t 

i∈I 

− ct+1. (16) 

 

The differences with the budget constraint (11) of an i-investor are that the arbitrageur can invest 

in all assets and receives no endowment. We next simplify the budget constraint (16) and the 

financial constraint (9) by using properties of a symmetric equilibrium. 

A first simplifying property is that ϕi,t = 0 for assets that are not part of active opportunities. 

This property holds in equilibrium, as we explain here and show formally in Sections 3 and 4. An 

implication of this property is that Et(ϕi,t+1) = Φi,t = 0 since the probability of an opportunity 

becoming active is arbitrarily small. Since Φi,t = 0, investing in assets that are not part of active 

opportunities exposes arbitrageurs to risk that is not compensated in terms of expected excess re- 

turn. Investing in those assets also tightens the financial constraint (9). Hence, the optimal position 

is zero. Outside investors’ optimal position is also zero because they have a zero endowment and 

hence would hold a non-zero position only if the expected excess return were non-zero. Therefore, 

the markets for assets that are not part of active opportunities clear with a zero price discount, 

confirming our conjecture that ϕi,t = 0.  Using that property as well as (12), (13), ϵi,t+1  = ϵ−i,t+1, 
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ηi,t+1 = −ηi,t+1, and ϕi,s = −ϕ−i,s for s = t, t + 1, we can write the budget constraint (16) as 

 

Wt+1 = (1+r)Wt + 
∑ 

(xi,t−x−i,t) [Φi,t + ηi,t+1 + Et(ϕi,t+1) − ϕi,t+1]+ 
∑ 

(xi,t +x−i,t)ϵi,t+1 −ct+1, 

i∈At i∈At  
(17) 

 

and the financial constraint (9) as 
 

Wt ≥ 
∑

 

i∈At 

[ 
max 

{ϵj,t+1,ηj,t+1}j∈I 

xi,t [−Φi,t − ϵi,t+1 − ηi,t+1 − Et(ϕi,t+1) + ϕi,t+1] 

1 + r 

x−i,t [Φi,t − ϵi,t+1 + ηi,t+1 + Et(ϕi,t+1) − ϕi,t+1]
]
 

+ max 
{ϵj,t+1,ηj,t+1}j∈I 1 + r 

. (18) 

 

Two further simplifying properties are that ϕi,t+1 is independent of ϵi,t+1 and that xi,t and 

x−i,t must have opposite signs. The first property holds in equilibrium, as we show in Sections 

3 and 4. Intuitively, when arbitrageurs hold opposite positions in assets i and −i, their wealth 

Wt+1 is independent of ϵi,t+1 and the same is true of spreads, which depend on wealth. The second 

property follows from arbitrageurs’ optimization. Indeed, if xi,t and x−i,t had the same sign, then 

an arbitrageur would be able to reduce both in absolute value while holding xi,t − x−i,t constant. 

That would reduce his risk without affecting his expected excess return, as can be seen from the 

budget constraint (17), and would relax the financial constraint (18). Using the two simplifying 

properties, we can write (18) as 
 

Wt ≥ 
∑

 

i∈A 

(|xi,t| + |x−i,t|) ϵi + 2 max{ηi′,t+1}i′
 {(xi,t − x−i,t) [−Φi,t − ηi,t+1 − Et(ϕi,t+1) + ϕi,t+1]} 

. 
1 + r 

(19) 

 
A final simplifying property is that xi,t and x−i,t must be (exact) opposites. Indeed, if xi,t + 

x−i,t ̸= 0, then an arbitrageur could set xi,t + x−i,t = 0 while holding xi,t − x−i,t constant.  That 

would eliminate his exposure to ϵi,t+1 without affecting his expected excess return, his 

exposure to 

ηi,t+1 and ϕi,t+1, and the financial constraint (19). Using this property, we can simplify the budget 

constraint (17) to 

Wt+1 = (1 + r)Wt + 2 
∑ 

xi,t [Φi,t + ηi,t+1 + Et(ϕi,t+1) − ϕi,t+1] − ct+1, (20) 

i∈At 

∈I 
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and the financial constraint (19) to 

 

Wt ≥ 2 
∑ |

 xi,t|ϵi + max{ηj,t+1}j∈I {xi,t [−Φi,t — ηi,t+1 − Et(ϕi,t+1) + ϕi,t+1]} 
 

. (21) 

i∈A 1 + r 

 

The arbitrageur’s optimization problem reduces to choosing positions in assets i ∈ At, i.e., 

those with positive endowment shocks. Positions in the corresponding assets −i are opposites, and 

positions in assets that are not part of active opportunities are zero. We conjecture that the value 

function of an arbitrageur in period t is 

 
Vt(Wt) = B log(Wt) + Gt, (22) 

 
where Gt is a possibly stochastic function and B is a constant. 

 
 

3 Riskless Arbitrage 

 
In this section we solve for equilibrium when assets in each pair have identical payoffs (ηi = 0). 

With identical payoffs, arbitrageur wealth Wt does not depend on the payoff realizations because 

arbitrageurs hold opposite positions in the assets in each pair. Hence, the return that arbitrageurs 

earn from a period to the next is riskless. That riskless return, however, could change stochastically 

over time. We rule out stochastic variation by assuming that the set 

Ct ≡ {(ϵi, ηi, ui, µi, hi − t) : i ∈ At} 

 

describing the characteristics of active opportunities is deterministic. Thus, while arbitrageurs are 

uncertain as to which opportunities will become active, they know what their overall return will 

be. With a deterministic Ct, the dynamics of arbitrageur wealth, arbitrageur positions, and spreads 

are deterministic. With deterministic spreads, the expected excess return of asset i simplifies to 
 

Φi,t = (1 + r)ϕi,t − ϕi,t+1. (23) 

 

One setting that yields a deterministic Ct and that we emphasize later is as follows. The universe 

I of risky assets is divided into 2N disjoint families In for n = 1, .., N , with the assets in each family 

forming a continuum and having the same characteristics (ϵi, ηi, ui, µi, Mi). Moreover, one asset 

from each family is randomly drawn in each period to form an active opportunity (together with 

the other asset in its pair). Under these assumptions, Ct is not only deterministic, but constant. 
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ϵi 

The case of riskless arbitrage is a natural benchmark. It is highly tractable and yields useful 

results and intuitions, which also facilitate the analysis of risky arbitrage in Section 4. We start 

by deriving the first-order conditions of outside investors and arbitrageurs in an equilibrium of 

the conjectured form, i.e., symmetric with deterministic price discounts. We then impose market 

clearing and show that such an equilibrium exists. 

 
3.1 First-Order Conditions 

 
3.1.1 Outside Investors 

 
Since ηi,t+1 = 0 and ϕi,t+1 is deterministic, the budget constraint (14) of an i-investor simplifies to 

 

wi,t+1 = (1 + r)wi,t + yi,tΦi,t + (yi,t + ui,t)ϵi,t+1 − ci,t+1. (24) 

 
The only risk borne by the investor between periods t and t + 1 is the payoff shock ϵi,t+1, and the 

investor’s exposure to that risk is yi,t + ui,t. 

Proposition 1. The value function of an i-investor in period t is given by (15), where A = rα and 

Fi,t is deterministic. The investor’s optimal position in asset i is given by the first-order condition 

 

Φi,t − ϵif
′ [(yi,t + ui,t)ϵi] = 0, (25) 

 
where the function f (y) is defined by 

 
 

exp 

[ 
αAf (y)

]
 

α + A 

[ 

≡ E  exp 

( 
αAyϵi,t    )]

 
− 

(α + A)
  

 

 

. (26) 

 
 

The first-order condition (25) takes an intuitive form. The first term in the left-hand side, Φi,t, 

is the expected excess return of asset i. The second term, ϵif′ [(yi,t + ui,t)ϵi], is a risk adjustment, 

reflecting the investor’s risk from holding the position. Since the function f (y) is convex, as shown 

in Lemma 1, the risk adjustment is increasing in the investor’s exposure yi,t + ui,t. The investor’s 

first-order condition amounts to setting the risk-adjusted expected excess return that she derives 

from asset i to zero. This yields a standard downward-sloping demand: the investor’s position yi in 

asset i is increasing in the asset’s expected excess return Φi,t and is hence decreasing in the asset’s 

price pi,t. The function ϵif′ [(yi,t + ui,t)ϵi] can be interpreted as a pricing function, which yields the 

expected excess return Φi,t as a function of the position yi,t of the “marginal investor.” 

Lemma 1. The function f (y) is non-negative, symmetric around the vertical axis (f (−y) = f (y)), 
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α+A 
αAyϵi,t 

and strictly convex. It also satisfies f′(−y) = −f′(y),f′(0) = 0, and limy→∞ f′(y) = 1. 

 

The function αAf (y)
 is the cumulant-generating function of − (α+A)ϵi 

.  Cumulant-generating 

functions are convex. Symmetry around the vertical axis follows because ϵi,t is distributed sym- 

metrically around zero. Symmetry implies f ′(−y) = −f′(y) and f′(0) = 0. 

The first-order condition of −i-investors yields an optimal position that is the opposite to that 

of i-investors. This follows from (25) and the observations that price discounts, expected excess 

returns, and endowment shocks are opposites for assets i and −i, and that f ′(y) = −f′(−y). 

 
3.1.2 Arbitrageurs 

 
Since ηi,t+1 = 0 and ϕi,t+1  is deterministic, the budget constraint (20) of an arbitrageur simplifies 

to 

Wt+1 = (1 + r)Wt + 2 
∑ 

xi,tΦi,t − ct+1, (27) 

i∈At 

 
and the financial constraint (21) simplifies to 

 
xi,t ϵi xi,tΦi,t 

Wt ≥ 2 
∑ |

 

i∈At 

| − 
1 + r 

. (28) 

 

Eq. (27) confirms that the dynamics of arbitrageur wealth are deterministic. The per-share return 

of an active opportunity i is 2Φi,t, i.e., twice the expected excess return Φi,t of asset i. This return is 

non-negative in equilibrium, as we show in Section 3.2. While i-investors earn Φi,t as compensation 

for risk, arbitrageurs earn it riskfree because they can combine a position in asset i with one in 

asset −i. Thus, when Φi,t > 0, arbitrageurs can earn a riskless return above the riskless rate r. 

Eq. (28) shows that the collateral required to hold a position in an active opportunity i is larger 

when asset payoffs are more volatile, i.e., ϵi is larger, and when the opportunity offers a lower 

return, i.e., Φi,t is smaller. In both cases this is because the maximum loss of the position is larger. 

 
Proposition 2. The value function of an arbitrageur in period t is given by (22), where B =  β

 

1−β 

and Gi,t is deterministic.  The arbitrageur’s optimal consumption is 

 

ct = 
1 − β 

W . (29) 

β 
t 
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ϵ 

• If all active opportunities offer a zero return, i.e., Φi,t = 0 for all i ∈ At, then the arbitrageur 

is indifferent between any combination of positions in these opportunities. 

• If instead some active opportunities offer a positive return and the remainder a zero return, 

then the arbitrageur holds non-zero positions only in opportunities with maximum return per 

unit of collateral: 

 
    Φj,t   

i ∈ argmaxj∈At
 

j — Φj,t 
. (30) 

 

For these opportunities, positions are long in assets i ∈ At, i.e., those with positive endowment 

shocks. Moreover, the financial constraint (28) binds. 

 
The arbitrageurs’ optimal investment policy can be derived intuitively as follows. Substituting 

the optimal consumption (29) into the budget constraint (27), we can write the latter as 

 

 

Wt+1 = β 

[ ] 

(1 + r)Wt + 2 
∑ 

xi,tΦi,t 

i∈At 

 

. (31) 

 

Since assets i ∈ At offer non-negative expected excess returns, arbitrageurs do not benefit from 

shorting them. Therefore, we can write the financial constraint (28) as 

 

Wt ≥ 2 
∑

 

i∈At 

xi,t (ϵi − Φi,t) 

1 + r 
. (32) 

 

Maximizing Wt+1  in (31) subject to (32) and xi,t  ≥ 0 is a simple linear-programming problem. 

Arbitrageurs invest only in those opportunities that offer the maximum return Φi,t per unit of 

collateral ϵi − Φi,t. Moreover, when some opportunities offer a non-zero return, arbitrageurs “max 

out” their financial constraint (32) because they can earn a riskless return above the riskless rate 

r. Maximizing return per unit of collateral, Φi,t
 

ϵi−Φi,t 
, is equivalent to maximizing return per unit of 

volatility Φi,t , and we focus on the latter from now on. 
i 

ϵ 
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3.2 Equilibrium 

 
3.2.1 Arbitraging  Arbitrage 

 
Combining the arbitrageurs’ optimal investment policy with that of outside investors, and imposing 

market clearing, we can derive a sharp characterization of equilibrium returns and positions. We 

denote by 

Tt ≡ {i ∈ At : xi,t > 0}, 

 
the set of active opportunities that arbitrageurs actually trade in period t, i.e., those in which they 

hold non-zero positions. 

Proposition 3. In equilibrium, there exists Πt ∈ [0, 1) such that in period t: 

• Arbitrageurs trade only active opportunities i such that f ′(uiϵi) > Πt. That is, 
 

Tt = {i ∈ At : f ′(uiϵi) > Πt}. 

 
• All active opportunities that arbitrageurs trade offer the same return Πt per unit of volatility, 

while those that they do not trade offer return f′(uiϵi) ∈ (0, Πt] per unit of volatility. That is, 

Φi,t 

i ∈ Tt ⇒ = Πt, 
i 

Φi,t    

i ∈ At/Tt ⇒ 
i 

= f ′(uiϵi) ∈ (0, Πt]. 

 
 

Proposition 3 implies that active opportunities can be ranked according to f ′(uiϵi). As can be 

seen by setting yi,t = 0 in the outside investors’ first-order condition (25), f ′(uiϵi) is the return 

per unit of volatility that opportunity i would offer in the absence of arbitrageurs. Arbitrageurs 

trade only the opportunities for which f′(uiϵi) is above a cutoff Πt ∈ (0, 1). Their activity causes 

the return per unit of volatility offered by these opportunities to decrease to the common cutoff. 

Opportunities for which f′(uiϵi) is below that cutoff are not traded, and their return per unit of 

volatility remains equal to f′(uiϵi). 

Since the function f (y) is convex, f′(uiϵi) is increasing in the endowment shock ui and in the 

volatility ϵi. Thus, arbitrageurs are more likely to trade opportunities with higher volatility and 

higher endowment shocks: these are the opportunities offering higher return per unit of volatility 

in the arbitrageurs’ absence. 

ϵ 

ϵ 
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t 

1+r 

The equalization of returns across traded opportunities can be interpreted as “arbitraging arbi- 

trage.” If a traded opportunity offered lower return per unit of volatility than another opportunity, 

then arbitrageurs could raise their profit by redeploying their scarce capital to the latter. The 

arbitraging-arbitrage result is at the basis of the contagion effects derived in Section 4. Suppose, 

for example, that arbitrageurs experience losses in opportunity i. This forces them to scale back 

their position in that opportunity, causing its return to increase. Arbitraging arbitrage induces 

them, in turn, to redeploy capital to that opportunity and away from others, causing the return of 

others to increase as well. 

 
3.2.2 Dynamics of Arbitrage Capital 

 
Using Proposition 3, we can determine the dynamics of arbitrageur wealth and the relationship 

between wealth and Πt. 

Proposition 4. In equilibrium, arbitrageur wealth evolves according to 

 
1 + r 

Wt+1 = β 
1 − Π 

Wt. (33) 

 

• If Wt > Wc,t ≡  2
 

∑ 

i∈At 
µiuiϵi, then the financial constraint is slack, arbitrageurs earn the 

riskless rate r, all active opportunities are traded, and their return Πt per unit of volatility is 

zero. 

• If Wt < Wc,t, then the financial constraint binds, and arbitrageurs earn a riskless return above 

the riskless rate r. The return Πt per unit of volatility offered by all traded opportunities is 

the unique positive solution of 
 

2
1 − Πt 

∑ 
1 + r 

   

µi 

[
uiϵi − (f′)−1(Πt)

] 
= Wt, (34) 

i∈Tt 

 
and decreases in Wt. 

 
When the variables ϵi,t have a binomial distribution, Πt is a convex function of Wt. 

 

The financial constraint is slack when all active opportunities offer a zero return, i.e., Φi,t = 0 

for all i ∈ At. This happens when arbitrageurs fully absorb the endowment shocks of outside 

investors, i.e., xi,t = µiui for all i ∈ At. Setting Φi,t = 0 and xi,t = µiui in (32), we find that Wt 

must exceed the threshold Wc,t defined in Proposition 4. Since all active opportunities offer a zero 

return, Πt = 0 and arbitrageurs earn the riskless rate r. 
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When instead Wt < Wc,t, arbitrageurs cannot fully absorb the endowment shocks of outside 

investors. Therefore, all active opportunities offer a positive return, the return Πt per unit of 

volatility offered by all traded opportunities is also positive, and arbitrageurs earn a riskless return 

above r. Moreover, when Wt decreases, Πt increases because arbitrageurs are less able to absorb 

the endowment shocks. 

Convexity of Πt means that a given drop in Wt causes a larger increase in Πt when it occurs 

in a region where Wt is smaller. Clearly, this comparison holds between the constrained and the 

unconstrained regions: a drop in Wt raises Πt when Wt < Wc,t, but has no effect on Πt  when 

Wt > Wc,t. The intuition for why the comparison can also hold within the constrained region is 

as follows. When Wt is smaller than but close to Wc,t, all active opportunities are traded, and 

hence a drop in Wt causes arbitrageurs to reduce their positions in all of them. Since the effect is 

spread out across many opportunities, the reduction in each position is small, and so is the increase 

in Πt. When instead Wt is close to zero, arbitrageurs concentrate their investment on a small 

number of opportunities, and a drop in Wt triggers a large reduction in each position. Proposition 

4 confirms the convexity of Πt under the sufficient condition that the variables ϵi,t that describe 

asset payoffs have a binomial distribution. Proposition 5 shows that an equilibrium with all the 

properties conjectured or shown in this section exists. 

 

Proposition 5. A symmetric equilibrium exists in which price discounts ϕi,t, outside investors’ 

positions yi,t, and arbitrageurs’ positions xi,t and wealth Wt are deterministic. In this equilibrium, 

price discounts are zero for assets that are not part of active opportunities, and expected excess 

returns Φi,t are non-negative for assets with positive endowment shocks. 

 
3.3 Steady State and Convergence Dynamics 

 

We next derive a steady state by specializing our model to the stationary “asset family” set- 

ting described at the beginning of Section 3.  This steady state is deterministic, and used as 

a basis for constructing a stochastic steady state in Section 4.  We index the 2N families by 

n ∈ {−N, .., −1, 1, .., N}, with the convention that for an asset in family n the other asset in its 

pair belongs to family −n, and that families n = 1, .., N comprise the assets with the positive 

endowment shocks.  We denote by (ϵn, ηn, un, µn, Mn) the characteristics (ϵi, ηi, ui, µi, Mi) for all 

assets i in family n. (As in the rest of Section 3, we assume ηi = 0.) The set of active opportunities 

in period t is 

 

A = {(n, m) : n ∈ {1, .., N}, m ∈ {1, .., Mn}}. 
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1+r 

if β 1+r 

1−β 

Opportunity (n, m) consists of one asset in family n ∈ {1, .., N} and one asset in family −n, and 

remains active for m − 1 more periods. We denote the former asset by (n, m) and the latter by 

(−n, m), and refer to m as the horizon of opportunity (n, m). The expected excess returns of assets 

(n, m) and (−n, m) do not depend on m (Proposition 3), and neither do the arbitrageurs’ and 

outside investors’ positions (Eqs. (10) and (25)). Hence, we index these quantities by the family 

subscript, n or −n, and the time subscript, t. The price discounts of the two assets depend on m, 

and we index them by the additional subscript m. Since arbitrageurs’ positions do not depend on 

m, we can write the set of active opportunities traded in period t as 
 

Tt = {(n, m) : n ∈ Nt, m ∈ {1, .., Mn}}, 

where we denote by Nt the subset of families in {1, .., N} whose assets are traded. We drop the 

time subscript for steady-state values. 
 

Proposition 6. In equilibrium, the wealth Wt of arbitrageurs and the return Πt per unit of volatility 

offered by all traded opportunities converge over time monotonically to steady-state values W and 

Π. 

• If β(1 + r) > 1, then Wt increases toward W = ∞ and Πt decreases toward Π = 0. 

• If β(1 + r) < 1 − Π, where Π ≡ maxn=1,...,N f′(unϵn) < 1, then Wt decreases toward W = 0 

and Πt increases toward Π = Π. 

• Otherwise, the steady-state values are given by 

 
W = 2 

1 − Π ∑ 

1 + r 

   

µnMn 

[
unϵn − (f′)−1(Π)

] 
∈ (0, Wc), (35) 

n∈N 

Π = 1 − β(1 + r) ∈ (0, Π), (36) 

 

where Wc ≡  2
 

∑N 

n=1 µnMnunϵn. If Wt < W , then Wt increases toward W and Πt decreases 

toward Π. If Wt > W, then Wt decreases toward W and Πt increases toward Π. 

 
The dynamics in Proposition 6 can be derived by specializing Proposition 4 to the stationary 

case. According to Proposition 4, the wealth of arbitrageurs increases between periods t and t + 1 

1−Πt  
> 1. Intuitively, wealth increases if the return earned by arbitrageurs exceeds the rate at 

which they consume. Arbitrageurs earn the riskless (net) return  1+r
 

1−Πt 
— 1, and consume at the rate 

β as shown in (29). 
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− 
Using Proposition 4, we can characterize how the return 1+r 1 earned by arbitrageurs depends 

1−Πt 

on their wealth Wt. When Wt > Wc, all active opportunities offer a zero return, Πt = 0, and 

arbitrageurs earn the riskless rate r. When instead Wt < Wc, Πt is positive, and arbitrageurs earn 

a riskless return above r. Decreases in Wt within that region raise Πt and hence raise arbitrageurs’ 

return, which reaches its maximum value, corresponding to the maximum value of Πt, when Wt 

goes to zero. Setting yi,t = 0 in the outside investors’ first-order condition (25), we find that the 

return per unit of volatility from an active opportunity (i, −i) in the absence of arbitrageurs is 

equal to f ′(uiϵi). Therefore, the maximum value of Πt is Π ≡ maxn=1,...,N f′(unϵn). Specializing 

Proposition 4 to the stationary case ensures that the function linking Πt to Wt, and in particular 

the parameters Wc and Π, are constant over time. 

The dynamics of wealth in the stationary case follow from the above observations. When 

β(1 + r) > 1, arbitrageurs consume at a rate smaller than the riskless rate. Hence, their wealth 

increases over time even if Πt = 0, i.e., all active opportunities offer a zero return, and becomes 

arbitrarily large. When instead β(1 + r) < 1 − Π, arbitrageurs consume at a rate larger than the 

maximum return that their trades can offer. Hence, their wealth decreases over time and converges 

to zero. 

In the intermediate case 1−Π < β(1+r) < 1, the wealth of arbitrageurs converges to an interior 

steady-state value. Indeed, when wealth is large, all active opportunities offer a zero return, and 

wealth decreases because β(1 + r) < 1. When instead wealth is close to zero, active opportunities 

offer close to their maximum return, and wealth increases because 1 − Π < β(1 + r). Dynamics are 

self-correcting: wealth decreases when it is large because arbitrageurs earn a low return, and wealth 

increases when it is small because arbitrageurs earn a high return. The steady-state value W implied 

by these dynamics is smaller than Wc because the steady-state return earned by arbitrageurs must 

exceed r to offset consumption. An increase in the subjective discount factor raises consumption, 

and hence raises the steady-state return and lowers the steady-state wealth. 

 
 

4 Risky Arbitrage 
 

Most real-life arbitrage involves some risk. To introduce arbitrage risk in our model, we allow assets 

in each pair to have non-identical payoffs (ηi > 0). The return that arbitrageurs earn from one 

period to the next is then risky and arbitrageur wealth Wt is stochastic. We look for a symmetric 

equilibrium in which Wt is the only stochastic state variable. We maintain the assumption that the 

set Ct describing the characteristics of active opportunities is deterministic. This prevents charac- 

teristics from becoming additional state variables. Because arbitrageurs hold opposite positions in 
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the two assets in each pair, Wt does not depend on the realizations of ϵi,t but only on those of ηi,t. 

The same is true for positions and spreads. 

We start by deriving the first-order conditions of outside investors and arbitrageurs in an equi- 

librium of the conjectured form. We then specialize our analysis to the case where arbitrage risk 

is small (ηi small), and compute the equilibrium in closed form. Using our analytical solution, we 

study how spreads, expected excess returns, and arbitrageur positions depend on cross-sectional 

characteristics, how they respond to shocks, and whether the mobility of arbitrage capital across 

markets makes them more stable. 

 
4.1 First-Order Conditions 

 
4.1.1 Outside Investors 

 
An i-investor bears more risk than in the riskless-arbitrage case (ηi = 0). This is because asset 

i’s payoff includes the additional component ηi,t+1, and because the asset’s price discount ϕi,t+1 

varies stochastically following changes in arbitrageur wealth. As in the riskless-arbitrage case, the 

investor sets the risk-adjusted expected excess return that she derives from asset i to zero. The 

risk adjustment, however, includes a term reflecting the additional risk. This is the third term in 

the left-hand side of (37). 

 

Proposition 7. The value function of an i-investor in period t is given by (15), where A = rα 

and Fi,t is a function of Wt. The investor’s optimal position in asset i is given by the first-order 

condition 

   [ 
Mi,t+1   

Φi,t − ϵif
′ [(yi,t + ui,t)ϵi] + Et Et[Mi,t+1 

(ηi,t+1 + Et(ϕi,t+1) − ϕi,t+1) = 0, (37) 

 

where 
 

Mi,t+1 ≡ exp 

( 
α {A [(yi,t + ui,t)ηi,t+1 − yi,tϕi,t+1] + Fi,t+1} 

)
 

— 
α + A 

 
 

4.1.2 Arbitrageurs 
 

An arbitrageur bears the risk represented by ηi,t+1 and ϕi,t+1. Because of that risk, he may 

benefit from shorting assets i ∈ At, and so may amplify the price discrepancies induced by outside 

investors’ endowment shocks. Short positions in assets i ∈ At may be beneficial even though they 

earn negative expected excess returns because they hedge long positions in other such assets. In the 

] 

] 

. 
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i,t i,t 
t ≥ 

i,t i,t 

rest of this section we assume that short positions in assets i ∈ At do not arise in equilibrium. This 

assumption is satisfied, for example, when arbitrage risk is small and the expected excess returns 

Φi,t of assets i ∈ At exceed a (strictly) positive bound. This result is shown in Proposition 8 and 

extends a result shown in Proposition 2 under riskless arbitrage. 

When arbitrageurs hold long positions in an asset i ∈ At, an increase in ηi,t+1 raises their wealth 

and hence lowers the spread ϕi,t+1 (which is positive). When instead arbitrageurs hold no position 

in the asset, ϕi,t+1  is independent of ηi,t+1.  In either case, the minimum value −ηi  of ηi,t+1  can 

be realized jointly with the maximum value of ϕi,t+1, which we denote by ϕi,t+1. And conversely, 

the maximum value ηi of ηi,t+1 can be realized jointly with the minimum value of ϕi,t+1, which we 

denote by ϕ
i,t+1

. Using these observations, we can simplify the arbitrageurs’ financial constraint 

(21) because we can determine the maximum loss scenario. A long position in asset i ∈ At suffers 

its maximum loss when ηi,t+1 = −ηi and ϕi,t+1 = ϕi,t+1 (maximum spread and hence maximum 

price discount for asset i). And conversely, a short position in the asset suffers its maximum loss 

when ηi,t+1 = ηi and ϕi,t+1 = ϕ
i,t+1

. Eq. (21) becomes 

 

|xi,t| (ϵi + ηi) + x+ 
[
ϕ  

i,t+1 

− Et(ϕi,t+1)
] 

− x−
 

[ Et(ϕi,t+1) − ϕ ] 

i,t+1 

— xi,tΦi,t 

   

W 2 
∑ 

, (38) 
1 + r 

i∈At 

 

where x+
 = max{xi,t, 0} and x−

 = min{xi,t, 0}.  Moreover, when xi,t ≥ 0 for all i ∈ At, (38) 

simplifies to 

 

Wt ≥ 2 
∑

 

i∈At 

xi,t 

[
ϵi + ηi + ϕi,t+1 − Et(ϕi,t+1) − Φi,t

]
 

1 + r 

 

. (39) 

 

The constraint is more stringent than in the riskless-arbitrage case because of the additional risks 

that the arbitrageur is subject to. 

 

Proposition 8. The value function of an arbitrageur in period t is given by (22), where B =  β
 

1−β 

and Gt is a function of aggregate arbitrageur wealth. The arbitrageur’s optimal consumption is given 

by (29). When short positions in assets i ∈ At are not optimal, as is the case when mini∈At Φi,t 

exceeds a positive bound and maxi∈At {ηi, ϕi,t+1 − Et(ϕi,t+1)} is small, 

• The arbitrageur’s optimal positions are non-zero only in opportunities with maximum risk- 
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adjusted return per unit of collateral 

 
Φj,t + Et 

[ 
Mt+1

  
j,t+1 

 
t j,t+1 

] 

j,t+1 

Et[Mt+1]  
(η + E (ϕ ) − ϕ ) 

i ∈ argmaxj∈At
 ϵj + ηj + ϕj,t+1 − Et(ϕ j,t+1) − Φj,t 

, (40) 

 

where 

 

Mt+1 ≡ 
(1 + r)Wt + 2 

∑
 

 

j∈At 

1 
. 

xj,t [Φj,t + ηj,t+1 + Et(ϕj,t+1) − ϕj,t+1] 

 

For these opportunities, positions are long in assets i ∈ At. 

• The financial constraint (39) is slack if the maximum risk-adjusted return per unit of collateral 

is zero, and binds if it is positive. 

 
As in the riskless-arbitrage case, the arbitrageur invests only in those opportunities that offer 

the maximum return per unit of collateral. When arbitrage is risky, however, that return includes 

a risk adjustment that depends on arbitrageur risk aversion and position size. The risk adjustment 

for arbitrageurs is different than for outside investors because market segmentation implies that 

arbitrageurs bear different risks. 

The arbitrageur’s portfolio problem combines two aspects: allocate scarce capital to the most 

profitable opportunities, and trade off risk and return. When the financial constraint is slack, 

only the second aspect is present. The arbitrageur invests in any given arbitrage opportunity i 

to take advantage of its positive expected excess return 2Φi,t. As he increases his position in 

that opportunity, he bears more risk, and hence his risk-adjusted return decreases. The optimal 

position renders the risk-adjusted return equal to zero. This is the standard first-order condition 

of a risk-averse investor.15
 

If the optimal positions under a slack financial constraint violate that constraint, then the first 

aspect of the portfolio problem kicks in. To meet the financial constraint, the arbitrageur scales 

down his positions. As a consequence, he bears less risk and risk-adjusted returns become positive. 

Positions are scaled down until the constraint is met, and in such a way as to maintain risk-adjusted 
 

 

15The standard first-order condition in a one-period setting is 

( 
M 

) 

E(MR) = 0 ⇔ E(R) + E 
[R − E(R)] 

E[M] 
= 0, 

where R is an asset’s excess return over the riskless asset and M is the pricing kernel.   The risk adjustment is 

E 
( 

M 
) 

E[M] [R − E(R)] .  It depends on the size of the position, which is why the optimal position is interior.  (That 

is, if the investor invests only in one asset, the risk-adjusted return of that asset declines below that of other assets, 
inducing the investor to also invest in the other assets.) 
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returns per unit of collateral equal across all opportunities for which positions remain positive. 

The two aspects of the arbitrageur’s portfolio problem can be completely separated in two special 

cases. When asset payoffs are identical, only the first aspect is present because the arbitrageur faces 

no risk.  When instead the common payoff shock ϵi,t+1 to both assets in a pair (i, −i) is zero for 

all pairs (ϵi = 0), only the second aspect is present: the arbitrageur determines his positions by 

trading off risk and return, and the financial constraint is always slack. 

Corollary 1. When ϵi = 0 for all i ∈ At, and short positions in assets i ∈ At are not optimal, the 

arbitrageurs’ financial constraint is slack. 

 

The intuition for Corollary 1 is that when the common shock is not present, a long position in 

asset i and a short position in asset −i can achieve their maximum loss at the same time. (That 

is not possible in the common shock’s presence because the long position achieves its maximum 

loss when ϵi,t+1 = −ϵi, while the short position achieves its maximum loss when ϵi,t+1 = ϵi.) 

Hence, requiring arbitrageurs to have sufficient wealth in each market to cover any liabilities in 

that market is equivalent to requiring them to be able to cover any overall liability. Moreover, 

arbitrageurs choose their positions so to keep positive wealth and hence cover any overall liability 

because logarithmic utility makes zero consumption prohibitively costly. 

 

4.2 Equilibrium for Small Arbitrage Risk 
 

To study the case where arbitrage risk is small, we set ηi = λiη and take η to be small holding λi 

constant. We also specialize our model to the stationary “asset family” setting described at the 

beginning of Section 3, and focus on parameters for which the steady state derived in Section 3.3 

is interior, i.e., arbitrageur wealth does not converge to zero or infinity. Since arbitrageur wealth 

Wt converges to the steady-state value W when η = 0, it converges to a stationary probability 

distribution with support close to W when η is small. When Wt moves within the support of 

the stationary distribution, as we assume from now on, the subset Nt of families whose assets are 

traded in equilibrium could change over time. If we rule out, however, the non-generic case where 

f ′(unϵn) = Π for some n ∈ {1, .., N}, then for η small enough Nt remains constant over time and 

so does the set Tt of traded active opportunities. We hence drop the time subscript from both 

sets. Since the support of the stationary distribution is close to W , expected excess returns Φi,t 

of assets i ∈ At exceed a positive bound. Hence, short positions in assets i ∈ At are not optimal, 

arbitrageurs’ first-order condition is (40), and the financial constraint (39) binds. 

We look for spreads, expected excess returns, and positions of arbitrageurs and outside investors 
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n 

that take the form 
 

ϕn,m,t = ϕ0
 

1 η + o (η) , (41) 
n,m,t + ϕn,m,t 

 
Φn,m,t = Φ0

 
1 η + o (η) , (42) 

n,t + Φn,m,t 

 
xn,m,t = x0

 
1 η + o (η) , (43) 

n,t + xn,m,t 

 
yn,m,t = y0

 
1 η + o (η) , (44) 

n,t + yn,m,t 

 

for asset (n, m). The superscript 0 denotes the value of the corresponding variable, as a function 

of Wt, in the case of riskless arbitrage (Section 3). The superscript 1 denotes a first-order term in 

η introduced by risk. As in Section 3.3, we drop the time subscript from zeroth- and first-order 

terms in (41)-(44) when these are evaluated at the steady-state value W . 

We look for dynamics of wealth, within the support of the stationary distribution, that take 

the form 

 

Wt+1 = W + ρ(Wt − W ) + νη + 
∑

 

(n,m)∈T 

σnηn,m−1,t+1 + o (η) , (45) 

 

where (ρ, ν, {σn}n∈N ) are constants. We compute these constants, as well as the first-order terms 

in (42)-(44), in the Appendix (Proposition A.1). We confirm, in particular, that ρ ∈ (0, 1). Thus, 

to a first-order in η, Wt follows an AR(1) process. The mean to which this process reverts is equal 

to W plus a first-order term in η. Variation around the mean is caused by the shocks ηn,m−1,t+1 

for (n, m) ∈ T . The coefficient σn describing how ηn,m−1,t+1 affects Wt+1 is given by 

 

σn = 
2βx0

 

0 

 
 
dϕ0 

 

, (46) 
1 + 2β 

∑
(n′,m)∈T xn′ 

n′,m−1,t+1 

dWt+1 

 

where the derivatives in the denominator are evaluated at Wt+1 = W . The intuition for (46) can 

be seen from the budget constraint (20). Substituting the optimal consumption (29) and changing 

asset subscripts from i to (n, m), we can write (20) as 

 
 

Wt+1 = β (1 + r)Wt + 2 
∑

 

(n,m)∈T 

 

xn,m,t [Φn,m,t + ηn,m−1,t+1 + Et(ϕn,m−1,t+1) − ϕn,m−1,t+1]  . (47) 

 

A negative shock ηn,m−1,t+1 reduces the wealth of arbitrageurs through the term 2βxn,m,tηn,m−1,t+1. 
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This is the direct effect of the shock, holding spreads ϕn′,m−1,t+1 constant, and corresponds to the 

numerator in (46). There is also an indirect amplification effect, operating through a change in 

spreads: because Wt decreases due to the direct effect, spreads increase, and this amplifies the 

reduction in Wt. The indirect effect corresponds to the second term in the denominator in (46), 

which is negative hence lowering the denominator and raising σn. 

 
4.3 Economic Implications 

 
4.3.1 Spreads, Returns, and Positions in the Cross-Section 

 
An arbitrage opportunity (n, m) is described by five characteristics: the volatility ϵn of the payoff 

shock that is common to the two assets and which arbitrageurs can hedge via a long-short trade; 

the volatility ηn of the payoff shock which arbitrageurs cannot hedge away; the endowment shock 

un of outside investors, which determines their relative demand for the two assets; the measure µn 

of outside investors; and the horizon m of the opportunity. We examine how these characteristics 

affect spreads ϕn,m,t, expected excess returns Φn,m,t, and arbitrageur positions xn,m,t. 

Proposition 9. Suppose that arbitrage risk η is small. Holding constant all other characteristics 

as well as arbitrageur wealth: 

• An opportunity with higher hedgeable volatility ϵn has a higher spread and expected excess 

return, and attracts more investment by arbitrageurs. 

• An opportunity with higher non-hedgeable volatility ηn has a higher spread and expected excess 

return, and attracts less investment by arbitrageurs. The same holds for an opportunity with 

longer horizon m. 

• An opportunity with larger endowment shock un attracts more investment by arbitrageurs. It 

has a higher spread and expected excess return, except when the comparison is between traded 

opportunities, in which case spreads and expected excess returns are the same to the first order 

in η. 

• An opportunity with larger measure of outside investors µn attracts more investment by arbi- 

trageurs. 

 
Outside investors in more volatile opportunities, i.e., those with higher ϵn or ηn, are more eager 

to share risk. Therefore, those opportunities offer higher expected excess returns in the arbitrageurs’ 

absence. Their expected excess returns remain higher even if arbitrageurs invest in them. Indeed, 

arbitrageurs invest in opportunities with the highest return per unit of collateral, and more volatile 



32  

n 

∈N 

opportunities require more collateral. In turn, higher returns imply higher spreads. Indeed, spreads 

are a present value of future expected excess returns discounted at the riskless rate: 

 (
m−1 

Φn,m s,t+s 

)

 

ϕn,m,t = Et 

∑ 
 

s=0 

− 

(1 + r)s+1 
, (48) 

 

as can be seen by solving (13) backwards with the terminal condition ϕn,0,t+m = 0.16
 

The source of volatility, ϵn or ηn, matters for arbitrageurs’ positions. When hedgeable volatility 

is higher (higher ϵn), positions are larger. When instead non-hedgeable volatility is higher (higher 

ηn), positions are smaller. The intuition comes from higher volatility having two countervailing 

effects on arbitrageur positions: it raises positions because expected excess returns increase, but 

it lowers positions because collateral requirements increase. Expected excess returns in the arbi- 

trageurs’ absence are proportional to the return variance, which for small η is proportional to ϵ2
 

plus second-order terms in η.17 Collateral requirements are equal to a position’s maximum possible 

loss, which is ϵn + ηn + ϕn,m−1,t+1 − Et(ϕn,m−1,t+1) − Φn,m,t from (39). The ratio of these quantities 

(return per unit of collateral) is increasing in ϵn but decreasing in ηn. In particular, an increase in 

ηn has a second-order effect on the variance but a first-order effect on the collateral requirement. 

More generally, when arbitrage risk is small, its dominant effect on equilibrium variables is 

through the financial constraint rather than through risk aversion. Arbitrage risk raises the maxi- 

mum possible loss of a position by a first-order term in η. The risk adjustments that it induces in 

(37) and (40), however, are second-order in η, as they involve an expectation of gains and losses 

weighted by marginal utility. It is because of the effect through the financial constraint that the 

equilibrium variables in (41)-(44) include a first-order term in η. 

The effect of horizon m on spreads follows from (48). Spreads of opportunities with a longer 

horizon are the present value of a longer sequence of future returns, and hence are higher. The 

effect of horizon on expected excess returns and arbitrageur positions is more subtle. Spreads 

of opportunities with a longer horizon are more sensitive to shocks to arbitrageur wealth, as 

we show in Section 4.3.2.  As a consequence, these opportunities require more collateral (term 

ϕn,m−1,t+1 − Et(ϕn,m−1,t+1) in (39)), and higher collateral requirements push expected excess re- 

turns up and arbitrageur positions down. Note that horizon has no effect on expected excess returns 
 

 

16Because (13) is linear in spreads and expected excess returns, (48) is exact and not a small-risk approximation. 
17The return variance can be computed using (12), the independence between ϵn,t  and {ηn′,t}n′ , the fact that 

Wt is the only stochastic state variable affecting spreads, and the dynamics of of Wt in (45). Note that since the 
effect of arbitrage risk on the return variance is second-order in η, our analysis of the equilibrium for small arbitrage 
risk would not change if instead of holding ϵn constant when ηn varies, we also vary ϵn  so that the return variance 
in the arbitrageurs’ absence remains constant. Indeed, the required variation in ϵn would be second-order in η. 
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or positions under riskless arbitrage. The effect instead arises because arbitrage risk impacts col- 

lateral requirements, and is included in the first-order terms in (42)-(44). 

The effect of the endowment shock un on spreads, expected excess returns, and arbitrageur 

positions is the same as under riskless arbitrage. In particular, spreads and expected excess returns 

increase with un for non-traded opportunities and become flat when un is large enough so that 

opportunities are traded. The flat part arises because traded opportunities offer the same return 

per unit of collateral and because un does not affect the collateral requirement. The effect of the 

measure µn of outside investors on arbitrageur positions is also the same as under riskless arbitrage: 

arbitrageurs hold larger positions in an opportunity where there are more outside investors. 

 
4.3.2 Response to Shocks 

 
We next examine how spreads, expected excess returns, and arbitrageur positions respond to shocks 

to arbitrageur wealth, and how these dynamics depend on the characteristics of arbitrage oppor- 

tunities. We focus on traded opportunities; non-traded opportunities are not affected by shocks. 

For any given traded opportunity, spreads, expected excess returns, and arbitrageur positions 

change over time both because arbitrageur wealth changes and because the opportunity’s horizon 

shortens. We focus on the wealth-induced variation, keeping horizon constant. Hence, we compare 

spreads, expected excess returns, and arbitrageur positions across opportunities within the same 

family and with the same horizon (same (n, m)) but at different points in time. 

 

Proposition 10. Suppose that arbitrage risk η is small and that a shock in period t lowers arbi- 

trageur wealth below its mean. 

• The immediate effect is that spreads and expected excess returns increase, and arbitrageurs 

scale down their positions. 

• Following  this  immediate  reaction,  there  is  a  recovery  phase,  during  which  spreads,  expected 

excess returns, and positions are expected to revert gradually toward their original values. 

 
The dynamics in Proposition 10 follow from the self-correcting dynamics (45) of arbitrageur 

wealth. Following a shock that lowers wealth in period t, wealth is expected to increase gradually 

back to its mean. Spreads and expected excess returns are decreasing functions of wealth, and hence 

increase instantly and then decrease gradually. By contrast, positions are increasing functions of 

wealth, and hence decrease instantly and then increase gradually. 

 

Proposition 11. Suppose that arbitrage risk η is small and that a shock in period t lowers arbi- 

trageur wealth below its mean. Holding constant all other characteristics: 



34  

n 

• For an opportunity with higher hedgeable volatility ϵn, the immediate increase in spread and 

expected excess return is larger, and the immediate decrease in arbitrageur positions is smaller. 

• For an opportunity with higher non-hedgeable volatility ηn, the immediate increase in spread 

and expected excess return is larger, and so is the immediate decrease in arbitrageur positions. 

• For an opportunity with longer horizon m, the immediate increase in spread is larger. The im- 

mediate increase in expected excess return and the immediate decrease in arbitrageur positions 

are also larger if the steady-state value W of arbitrageur wealth Wt is large enough. 

 
These comparisons remain the same during the recovery phase. 

 
Spreads and expected excess returns of more volatile opportunities, i.e., those with higher ϵn 

or ηn, are more sensitive to changes in arbitrageur wealth. This is because changes in wealth 

impact the return per unit of collateral, which arbitrageurs equalize across all opportunities in 

which they invest. The resulting impact on returns, and hence on spreads, is stronger for more 

volatile opportunities because they require more collateral. 

Arbitrageur positions in more volatile opportunities can be more or less sensitive to changes in 

wealth, depending on the source of volatility. Positions are less sensitive when volatility is higher 

because of ϵn, but more sensitive when it is higher because of ηn. The intuition parallels that 

in Proposition 9. Following a drop in arbitrageur wealth, positions in all opportunities must be 

scaled down, and the return per unit of collateral is equalized across opportunities at a higher 

level. The increase in expected excess returns resulting from a cut in arbitrageur positions (i.e., 

the inverse elasticity of the demand of outside investors) is proportional to the return variance, 

and hence to ϵ2
 plus second-order terms in η. The ratio of this quantity to the collateral required 

ϵn + ηn + ϕn,m−1,t+1 − Et(ϕn,m−1,t+1) − Φn,m,t is increasing in ϵn, and so positions in opportunities 

with higher ϵn must be cut by less to achieve the new higher level of return per unit of collateral. 

The ratio is instead decreasing in ηn, and so positions in opportunities with higher ηn must be cut 

by more. Put differently, by cutting positions in opportunities with higher ηn, arbitrageurs save 

a larger amount of collateral, and the returns of these opportunities do not increase sufficiently 

following the cuts to compensate for that. 

Spreads of opportunities with a longer horizon are more sensitive to changes in wealth because 

they depend on a longer sequence of future returns, all of which are sensitive to wealth changes. 

Because their spreads are more sensitive to changes in wealth, collateral requirements are higher 

for long-horizon opportunities. In turn, this implies that expected excess returns and arbitrageur 

positions for long-horizon opportunities tend to be more sensitive to wealth changes. At the same 

time, wealth changes affect the required collateral as a function of horizon because they affect the 
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volatility of equilibrium prices. If the incremental collateral required by longer-horizon opportuni- 

ties decreases following a wealth drop, then expected excess returns and arbitrageur positions for 

these opportunities can be less sensitive to wealth changes. This possibility is ruled out if W is 

large enough. 

Taken together, the results of Sections 4.3.1 and 4.3.2 imply an increasing cross-sectional re- 

lationship between spreads and expected excess returns on one hand, and betas with respect to 

arbitrageur wealth on the other. Indeed, Proposition 9 shows that spreads and expected excess 

returns are higher for more volatile opportunities and for opportunities with a longer horizon. 

Moreover, Proposition 11 shows that spreads for the same opportunities increase more following a 

drop in wealth. Hence, their realized returns decrease more and their wealth betas are higher. 

The cross-sectional relationship implied by our model is consistent with recent empirical evi- 

dence. Avdjiev, Du, Koch, and Shin (2016) study the behavior of the cross-currency basis, which 

is defined in Section 2.2.3 and is an arbitrage spread associated with violations of covered interest 

parity. They find that currencies with a higher basis are also those for which the basis increases 

more when the dollar exchange rate increases. Moreover, increases in the exchange rate are as- 

sociated with tighter funding conditions of currency-market arbitrageurs. Cho (2016) studies the 

relationship between alphas of a wide cross-section of stock-market anomalies and the sensitivities 

of these anomalies’ returns to the funding conditions of broker-dealers. He finds no relationship 

before 1993. After 1993, however, anomalies with higher alphas are also ones that yield lower 

returns when funding conditions tighten. These findings are consistent with arbitrageurs becoming 

more active in trading the anomalies in the more recent sample.18
 

We show that an increasing cross-sectional relationship between spreads/returns and wealth 

betas arises because of two mutually reinforcing mechanisms. High collateral requirements cause 

spreads and expected excess returns to be high (through the equalization of return per unit of 

collateral) and wealth betas to be high (through the dynamics implied by same channel). Moreover, 

high wealth betas cause collateral requirements to be high (because the maximum possible loss of 

a position increases) and feed back into high spreads and expected excess returns.  Exogenous 

characteristics can “activate” either of the two mechanisms, setting off the mutually reinforcing 

cycle. Payoff-shock volatility (ϵn and ηn) activates the first mechanism, as higher volatility pushes 

up collateral requirements. Horizon (m) activates the second mechanism, as a longer horizon renders 

spreads more sensitive to wealth. Versions of the first mechanism have been shown in a number of 

papers (e.g., Gromb and Vayanos (2002), Geanakoplos (2003), Brunnermeier and Pedersen (2009), 
 

 

18Cho (2016) also finds that anomalies with higher profitability before 1993 tend to have higher wealth betas after 
1993. This is consistent with arbitrageurs allocating more wealth to the more profitable anomalies: anomalies with 
small un do not attract any investment and are not sensitive to changes in wealth, while the opposite holds when un 

exceeds a threshold. 
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Garleanu and Pedersen (2011), and Brumm, Grill, Kubler, and Schmedders (2015)). The second 

mechanism is new to our model. 

 
4.4 Mobility of Arbitrage Capital 

 

Finally, we use our model to study how the mobility of arbitrage capital affects market stability. 

Our maintained assumption so far is that all arbitrageurs can trade all assets and hence arbitrage 

capital is fully mobile across markets. We contrast full mobility to the case where the assets in each 

family pair (n, −n) for n = 1, .., N are traded by a separate set of arbitrageurs. We refer to the 

former case as integrated arbitrage markets and to the latter as segmented arbitrage markets. These 

notions of integration and segmentation are distinct from the asset-level segmentation concerning 

outside investors and collateral requirements, which we continue to assume. Integration of arbitrage 

markets could be triggered, for example, by a deregulation of international capital flows. 

When arbitrage is riskless, integration and segmentation of arbitrage markets yield the same 

steady state. Indeed, Proposition 6 applied to each segmented arbitrage market implies that arbi- 

trageurs in market n have non-zero wealth in steady state if f′(unϵn) > 1 − β(1 + r).  Moreover, 

the return per unit of volatility is Π = 1 − β(1 + r) in the markets where arbitrageur wealth is 

non-zero, and f′(unϵn) ≤ Π in the markets where it is zero. Since this return is the same across 

the non-zero-wealth markets, and is lower in the zero-wealth markets, lifting the segmentation re- 

striction has no effect: arbitrageurs are indifferent between staying in their market or diversifying 

into other non-zero-wealth markets, and the return per unit of volatility in all markets does not 

change. 
 

Corollary 2. Suppose that η = 0 (riskless arbitrage). In steady state, integration of arbitrage 

markets has no effect on spreads and returns. 

 

When arbitrage is risky, arbitrageurs strictly prefer diversifying across arbitrage markets as 

long as risks are imperfectly correlated. We assume that risks are independent across markets, 

i.e., the shocks ηn,m,t are independent across n. But while diversification is beneficial for any 

given arbitrageur assuming that others do not diversify, it has a countervailing effect when they 

all diversify: it induces correlation between arbitrage markets, which makes diversification less 

effective. This is because arbitrageurs who hold positions in multiple markets react to negative 

shocks in one market by cutting positions in all markets—a contagion effect. 

To examine whether diversification remains effective despite the correlation that it induces, 

we compute the variance of arbitrageur wealth. We also compute the variance of spreads, which 

can be interpreted a measure of market stability. We first compare integration and segmentation 
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N 

N 

N 

N 

N 2 

N 2 
= N 

when arbitrage opportunities are symmetric, i.e., (ϵn, ηn, µn, un, Mn) is independent of n, and then 

consider the asymmetric case. 

 

Proposition 12. Suppose that arbitrage risk η is small and that arbitrage opportunities are sym- 

metric. 

 

• The variance of each arbitrageur’s wealth under integration is  1
 times that under segmenta- 

tion. It is also equal to the wealth variance of an arbitrageur who diversifies across markets 

when other arbitrageurs do not. 
 

• The variance of each spread under integration is  1
 times that under segmentation. 

 

An arbitrageur who diversifies across markets when other arbitrageurs do not enjoys a reduction 

in the variance of his wealth by a factor of N . This follows from a standard result in portfolio theory: 

optimal diversification across N assets with i.i.d. returns results in a variance that is N times lower 

than without diversification. Surprisingly, diversification lowers the variance by a factor of N even 

when all other arbitrageurs diversify and hence markets become correlated. This is because while 

spreads become perfectly correlated across markets, their variance is divided by N . 

The intuition why the variance of the spreads is divided by N under integration is as follows. 

Since the aggregate position of arbitrageurs in each market is the same under integration as under 

segmentation when arbitrage is riskless, the same holds for small arbitrage risk to the highest 

order in η. Hence, a negative shock ηn,m,t causes the same drop in aggregate arbitrageur wealth 

under integration as under segmentation, holding spreads constant. Under segmentation, only 

arbitrageurs in market n are affected, and they cut their positions in that market. Under integration, 

all arbitrageurs are affected, and they cut their positions in all markets. Because the drop in 

aggregate wealth is the same in both cases and because markets are symmetric, the cut in each 

market under integration is 1
 times the cut in market n under segmentation. Hence, spreads in 

all markets under integration increase by 1
 times the increase in the spreads in market n under 

segmentation.  Moreover, the contribution of the shock ηn,m,t to the variance of the spreads in 

market n under integration is  1
 of its contribution under segmentation. Because, however, N 

times as many shocks (i.e., all shocks) contribute to the variance under integration, the variance of 

the spreads is N × 1 1
 times that under segmentation. 

Proposition 13. Suppose that arbitrage risk η is small and that arbitrage opportunities are asym- 
′ −1 

metric. Spreads of traded opportunities n ∈ N for which unϵn−(f   )
 (Π) 1 or ηn        are 

maxn′∈N [un′ ϵn′ −(f′)− (Π)] 

sufficiently  small  have  higher  variance  under  integration  than  under  segmentation. 

maxn′∈N ηn′ 
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Integration can raise the variance of spreads of opportunities with small endowment shocks 

(small un) or low volatility (small ϵn or ηn). For example, because arbitrageurs hold small positions 

in opportunities with small un, payoff shocks ηn,m,t have small effects on their wealth and on spreads, 

resulting in low variances under segmentation. Instead, under integration, these opportunities are 

exposed to shocks coming from other markets, so variances can increase. 

 

5   Conclusion 

 
We develop a model in which arbitrageurs’ limited access to capital affects the functioning of finan- 

cial markets. Arbitrageurs in our model are uniquely able to exploit price discrepancies between 

assets traded in segmented markets, but face financial constraints limiting their ability to do so. We 

compute the equilibrium in closed form when arbitrage is riskless and when arbitrage risk is small. 

In the latter case, arbitrage capital follows AR(1) dynamics in a stochastic steady state. We de- 

termine how arbitrageurs allocate their limited capital across mispriced assets in steady state, and 

how this allocation changes following shocks to capital. We also determine which arbitrage trades 

offer the highest expected returns and how these returns relate to the trades’ sensitivity to arbitrage 

capital and other characteristics. We finally examine how the diversification of arbitrageurs across 

markets affects the risk that they bear and the volatility of spreads. 

When arbitrage risk is small, its first-order effect on equilibrium variables is through the finan- 

cial constraint rather than through risk aversion. Hence, our results on how characteristics such 

as volatility, horizon, and investor demand affect expected returns and arbitrageur positions are 

driven by the characteristics’ effects on the financial constraint. For general arbitrage risk, risk 

aversion would come into play, and its effects might differ from those of the financial constraint. 

Determining the combined effects of risk aversion and the financial constraint on the cross-section 

of expected returns and arbitrageur positions is a natural extension of our research. This would 

require computing the equilibrium for general arbitrage risk. Analysis of this equilibrium would 

shed light on the role of arbitrage capital as a risk factor, and on how the significance of this factor 

is affected by the capitalization and diversification of arbitrageurs. 
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α+A 
ϵi,t 

E ϵ̂ 

APPENDIX 
 
 

A Proofs 

 
Proof of Proposition 1: The proposition follows from Proposition 7 by setting ηi = 0 and noting 

that arbitrageur wealth and spreads are deterministic. 

Proof of Lemma 1: To prove the properties in the lemma, we set α̂ ≡ αA
 and ϵ̂i,t ≡ ϵi 

. Since 

the distribution of ϵ̂i,t is independent of i and t, so is the function f (y). Since ϵ̂i,t has mean zero, 

Jensen’s inequality implies that 

E [exp (−α̂yϵ̂i,t)] ≥ exp(0) = 1, 

 

and hence f (y) ≥ 0. Since ϵ̂i,t is distributed symmetrically around zero, 

 

E [exp (−α̂yϵ̂i,t)] = E [exp (α̂yϵ̂i,t)] , 

 

and hence f (−y) = f (y). Differentiating f (−y) = f (y) we find f ′(−y) = −f′(y), and setting y = 0 

in f′(−y) = −f′(y) we find f ′(0) = 0. To show that f (y) is strictly convex, we show that f ′′(y) > 0. 

Since 

 

f (y) = 
log {E [exp (−α̂yϵ̂i,t)]}

, 
α̂ 

 

differentiating once we find 

 
E [ϵ̂i,t exp (−α̂yϵ̂i,t)] 

f ′(y) = − E [exp ( −α̂yϵ̂i,t 
, (A.1) 

)] 

 

and differentiating twice we find 

 

 

f ′′(y) = α̂ 

[ 
2

 

i,t 

] 
2
 

exp (−α̂yϵ̂i,t)  E [exp (−α̂yϵ̂i,t)] − {E [ϵ̂i,t exp (−α̂yϵ̂i,t)]} 
. 

{E [exp (−α̂yϵ̂i,t)]}
2
 

 

(A.2) 

 

The numerator in (A.2) is positive because of the Cauchy-Schwarz inequality [E(XY )]2 ≤ E(X2)E(Y 2), 

which is strict when the random variables X and Y are not proportional. We can use the Cauchy- 
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{ϵ̂i,t∈[−1,−1+η]} 

{ϵ̂i,t∈(−1+η,1]} 

Schwarz inequality by setting 
 

X ≡ ϵ̂i,t exp 

( 
α̂yϵ̂i,t 

)
 

− 
2 

, 

Y ≡ exp 

( 
α̂yϵ̂i,t 

)
 

− 
2 

, 

 

and noting that X and Y are not proportional because ϵ̂i,t is stochastic. Therefore, f ′′(y) > 0. To 

show that limy→∞ f′(y) = 1, we show that |f ′(y) − 1| can be made smaller than 2η for any arbitrary 

η > 0 when y goes to infinity. Using (A.1) and the fact that ϵ̂i,t is distributed symmetrically around 

zero with the supremum of its support being one, we find 
 

E [(1 + ϵ̂i,t) exp (−α̂yϵ̂i,t)] 
|f ′(y) − 1| = E [exp ( −α̂yϵ̂i,t)] 

E 
[
(1 + ϵ̂i,t) exp (−α̂yϵ̂i,t) 1 

]
 

= + 
E 

[
(1 + ϵ̂i,t ) exp (−α̂yϵ̂i,t 

] 
) 1{ϵ̂i,t∈(−1+η,1]} 

. 
E [exp (−α̂yϵ̂i,t)] E [exp (−α̂yϵ̂i,t)]  

(A.3) 

 
Since 

 

(1 + ϵ̂i,t)1{ϵ̂i,t∈[−1,−1+η]} ≤ η, 

 
the first term in the right-hand side of (A.3) is smaller than η. The second term can also be made 

smaller than η for large y. Indeed, multiplying numerator and denominator by exp (−α̂y(1 − η)), 

we can write this term as 
 

E 
[
(1 + ϵ̂i,t) exp (−α̂y(ϵ̂i,t + 1 − η)) 1 

]
 

E [exp (−α̂y(ϵ̂i,t + 1 − η))] 

 
. (A.4) 

 

Since ϵ̂i,t in the numerator of (A.4) exceeds −1 + η, the numerator remains bounded when y goes 

to infinity. The denominator of (A.4) converges to infinity, however, because ϵi,t takes values in 

[−1, −1 + η) with positive probability. 

Proof of Proposition 2: The results on the value function and optimal consumption follow from 

Proposition 8 by noting that arbitrageur wealth is deterministic. Optimal positions are derived by 

maximizing (A.26) with respect to {xi,t}i∈At  subject to the financial constraint (21). Since ηi = 0 
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ϵ 

ϵi 

ϵi 

ϵi 

Φi,t 

ϵi 

and arbitrageur wealth and spreads are deterministic, we can write (A.26) as 

 
 

max 
{xi,t}i∈At 

{ 

β(B + 1) log 

( ) 

(1 + r)Wt + 2 
∑ 

xi,tΦi,t 

i∈At 

} 

+ βB log(B) − β(B + 1) log(B + 1) + βGt+1 

 

(A.5) 

 

and (21) as (28). When Φi,t = 0 for all i ∈ At, any combination of positions in the active 

opportunities yields the same value for (A.5).  When instead Φj,t > 0 for some j ∈ At, (28) 

binds for the optimal positions because otherwise the arbitrageur could raise (A.5) by raising xj,t. 

Moreover, xi,t ≥ 0 for all i ∈ At: if xj,t < 0 for some j ∈ At, then setting xj,t to zero would 

relax (28) while also not lowering (A.5). Since xi,t ≥ 0 for all i ∈ At, (28) becomes (32). The 

maximization in (A.5) subject to (32) and xi,t ≥ 0 for all i ∈ At implies that xi,t > 0 only if i ∈ At 

maximizes return per unit of collateral. 

Proof of Proposition 3: Proposition 2 implies that if arbitrageurs trade opportunity i then 
Φi,t

 
i 

is equal to a value Πt that is independent of i, and if they do not trade it then 
Φi,t

 ≤ Πt.  In the 

former case, xi,t > 0 and (10) imply that yi,t < 0. Substituting into (25) and using the convexity 

of f (y), we find f ′(uiϵi) > 
Φi,t

 = Πt.  In the latter case, xi,t  = 0 and (10) imply that yi,t  = 0. 

Substituting into (25), we find f′(uiϵi) = 
Φi,t ≤ Πt. Since f′(y) < 1 for all y, Πt < 1. 

 

Proof of Proposition 4: Proposition 3 shows that for all i ∈ At, either xi,t > 0 and 

xi,t = 0. We can hence write (31) and (32) as 

ϵi   
= Πt, or 

 

 

Wt+1 = β 

[ ] 

(1 + r)Wt + 2Πt 

∑ 
xi,tϵi 

i∈At 

 

, (A.6) 

Wt ≥ 2(1 − Πt) 
∑

 

i∈At 

xi,tϵi 

1 + r 

 

, (A.7) 

 

respectively. If Πt = 0, then (A.6) becomes (33). If instead Πt > 0, then (A.7) holds as an equality, 

and substituting it into (A.6) we find again (33). 

If Πt = 0, then arbitrageurs earn the riskless rate r and Proposition 3 implies that all active 

opportunities are traded.  To determine a lower bound on Wt, we use market clearing and the 

financial constraint. Eq. (25) implies that f′[(yi,t + ui)ϵi] = 
Φi,t

 = 0 for all i ∈ At. Since f (y) is 

symmetric around the vertical axis (Lemma 1), f′(0) = 0. Strict convexity of f (y) implies that 
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t 

ϵi 

dW 

− 

∑ 

f ′(y) is invertible and hence yi,t + ui = 0. Combining with (10), we find xi,t = µiui. Substituting 

xi,t = µiui into (A.7) and using Πt = 0, we find Wt ≥ Wc,t. 
 

If Π > 0, then arbitrageurs earn the riskless return  1+r
 

1−Πt 
— 1 > r and Proposition 2 implies 

that the financial constraint binds. To determine how Πt relates to Wt, we use market clearing and 

the financial constraint. Eq. (25) and Proposition 3 imply that f ′[(yi,t + ui)ϵi] = Φi,t
 = Πt for all 

i ∈ Tt. Inverting this equation yields 

(yi,t  + ui)ϵi  = (f′)−1(Πt) 

(f ′)−1(Πt) 
⇒ xi,t = µiui − µi 

, (A.8) 
ϵi 

 
where the second step follows from (10). Substituting (A.8) into (A.7), and recalling that xi,t = 0 

for all i ∈ At/Tt, we find (34). Moreover, (A.7) implies that Wt < Wc,t because Πt ∈ (0, 1), 

0 < xi,t < µiui,t for all i ∈ Tt (from (A.8)), and xi,t = 0 for all i ∈ At/Tt. 

The left-hand side of (34) decreases in Πt because f ′′(y) > 0 implies that f′(y) is increasing. 

Moreover, it is equal to zero for Πt = maxi∈At f 
′(uiϵi) and to Wc,t for Πt = 0. Therefore, (34) has 

a unique positive solution for Wt ∈ (0, Wc,t), which decreases in Wt. 

To show convexity of Πt, we differentiate (34) implicitly with respect to Wt. We find 

 

dΠt 
=

 
dWt 2    

∑ 
   [

u ϵ 
1 

− (f′)−1(Π ) + 1−Πt
 ] . (A.9) 

1+r i∈Tt 
µi i i t f ′′[(f ′)−1(Πt)] 

 

The derivative dΠt
 
t 

is continuous, except at Wt = Wc,t and at the points where the set Tt changes. 

For those values of Wt, the left derivative is smaller than the right derivative. For Wt = Wc,t, 

this is because the left derivative is negative and the right derivative is zero. For a point where Tt 

changes, this is because the denominator for the right derivative minus that for the left derivative 

is 
 

2 
[ µ u ϵ (f′)−1(Π  ) + 

1 − Πt
 ] 

= 
2 ∑ 

µ  

[ 
1 − Πt 

] 
> 0, 

1 + r 
i 

i∈DT t 

i i − t 
f ′′ [(f ′)−1(Πt)] 1 + r 

i 

i∈DT t 
f ′′ [(f ′)−1(Πt)] 

 

where DT t denotes the additional opportunities that become traded to the right of that point. 
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E ϵ̂ 
] 

3 

E ϵ̂ 3 

2 

i,t 

E ϵ̂ 
] 

E ϵ̂ 3 

Therefore, Πt is convex if the function 

 

uiϵi − (f′)−1(Πt) + 
  1 − Πt   

f ′′ [(f ′)−1(Πt)] 

 

is increasing in Wt, or equivalently is decreasing in Πt. This is also equivalent to the function 

 

G(y) ≡ −y + 1 − f ′(y) 

f ′′(y) 

 

being decreasing in y because f ′(y) is increasing. The derivative of G(y) with respect to y has the 

same sign as the function 
 

G1(y) ≡ −2f′′(y)2 − f ′′′(y) 
(
1 − f ′(y)

) 
. 

 

Differentiating (A.2) we find 

 

f ′′′(y) = α̂2 2E [ϵ̂i,t exp (−α̂yϵ̂i,t)] 

 
 

[ 
2

 

i,t 

 

exp (−α̂yϵ̂i,t)  E [exp (−α̂yϵ̂i,t)] − {E [ϵ̂i,t exp (−α̂yϵ̂i,t)]}
2

 

{E [exp (−α̂yϵ̂i,t)]} 
 

[ 
2

 
i,t 

] [ 

exp (−α̂yϵ̂i,t)  E [ϵ̂i,t exp (−α̂yϵ̂i,t)] − E ϵ̂i,t 

] 

exp (−α̂yϵ̂i,t)  E [exp (−α̂yϵ̂i,t)] 
+ 

{E [exp (−α̂yϵ̂i,t)]} 
 . 

 
(A.10) 

 

Using (A.1), (A.2) and (A.10), we find 
 

G1(y) = −α̂2
 

[ 

2 
(
E 

[
ϵ̂2 exp (−α̂yϵ̂i,t)

] 
E [exp (−α̂yϵ̂i,t)] + E [ϵ̂i,t exp (−α̂yϵ̂i,t)]

)
 

 

[ 
2

 
i,t 

× 
exp (−α̂yϵ̂i,t)  E [exp (−α̂yϵ̂i,t)] − {E [ϵ̂i,t exp (−α̂yϵ̂i,t)]}

2
 

{E [exp (−α̂yϵ̂i,t)]}
4
 

 

+ E [(1 + ϵ̂i,t) exp (−α̂yϵ̂i,t)] 
 

[ 
2

 
i,t 

× 

] [ 

exp (−α̂yϵ̂i,t)  E [ϵ̂i,t exp (−α̂yϵ̂i,t)] − E  ϵ̂i,t 

] 

exp (−α̂yϵ̂i,t)  E [exp (−α̂yϵ̂i,t)] 
 . 

{E [exp (−α̂yϵ̂i,t)]}
3
 

 
 

When the distribution of ϵi,t is binomial, ϵ̂i,t has also a binomial distribution that takes the values 
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i,t 

i,t 

1 and -1 with equal probabilities. Therefore, 
 

E [exp (−α̂yϵ̂i,t)] = E 
[
ϵ̂2 exp (−α̂yϵ̂i,t)

] 
= cosh(α̂y), 

 

E [ϵ̂i,t exp (−α̂yϵ̂i,t)] = E 
[
ϵ̂3 exp (−α̂yϵ̂i,t)

] 
= − sinh(α̂y), 

 

and the function G1(y) becomes 

 

G1(y) = −α̂2
 
2 

(
cosh2(α̂y) − sinh(α̂y)

)
 

cosh4(α̂y) 
.
 

 

Since cosh(x) ≥ 1 and cosh(x) > sinh(x), G1(y) is negative and hence G(y) is decreasing. 

Proof of Proposition 5: Suppose that in equilibrium (i) expected excess returns Φi,t for assets 

i ∈ At are given by Propositions 3 and 4, (ii) price discounts ϕi,t for assets i ∈ At are given by 

solving (13) backwards with the terminal condition ϕi,hi  = 0: 

 
 

ϕi,t = 

hi−t−1 
∑ 

 
s=0 

     Φi,t+s   

(1 + r)s+1 
, (A.11) 

 

(iii) expected excess returns and price discounts for assets −i, i ∈ At, are opposites to those for 

assets i, and (iv) expected excess returns and price discounts for assets that are not part of active 

opportunities are zero. The first-order conditions of investors and arbitrageurs are then as in 

Section 3.1. The analysis in that section and in Section 3.2 ensures that the markets for all assets 

clear and that the quantities (Wt, ϕi,t, yi,t, xi,t) have the properties in the proposition. 

Proof of Proposition 6: The dynamics of Wt in the three cases of the proposition are as follows: 
 

• If β(1 + r) > 1, then (33) implies that Wt increases to W = ∞. 

• If β(1 + r) < 1 − Π, then (33) implies that Wt decreases to W = 0 because Π is the maximum 

value of Πt. 

• If 1 − Π < β(1 + r) < 1, then (33) implies that Wt remains constant when Πt is equal to the 

steady-state value Π given by (36). The steady-state value W of Wt is given by (35) because 

of (34). When Wt < W , (33) implies that Wt+1 > Wt because Πt > Π. Conversely, when 

Wt > W , (33) implies that Wt+1 < Wt because Πt < Π. To show that convergence of Wt to 

W is monotone, we need to show that Wt+1 < W in the former case and Wt+1 > W in the 
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t 

− − − 
c
 

latter case. Since (33) implies that 

 

Wt+1 − W = β(1 + r) 
( 

Wt
 

1 − Πt 

W 
) 

− 
1 − Π 

,
 

 
convergence is monotone if the function F (W ) = Wt

 

1−Πt 
is increasing in Wt, where Πt is defined 

implicitly as function of Wt from Proposition 4. When Wt > Wc, F (Wt) is increasing in Wt 

because Πt = 0. When Wt < Wc, (34) implies that 
 

2 ∑  
1

 

F (Wt) = 
1 + r

 
 

i∈Tt 

µi 

[
uiϵi − (f′)− (Πt)

] 
. 

 
Since f (y) is strictly convex and Πt decreases in Wt, F (Wt) is increasing in Wt. Since Π > 0, 

Proposition 4 implies that W ∈ (0, Wc). 

 

The dynamics of Πt  in each of the three cases follow from the dynamics of Wt, and from the 

dependence of Πt on Wt derived in Proposition 4. 

Proof of Proposition 7: The investor’s Bellman equation is 

 

Vi,t(wi,t) = max 
ci,t+1,yi,t 

Et {−γ exp(−αci,t+1) + γVi,t+1(wi,t+1)} . (A.12) 

 
Substituting (14) and (15) into (A.12), we find 

 

exp ( Awi,t Fi,t) =  max 
i,t+1,yi,t 

Et {−γ exp(−αci,t+1) 

 

−γ exp (−A [(1 + r)wi,t + Γi,t+1(yi,t) + (yi,t + ui,t)ϵi,t+1 − ci,t+1] − Fi,t+1)} . 

(A.13) 

 
where 

 

Γi,t+1(yi,t) ≡ yi,tΦi,t + (yi,t + ui,t)ηi,t+1 + yi,t [Et(ϕi,t+1) − ϕi,t+1] . 
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A 

A 

( )} 

A 

( )} 

A 

A 

( )} 

The first-order condition with respect to consumption is 
 

α exp(−αci,t+1) = A exp (−A [(1 + r)wi,t + Γi,t+1(yi,t) + (yi,t + ui,t)ϵi,t+1 − ci,t+1] − Fi,t+1) 

(A.14) 
 

⇒ ci,t+1 = 
A [(1 + r)wi,t + Γi,t+1(yi,t) + (yi,t + ui,t)ϵi,t+1] + Fi,t+1 + log 

( 
α 

)
 

α + A 

 

. (A.15) 

 

Hence, we can write the right-hand side of (A.13) as 
 

 

max Et 
yi,t 

{  
γ(α + A) 

— 
α

 

} 

exp (−A [(1 + r)wi,t + Γi,t+1(yi,t) + (yi,t + ui,t)ϵi,t+1 − ci,t+1] − Fi,t+1) 
 

 
= max Et 

yi,t 

{  
γ(α + A) 

— 
α

 

 

exp 
−α {A [(1 + r)wi,t + Γi,t+1(yi,t) + (yi,t + ui,t)ϵi,t+1] + Fi,t+1} + A log 

( 
α 

)
 

α + A 

 
 
 

= max Et 
yi,t 

 
{  

γ(α + A) 

— 
α

 

 
 

 
exp 

(A.16) 

−α {A [(1 + r)wi,t + Γi,t+1(yi,t) − f [(yi,t + ui,t)ϵi]] + Fi,t+1} + A log 
( 

α 
)
 

α + A 

(A.17) 

 

where the first step follows from (A.14), the second from (A.15), and the third from the indepen- 

dence of ϵi,t+1 and Γi,t+1(yi,t) and from (26) by setting y ≡ (yi,t + ui,t)ϵi. Using the definition of 

Γi,t+1(yi,t), we find that the first-order condition with respect to yi,t is 
 

{ 

Et exp 

( 
−α {A [(1 + r)wi,t + Γi,t+1(yi,t) − f [(yi,t + ui,t)ϵi]] + Fi,t+1} + A log 

( 
α 
))

 

α + A 
 

} 

× 
{
Φi,t − ϵif

′[(yi,t + ui,t)ϵi] + ηi,t+1 + Et(ϕi,t+1) − ϕi,t+1

}
 

 

= 0. (A.18) 

 
 

Rearranging terms, we find (37). 

Substituting (A.17) into (A.13), we find that the Bellman equation holds for all values of the 

single state variable wi,t if 
 

αA(1 + r) 
A = 

α + A 
, (A.19) 

Fi,t = − log Et 

{ 
γ(α + A) 

exp 
α 

−α {A [Γi,t+1(yi,t) − f [(yi,t + ui,t)ϵi]] + Fi,t+1} + A log 
( 

α 
)
 

α + A 

(A.20) 

, 

, 
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where yi,t denotes the optimal position. Eq. (A.19) implies that A = rα. Substituting into (A.20), 

we find 

 

Fi,t = − log Et 

{ 

γ(1 + r) exp 

( 
−rα [Γi,t+1(yi,t) − f [(yi,t + ui,t)ϵi]] − Fi,t+1 − r log(r)

)}
 

1 + r 

 

.  (A.21) 

 

Eq. (A.21) determines Fi,t in terms of yi,t and Fi,t+1. 
 

Proof of Proposition 8: The arbitrageur’s Bellman equation is 

 
Vt(Wt) = max 

ct+1,{xi,t}i∈At 

Et {β log(ci,t+1) + βVt+1(Wt+1)} . (A.22) 

 

Substituting (20) and (22) into (A.22), we find 

 
 
B log(Wt)+Gt = max 

ct+1,{xi,t}i∈At 

{ 

Et β log(ci,t+1) + βB log 

( ) 

(1 + r)Wt + 2 
∑ 

Γi,t+1(xi,t) − ct+1 

i∈At 

} 

+ βGt+1 , 

 

(A.23) 

 

where 
 

Γi,t+1(xi,t) ≡ xi,t [Φi,t + ηi,t+1 + Et(ϕi,t+1) − ϕi,t+1] . 

 
The first-order condition with respect to consumption is 

 

1 

ci,t+1 
− 

(1 + r)Wt + 2 
∑

i 

B 

∈At 

= 0 
Γi,t+1(xi,t) − ct+1 

⇒ ci,t+1 = (1 + r)Wt + 2 
∑

i∈At 
Γi,t+1(xi,t) − ct+1 

=
 

B 

(1 + r)Wt + 2 
∑

i∈At 
Γi,t+1(xi,t) 

Wt+1 (A.24) 
B 

⇒ ci,t+1 = , (A.25) 
B + 1 

 

where the second equality in (A.24) follows from (20). Using (A.25), we can write the right-hand 

side of (A.23) as 

 

 
max 

{xi,t}i∈At 

{ 

Et β(B + 1) log 

( ) 

(1 + r)Wt + 2 
∑ 

Γi,t+1(xi,t) 

i∈At 

} 

+ βB log(B) − β(B + 1) log(B + 1) + βGt+1 . 

 
(A.26) 
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The maximization is subject to the financial constraint (21). 

The optimal values of {xi,t}i∈At  are linear in Wt, as can be seen by setting xi,t ≡ Wtωi,t and 

noting that the maximization objective and constraint can be written solely in terms of {ωi,t}i∈At . 

Using this observation and substituting (A.26) into (A.23), we find that the Bellman equation holds 

for all values of the single state variable Wt if 

 

B = β(B + 1), (A.27) 
 

 

Gt = Et 

{ 

β(B + 1) log 

( ) 

(1 + r) + 2 
∑ 

Γi,t+1(ωi,t) 

i∈At 

} 

+ βB log(B) − β(B + 1) log(B + 1) + βGt+1 , 

 

(A.28) 
 

where {ωi,t}i∈At  denote the optimal positions as fractions of wealth. Eq. (A.19) implies that 

B = β
 

1−β 
. Substituting into (A.24), we find (29). Eq. (A.28) determines Gt in terms of {ωi,t}i ∈At 

and Gt+1. 

To characterize the optimal positions {xi,t}i∈At , which are assumed to be non-negative, we first 

compute the derivative of (A.26) with respect to xi,t. This derivative is 

 { 
Φi,t + ηi,t+1 + Et(ϕi,t+1) − ϕi,t+1 

}

 

2β(B + 1)Et 
(1 + r)Wt + 2 

∑
 j∈At 

Γj,t+1(xj,t) 
= 2β(B + 1)Et [Mt] Φ̂ i,t, (A.29) 

 

where 
 

Φ̂ 
i,t ≡ Φi,t + Et 

[  
Mt

 

Et[Mt 

] 

(ηi,t+1 + Et(ϕi,t+1) − ϕi,t+1)  . 

 

We next show that under the optimal positions either (i) Φ̂ 
i,t = 0 for all i ∈ At and (21) is slack, or 

(ii) Φ̂ 
j,t > 0 for some j ∈ At and (21) binds. If Φ̂ 

j,t > 0 for some j ∈ At, then (21) binds because 

otherwise the arbitrageur could raise (A.26) by raising xj,t. If instead Φ̂ 
i,t ≤ 0 for all i ∈ At, then 

these inequalities must hold as equalities, and hence (21) is slack (because Φ̂ i,t = 0 for all i ∈ At is 

the first-order condition from the maximization in (A.26) when the constraint (21) is not imposed). 

To show that the inequalities must hold as equalities, we proceed by contradiction, assuming that 

Φ̂ j,t < 0 for some j ∈ At and distinguishing three cases. If xj,t > 0, then lowering xj,t would raise 

(A.26) while also relaxing (21).  If xj,t = 0 and xj′,t > 0 for some j′ ∈ At, j′ ̸= j, then lowering 

xj′,t would relax (21) while also not lowering (A.26) because Φ̂ 
j′,t ≤ 0.  With (21) relaxed, the 

] 
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arbitrageur could raise (A.26) by lowering xj,t (to a negative value). If, finally, xi,t = 0 for all 

i ∈ At, then (21) is slack, and hence lowering xj,t would raise (A.26). 

When optimal positions {xi,t}i∈At  are non-negative, the maximization in (A.26) can be carried 

out subject to (39) and xi,t ≥ 0, rather than subject to (21). This maximization implies that 

xi,t > 0 only if i ∈ At maximizes risk-adjusted return per unit of collateral. (This is obvious in the 

case where Φ̂ 
i,t = 0 for all i ∈ At. In the case where Φ̂ 

j,t > 0 for some j ∈ At, it can be shown by 

lowering xi,t > 0 for an i ∈ At that does not maximize risk-adjusted return per unit of collateral 

and raising xi,t ≥ 0 for an i that does, in a way that keeps (39) binding.) 

When mini∈At Φi,t exceeds a positive bound and maxi∈At {ηi, ϕi,t+1−Et(ϕi,t+1)} is small, Φ̂ 
i,t > 0 

for all i ∈ At, and hence (21) binds. Moreover, short positions are not optimal: if xj,t < 0 for some 

j ∈ At, then setting xj,t to zero would raise (A.26) and relax (21). 

Proof of Corollary 1: When optimal positions {xi,t}i∈At are non-negative, the maximization in 

(A.26) can be carried out subject to (39) and xi,t ≥ 0. Consider this maximization when (39) is 

not imposed. Because of logarithmic utility, the solution satisfies 

(1 + r)Wt + 2 
∑ 

Γi,t+1(xi,t) > 0 

i∈At 

⇔ (1 + r)Wt + 2 
∑ 

xi,t [Φi,t + ηi,t+1 + Et(ϕi,t+1) − ϕi,t+1] > 0 (A.30) 

i∈At 

 

for all realizations of uncertainty in period t + 1, including when ηi,t+1 = −ηi for all i ∈ At. Under 

the latter realization, and because {xi,t}i∈At  are non-negative, the spreads ϕi,t+1 for all i ∈ At reach 

their maximum values ϕi,t+1. Since a long position in asset i ∈ At suffers its maximum loss when 

ηi,t+1 = −ηi and ϕi,t+1 = ϕi,t+1, (A.30) holds for all realizations of uncertainty in period t + 1 if 

 

(1 + r)Wt + 2 
∑ 

xi,t 

[
Φi,t − ηi + Et(ϕi,t+1) − ϕi,t+1

] 
> 0. (A.31) 

i∈At 

 

Equation (A.31) implies that when ϵi = 0 for all i ∈ At, (39) holds as a strict inequality and hence 

is slack. 
 

We next state and prove Proposition A.1 which characterizes the equilibrium for small arbitrage 

risk. We denote by Π′ the derivative of Πt defined in (34) with respect to Wt at the steady-state 

value Wt = W . 
 

Proposition A.1. Suppose that η is small.  The dynamics of arbitrageur wealth take the form (45), 
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n,t 

Φ1 

dϕ 

t 

y1  

  

Φ 

n,m− 
∑ 

n − t 

0 

dϕ 

1 

with 
 

ρ = 1 + 
W Π′ 

1 − Π , (A.32) 

ν = 2β 
∑

 (
x0 Φ1 + x1

 Φ0 
) 
, (A.33) 

(n,m)∈T 
n   n,m n,m   n 

 

and σn given by (46). Expected excess returns, and positions of arbitrageurs and outside investors 

take  the  form  (42)-(44),  with  (Φ0
 

0 
n,t 

0 
n,t ) as in Section 3, and 

 
 

n,m,t = 

 

Πt
 

( 

λn − 

 
0 

n,m−1,t+1 
∑ 

dWt+1 

 
 

n′∈N 

 

Mn′ σn′,tλn′ 

)    

+ Π1ϵn, if (n, m) ∈ T 
 

(A.34) 

0, otherwise 
 

x1 1 

n,m,t = −µnyn,m,t, (A.35) 

n,m,t = 
ϵ2 

 
1 
n,m,t  

  0 

 
, (A.36) 

nf′′ 
[(

yn,t + un

) 
ϵn

]
 

[ 
0 

 
  µnΠt 

] (
 

 
 dϕ0 

1,t+1 

)
 

(1 − Πt) 
∑

(n,m)∈T xn,t − 
ϵ f ′′ 

 +u   ϵ λn − dWt+1 n′∈N Mn′ σn′,tλn′ 
n [(y0

 n) n] 
  n,t   

Π 
t ≡ [  ] , ∑ 

n∈N 0 n,t ϵ  + (1 Π ) µnΠt
 

f ′′[(y0 ϵ 

n,t+un) n] (A.37) 
 

σn,t ≡ 
0 
n,t 

1 + 2β 
∑

(n′,m)∈T xn′,t 

 
 
dϕ0 

n′,m−1,t+1 

dWt+1 

 

. (A.38) 

 

The  derivative 
0 

n,m−1,t+1 

dWt+1 
in (A.34),  (A.37),  and (A.38) is evaluated for Wt+1  implied by the 

dynamics (33) under riskless arbitrage. 

 
Proof:  The dynamics (45) of arbitrageur wealth can be derived from (47).  Since the spreads 

{ϕn,m−1,t+1}(n,m)∈T  depend on Wt+1, (47) determines Wt+1  implicitly as a function F of Wt, of 

the shocks {ηn,m−1,t+1}(n,m)∈T , and of η. For a fixed Wt and small η, the Taylor expansion of F is 

 

∂F ∂F        
   

Wt+1 = F + 
∑ 

ηn,m−1,t+1 + η + o (η) , (A.39) 

(n,m)∈T ∂ηn,m−1,t+1 ∂η 

, x , y 

   

x 

2βx 
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n ,m 

dWt+1 

0 

2βx 

x Φ 

1 

where F and its derivatives are evaluated at (Wt, 0, 0). Using (A.39), we find 
 

0 0 

Et(ϕn,m−1,t+1) − ϕn,m−1,t+1 = Et(ϕn,m−1,t+1) − ϕn,m−1,t+1 + o (η) 

 
dϕ0 

 

∂F

  

∂F    

= Et ϕ0
    

(F ) + n,m−1,t+1  
∑ 

η
 

1,t+1  

n,m−1,t+1 dWt+1 
(n′,m′)∈T 

∂ηn′,m′ −1,t+1 ′ ′− + 
∂η 

η 

dϕ0     ∂F   
    

∂F    — ϕ0
 (F ) − n,m−1,t+1 

∑ 
 

ηn ,m 1,t+1  

n,m−1,t+1 

 

dϕ0
 

dWt+1 

 
∂F 

(n′,m′)∈T ∂ηn′,m′ −1,t+1 
′ ′− 

+ η + o (η) 
∂η 

  n,m−1,t+1 
∑    

= 
dWt+1 (n′,m′)∈T 

∂ηn′,m′−1,t+1 
ηn′,m′−1,t+1 + o (η) , (A.40) 

 

where the derivative 
dϕ0

 

n,m−1,t+1 is evaluated for Wt+1 = F (Wt, 0, 0). Substituting (41)-(43), (A.39), 
 

and (A.40) into (47), we find 
 

F + 
∑

 

(n,m)∈T 

 

∂F 
 

 

∂ηn,m−1,t+1 

 
ηn,m−1,t+1 

 
∂F 

+ η = β 
∂η 

 

(1 + r)Wt + 2 
∑

 

(n,m)∈T 

 

0 
n,t 

 
n,m,tη) 

 

× Φ0
 

 
+ Φ1

 

 

η + ηn,m 

 
1,t+1  − 

 

0 

n,m−1,t+1 

 
  ∂F ηn′,m′− 

 

1,t+1  

 

+ o (η) , 
n,t n,m,t − dWt+1 (n′,m′)∈T 

∂ηn′,m′ −1,t+1  

(A.41) 
 

Identifying highest-order terms in ηn,m−1,t+1 in (A.41) we find 

 

∂F 
 

 

∂ηn,m−1,t+1 

 
= 

1 + 2β 
∑

 

0 
n,t 

 

(n′,m′)∈T xn′,t 

 
 
dϕ0 

n′,m′−1,t+1 

dWt+1 

 

= σn,t, (A.42) 

 

and identifying highest-order terms in η we find 

 
∂F 

    = 2β 
∂η 

(n,m)∈T 

( 
0

 

n,t 

 

1 
n,m,t 

 

1 
n,m,t 

 

0 
n,t 

) 
. (A.43) 

 
 

When Wt lies in the support of the stationary distribution, its maximum distance from the 

steady-state value W is of order η since this is the maximum size of the shocks. Hence, we can 

(x + x 

dϕ ∑ 

∑ 
Φ + x 

− 
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t 

t t 

t t 

ϵn + ηn − dW 

∑
 

write (A.39) as 

 
∂F ∑   ∂F   ∂F        

Wt+1 = W + 
∂W 

(Wt − W ) + 
 

(n,m)∈T 
∂ηn,m−1,t+1 ηn,m−1,t+1 + 

∂η 
η + o (η) , (A.44) 

 
where F and its derivatives are now evaluated at (W, 0, 0). Since F (W , 0, 0) = β 1+r W , 

1−Πt 

 

∂F 
 

 

∂Wt 

1 + r 
= β 

1 − Π 

(1 + r)Π′ 
+ β 

(1 − Π)2 

W = 1 + 
W Π′ 

, 

1 − Π 

 

where the second step follows from (36). Since, in addition, (A.42) and (A.43) imply 
 

∂F 
 

 

∂ηn,m−1,t+1 

∂F 

= σn, 

    = ν, 
∂η 

 

respectively, when partial derivatives are evaluated at (W, 0, 0), (A.44) becomes (45). The coefficient 

ρ is smaller than one because Π  decreases in W . It is larger than zero because the function  Wt
 

1−Πt 

increases in Wt, as shown in the proof of Proposition 6. 

We next derive the first-order terms in expected excess returns and positions. Substituting (42) 

and (44) into (37), and noting that the third term in the left-hand side is of second order in η, we 

find 

 

Φ0 1 η − ϵif
′ 
[
(y0

 + ui,t)ϵi

] 
− ϵ2f′ 

[
(y0

 + ui,t)ϵi

] 
y1

 η + o (η) = 0. (A.45) 
n,t + Φn,m,t n,t i n,t n,m,t 

Identifying terms in η, we find (A.36). Substituting (43) and (44) into (10) and identifying terms 

in η, we find (A.35). Substituting (42), (43), (A.40), and (A.42) into (40), and noting that the 

second term in the numerator is of second order in η, we find that 

Φ0 1 η 

         dϕ0 

n,t + Φn,m,t 

      n,m−1,t+1 

t+1 n′∈N Mn′ σn′,t ηn′ 
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ϵn 

ϵn + ηn − dW 

∑
 

1 n,m−1,t+1 
∑ 

Π 

ϵn + ηn − dW 

∑
 

n,m− 

n,m,t n,m,t n,m,t 

t 

∑ 

n,m− 

t x 

) 

   t 

) 

1 

   

is identical for all (n, m) ∈ T to a first order in η. Since 
Φ0 

n,t = Πt for all (n, m) ∈ T , 
 

Φ0 1 η 
 

         dϕ0 

n,t + Φn,m,t       − Πt 

      n,m−1,t+1 

t+1 n′∈N Mn′ σn′,t ηn′ 

    (      
dϕ0

 

Φn,m,t η − Πt ηn − dWt+1 n′∈N Mn′ σn′,tηn′    

=        dϕ0 ≡ 1η (A.46) 
      n,m−1,t+1 

t+1 n′∈N Mn′ σn′,t ηn′ 

 

is identical for all (n, m) ∈ T to a first order in η. Multiplying by the denominator in (A.46), we 

find 
 

    (   
Φ1 η = Πt η 

dϕ0 
1,t+1 − ∑ 

Mn

 

 
 
 

n ,t 

     )        
1 

n,m,t n dWt+1 
n′∈N ′ σ ′ 

ηn′ + Πt ϵnη + o (η) (A.47) 

 

for all (n, m) ∈ T . Since ηn = λnη, (A.47) implies (A.34) for (n, m) ∈ T . For (n, m) ∈/ T , xn,m,t = 0 

and hence x1
 = 0. Eq. (A.35) then implies y1

 = 0, and (A.36) implies Φ1
 = 0. 

 

To compute Π1, we use the financial constraint (39), which binds.  Substituting (42), (43), 

(A.40), and (A.42) into (39), we find 

 

     (          
dϕ0

 (
x0

 
1 η

) ϵn + η       n,m−1,t+1 

− 

η − Φ0 1 η 

n,t + xn,m,t n dWt+1 n′∈N Mn′ σn′,t  n′ n,t − Φn,m,t    

   

Wt = 2 
∑ 

+o (η) . 
1 + r 

(n,m)∈T  

(A.48) 

 

Identifying first-order terms in η, we find 

[ 
∑ 

x0
 

   ( 
d ϕ0 

1,t+1 

η  − 

∑ 
Mn

 

 
 

 
n ,t 

  )          ] 
1 1 0   

) 

(n,m)∈T n,t n 
dWt+1 

n′∈N ′ σ ′ ηn′ − Φ n,m,tη + xn,m,t 
η 

(
ϵn − Φ n,t = 0 

[ ( 
dϕ0

 ) ] 

⇔ (1 − Πt) 
∑

 0 n,t λn − n,m−1,t+1 

dWt+1 

∑ 
Mn σn ,tλn n,m,tϵn — Π1

 ∑ 
0

 n,t ϵn = 0, 

(n,m)∈T n′∈N ′ ′ ′ (n,m)∈T 

(A.49) 

x + x 
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Φ 

 

where the second step follows from (A.47) and 
0 
n,t 

ϵn 
= Πt for all (n, m) ∈ T . Noting from (A.34)- 
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µnΦ 

−
ϵ2

 

λn − n,m− 
∑ t 

n

f 

t 

n,t 

n,t n,m,t 

n,t 

n,m,t 

n,m,t 

n,m,t 

n,m,t 

(A.36) that 
 

x1 1 

n,m,t = −µnyn,m,t 

1 
n,m,t 

= 

nf′′ 
[(

y
 0 
n,t + un

)
 
ϵn

] 

[ 

µn   Πt 

( 
d ϕ0 

1,t+1 

dWt+1 

 

n′∈N Mn′ σn′,tλn′ 

) ] 

+ Π1ϵn 

= − 
ϵ2   ′′ [(

y
 0 
n,t + un

)
 
ϵn

] 

 

and substituting into (A.49), we find a linear equation in Π1, whose solution is (A.37). 

Proof of Proposition 9: For each characteristic, we compare two arbitrage opportunities that 

differ only in that characteristic, and we assume that arbitrage risk is small. We can perform the 

comparison by examining how spreads, expected excess returns, and positions corresponding to one 

arbitrage opportunity (n, m) depend on that characteristic, holding aggregate variables constant. If 

zeroth-order terms in spreads, expected excess returns, and positions depend on the characteristic, 

then we use those to determine the characteristic’s effect; otherwise, we use first- or second-order 

terms. 

The comparative statics with respect to ϵn follow from the zeroth-order terms. Proposition 3 

implies that Φ0
 increases in ϵn: it does so both in the region where the opportunity is not traded 

because ϵn is below a threshold and in the region where the opportunity is traded because ϵn is 

above the threshold. Since Φ0
 increases in ϵn, so does ϕ0

 because of (48).  The arbitrageur 

position xn,m,t increases in ϵn because it is zero in the region where the opportunity is not traded 

and because (A.8) implies that x0
 increases in ϵn in the region where the opportunity is traded. 

 

The comparative statics with respect to ηn follow from the first-order terms, or the second- 

order terms, or are trivial. Suppose that the opportunity is traded. Eq. (A.34) implies that Φ1
 

increases in λn and hence in ηn. Eq. (48) then implies that ϕ1
 increases in ηn , and (A.35) and 

(A.36) imply that x1
 decreases in ηn .  Suppose next that the opportunity is not traded.  Eq. 

(A.34) implies that Φ1
 = 0, so we need to consider the second-order term, which we can derive 

from the first-order condition of outside investors. Since the opportunity is not traded, the presence 

of arbitrageurs is immaterial, so spreads and the outside investors’ value function are independent of 

arbitrageur wealth. Using these observations, the independence of the payoff shocks (ϵn,m,t, ηn,m,t), 

and the same arguments as in the proof of Proposition 7, we find the first-order condition 

 

Φn,m,t − ϵnf′ (unϵn) − ηnf′ (unηn) = 0. (A.50) 

, 
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ϕ0 

∑ 
n,t+s 

Φ 

n,t+m n,m,t 

n,m,t n,m,t 

n,t 

n,m,t 

Eq. (A.50) implies that Φn,m,t increases in ηn.  Eq. (48) then implies that ϕn,m,t also increases in 

ηn. The arbitrageur position xn,m,t is zero, and hence decreases weakly in ηn. 

The comparative statics of spreads with respect to m follow from the zeroth-order term. Those 

of expected excess returns and positions follow from the first-order terms or are trivial. Identifying 

zeroth-order terms in (48) and noting that at the zeroth order the dynamics of Wt are deterministic, 

we find 

m−1 Φ0 

n,m,t = 
      

(1 + r)s+1 
(A.51) 

s=0 
 

dϕ0
 m−1 1 dΦ0

 
  n,m,t = 

∑
 n,t+s 

⇒ 
dWt 

 
dϕ0

 

s=0 

m−1 

(1 + r)s+1 

 
1 

dWt 

 
dΦ0 dW 

  n,m,t  = 
∑

 n,t+s t+s . (A.52) ⇒ 
dWt 

 
s=0 

(1 + r)s+1 dWt+s dWt 

 

Subtracting (A.51) and (A.52) from their counterparts for m + 1, we find 
 

ϕ0 0 
0 
n,t+m 

n,m+1,t − ϕn,m,t = 
(1 + r)m+1 , (A.53) 

dϕ0
 dϕ0

 dΦ0
 

  n,m+1,t   n,m,t  =  
  1  n,t+m  dWt+m , (A.54) 

dWt 
−

 dWt (1 + r)m+1 dWt+m dWt 

 

respectively. Since Φ0
 > 0, (A.53) implies that ϕ0

 
increases in m. Since the function  Wt    is 

1−Πt 

increasing in Wt (as shown in the proof of Proposition 6), Proposition 4 implies that Wt+s increases 

in Wt for s ≥ 1. Since, in addition, Πt decreases in Wt (Proposition 4), Proposition 3 implies that 

Φ0 0 

n,t for a traded opportunity decreases in Wt. Hence, (A.52) implies that ϕn,m,t decreases in Wt. 

dϕ0
 

Moreover, (A.54) implies that n,m,t 

dWt 
decreases in m, becoming more negative for larger m. Eq. 

(A.34) then implies that Φ1
 increases in m, and (A.35) and (A.36) imply that x1

 decreases 

in m. Eq. (A.50) implies that Φn,m,t is independent of m for a non-traded opportunity, and hence 

increases weakly in m. The arbitrageur position xn,m,t is zero, and hence decreases weakly in m. 

The comparative statics with respect to un follow from the zeroth-order terms, or cannot be 

determined from the zeroth- and first-order terms, or are trivial. Proposition 3 implies that Φ0 

increases in un in the region where the opportunity is not traded because un is below a threshold. 

Eq. (A.34) then implies that ϕ0
 increases in un. In the region where the opportunity is traded 

because un is above the threshold, both zeroth- and first-order terms in expected excess returns 
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n,t 

n,t 

n,t 

n,t 

n,t n,t 

n,t n,m,t 

n,t 

n,m,t n,m,t 

n,m,t 

dϕ 

dW 

− 

dΦ 

are independent of un.  The arbitrageur position xn,m,t increases in un because it is zero in the 

region where the opportunity is not traded and because (A.8) implies that x0
 increases in un in 

the region where the opportunity is traded. 

The comparative statics with respect to µn follow from the zeroth-order terms or are trivial. 

For a traded opportunity, (A.8) implies that x0 

xn,m,t is zero, and hence increases weakly in µn. 

increases in µn. For a non-traded opportunity 

Proof of Proposition 10: The proposition follows by combining the AR(1) dynamics (45) of 

arbitrageur wealth Wt with the dependence of spreads, expected excess returns, and arbitrageur 

positions on Wt. This dependence can be deduced from the zeroth-order terms. As shown in the 

proof of Proposition 9, Φ0
 

0 
n,m,t decrease in Wt. Moreover, since Πt decreases in Wt (A.8) 

implies that x0
 increases in Wt. 

 

Proof of Proposition 11: The comparative statics with respect to ϵn follow from the zeroth-order 

terms. Since Φ0
 = Πtϵn for traded opportunities, Φ0

 is more sensitive to changes in Wt for an 

opportunity with higher ϵn. The higher sensitivity of Φ0
 translates to a higher sensitivity of ϕ0

 

because of (A.52). Eq. (A.8) implies that x0
 is less sensitive to changes in Wt. 

 

The comparative statics with respect to ηn  follow from the first-order terms.  Since (A.34) 

∂2Φ1 

implies that n,m,t 

∂Πt∂λn 

1 
n,m,t is more sensitive to changes in Wt for a traded opportunity with 

higher ηn.  The higher sensitivity of Φ1
 translates to a higher sensitivity of ϕ1

 because of 

(48), and to a higher sensitivity of x0
 because of (A.35) and (A.36). 

 

The comparative statics of spreads with respect to m follow from 
0 
n,m+1,t 

dWt 

dϕ0
 

n,m,t < 0. Those 
t 

of expected excess returns and positions follow from the first-order terms. Eq. (A.34) implies that 
 

0 0 

Φ1 1 
d(ϕn,m,t+1 − ϕn,m−1,t+1) ∑ 

M  σ λ
 

n,m+1,t − Φn,m,t = −Πt dWt+1 n′∈N 

n′   n′,t  n′ 

= 
Πt 

(1 + r)m+1 

0 
n,t+m+1 

dWt+1 

∑ 

n′∈N 

 

Mn′ σn′,tλn′ 

dΦ1
 dΦ1

 
 

dΠt dΦ0
 

  n,m+1,t   n,m,t  = −   dWt  n,t+m+1 ∑ 
Mn

 ′ σn′,t λn′ 

⇒ 
dWt 

− dWt (1 + r)m+1 dWt+1 n′∈N 

Πt d 
( 

0
 

n,t+m+1 

∑ 
Mn′ σ 

 

 
n′,t 

) 

λn′ 

 

, (A.55) 
− 

(1 + r)m+1 dWt dWt+1 n′∈N 

and ϕ 

> 0, Φ 

< 

dΦ 
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Hence, n,m < n,m,t n,t 

n,m+1,t n,m,t dΦ n,m,t 

n,m d Φ 

n,t n,t 

n,t 

y0 

dx 

dWt 

dW 
n,m+1,t n,m,t dxn  ,m,t 

2βµn 

[
un − (f )   (Π) 

]
 

2β 
[
un − (f )   (Π) 

]
 

where the second step follows from (A.51). If Πt is positive but close to zero (as is the case when 

the steady-state value W of Wt is smaller than but close to Wc), then the first term in the right- 

hand side of (A.55) is negative and bounded away from zero, while the second term is close to zero. 

dΦ1     
+1,t 

dWt 

d Φ1
 

dWt    
. Since the zeroth-order term in Φn,m,t is independent of m and 

 dΦ0
 

dWt   
< 0, 

dΦ1
 

dWt 
< 

dΦ1
 

dWt 
implies 

 
dΦn   ,m+1,t 

dWt dWt 
< 0.  Hence, Φn,m,t is more sensitive to changes in 

Wt for a traded opportunity with higher m.  To show that positions are also more sensitive, we 

note from (A.35) and (A.36) that 

 

 
dx1

 

 
dx1

 

( 
d Φ1     

+1,t 

µn dWt 
− 

1 
) 

n,m,t 
dWt µn 

(
Φ1

 − Φ1 
)
 

 
    dy0

 
n,m+1,t n,m,t = −   

     +     n,m+1,t n,m,t f ′′′ 
[(

y0 + un

) 
ϵn

]
 n,t 

.
 

dWt 
−

 
 

 dWt ϵ2 f ′′ 
[(

y0 + un

) 
ϵn

]
 ϵnf′′ 

[(
y0 + un

) 
ϵn

]
 n,t 

 
 dWt 

n n,t n,t 
 

(A.56) 

 

If Πt is close to zero, so is Φ0
 (Proposition 3) and hence y0

 + un (Proposition 1). Since f (y) is 

symmetric around the vertical axis, f ′′′(0) = 0 and hence f ′′′ 
[(

y0
 + un

) 
ϵn

] 
is close to zero when 

n,t + un is close to zero. Since the first term in the right-hand side of (A.56) is positive and the 
 

second is close to zero, 

 
1 
n,m+1,t 

dWt 

dx1
 

n,m,t . Since the zeroth-order term in xn,m,t is independent of 

m and 
dx0

 

n,t  > 0, t 

dx1
 

dWt 
> 

dx1
 

dWt 
implies 

 
dxn  ,m+1,t 

dWt dWt 
> 0. Hence, xn,m,t is more sensitive 

to changes in Wt for a traded opportunity with higher m. 
 

Proof of Corollary 2: The proof follows from the argument in the paragraph just before the 

proposition. 

Proof of Proposition 12: Using (A.8), we can write (46) for a traded opportunity (n, m) as 
 

′ −1 

ϵ 
σn = n [ 

(f )   (Π) 
]   

 

1 + 2β 
∑

(n′,m)∈T µn′
 un′ − 

′ −1 

ϵn′ 

dϕ0 

n′,m−1,t+1 

dWt+1 

′ −1 

ϵn 

= 0 

 
 

(A.57) [ 
(f′)−1(Π) 

] ∑Mn−1 dϕ 
,m,t 

1 + 2β 
∑

n′∈N un′ − ϵn′ m=1 n′ 

dWt 

< 

> 

> 
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n,t 

dϕ0 
t 

   
m−1 

ϵ 

− (f ) (Π) + 

2 n [ 

µnMn 

] 

Since Φ0
 = Πtϵn, (A.52) implies that 

 

n,m,t = 
dΠ 

ϵ
 ∑ 1 dWt+s 

dWt dWt 
n 

s=0 
(1 + r)s+1 dWt 

 

m−1 s−1 
dΠt   

= n 
∑ 1 ∏ dWt+s′+1 

s+1 . (A.58) 
dWt (1 + r) 

s=0 s′=0 
dWt+s′ 

 

Eq. (A.9) implies that in steady state 

 
∂Πt  1 

− . (A.59) 
 

∂Wt 2 
1+r 

∑
n∈N µnMn 

[
unϵn 

′ −1 1−Π 
]
 

f ′′[(f ′)−1(Π)] 

 

The argument used in the proof of Proposition A.1 to show the AR(1) dynamics of Wt implies that 

in steady state and for s ≥ 0 

 
dWt+s+1 = 

dWt+1 = ρ. (A.60) 
dWt+s dWt 

 

Using (A.32), we find 
 

ρ = 1 + 
W Π′ 

1 − Π 

 

 

 

1−Π ∑ 
1+r 

 
 
 

 
µnMn  unϵn 

∈N 

 

 

−(f′)−1(Π)] 
[ 2    ∑ 
u ϵ 

] 
(f′)−1(Π)+ 1−Π

 

= 1 − 
 

 

1+r n∈N µnMn n n− 

1 − Π 

f′′[(f′)−1(Π)] 

∑ 
 1−Π   

n∈N f ′′[(f ′)−1(Π)] 

= ∑ [       , (A.61) 
1 1−Π 

n∈N µnMn unϵn − (f′)− (Π) + f ′′[(f ′)−1(Π)] 

 

where the second step follows from (A.59). Using (A.59)-(A.61), we can write (A.58) as 

 

∂ϕ0
 

∑m−1      ρs
 

n,m,t = − 
s=0 

[ (1+r)s   1−Π   ]
 

, (A.62) 

∂Wt 2 
∑

n′∈N µn′ Mn′ un′ ϵn′ − (f′)−1(Π) + f ′′[(f ′)−1 
 

(Π)] 

ϵn 

= 
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2βµn 

[
un − (f )   (Π) 

]
 

unϵn − (f ) (Π) + 

ϵn 
n   

f ′′[(f ′)−1(Π)] 

2βµn 

[
un − (f )   (Π) 

]
 

ρ 

f′′[(f′)−1(Π)] 

η 

s 

and (A.57) as 

 

 
σn = 

′ −1 

ϵn 
M 1 

 

 
 

m   1 ρs 

 

. (A.63) β 
∑

n′∈N µn′ [un′ ϵn′ −(f′)− (Π)] 
∑

m=1    

∑
s=0 

(1+r)s 

1 

1 − [ 
n− − 

] ∑ 
1  1−Π   

n′∈N µn′ Mn′ un′ ϵn′ −(f′)−  (Π)+ 
f′′[(f′)−1(Π)] 

 

 

Under segmentation, the wealth Wn,t of arbitrageurs in market n ∈ N evolves according to the 

AR(1) process 

 
Mn 

Wn,t+1  = Wn + ρn(Wn,t − Wn) + νnη + σn,n  

∑ 
ηn,m−1,t+1  + o (η) . (A.64) 

m=1 

 

The counterparts of (A.61)-(A.63) can be obtained by removing the summation over N , and are 
 

 
ρn =    

  1−Π   

f ′′[(f ′)−1(Π)] 
 

, (A.65) 
′ −1 1−Π 

f ′′[(f ′)−1(Π)] 

 
∂ϕ0

 
∑m−1     ρs

 

n,m,t = −   
 s=0 (1+r)s , (A.66) 

∂Wn,t 2µnMn 

[
unϵn − (f′)−1(Π) + 1−Π 

]
 

 

′ −1 

ϵ 

σn,n = 
n 

β[unϵn−(f′)−1(Π)] 
∑Mn−1 ∑m−1 n , (A.67) 

1 − [ 
m=1 s=0 (1+r)s 

] 

Mn unϵn−(f′)−1(Π)+ 1−Π
 

 
 

respectively. 

Suppose next that opportunities are symmetric, and denote by (ϵ, η, µ, u, M ) the common values 

of (ϵn, ηn, µn, un, Mn) and by σ2 the common variance of ηn,m,t. Symmetry and an interior steady 
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uϵ − (f ) (Π) + 

ϵ 
−       

2βµ 
[
u − (f )    (Π) 

]
 

uϵ−(f′)− (Π)+ 

2 

n,m,t ( ) 

n 

N 

  η 

state imply that all opportunities are traded, i.e., N = {1, .., N}. Moreover, for all n = 1, .., N , 
 

 
ρn = ρ =    

  1−Π   

f ′′[(f ′)−1(Π)] 
 

(A.68) 
′ −1 1−Π 

f ′′[(f ′)−1(Π)] 

 
∂ϕ0

 
 

∂ϕ0
 

    ∑m−1 ρs
 

  n,m,t = 
1 n,m,t = 

   s=0 
 

 (1+r)s   
] ≡ ϕW,m (A.69) 

∂Wt N ∂Wn,t 2µM 
[
uϵ − (f′)−1 

1−Π 

f ′′[(f ′)−1(Π)] 
 

 
σn = σn,n = 

′ −1 

ϵ 

β[uϵ−(f′)−1(Π)] 
∑M−1 ∑m−1

 

 

 
 

     ρs   

 

≡ σ, (A.70) 

1 − [ 
m=1 s=0 (1+r)s 

] 

M 1 1−Π 

f′′[(f′)−1(Π)] 

 

because of (A.61) and (A.65), (A.62) and (A.66), and (A.63) and (A.67), respectively. 

The variance of arbitrageur wealth under integration follows from the mean-reverting dynamics 

(45), and is 

 

 

Var(Wt) = 
(n,m)∈T σnVar(ηn,m,t) 

+ o
 

1 − ρ2 

(
η2

) 
 

. (A.71) 

 

Likewise, the variance of arbitrageur wealth under segmentation can be computed from (A.64), and 

is 

 

 
Var(Wn,t) = 

∑Mn
 

m=1 
2 
n,n 

Var(η )    
+ o η2  . (A.72) 

1 − ρ2 

 
2   2 2   2 

Under symmetry, the highest-order term in (A.71) is 
NMσ ση , and that in (A.72) is 

Mσ ση . Since 
1−ρ2 1−ρ2 

the wealth of the arbitrageurs who are in market n under segmentation is Wt under integration, the 

Mσ2σ2
 

highest-order term in the variance of those arbitrageurs’ wealth is 

Mσ2σ2
 

η 

N (1−ρ2) 
under integration and 

1−ρ2   under segmentation. Therefore, the variance of each arbitrageur’s wealth under integration is 

N times smaller than under segmentation. The variance of wealth of an arbitrageur who diversifies 

across all opportunities equally under segmentation is N times smaller than without diversification 

because spreads are independent across n. 

(Π) + 

σ 

∑ 



62  

dϕ 

dϕ 

n 

   
   

 

 

f′′[(f′)−1(Π)] 

 
 

1−Π 

η,n 

 

2
) 

∑ 

The variance of the spread associated to opportunity (n, m) is 

 

 

Var(ϕn,m,t) = 

( 
0 

)2 

n,m,t 
 

dWt 
Var(Wt) + o 

(
η2

) 
(A.73) 

 

under integration, and 

 

 

Var(ϕn,m,t) = 

( 
0 

)2 

n,m,t 
 

dWn,t 
Var(Wn,t) + o 

(
η2

) 
(A.74) 

 

under segmentation, where the derivative is evaluated at Wt = W . Under symmetry, the highest- 
NMσ2σ2 ϕ2

 N 2Mσ2σ2 ϕ2
 

order term in (A.73) is 
η 

1−ρ2 

W,m , and that in (A.74) is 
η 

1−ρ2 

W,m . Therefore, the variance 

of spreads under integration is N times smaller than under segmentation. 
 

Proof of Proposition 13: Eqs. (A.61), (A.63), and (A.71) imply that the variance of the arbi- 

trageur wealth under integration is 

 

4β2 
∑

 
∈N 

 

[ 

µ2 Mn  un− 
 

(f′)−1(Π) 

]2
 

ϵn 

 
2 
η,n 

 
 
 

1−Π 

 

 
s 2 

 
β 

∑ ϵ  −(f′)−1(Π)] 
∑Mn−1

 m−1  

∑
n∈N   µnMn  

f′′[(f′)−1(Π)] 
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(A.75) 

 

where we denote by σ2
 the common variance of ηn,m,t across m = 1, .., Mn. Likewise, (A.65), 

(A.67), and (A.72) imply that in a segmented market n with traded opportunities, the variance of 

σ 

 

n 
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f′′[(f′)−1(Π)] 

 

 

Combining (A.75) with (A.62) and (A.73), we find that the variance of the spread associated 

to a traded opportunity (n, m) under integration is 
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(A.77) 

 
Likewise, combining (A.76) with (A.66) and (A.74), we find that the variance of the spread asso- 

ciated to opportunity (n, m) under segmentation is 
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If unϵn − (f′)−1(Π) or ση,n/η are close to zero for n but are sufficiently large for n′ ∈ N \{n}, then 

Var(ϕn,m,t) is close to zero under segmentation but not under integration.  Hence, Var(ϕn,m,t) is 

larger under integration. 

 
 

B General Contracts 

 
B.1 Contracts and Equilibrium 

 

A contract ω that arbitrageurs can trade with i-investors in period t is characterized by (i) payments 

πω,t′ that the seller of the contract must make to the buyer in periods t′ > t, (ii) a price qω,t that 

the seller of the contract receives from the buyer in period t, and (iii) collateral that the seller of 

the contract must post with the buyer. The payments πω,t′ can depend on information available in 

all markets including market i. We assume that payments are non-negative and are not all equal 

to zero. No-arbitrage then implies that the price qω,t must be positive. Collateral must be in the 

form of cash or other contracts. A contract ω can be traded in any period t ∈ {tω, .., tω − 1}, where 

tω occurs before the first positive payment and tω is when the last positive payment is made. The 

period tω can be infinite, and if it is finite we set qω,tω 
= 0. We denote by Ωi,t the set of contracts 

that can be traded in market i and period t. 

To specify how contracts can be collateralized using other contracts, we define contracts recur- 

sively. Contracts of level 1 are collateralized by the riskless asset. Contracts of level n + 1 are 

collateralized by the riskless asset and by a finite number of contracts of levels 1 up to n.  For 

a contract ω ∈ Ωi,t and period t, we denote by ψω,t  ≥ 0 the units of the riskless asset and by 

ψω,ω′,t ≥ 0 the units of a lower-level contract ω′ ∈ Ωi,t that are required as collateral. We also 

denote by ℓ(ω, t) the level of the contract. The collateral amounts ψω,t and ψω,ω′,t and the level 

ℓ(ω, t) can depend on information available in all markets including market i. 

We denote by yω,t the position of i-investors and xω,t the position of arbitrageurs in a contract 

ω ∈ Ωi,t and period t. Because the number of contracts is infinite, there is an infinite set of positions. 

We assume that only a finite number of the positions are non-zero. 

The collateral that short positions require must be covered by long positions. Suppose, for 

example, that arbitrageurs have a short position in a contract ω ∈ Ωi,t, which requires contract 

ω′ ∈ Ωi,t as collateral. This does not necessarily imply that arbitrageurs must have an overall long 

position in contract ω′: they must buy contract ω′ to post as collateral for the short position in 

contract ω, but they could undertake an additional transaction in contract ω′ to establish an overall 
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ω′,t 

ω′,t 

ω′,t 

c 

short position in that contract. We decompose the position xω′,t in contract ω′ into 

 

xω′,t = xc
 + x̂ω′,t, 

 

where xc
 ≥ 0 is collateral set aside for short positions in higher-level contracts ω ∈ Ωi,t, and x̂ω′,t 

is the remainder of the position, which can be negative. The collateral xc
 must satisfy 

 

xω′,t = 
∑

 (−x̂ω,t)ψω,ω′,t. (B.1) 
ω∈Ωi,t 

ℓ(ω,t)>ℓ(ω′,t) and x̂ω,t<0 

 

The collateral vi,t in the riskless asset required for contracts in market i must likewise satisfy 

 

vi,t = 
∑

 
ω∈Ωi,t 

x̂ω,t<0 

(−x̂ω,t)ψω,t. (B.2) 

 

The wealth that arbitrageurs “tie up” in market i is 
∑

ω∈Ωi,t 
xω,tqω,t + vi,t, the value of their 

positions in the contracts traded in market i and of the riskless collateral. The financial constraint of 

arbitrageurs requires that the sum of that quantity across markets does not exceed the arbitrageurs’ 

total wealth Wt: 

 
 

Wt ≥ 
∑ 

 
∑ 

 

xω,tqω,t + vi,t  . (B.3) 

i∈I ω∈Ωi,t 

 

As in Section 2.3.2, we assume that i-investors have enough wealth so that their financial constraint 

is never binding. 

Investors and arbitrageurs can default on their short positions in the contracts. Defaulting 

on a unit short position in a contract ω ∈ Ωi,t in period t + 1 raises the wealth of an agent by 

πω,t+1 + qω,t+1 since the agent does not make the payment πω,t+1 and no longer has the liability 

qω,t+1. At the same time, the agent loses the collateral associated to the position. Default is costlier 

to the agent than no default if 

 

πω,t+1 + qω,t+1 ≤ (1 + r)ψω,t + 
∑

 

ω′∈Ωi,t 

ℓ(ω,t)>ℓ(ω′,t) 

ψω,ω′,t(πω′,t+1 + qω′,t+1), (B.4) 

 
i.e., the amount saved by not making the payment is smaller than the value of the collateral seized. 
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ϵ 

Without loss of generality, we can assume that there is no default. This is because we can replace a 

contract ω that involves default by one with the same collateral and with required payments equal 

to the actual payments (including the effects of default) under ω. 

Under no default, the budget constraint of an i-investor is 

 

wi,t+1 = 
∑

 

ω∈Ωi,t 

 

yω,t(πω,t+1 + qω,t+1) + (1 + r) wi,t − 
∑

 

ω∈Ωi,t 

 

yω,tqω,t
 + ui,tϵi,t+1 − ci,t+1, (B.5) 

 

and of an arbitrageur is 

 

Wt+1 = 
∑ ∑

 

 

xω,t(πω,t+1 + qω,t+1) + (1 + r) Wt − 
∑

 

 
∑ 

xω,tqω,t  − ct+1. (B.6) 

i∈I ω∈Ωi,t i∈I ω∈Ωi,t 

 

Eqs. (B.5) and (B.6) are counterparts of (14) and (16), with the positions in the contracts replacing 

those in the risky assets. 

 

Defi 3. A competitive equilibrium with no default consists of prices qω,t  for all contracts 

ω ∈ Ωi,t, and positions in the contracts yω,t for the i-investors and xω,t for the arbitrageurs, such 

that (B.4) holds, positions are optimal given prices, and the markets for all contracts clear: 

 
µiyω,t + xω,t = 0. (B.7) 

 
B.2 Binomial Payoffs 

 

We next assume that the variables ϵi,t have a binomial distribution and the variables ηi,t are equal 

to zero. Given symmetry, the binomial assumption implies that the variables ϵi,t
 

i 
take the values 1 

and -1 with probabilities one-half. 

Proposition B.1. There exists a competitive equilibrium with no default such that the dynamics 

of wealth  of  i-investors  and  arbitrageurs  are  as  in  Section  3.2  and  the  prices  qω,t  of  all  contracts 

ω ∈ Ωi,t are given by 

 
exp(−Zi,t)Et (πω,t+1 + qω,t+1|ϵi,t+1 = ϵi) + exp(Zi,t)Et (πω,t+1 + qω,t+1|ϵi,t+1 = −ϵi) 

qω,t = 
(1 + r) [exp(−Zi,t ) + exp(Z 

 

i,t 

, (B.8) 
)] 
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+ F + log 
( 

α 
)
 

where 

 
αA    

Zi,t ≡ 
α + A 

(yi,t + ui,t)ϵi 

 
and yi,t  is as in Section 3.2. 

 
Proof of Proposition B.1: We first study optimization by i-investors. We proceed as in the 

proof of Proposition 1, conjecture the value function (15) with A = rα and Fi,t given by (A.21), 

and use the budget constraint (B.5) instead of (14). Optimal consumption is given by 

 

 
ci,t+1 = 

A 
[
(1 + r)wi,t + 

∑
 
 

ω∈Ωi,t 

] 

yω,t [πω,t+1 + qω,t+1 − (1 + r)qω,t] + ui,tϵi,t+1 i,t+1 A 
, 

α + A 

(B.9) 

 

which is the counterpart of (A.15). Optimal positions in the contracts solve 

 
   

αA 
 
 

max Et − exp − (1 + r)wi,t + 
∑

 yω,t [πω,t+1 + qω,t+1 − (1 + r)qω,t] + ui,tϵi,t+1
 , 

yω,t  α + A ω∈Ω 
 
i,t 

 

 

(B.10) 

 

which is the counterpart of (A.16) after omitting terms that are known in period t. The first-order 

condition with respect to yω,t is 

 

Et [πω,t+1 + qω,t+1 − (1 + r)qω,t] 
 

 
  

  αA ∑ 
 
 

× exp −
α + A 

 
 

ω∈Ωi,t 

yω,t [πω,t+1 + qω,t+1 − (1 + r)qω,t] + ui,tϵi,t+1  
 
= 0. (B.11) 

 
Eq. (B.8) that characterizes equilibrium prices can be written as 

 
{ 

Et [πω,t+1 + qω,t+1 − (1 + r)qω,t] exp 

( 
αA 

)} 

−
α + A 

(yi,t + ui,t)ϵi,t+1 

 

= 0. (B.12) 
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Eqs. (B.11) and (B.12) imply that if positions in the contracts satisfy 

 
∑ 

ω∈Ωi,t 

yω,t [πω,t+1 + qω,t+1 − (1 + r)qω,t] = yi,tϵi,t+1 + Gt, (B.13) 

 

where Gt is known in period t, then they are optimal because the first-order condition (B.11) is 

met. Positions satisfying (B.13) are not unique, and we present one implementation at the end of 

this proof. Eq. (B.13) implies that the dynamics of wealth of i-investors are the same as in Section 

3.2. Indeed, multiplying (B.12) by yω,t and summing across ω ∈ Ωi,t, we find 

 
 

Et 

 ∑ 

ω∈Ωi,t 

 

yω,t [πω,t+1 + qω,t+1 − (1 + r)qω,t] exp 

( 
αA 

−
α + A 

 
(yi,t + ui,t)ϵi,t+1 

)
  
= 0. (B.14) 

 

 

Moreover, the maximization in (A.16) implies that 

 
{ 

Et yi,t (Φi,t + ϵi,t+1) exp 

( 
αA 

)} 

−
α + A 

(yi,t + ui,t)ϵi,t+1 

 

= 0. (B.15) 

 

Substituting 
∑

ω∈Ωi,t 
yω,t [πω,t+1 + qω,t+1 − (1 + r)qω,t] from (B.13) into (B.14), and comparing with 

(B.15), we find Gt = Φi,t. Substituting Gt = Φi,t into (B.13), we find that budget constraint (B.5) 

of i-investors becomes identical to the budget constraint (14) in Section 3.2. Since the dynamics of 

the wealth of i-investors are the same as in Section 3.2, the conjectured value function (15) satisfies 

the Bellman equation. 

We next study optimization by arbitrageurs. We proceed in two steps: in Step 1 we show that 

the dynamics of arbitrageur wealth are deterministic, and in Step 2 that they are as in Section 3.2. 

Step 1: To show deterministic dynamics, we show that if arbitrageurs choose in period t a 

portfolio of contracts whose aggregate payoff in period t + 1 is risky, then there exists another 

portfolio that is riskless and has a return that is at least as high as the expected return of the 

risky portfolio. We construct a “dominant” riskless portfolio for each market i separately, and then 

aggregate across markets. From the budget constraint (B.6), the (excess) return that arbitrageurs 

earn on their portfolio of contracts in market i is 

 
∑ 

ω∈Ωi,t 

xω,t [πω,t+1 + qω,t+1 − (1 + r)qω,t] . (B.16) 
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Consider first a market i without an endowment shock, i.e., ui,t = 0.  Since Zi,t = 0, (B.8) 

implies that 

 

qω,t = 
Et (πω,t+1 + qω,t+1|ϵi,t+1 = ϵi) + Et (πω,t+1 + qω,t+1|ϵi,t+1 = −ϵi) = 

2(1 + r) 

Et (πω,t+1 + qω,t+1) 
,
 

1 + r 
 

and hence the expected return in (B.16) is zero.  A dominant riskless portfolio is one with zero 

positions. 

Consider next a market i with an endowment shock. If the expected return in (B.16) is non- 

positive, then a dominant riskless portfolio is one with zero positions. If the expected return in 

(B.16) is positive, then we will construct a dominant riskless portfolio that involves positions in 

markets i and −i. As an intermediate step in this construction, we show that the original risky 

portfolio has the same expected return and ties up the same amount of arbitrageur wealth as a unit 

long position in a single contract ω̂i that is traded in market i and has binary payoffs. The payoffs 

of ω̂i are 
 

 

Et 
 
∑ 

ω∈Ωi,t 

 

   

  
xω,t (πω,t+1 + qω,t+1) ϵi,t+1 = ϵi 

  
  

  

 

 + (1 + r)v 

 
 

 
 

i,t 

 

≡ Qi,t+1 + (1 + r)v 
 
i,t, 

Et 
 
∑ 

ω∈Ωi,t 

     
xω,t (πω,t+1 + qω,t+1) ϵi,t+1 = −ϵi 

  
  

 + (1 + r)v i,t ≡ Q
i,t+1 

+ (1 + r)v 
 
i,t, 

 

in period t + 1 and states ϵi,t+1 = ϵi and ϵi,t+1 = −ϵi, respectively, and zero afterwards. The price 

of ω̂i in period t is 
 

exp(−Zi,t) 
[
Qi,t+1 + (1 + r)vi,t

] 
+ exp(Zi,t) 

[ ] 

Q
i,t+1 

+ (1 + r)vi,t 

 

= 
∑ 

ω∈Ωi,t 

 

 
xω,t 

(1 + r) [exp(−Zi,t) + exp(Zi,t)] 

exp(−Zi,t)Et (πω,t+1 + qω,t+1|ϵi,t+1 = ϵi) + exp(Zi,t)Et (πω,t+1 + qω,t+1|ϵi,t+1 = −ϵi) 

(1 + r) [exp(−Zi,t) + exp(Zi,t)] 

 
 

+ vi,t 

 

= 
∑ 

ω∈Ωi,t 

xω,tqω,t + vi,t 

 

≡ Qi,t + vi,t, 

 
where the first step follows from (B.8), the second by using the definitions of (Qi,t+1, Qi,t+1

) and 

rearranging terms, and the third from (B.8). Therefore, the wealth Qi,t + vi,t that arbitrageurs tie 
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up in market i is the same as under the original risky portfolio. The expected return from buying 

ω̂i is 
 

1 [
Q

 

2 

 
i,t+1 + (1 + r)v 

 

i,t 

] 
+ 

1 [
Q 

2 

 

i,t+1 
+ (1 + r)v 

 

i,t 

] 

− (1 + r) (Q 

 

i,t + vi,t) 

1 (   

= 
2  

Qi,t+1 + Q 

[ 
1

 

) 

i,t+1 
− (1 + r)Qi,t 

] 

= 
∑ 

ω∈Ωi,t 

xω,t 

2 
[Et (πω,t+1 + qω,t+1|ϵi,t+1 = ϵi) + Et (πω,t+1 + qω,t+1|ϵi,t+1 = −ϵi)] − (1 + r)qω,t 

 

= 
∑ 

ω∈Ωi,t 

xω,tEt [πω,t+1 + qω,t+1 − (1 + r)qω,t] , 

 

 
 

where the third step follows from the definitions of (Qi,t, Qi,t+1, Qi,t+1
). The expected return from 

buying ω̂i is thus the same as under the original risky portfolio. To complete the analysis of ω̂i, we 

must show that it is a proper contract in the sense that its payoffs are non-negative. Multiplying 

(B.4) by −x̂ω,t for those ω ∈ Ωi,t for which x̂ω,t < 0, and summing across ω, we find 
 

∑ 
 

ω∈Ωi,t 

x̂ω,t<0 

(−x̂ω,t)(πω,t+1 + qω,t+1) 

 

≤ (1 + r)  
∑

 

ω∈Ωi,t 

(−x̂ω,t)ψω,t + 
∑

 

ω∈Ωi,t 

∑ 
 

ω′∈Ωi,t 

(−x̂ω,t)ψω,ω′,t(πω ′,t+1 + qω′,t+1) 

x̂ω,t<0 x̂ω,t<0  ℓ(ω,t)>ℓ(ω′,t) 

 

= (1 + r)vi,t +  
∑

 

ω′∈Ωi,t 

∑ 

 
ω∈Ωi,t 

ℓ(ω,t)>ℓ(ω′,t) and x̂ω,t<0 

(−x̂ω,t)ψω,ω′,t(πω ′,t+1 + qω′,t+1) 

 

= (1 + r)vi,t +  
∑

 

ω′∈Ωi,t 

 
c 
ω′,t (πω′,t+1 + qω′,t+1), (B.17) 

 

where the second step follows from (B.1) and the third from (B.2). Eq. (B.17) implies that 
 

∑ 
(−x̂ω,t)(πω,t+1 + qω,t+1) ≤ (1 + r)vi,t + 

∑
 

 

c 
ω,t (πω,t+1 + qω,t+1) 

ω∈Ωi,t 

⇒ (1 + r)vi,t + 
∑

 

ω∈Ωi,t 

ω∈Ωi,t 

xω,t(πω,t+1 + qω,t+1) ≥ 0. (B.18) 

 
 

 

Taking expectations in (B.18) conditional on ϵi,t+1 = ϵi and ϵi,t+1 = −ϵi, we find that Qi,t+1 + (1 + 

r)vi,t and Q
i,t+1 

+ (1 + r)vi,t, respectively, are non-negative. 

x 

x 
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i,t i,t 

   

We next combine the unit long position in the contract ω̂i with a unit short position in a contract 

ω̂−i that is traded in market −i, has the same payoffs as ω̂i, and is collateralized with v−i,t units 

of the riskless asset. The price of ω̂−i in period t is 
 

exp(−Z−i,t) 
[
Qi,t+1 + (1 + r)vi,t

] 
+ exp(Z−i,t) 

[ ] 

Q
i,t+1 

+ (1 + r)vi,t 

(1 + r) [exp(−Z−i,t) + exp(Z−i,t)] 

exp(Zi,t)Qi,t+1 + exp(−Zi,t)Qi,t+1
 

= 
(1 + r) [exp(Z ) + exp(Z )] 

+ vi,t
 

 
 Qi,t+1 + Q

i,t+1 

= 
1 + r 

− Qi,t + vi,t 

 

≡ Q−i,t + vi,t, (B.19) 

 

where the first step follows from (B.8), the second because Z−i,t = −Zi,t, and the third from the 

definition of Qi,t. The wealth that arbitrageurs tie up in market −i is 

 

−(Q−i,t + vi,t) + v−i,t 

 
and is equal to the wealth that they tie up in market i if 

 
v−i,t = Qi,t + Q−i,t + 2vi,t. (B.20) 

 
The expected return from shorting ω̂−i is 

 

1 [   ] 1 [ ] 

− 
2  

Qi,t+1 + (1 + r)vi,t  − 
2

 Q
i,t+1 

+ (1 + r)vi,t + (1 + r) (Q−i,t + vi,t) 

1 ( ) 

= − 
2
 

Qi,t+1 + Q
i,t+1 + (1 + r)Q−i,t 

1 (   

= 
2  

Qi,t+1 + Q 

) 

i,t+1 
− (1 + r)Qi,t, 

 

where the third step follows from the definition of Q−i,t. Therefore, the expected return of the 

short position in ω̂−i is the same as that of the long position in ω̂i. To complete the analysis of 

ω̂−i, we must show that arbitrageurs do not default on their short position. Eq. (B.4) implies that 
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i 

i 

i 

default does not occur if 

max{Qi,t+1, Qi,t+1
} + (1 + r)vi,t ≤ (1 + r)v−i,t 

⇔ max{Qi,t+1, Qi,t+1
} ≤ (1 + r) (Qi,t + Q−i,t + vi,t) 

⇔ max{Qi,t+1, Qi,t+1
} ≤ Qi,t+1 + Q

i,t+1 
+ (1 + r)vt, (B.21) 

 
where the second step follows from (B.20) and the third from the definition of Q−i,t. Eq. (B.21) 

holds because the payoffs Qi,t+1 + (1 + r)vi,t and Q
i,t+1 

+ (1 + r)vi,t of ω̂i are non-negative. 

The riskless portfolio that dominates the original risky portfolio in market i consists of a half- 

unit long position in ω̂i and a half-unit short position in ω̂−i. Since a unit long position in ω̂i and 

a unit short position in ω̂−i each has the same expected return as the original risky portfolio, the 

combination of two half-unit positions also has the same expected return. The same applies to the 

amount of arbitrageur wealth that is tied up: it is the same under the combination of two half-unit 

positions as under the original risky portfolio. Therefore, the arbitrageurs’ financial constraint is 

still met. Finally, the portfolio is riskless because ω̂i and ω̂−i have the same payoffs. 

Step 2: From Step 1, we can assume that the portfolio of arbitrageurs in period t is as follows: 

(i) in each market i with ui,t > 0, arbitrageurs hold a long position in a contract with one-period 

payoffs, (ii) in each market −i with ui,t < 0, arbitrageurs hold a short position of the same size as in 

market i and in a contract with the same payoffs, (iii) the payoffs of the contracts in markets i and 

−i are binary and contingent on ϵi,t+1, (iv) the short position in market −i is collateralized with 

an investment in the riskless asset such that the arbitrageur wealth tied up in market −i equals 

that in market i, (v) in each market i with ui,t = 0, arbitrageurs hold a zero position. 

Since the long position in the contract traded in each market i with ui,t > 0 must have positive 

expected return, (B.8) implies that the contract must have larger payoff when ϵi,t+1 = ϵi than when 

ϵi,t+1 = −ϵi. Moreover, we can take the payoff when ϵi,t+1 = −ϵi to be zero since the contract 

price would then be lower, and hence arbitrageurs would be able to tie up less wealth in their long 

position in market i. We normalize the payoff when ϵi,t+1 = ϵi to 2ϵi, and denote by ω′ the contract 

in market i and by ω′ 

− 
the contract in market −i. We also denote by xi,t the number of units of 

the long position in ω′ and of the short position in ω′ , by qi,t the price of ω′, and by q−i,t the price 
i 

of ω′  . 
− 

−i i 
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q = q  . 

i,t 

The budget constraint (B.6) of arbitrageurs can be written as 

Wt+1 = (1 + r)Wt + (1 + r) 
∑ 

xi,t(q−i,t − qi,t) − ct+1 

i∈At 

= (1 + r)Wt + 2 
∑ 

xi,t [ϵi − (1 + r)qi,t] − ct+1, (B.22) 

i∈At 

 
where the second step follows because the same calculations as in (B.19) imply that 

 
  2ϵi   

−i,t 1 + r 
− i,t 

 

Since arbitrageurs must tie up wealth xi,tqi,t in each of markets i and −i, their financial constraint 

(B.3) becomes 
 

Wt ≥ 2 
∑ 

xi,tqi,t. (B.23) 

i∈At 

 
Eqs. (B.22) and (B.3) become identical to (27) and (32), respectively, by setting 

Φi,t  ≡ ϵi − (1 + r)qi,t. 

Because of this equivalence, if the dynamics of Φi,t are as in Section 3.2, then arbitrageurs’ optimal 

positions xi,t and the dynamics of their wealth are also as in that section. Using (B.8) to substitute 

for qi,t, we find 

 

      2 exp(−Zi,t)ϵi       exp(Zi,t) − exp(−Zi,t) 
Φi,t = ϵi − 

exp(−Z ) + exp(Z 
 

i,t 

= ϵi 

) exp(−Zi,t ) + exp(Z 
. 

i,t) 

 

This coincides with Φi,t  given by (25) when ϵi,t+1  has a binomial distribution.   Therefore, ar- 

bitrageurs’ optimal positions xi,t  and the dynamics of their wealth are the same as in Section 

3.2.  Eq. (B.13) implies that the optimal positions of i-investors are yi,t, as in Section 3.2.  Since 

µiyi,t + xi,t = 0, markets clear. 
 

An alternative implementation of the equilibrium derived in Proposition B.1 is through the 

contracts assumed in Section 2. Two contracts are traded in market i. The first is asset i, with 

short positions in that contract being collateralized by the riskless asset. The second is a contract 

with a riskless payoff, with short positions in that contract being collateralized by asset i. The 

first contract is level 1, and the second is level 2. The collateral for each contract is the minimum 
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−i 

i 

required so that the no-default condition (B.4) is met. A short position of arbitrageurs in the first 

contract, combined with the required collateral, yields zero if ϵt+1  = ϵi and 2ϵi if ϵt+1  = −ϵi.  A 

short position of arbitrageurs in the second contract, combined with the required collateral, yields 

2ϵi if ϵt+1 = ϵi and zero if ϵt+1 = −ϵi. The former is equivalent to the short position in ω′ , and 

the latter is equivalent to the long position in ω′. 
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