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A Tale of Two Indexes: Predicting Equity
Market Downturns in China

Sébastien Lleo*and William T. Ziembal

Abstract

Predicting stock market crashes is a focus of interest for both
researchers and practitioners. Several prediction models have been
developed, mostly for use on mature financial markets. In this pa-
per, we investigate whether traditional crash predictors, the price-to-
earnings ratio, the Cyclically Adjusted Price-to-Earnings ratio and
the Bond-Stock Earnings Yield Differential model, predict crashes
for the Shanghai Stock Exchange Composite Index and the Shenzhen
Stock Exchange Composite Index. We also constructed active invest-
ment strategies based on these predictors. We found that these crash
predictors have predictive power and the active strategies delivered
lower risk and higher risk-adjusted return than a simple buy and hold
investment.

JEL: G14, G15, G12, G10.
EconLit Subject Descriptors: G140, G150, G120, G100.
Keywords: stock market crashes, Shanghai Stock Exchange, Shenzhen

stock exchange, Bond-Stock Earnings Yield Differential (BSEYD), price-
earnings-ratio, Cyclically-Adjusted Price Earnings ratio (CAPE).

1 Introduction

The Chinese stock market is one of the most interesting equity markets in
the world by its size, scope, structure and recency. These features have a
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deep influence on its behavior and returns, including on the occurrence of
rare events, in particular stock market crashes and downturns. In fact, the
“2015 Chinese stock market crash” is just the latest in a series of 22 major
downturns in a twenty-six years history.

The academic literature on bubbles and crashes is well established, start-
ing with studies on bubbles by Blanchard and W
1198§!, Camereﬂ( !983), Allen and Gorton (1993),
Abreu and Brunnermeier (2003) and more recently Corgnet et al! (2015), |Ani
drade et al] (2016) or Satd ( 201d). A rich literature on predictive models has
also emerged. We can classify bubble and crash prediction models in three
broad categories, based on the type of methodology and variable used: fun-
damental models, stochastic models and sentiment-based models.

Fundamental models use fundamental variables such as stock prices, cor-
porate earnings, interest rates, inflation or GNP to forecast crashes. The
Bond-Stock Earnings Differential (BSEYD) measure (lZiemba and Schwartz],
1991; tLleo and Ziemba, |2012, @[ 017) is the oldest model in this category,
which also includes the CAPE (Lleo and Ziemba|, |2017) and the ratio of the
market value of all publicly traded stocks to the current level of the GNP
(MV/GNP) that Warren Buffett popularized (IBuﬁ“ett and Loomié, |1999L
2001; Lleo and Ziemba, 2018).

Stochastic models construct a probabilistic representation of the asset
prices, either as a discrete or continuous time stochastic process. Exam-
ples include the local martingale model proposed by Jarrow and Protter
(lJarrOW et alJ, tZOllaI; |Jarrow|, EOlQi; |Jarrow et a1.|, 2011b|,H), the disorder de-
tection model proposed by Shiryaev, Zhitlukhin and Ziemba (Shiryaev an
@itlukhi 012 ,Q; Bhiryaev et al], |20147 l2(]_15) and the earthquake model
of Gresnigt et al| (2015). When it comes to actual implementation, the local
martingale model and the disorder detection model share the same starting
point: they assume that the evolution of the asset price S(t) can be best
described using a geometric Brownian motion:

dS(t) = u(t, S(t))S(t)dt + o(t,S(t))S(t)dW (t), S(0) = so,t € RT

where W (t) is a standard Brownian motion on the underlying probability
space. However, the two models look at different aspects of the evolution.
The disorder detection model detects crashes by looking for a change in
regime in the drift p and volatility o. The local martingale model detects
bubbles by testing whether the volatility o is a local martingale or a strict



martingale. In contrast, the earthquake model uses a jump-diffusion process
and has a shorter forecasting horizon: 5 trading days. Gresnigt et al) (2015)
implement the Epidemic-type Aftershock Sequence model (ETAS) geophysics
model proposed by Ogata (1988), based on an Hawkes process, a type of in-
homogeneous point process.

Behavioral models look at crashes in relation to market sentiment and
behavioral biases. Goetzmann et al| (2016) use surveys of individual and in-
stitutional investors, conducted regularly over a 26 year period in the United
States, to assess the subjective probability of a market crash and investigate
the effect of behavioral biases on the formulation of these subjective prob-
abilities. This research takes its roots in recent efforts to measure investor
sentiment_on financial markets (Fisher and Statman, 2000, 2003; Baker and
Wurgler, 2006) and identify collective biases such as overconfidence and ex-
cessive optimism (Barone-Adesi et all, 2013).

Bubble and crash prediction models have a well documented track record
of anecdotal successes on particular events, but until recently no systematic
statistical methodology existed to test empirically their predictive ability
(Lleo and Ziemba, 2017). In this paper, we test statistically the ability of
the three main fundamental models - the BSEYD, P/E ratio and CAPE - to
predict stock market downturns on Chinese markets. We leave aside Warren
Buffett’s ratio of the market value of all publicly traded stocks to the cur-
rent level of the GNP (MV/GNP) simply because this measure cannot be
computed frequently enough to provide a meaningful sample of data in the
context of Chinese markets.

We choose to focus on the Chinese stock market, and more precisely
on the two leading indexes - the Shanghai Stock Exchange Composite In-
dex (SHCOMP) and the Shenzhen Stock Exchange Composite Index (SZE-
COMP) - because the Chinese stock market is arguably one of the most
interesting equity markets in the world by its sheer size, scope, structure
and recency. These features have a deep influence on its behavior and re-
turns, including the occurrence of rare events such as stock market crashes
and downturns. These characteristics make Chinese markets a particularly
challenging and insightful testing environment for fundamental models that
have, by and large, been designed using data from established Western eq-
uity markets. In the process, we gain new insights into both the statistical
behavior of the Chinese market and the relevance of crash prediction models.



2 A Brief Overview of the Chinese Stock Mar-
ket

Mainland China has two main stock exchanges, the Shanghai Stock Exchange
(SSE) and the Shenzhen Stock Exchange (SZSE). The Shanghai Stock Ex-
change is the larger of the two. With an average market capitalization of
USD 3.715 billion over the first half of 2016, it is the fourth largest stock
market in the world®. The modern Shanghai Stock Exchange came into exis-
tence on November 26, 1990 and started trading on December 19, 1990. The
Shenzhen Stock Exchange was founded on December 1, 1990, and started
trading on July 3, 1991. While the largest and most established companies
usually trade on the Shanghai Stock Exchange, the Shenzhen Stock Exchange
is home to smaller and privately-owned companies.

With an average market capitalization of USD 6.656 billion over the first
half of 2016, the Shanghai and Shenzhen Stock Exchanges taken together
represent the third largest stock market in the world after the New York
Stock Exchange at USD 17.970 billion, and the NASDAQ at USD 6.923 bil-
lion, and before 4th place Japan Exchange Group at USD 4.625 billion and
fiftth place LSE Group at USD 3.598 billionk.

On November 17, 2014, the Chinese government launched the Shanghai-
Hong Kong Stock Connect to enable investors in either market to trade shares
on the other market. The Hong Kong Exchanges and Clearing is currently
the 8th largest exchange in the world with an_average market capitalization
of USD 2.932 Billion over the first half of 20168, This announcement was fol-
lowed by the creation of a Shenzhen-Hong Kong link on August 16th, 2016.
These initiatives herald a closer integration between securities markets in
China and further boosts the rapid development of the Chinese market.

Chinese companies may list their shares under various schemes, either
domestically or abroad. Domestically, companies may issue:

e A-shares: common stocks denominated in Chinese Reminbi and listed
on the Shanghai or Shenzhen stock exchanges.

o B-shares: special purpose shares denominated in foreign currencies but

!Source: The World federation of Exchanges, http://www.world-exchanges.org/
home/index.php/statistics/monthly-reports retrieved on September 13th, 2016

2Source: ibid

3Source: ibid
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listed on the domestic stock exchange. Until 2001, only foreign in-
vestors had access to B-shares.

In addition to B-shares, foreign investors interested in the Chinese equity
market may buy:

o H-shares: shares denominated in Hong Kong Dollars and traded on the
Hong Kong Stock Exchange.

o L-chips, N-chips and S-chips: shares of companies with significant op-
erations in China, but incorporated respectively in London, New York
and Singapore.

o American Depository Receipts (ADRs): an ADR is a negotiable certifi-
cate issued by a U.S. bank representing a specified number of shares in
a foreign stock traded on an American exchange. As of October 2015,
there were about 110 Chinese ADRs listed on American exchanges and
another 200 Chinese ADRs on American over-the-counter markets.

The diversity of investment schemes available shows that although the
Shanghai and Shenzhen Stock Exchange are a large and crucial part of the
Chinese equity market, they do not represent the whole market. For example,
there are also red chips (shares of companies incorporated outside mainland
China but owned or substantially controlled by Chinese state-owned com-
panies) and P-chips (shares of companies owned by private individuals and
traded outside mainland China, for example on the Hong Kong stock ex-
change).

Our study focuses on equity market downturns on the Shanghai and Shen-
zhen Stock Exchanges.

3 Six Main Stylized Facts

The unique history and structure of the Chinese stock markets has a direct
effect on the behaviour and statistical properties of the two leading equity
indexes: the SHCOMP and SZECOMP. The SHCOMP and SZECOMP are
market capitalization weighted indexes of shares listed respectively on the
SSE and SZSE, respectively. In August 2016, the SHCOMP SZECOMP
consisted of the shares of 1,155 and 478 Chinese companies.



We observe and discuss six main stylized facts on the historical distribu-
tion of daily log returns on the SHCOMP and SZECOMP. Collectively, these
stylized facts indicate that the SHCOMP and SZECOMP behave differently
from the mature equity markets in Europe and North America.

3.1 Stylized Fact 1: The return distribution is highly
volatile, right skewed with very fat tails

The daily log return on the SHCOMP from December 20, 2017 until June
30, 2016 averaged 0.0541%, with a median return of 0.0693%. The lowest
and highest daily returns were respectively -17.91% and +71.92%. Table m
also gives the corresponding statistics at a weekly and monthly frequency.
The returns are highly volatile: the standard deviation of daily returns is
2.40%, equivalent to around 40 times the mean daily return. The distribu-
tion of daily returns is positively skewed (skewness = 5.26) with surprisingly
fat tails (Kurtosis = 149). As a result, the Jarque-Bera statistic is 5,419,808,
rejecting normality at any level of significance. The Jarque-Bera statistic
also leads to a strong rejection of normality for weekly and monthly data.
The aggregational gaussianity, the tendency for the empirical distribution of
log-returns to get closer to normality as the time scale At over which the
returns are calculated increases, is much weaker on the SHCOMP and SZE-
COMP than on the S&P500 where Cont (2001) initially documented it.

We make similar observations on the SZECOMP. Table m shows that over
the entire period, the daily log return on the SZE averaged 0.04784%, with a
median return of 0.05933%. The lowest and highest daily returns were respec-
tively -23.36% and +27.11%. Here as well, the returns are highly volatile:
the standard deviation of daily returns is 2.28%, equivalent to around 50
times the mean daily return. The distribution of daily returns has a mildly
positive skewness (skewness = 0.3517) and very fat tails (Kurtosis = 17).
The Jarque-Bera statistic for the SZECOMP still reaches 52,879. The test
leads to a rejection of normality at any level of significance not only for daily
data, but also for weekly and monthly data.

3.2 Stylized Fact 2: The SHCOMP and SZECOMP do
not exhibit a strong dependence structure

We turn our attention to the joint behavior of the SHCOMP and SZECOMP
during the period from April 4, 1991 to June 30, 2016 (6,170 daily observa-



Descriptive Statistics SHCOMP SZECOMP

Daily ‘ Weekly ‘ Monthly Daily ‘ Weekly ‘ Monthly
Number of observations 6,242 | 1,318'] 308 | 6,235 | 1,291 | 302 |
Mean 0.0541% 0.2497% 1.0326% 0.04784% 0.2345% 1.0644%
Median 0.0693% 0.0652% 0.7122% 0.05933% 0.1938% 0.8864%
Minimum -17.9051% -22.6293% -37.3283% -23.3607% -33.5690% -31.2383%
Maximum 71.9152% 90.0825% 101.9664% 27.2210% 51.9035% 60.9060%
Standard deviation 2.3848% 5.5872% 12.8898% 2.2808% 5.1795% 11.5411%
Variance 0.000569 0.000031 0.000166 0.000520 0.002683 0.013320
Skewness 5.1837 5.3543 2.3414 0.3517 1.2229 0.8724
Kurtosis 148.5003 78.5864 20.7742 17.2496 17.2522 6.6661
Jarque-Bera statistics 5,534,005 320,053 4,336 52,879.47 11,248.32 207.43
(p-value) (<22e—16) | (<2.2e—16) | (<22e—16) | (<2.2e—16) | (< 2.2e —16) | (< 2.2e —16)

Table 1: Descriptive statistics for daily, weekly and monthly log
returns on the SHCOMP and SZECOMP

tions). We compute the Pearson linear correlation, Spearman’s rho (rank
correlation) and Kendal’s tau of the daily log returns. While the Pearson
linear correlation measures the strength of the linear dependence of two data
series, Spearman’s tho computes the correlation between data of the same
rank, and Kendal’s Tau measures the distance between two ranking lists
based on pairwise disagreements. Spearman’s rho and Kendall’s tau are non
parametric: they do not require any assumption on the underlying distribu-
tion. At 0.6801, 0.7922 and 0.6443 respectively, the Pearson linear correla-
tion, Spearman’s rho and Kendall’s Tau are all statistically different from
0. However, neither of them is close to 1. In fact, the statistical association
between the SHCOMP and the SZECOMP is noticeably weaker than, for
example, the association between the S&P500 and the NASDAQ. Over the
same period, the two US indices had respective Pearson linear correlation,
Spearman’s tho and Kendall’s Tau of 0.8742, 0.8592 and 0.6884.

3.3 Stylized Fact 3: The tail behavior of the SHCOMP
and SZECOMP can be modeled using a General-
ized Pareto Distribution

Extreme Value Theory (EVT) is the method of choice to uncover the statis-
tical properties of rare events. We analyze the tail behavior of the SHCOMP
and SZECOMP. We refer the reader to Coled (2001) for a concise and clear
introduction to EVT and to Embrechts et al, (2011)) for a thorough tour of
the subject.



Here, we apply EVT to the loss distribution, which we define as the
negative of the probability distribution of returns, meaning that if a stock
index returns -1.5% on a given day, the associated loss will be 1.5%. We
focus on the tail behavior, identified as the loss above a given threshold u,
that we will determine during our analysis. Let X be the random variable
representing the loss, and let F' be its cumulative density function. Then the
cumulative density function of the loss in excess of u is:

F(u+y)— F(u)
1—F(u) 7’

F,(yy=P(X —u<y|X >u) =

for 0 <y < xp — u, where xp is the right endpoint of F.

Theorem 3.1 (Pickands-Balkema-de Haan (PBH) (Pickands, 1975; Balkema
and de Haan, 1974)). For a large class of distribution functions F', and for
u large enough, we can approzimate the conditional excess distribution F,(y)
by a Generalized Pareto Distribution (GPD) G, that is:

_ [
Fuly) ~ Geoly), where GW):{ - (e e 0

fory in[0,xp —u] if £ >0 andy € [07—%} if € <0.

The parameters ¢ and & are respectively the scale and shape parameter

of the GPD.

There is no firm rule governing the choice of threshold w. This choice
of threshold must achieve a trade-off. If u is to low then the PBH theorem
will not apply. If w is too high, then we will have too few observations to
estimate the parameters of the GPD accurately. For example, we have 6,242
daily return observations for the SHCOMP, out of which 2,851 correspond
to negative returns (i.e. positive loss). We still have 716 observations at
a threshold of 2%, and 128 at a threshold of 5% but only 48 at 7%. The
situation is similar on the SZECOMP. A popular method to determine u
consists in plotting the sample mean excess loss against the threshold u, and
picking the threshold u such that the sample mean excess loss is broadly
linear for v > w. Figure [ll displays the excess loss against threshold for
both the SHCOMP and SZECOMP. For the SHCOMP, we observe that the
sample mean excess loss against the threshold becomes broadly linear in the
threshold u starting at about u = 4%. At that level, we still have 211 obser-
vations to fit the Generalized Pareto distribution. For the SZECOMP, the
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SHCOMP SZECOMP
Threshold 1 6
Number of observations 211 85
Scale parameter (standard error)  1.8214 (0.1821) 1.7141 (0.2829)
Shape parameter (standard error) 0.1292 (0.0731) 0.2176 (0.1266)
AIC 734 303
BIC 740 307

Table 2: Parameters of the Generalized Pareto distribution fitted to the tail
of the SHCOMP and SZECOMP. The estimation is performed via maximum

likelihood against 100x the loss to improve numerical stability.

post suggests choosing v = 6%, which leaves us with 85 observations to fit
the distribution.

Finally, we estimate the scale parameter o shape parameter £ of the GPD
using maximum likelihood. This estimation is performed against 100y, or
100 times the loss, in order to improve numerical stability. Table [ presents
the estimated parameters, standard error of estimates as well as the Akaike
Information Criterion (AIC) and the Bayesian Information Criterion (BIC)
for both indexes.

3.4 Stylized Fact 4: Log returns do not exhibit a sig-
nificant autocorrelation

Figures E show that the autocorrelation of daily log returns up to lag 20 are
in the interval [- 0.03, 0.06]. This suggests that neither indexes exhibits a
short-term memory: today’s return does not help forecast tomorrow’ s re-
turn. An analysis of the PACF leads to similar conclusions.
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3.5 Stylized Fact 5: A Gaussian Hidden Markov Chain
provides a good probabilistic description of the
evolution of log returns... but we need between
five and six states.

Stylized Fact 1 indicates that the distribution of log returns is skewed with
fat tails, while Stylized Fact 2 supports the use of a Markov model to de-
scribe the probabilistic behavior of the log returns on the SHCOMP and
SZECOMP. We look for a simple discrete-time Markov Model able to de-
scribe the probabilistic behavior and the evolution of log returns.

A good starting point is to look at Hidden Markov Models (HMMs).
HMDMs are a useful way to model the behavior of a physical or economic
system when we suspect that this behavior is determined by the transition
between a finite number of unobservable “regimes” or “states.” We refer the
reader to the excellent presentation of HMMs in Rabiner (1989) and Rabiner
and Juang ([1993).

The simplest, and often the best, HMM models are Gaussian Hidden
Markov Chains. In these models, the returns in each state are conditionally
normally distributed. The parameters of each normal distribution are spe-
cific to that state. As the state transitions over time, the returns are drawn
from different normal distributions, resulting in an aggregate distribution
that bears little resemblance to a normal distribution. Gaussian HMMs are
estimated via the Baum-Welch algorithm (Baum et al}, 1970), an application
of the well-known EM algorithm (see Dempster et all, 1977)).

One of the difficulties is to find the optimal number of states for the
model. To that end, it is customary to use an information criterion such as
the AIC or the BIC to discriminate between model formulations. The optimal
model minimize the absolute value of the information criterion. Contrary to
the LogLikelihood, the AIC and BIC penalize the model for the number of
parameters used. This penalty is stiffer in the BIC than in the AIC.

Tables H present the Loglikelihood, AIC and BIC for HMMs with one to
seven states, fitted respectively on the SHCOMP and the SZECOMP. We
performed the numerical procedure using the depmizS4 package in R. For
the SHCOMP, we find that the optimal model specification, the specifica-
tion that minimizes the AIC and BIC, is a six-state model, while the optimal
model for the SZECOMP is a slightly more parsimonious, but still large,
five-state model. By contrast, a two or three-state model usually proves ad-

12



1 2 3 4 5 6 7
SHCOMP
LogLikelihood 14,464 16,514 16,827 16,887 16,895 17,183 17,194
AIC -28924 -33,013 -33,625 -33,728 -33,723 -34,273 -34,265
BIC -28,910 -32,966 -33,531 -33,573 -33,494 -33,956 -33,847
Number of parameters 2 7 14 23 34 47 62
SHCOMP
LogLikelihood 14,726 16,053 16,225 16,298 16,331 16,346 16,389
AIC -29,447 -32,091 -32,422 -32,550 -32,593 -32,598 -32,653
BIC -29,434 -32,044 -32,328 -32,395 -32,364 -32,598 -32,235
Number of parameters 2 7 14 23 34 47 62
Table 3: Hidden Markov Model fitting for the daily log returns on the

SHCOMP and SZECOMP

State Initial Probability Mean Standard Deviation
1 0.00 -1.0996% 1.4419%
2 0.00 1.6517% 9.5992%
3 0.00 0.3433% 1.0724%
4 0.00 0.2015% 2.0513%
5 1.00 -0.1354% 0.7037%
6 0.00 0.1464% 3.6882%

Table 4: Initial probability and parameters of the Gaussian distributions for
each state of the HMM

equate for mature indexes such as the S&P 500.

The transition probability matrix Psgzconp for the SHCOMP is

7.2689¢ — 01 4.3972e — 175 2.6749¢ — 231  2.7311le — 01 6.2691e — 303 2.3976e — 220
2.5311e — 04 9.388le — 01 2.2433e — 58 3.8282¢e — 02  2.0163e — 05  2.2637e — 02
2.5622e — 202 1.2809¢ — 90  8.6320e — 01 1.4495e¢ — 117  5.2279¢ — 33  1.3680e — 01
8.5411e — 03  1.1560e — 01  9.9862e — 04 8.7043e — 01  5.1730e — 27  4.4282e — 03
3.6201e — 127  2.5515e — 02 4.1153e — 22  1.6460e — 15 5.2982e — 01  4.4466e — 01
2.3777e — 115 6.5345e — 06  1.1122e — 02  2.8003e —47 7.5704e — 01  2.3184e — 01

The initial probability and the parameters of the normal distribution for
each state are given in Table @.

13



State Initial Probability Mean Standard Deviation

1 0.00 -1.2627% 1.5456%
2 1.00 -0.0750% 0.7600%
3 0.00 0.1433% 7.1826%
4 0.00 0.3734% 1.2108%
3 0.00 0.1057% 2.7757%

Table 5: Initial probability and parameters of the Gaussian distributions for
each state of the HMM

The transition probability matrix Pszgconp for the SZECOMP is

2.9883e — 01 2.4262e — 16 1.1294e — 27 6.7930e — 01 2.1866e — 02
6.0465e — 02 9.3154e — 01 7.9941e — 03 1.1369e — 18 5.6279%e — 14
4.3118e — 16 1.7914e — 02 7.8243e — 01 3.960le — 62 1.9965e — 01
1.4320e — 01 2.6999e — 02 3.1915e — 03 8.1727e — 01 9.3390e — 03
1.3235e — 08 2.9150e — 03 1.8946e — 02 2.5725e¢ — 02 9.5241e — 01

The initial probability and the parameters of the normal distribution for
each state are given in Table §.

3.6 Stylized Fact 6: Downturns and large market move-
ments occur frequently

The return distribution of the SHCOMP has fat tails, which indicates that
extreme events are more likely to occur than a Normal distribution would
predict. Here, we focus on the large downward movements that occurred on

the SHCOMP and SZECOMP.

Earlier studies, such as Lleo and Ziemba (2015, 2017), defined an equity
market downturn or crash as a decline of at least 10% from peak to trough
based on the closing prices for the day, over a period of at most one year (252
trading days). We identify a correction on the day when the daily closing
price crosses the 10% threshold. The identification algorithm is as follows:

1. Identify all the local troughs in the data set. Today is a local trough if
there is no lower closing price within 430 business days.

2. Identify the crashes. Today is a crash identification day if all of the
following conditions hold:

14



(a) The closing level of the index today is down at least 10% from its
highest level within the past year, and the loss was less than 10%
yesterday;

(b) This highest level reached by the index prior to the present crash
differs from the highest level corresponding to a previous crash;

(c) This highest level occurred after the local trough that followed
the last crash.

The objective of these rules is to guarantee that the downturns we identify
are distinct. Two downturns are not distinct if they occur within the same
larger market decline. Although these rules might be argued with, they have
the advantage of being unambiguous, robust and easy to apply.

A total of 22 downturns occurred on the SHCOMP between December
19, 1990 and June 30, 2016. These downturns are presented in Table E On
average, the downturns lasted 163 days and had a 27.8% decline in the value
of the index. With 22 downturns in 25 years, the SHCOMP had as many
downturns as the S&P 500 over the 50 year period from January 31, 1964 to
December 31, 2014.

A total of 21 downturns occurred on the SZECOMP between April 3,
1991 and June 30, 2016. They are presented in Table B On average, the
downturns lasted 122 days and had a 26.4% decline in the value of the index.
While the number and magnitude of equity market corrections are compara-
ble between both indexes, we observe that downturns tend to last noticeably
longer on average on the Shanghai stock Exchange than on the Shenzhen
Stock Exchange.

Collectively, these stylized facts indicate that the SHCOMP and SZE-
COMP behave differently from the mature equity markets in Europe and
North America.

4 Methodology

4.1 Signal Construction

The construction process for the signal and hit sequence is crucial to ensure
that the crash prediction models produce out of sample predictions free from
look-ahead bias. It also eliminates data snooping by setting the parameters
ex ante, with no possibilities of changing them when we construct the hit
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Crash Peak Date SHCOMP In- Trough date SHCOMP Peak-to- Peak-to-
Identifica- dex at Peak Level at trough decline trough dura-
tion Date trough (%) tion (in
days)

1 1992-05-27 1992-05-25 1421.57 1992-11-17 393.52 72.3% 176

2 1993-02-23 1993-02-15 1536.82 1993-03-31 925.91 39.8% 44

3 1994-09-19 1994-09-13 1033.47 1995-02-7 532.49 48.5% 147

4 1996-08-26 1996-07-24 887.6 1996-09-12 757.09 14.7% 50

5  1996-11-6 1996-10-28 1022.86 1996-12-24 865.58 15.4% 57

6 1997-05-16 1997-05-12 1500.4 1997-09-23 1041.97 30.6% 134

7 1998-08-7 1998-06-3 1420 1998-08-17 1070.41 24.6% 5

8  1999-07-1 1999-06-29 1739.21 1999-12-27 1345.35 22.6% 181

9  2000-09-22 2000-08-21 2108.69 2000-09-25 1875.91 11% 35

10 2001-02-21 2001-01-10 2125.62 2001-02-22 1907.26 10.3% 43

11 2001-07-30 2001-06-13 2242.42 2002-01-22 1358.69 39.4% 223

12 2003-04-23 2002-07-8 1732.93 2003-11-18 1316.56 24% 498

13 2004-04-29 2004-04-6 1777.52 2004-09-13 1260.32 29.1% 160

14 2006-08-4 2006-07-11 1745.81 2006-08-7 1547.44 11.4% 27

15 2007-02-2 2007-01-24 2975.13 2007-02-5 2612.54 12.2% 12

16 2007-06-4 2007-05-29 4334.92 2007-07-5 3615.87 16.6% 37

17 2007-11-8 2007-10-16 6092.06 2008-11-4 1706.7 72% 385

18 2009-08-12 2009-08-4 3471.44 2009-08-31 2667.75 23.2% 27

19 2010-10-27 2009-11-23 3338.66 2011-01-25 2677.43 19.8% 428

20 2012-12-27 2012-03-2 2460.69 2013-06-27 1950.01 20.8% 482

21 2014-06-25 2013-09-12 2255.6 2014-06-25 2025.5 10.2% 286

22 2015-06-19 2015-06-12 5166.35 2015-08-26 2927.29 43.3% 75

Table 6:

The SHCOMP Index experienced 22 crashes between December
19, 1990 and June 30, 2016.

Crash Peak Date SZECOMP Trough date SZECOMP Peak-to- Peak-to-
Identifica- Index at Peak Level at trough decline trough dura-
tion Date trough (%) tion (in
days)

1 1992-06-3 1992-05-26 312.21 1992-06-16 233.73 25.1% 21

2 1993-03-5 1993-02-22 359.44 1993-07-21 203.91 43.3% 149

3 1996-05-10 1995-05-22 169.66 1996-08-26 152.55 10.1% 462

4 1996-09-10 1996-09-4 274.56 1996-12-24 242.01 11.9% 111

5 1997-05-16 1997-05-12 517.91 1997-09-23 312.73 39.6% 134

6 1998-07-6 1998-06-3 441.04 1998-08-18 317.1 28.1% 76

7 1999-07-1 1999-06-29 525.14 1999-12-27 395.69 24.7% 181

8 2000-09-25 2000-08-21 643.77 2000-09-25 578.76 10.1% 35

9  2001-02-8 2000-11-23 654.37 2001-02-22 568.26 13.2% 91

10 2001-07-30 2001-06-13 664.85 2002-01-22 371.79 44.1% 223

11 2004-04-26 2004-04-7 470.55 2004-09-13 315.17 33% 159

12 2006-08-2 2006-07-12 446.61 2006-08-7 380.26 14.9% 26

13 2007-06-1 2007-05-29 1292.44 2007-07-5 1015.85 21.4% 37

14 2007-10-25 2007-10-9 1551.19 2007-11-28 1219.98 21.4% 50

15 2008-01-22 2008-01-15 1576.5 2008-11-4 456.97 1% 294

16 2009-08-14 2009-08-4 1149.27 2009-09-1 900.53 21.6% 28

17 2009-12-22 2009-12-3 1234.17 2010-07-5 921.34 25.3% 214

18 2010-11-17 2010-11-10 1389.54 2011-01-25 1136.58 18.2% 76

19 2013-06-24 2013-05-30 1043.47 2013-06-25 879.93 15.7% 26

20 2014-03-28 2014-02-17 1160.39 2014-04-28 1007.27 13.2% 70

21 2015-06-19 2015-06-12 3140.66 2015-09-15 1580.26 49.7% 95

Table 7: The SZECOMP Index experienced 21 crashes between March 25,

1992 and June 30, 2016.
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sequence. More importantly, the construction of the hit sequence removes
the effect of autocorrelation, making it possible to test the accuracy of the
measures using a standard likelihood ratio test.

Equity market crash prediction models such as the BSEYD, the high
P/E model or the CAPE generate a signal to indicate that an equity market
downturn is likely at a given horizon h. This signal occurs whenever the
value of a crash measure crosses a threshold. Given a prediction measure
M (t), a crash signal occurs whenever

SIGNAL(t) = M(t) — K(t) > 0 (4.1)
where K () is a time-varying threshold for the signal.

Three parameters define the signal: (i) the choice of measure M (t); (ii)
the definition of threshold K (¢); and (iii) the specification of a time interval
H between the occurrence of the signal and that of an equity market down-
turn.

We construct the measures using two time-varying thresholds: (i) a dy-
namic confidence interval based on a Normal distribution; and (ii) a dy-
namic confidence interval using Cantelli’ s inequality - see Problem 7.11.9
in Grimmett and Stirzaker (2001) for a statement of the mathematical result,
and Lleo and Ziemba (2012, 2017) for applications to crash predictions.

To construct the confidence intervals, we compute the sample mean and
standard deviation of the distribution of the measures as a moving average
and a rolling horizon standard deviation respectively. Using rolling horizon
means and standard deviations has the advantage of providing data consis-
tency. Importantly, this construction only makes use of information known
at the time of the calculation. The h-day moving average at time ¢, denoted

by uf, and the corresponding rolling horizon standard deviation o are

h—1 h—1

1 1
pe = B 2 T o = mZ(iBt—i — )2
i=0 =0
We establish the one-tailed confidence interval at the 95% level. This corre-
sponds to 1.645 standard deviations above the mean in the Normal distribu-

tion.
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We select the one-tailed confidence interval at o = 95%, corresponding to
1.645 standard deviations above the mean in the Normal distribution. This
choice is consistent with the crash prediction literature and can be traced to

the first published work on the BSEYD [Ziemba and Schwartz (1991).

The historical development of statistical inference by Fisher, E. Pearson
and Neyman, among others, has contributed to popularizing the choice of
a = 95% for two-tailed tests: R.A. Fisher suggested the use of a two-tailed
5% significance level (see for example pp. 45, 98, 104, 117 in Fisher, 1933;
Neyman and Pearson|, 1933; Neyman, 1934, 1937).

As an alternative to the normal confidence level, we construct the confi-
dence level using Cantelli’s inequality. This inequality relates the probability
that the distance between a random variable X and its mean p exceeds a
number k£ > 0 of standard deviations o to provide a robust confidence inter-
val:

1
PX —pu>kol < :

Setting [ := ﬁ yields P [X — >0y /% — 1} < B. Contrary to the normal
confidence level, Cantelli’s inequality does not require any assumption on the
shape of the underlying distribution. It should therefore provide more ro-
bust results for fat tailed distributions. The parameter § provides an upper
bound for a one-tailed confidence level on any distribution. In our analysis,
the horizon for the rolling statistics is h = 252 days. There is no clear rule on
how to select 3, so we chose 5 = 25% to produce a slightly higher threshold
than the standard confidence interval. In a Normal distribution, we expect
5% of the observations to lie in the right tail, whereas Cantelli’s inequality
implies that the percentage of outliers in a distribution will be no higher than

25%.

The last parameter we need to specify is the horizon H. Earlier, we de-
fined the crash identification time is the date by which the SHCOMP has
declined by at least 10% in the last year (252 trading days). We define the
local market peak as the highest level reached by the market index within
252 trading days before the crash. We set the horizon H to a maximum of
252 trading days prior to the crash identification date.
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4.2 Signal Indicator and Crash Indicator

Crash prediction models have two components: (1) a signal indicator, which
takes the value 1 or 0 depending on whether the measure has crossed the
threshold, and (2) a crash indicator, which takes the value 1 when an equity
market correction occurs and 0 otherwise. From a probabilistic perspective,
these components are Bernoulli random variables, but they exhibit a high
degree of autocorrelation, that is, a value of 1 (0) for the crash signal is more
likely to be followed by another value of 1 (0) on the next day. This auto-
correlation makes it difficult to test the accuracy of the model.

To remove the effect of autocorrelation, we define a signal indicator se-
quence S = {S;,t =1,...,T}. This sequence records as the signal date the
first day in a series of positive signals, and it only counts distinct signal dates.
Two signals are distinct if a new signal occurs more than 30 days after the
previous signal. The objective is to have enough time between two series of
signals to identify them as distinct. The signal indicator S; takes the value
1 if date t is the starting date of a distinct signal, and 0 otherwise. Thus,
the event “a distinct signal starts on day ¢” is represented as {S; = 1}. We
express the signal indicator sequence as the vector s = (S1,...,S,...,S7).

For the crash indicator, we denote by C} i the indicator function return-
ing 1 if the crash identification date of at least one equity market correction
occurs between time ¢ and time ¢t + H, and zero otherwise. We identify the
vector C'y with the sequence Cy := {C; y,t =1,...,T — H} and define the
vector cy = (Cl,Ha c ,Ct7H, c. CTfH,H)-

The number of correct predictions n is defined as

T
n = #{C@H = HSt = 1} = Z 1{Ct,1-1:1|5t:1}’
t=1

where 1,4 is the indicator function returning 1 if condition A is satisfied,
and 0 other wise.The accuracy of the crash prediction model is therefore
the conditional probability P(Cyy = 1|S; = 1) of a crash being identified
between time ¢ and time ¢ + H, given that we observed a signal at time ¢.
The higher the probability, the more accurate the model.
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4.3 Maximum Likelihood Estimate of p = P(Ciyl|S;)
and Likelihood Ratio Test

We use maximum likelihood to estimate the conditional probability P(Cy g =
11S; = 1) and to test whether it is significantly higher than a random guess.
We obtain a simple analytical solution because the conditional random vari-
able {Cy g = 1|S; = 1} is a Bernoulli trial with probability p = P(Cyyp =
115, =1).

To estimate the probability p, we change the indexing to consider only
events along the sequence {5;|S; = 1,t =1,...T} and denote by X := {X;,i =1,..., N}
the “hit sequence” where x; = 1 if the ith signal is followed by a crash and
0 otherwise. Here NV denotes the total number of signals, that is

T
N - ZSt
t=1

The sequence X can be expressed in vector notation as z = (X1, Xo, ..., Xy).
The empirical probability p is the ratio n/N.

The likelihood function L associated with the observations sequence X is

N

Lp|X) = [[p* (1 —p)"

i=1

and the log likelihood function L is

L(p|X) :=InL(p|X) = ZX Inp + (N - ZX) In(1 - p)

N
. o o . VX . —
This function is maximized for p := === = n/N, so the maximum likeli-

hood estimate of the probability p = P(C} g|S:) is the sample proportion of
correct predictions.

We apply a likelihood ratio test to test the null hypothesis Hy : p = po
against the alternative hypothesis H4 : p # pg. The null hypothesis reflects
the idea that the probability of a random, uninformed signal correctly pre-
dicting crashes is py. The probability py is the probability to identify an
equity market downturn within 252 days of a randomly selected period. To
compute py empirically, we tally the number of days that are at most 252
days before a crash identification date and divide by the total number of
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days in the sample.

A significant departure above py indicates that the measure we are con-
sidering contains some information about future equity market corrections.
The likelihood ratio is:

L(p = po|X) L(p = po| X)

A= — 07 4.2
maxyeo,1) L(p|X)  L(p = p|X) (4.2)

The test statistic Y := —2In A is asymptotically y?-distributed with v = 1
degree of freedom. We reject the null hypothesis Hy : p = py and accept that
the model has some predictive power if Y > ¢, where ¢ is the critical value
chosen for the test. We perform the test for the three critical values 2.71,
3.84, and 6.63 corresponding respectively to a 90%, 95% and 99% confidence
level.

4.4 Monte Carlo Study for Small Sample Bias

A limitation of this likelihood ratio test is that the x? distribution is only
valid asymptotically. In our case, the number of correct predictions follows
a binomial distribution with an estimated probability of success p and N
trials. However, “only” 18 downturns occurred during the period considered
in this study: the continuous y? distribution might not provide an adequate
approximation for this discrete distribution. This difficulty is an example of
small sample bias. We use Monte Carlo methods, with K = 10,000 paths,
to obtain the empirical distribution of test statistics and address this bias.

4.5 Optimal Parameter Choice and Parameter Robust-
ness

At a first glance, the statistical validity of the model seems to depend crucially
on the signal construction, and therefore on two parameters: the confidence
level o and the forecasting horizon H. The confidence level affects directly
the number of signals that the model generates, and indirectly the accuracy
of the model. The forecasting horizon influences the number of correct sig-
nals, as well as the uninformed probability py used in the significance test,
but it does not change the number of signals generated. It is easier to pro-
duce an accurate forecast if we have a longer horizon to prove us right than
a shorter one. In this section, we set up a plan to test the sensitivity or
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robustness of the model to these two parameters.

First, we compute the optimal value for the confidence level a. We hold
the time horizon H constant at 252 days, and seek the confidence level(s)
a € [0.9,1] that maximizes the empirical accuracy p:

A = argmax,c(o.9,1)p(; H)

We are actually interested in the lowest confidence interval for which we
p = 100%, as well as in the general evolution of the number of predications
as the confidence level increases. We expect the accuracy of the measure to
increase with the confidence level.

We are also interested in whether the model remains significantly better
than a random guess if we chose a confidence level at the lower end of the
confidence range. Answering this question will give us an indication on the
robustness of the model in relation to a change or misspecification in the
confidence level. This approach is an application of the robust likelihood
statistics proposed by Lleo and Ziemba (2017) to a case where we test the
robustness with respect to a single parameter.

Next, we look for the optimal value for the forecasting horizon H. We
hold the confidence level « constant at 95% and look for the time horizon(s)
H that maximizes the empirical accuracy p:

H = argmaXHe{ﬁzs,ma,189,252}29(H% )

We limit the range of our analysis to up to 252 days after the signal. Note
the we cannot test the robustness of the model with respect to a change in
forecasting horizon using the robust likelihood statistics proposed by [Lleo
and Ziemba (2017) because changing the forecasting horizon will affect the
uninformed probability py.

4.6 Further Analysis: Measure-On-Measure Significance
Test

Lleo and Ziemba (2017) proposed a likelihood ratio test for pairwise measure-

on-measure comparisons to determine whether the accuracy p; of a given

model ¢ is significantly higher than the estimated accuracy p; = argmaxpje(oyl)L(pj |X)
of model j.
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We performed this test for all the measures studied in this paper, but did
not find any significant difference between the accuracy of the measures at
a 95% confidence level. This result indicates that none of the measures is
statistically more accurate than the others.

5 The Price-to-Earnings Ratio

5.1 Scope of the Study

Practitioners have used the price-to-earnings (P /E) ratio to gauge the relative
valuation of stocks and stock markets since at least the 1930s (for example,
Graham and Dodd, [1934, discuss the use of the P/E ratio in securities anal-
ysis and valuation).

In this section, we test the predictive ability of the P/E ratio calculated
using current earnings. The advantage of this definition for the SHCOMP
is that it is available over the entire period from December 19, 1990 to June
30, 2016, a total of 6,243 daily observations. The same is not true for the
SZECOMP. earnings and therefore P/E are only available starting July 2,
2001, a total of 3,640 daily observations.

5.2 Maximum Likelihood Estimate of p = P(C, y|S:)
and Likelihood Ratio Test

Table H shows that the P/E and logarithm of the P/E generated a total of 18
signals (based on normally distributed confidence intervals) and 19 signals
(based on Cantelli’ s inequality) on the SHCOMP. The number of correct
predictions across models reaches 16 to 17. The accuracy of the models is
in the narrow range from 88.89% to 89.47%. The type of confidence interval
- normal distribution or Cantelli’ s inequality - only have a minor influence
on the end result.

Next, we test the accuracy of the prediction on the SHCOMP statisti-
cally. To apply the likelihood ratio test, we need to compute the uninformed
prior probability py that a day picked at random will precede a crash identi-
fication date by 252 days or less. We find that this probability is very high,
at po = 69.57%. This finding is consistent with the stylized facts discussed
in Section 2. The Likelihood ratio test indicates that both the P /E ratio and
the logarithm of the P/E ratio are significant predictors of equity market

23



downturns markets at the 90% confidence level. Moreover, the P/E ratio,
computed using a standard confidence interval, and the log P /E ratio, based
on Cantelli’s inequality, are significant at the 95% confidence level. Thus,
we cannot rule out that the P/E and log P/E/ have helped predict equity
market downturns over the period.

The P/E and logarithm of the P/E generated a total of 8 to 9 signals,
with 7 to 8 correct signals on the the SZECOMP. The accuracy of the mod-
els is in a narrow range from 87.50% to 88.89%. Here as well, the type of
confidence interval - normal distribution or Cantelli’ s inequality - only have
a minor influence on the end result.

5.3 Monte Carlo Study for Small Sample Bias

We continue our analysis with a Monte Carlo test for small sample bias,
presented in Table Q We compute the critical values at the 90%, 95% and
99% confidence level for the empirical distribution. Because we only have
a limited number of signals, the distribution is lumpy, making it difficult
to obtain meaningful p-values. Still, we find that the Monte Carlo analysis
is in broad agreement with our earlier conclusions about significance of the
P/E ratio and its logarithm, as both measures are significant at the 90%
confidence level. We conclude that small sample bias only has a very small
effect on these measures and on their statistical significance.

The uninformed prior probability p, that a day picked at random will
precede a crash identified date by 252 days or less is 58.49%. The Likeli-
hood ratio test indicates that both P/E ratio measures and the logarithm of
the P/E ratio calculated using a standard confidence interval are significant
predictors of equity market downturns markets at the 95% confidence. The
remaining measure, the logarithm of the P/E ratio calculated with Cantelli’s
inequality is significant at the 90% confidence level. The results of the Monte
Carlo analysis, presented in Table g, indicate that small sample bias only has
a minor effect on the statistical significance of the measures. All the mea-
sures are still significant at the 90% confidence level.

5.4 Optimal Parameter Choice and Parameter Robust-
ness

We follow up with an analysis of the sensitivity of the measures to a change
of confidence level v and forecasting horizon H.
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Model Total num- Number ML Estimate L(p) Likelihood Test statistics p-value

ber of signals  of P ratio A —2InA
correct
predic-
tions
SHCOMP
PE (confidence) 19 17 89.47% 1.67E-03 0.1159 4.3100° 3.79%
PE (Cantelli) 18 16 88.89% 1.88E-03 0.1486 3.8131f 5.09%
logPE (confi- 18 16 88.89% 1.88E-03 0.1486 3.81317 5.09%
dence)
logPE (Cantelli) 19 17 89.47% 1.67E-03 0.1159 4.31" 3.79%
SZECOMP
PE (confidence) 9 8 88.89% 4.33E-02 0.1313 4.0607" 4.39%
PE (Cantelli) 9 8 88.89% 4.33E-02 0.1313 4.0607" 4.39%
logPE (confi- 9 8 88.89% 4.33E-02 0.1313 4.0607" 4.39%
dence)
logPE (Cantelli) 8 7 87.5% 4.91E-02 0.1980 3.2387° 7.19%

T significant at the 10% level,

* significant at the 5% level;

** significant at the 1% level;
*** significant at the 0.5% level.

Table 8: SHCOMP and SZECOMP: Maximum likelihood estimate
and likelihood ratio test for the PE and logPE The Total Number of
Signals is calculated as the sum of all the entries of the indicator sequence S.
The Number of Correct Predictions is the tally of crashes preceded by the signal.
It is calculated as the sum of all the entries of the indicator sequence X. The
Maximum Likelihood estimate p is the probability of correctly predicting a crash
that maximises the likelihood function of the model. It is equal to the ratio of the
number of correct prediction to the total number of signals. L(p) is the likelihood
of the crash prediction model, computed using the maximum likelihood estimate
p. The likelihood ratio A = ﬁ%ﬁa@) is the ratio of the likelihood under the
null hypothesis p = pg to the likelihood using the estimated probability p. The
estimated test statistics, equal to —21In A, is asymptotically y2-distributed with 1
degree of freedom. The p-value is the probability of obtaining a test statistic higher
than the one actually observed, assuming that the null hypothesis is true. The
degree of significance and the p-value indicated in the table are both based on this
distribution. The critical values at the 95%, 99% and 99.5% level are respectively

3.84, 6.63 and 7.88.
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Model Total number of signals ML Estimate p Critical Value Test statistics —21n A(py)
90% confidence 95% confidence 99% confidence ‘

SHCOMP
PE (confidence) 19 89.47% 2.38 4.31 7.61 4.31007
PE (Cantelli) 18 88.89% 2.38 4.31 7.61 3.8131F
logPE (confidence) 18 88.89% 2.99 3.81 6.99 3.81317
logPE (Cantelli) 19 89.47% 2.99 3.81 6.99 4.3100"
SZECOMP
PE (confidence) 9 88.89% 2.31 4.06 4.92 4.06077
PE (Cantelli) 9 88.89% 2.31 4.06 4.92 4.0607"
logPE (confidence) 9 88.89% 2.31 4.06 8.86 4.06077
logPE (Cantelli) 8 87.50% 2.31 4.06 8.86 3.2387"

T significant at the 10% level;

* significant at the 5% level;

** significant at the 1% level;
*** significant at the 0.5% level.

Table 9: SHCOMP: Monte Carlo likelihood ratio test for the PE and
logPE The Total Number of Signal is calculated as the sum of all the entries of
the indicator sequence S. The Maximum Likelihood estimate p is the probability
of correctly predicting a crash that maximises the likelihood function of the model.
It is equal to the ratio of the number of correct prediction to the total number of
signals. Colums 4 to 6 report the critical values at the 95%, 99% and 99.5% confi-
dence level for the empirical distribution generated using K = 10, 000 Monte-Carlo

simulation. The test statistics in column 7 is equal to —2In A(pp) = —21n %
1
and that in column 9 is —2In A (%) = —2In ngii]‘;‘?(). The level of significance

indicated for both tests are based on the empirical distribution. The p-value is
the probability of obtaining a test statistic higher than the one actually observed,
assuming that the null hypothesis is true. The degree of significance indicated in
the test statistics column and the p-value indicated in the table are both based on
and empirical distribution generated through Monte-Carlo simulations.
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5.4.1 Shanghai

We focus here on measures computed using a standard confidence interval
for clarity as we would obtain similar results for measures computed using
Cantelli’s inequality. Table @ reports the key statistics of the measure for
various confidence levels. Picking a confidence level at the low end of our
range, a = 90%, the P/E ratio generates 22 signal while the log P/E pro-
duces 21 signals. With an accuracy of 81.82%, the P/E ratio is no longer
significant at the 90% confidence level. On the other hand, the log P/E is
85.71% accurate, maintaining itself above the critical value corresponding to
a 90% confidence level. Expanding the scope of our investigation outside
of the initial [0.9,1) range to consider a broader confidence range of [0.8, 1),
we find that the accuracy and significance of the P/E ratio and log P/E
ratio broadly increase with the confidence level, while the number of signals
decreases monotonically, as expected. In fact, the accuracy of the models
reaches 100% at a = 0.99 for the P/E ratio and o = 0.97 for the log of the
P/E, but with only 14 to 15 predictions out of 22 crashes.

The increase in the accuracy and significance is not monotonic because
of the limited number of predictions: adding one correct prediction or one
incorrect predictions tends to have a noticeable impact on the accuracy of
the measure. This makes the transitions lumpy rather than smooth. Still, we
observe that both the P/E ratio and the log P/E ratio remain significant at
the 90% confidence level in the range [0.925, 1), suggesting that the two mea-
sures are not overly sensitive to a small change in the confidence parameter a.

We conclude our analysis of the P/E and log P/E by investigating the
sensitivity of these measures to a change in horizon H. Table [l1f reports the
key statistics for H = 63,126, 189 and 252 days, corresponding to 3 months,
6 months, 9 months and 1 year. The accuracy of the signals decreases as
we we shorten the time horizon, and so does the uninformed probability py.
Overall, the P/E and log P/E become significant when the horizon reaches
9 months to 1 year, and their test statistics reaches its maximum at 9 months.

5.4.2 Shenzhen

An analysis of the sensitivity of the measure to a change in the confidence
parameter « produces a surprising outcome. Contrary to what we observed

with the SHCOMP, the results for the SZECOMP, presented in Table @,
show that the accuracy of the measures, and therefore their statistical sig-
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Confidence 0.8 0.85 0.9 0.925  0.95 0.975 0.99
P/E ratio
Number of signals 21 21 22 22 19 16 15
Number of correct signals 15 18 18 19 17 15 15
Proportion of correct signals 71.43% 85.71% 81.82% 86.36% 89.47% 93.75% 100%
Test statistics 0.0348  2.9770" 1.7190  3.4022" 4.3100" 5.7847" -
p-value 85.2%  8.45% 18.98% 6.51% 3.79% 1.62% -
logP /E ratio
Number of signals 21 21 21 19 18 14 11
Number of correct signals 15 17 18 17 16 14 11
Proportion of correct signals 71.43% 80.95% 85.71% 89.47% 88.89% 100%  100%
Test statistics 0.0348  1.4050 2.9770" 4.3100" 3.81317 - -
p-value 85.2%  23.59% 8.45% 3.79%  5.09% -

T significant at the 10% level,
* significant at the 5% level;
** significant at the 1% level;

*** significant at the 0.5% level.

Table 10: SHCOMP: Accuracy and statistical significance of the
P/E ratio and logP/E ratio as a function of the confidence level
a. The numbers presented in this table are based on a forecasting horizon
H = 252 days. With this choice, the uninformed probability that a random
guess would correctly identify an equity market downturn is py = 67.64%
Row 1,2 and 3 respectively report the total number of signals generated by
the P/E ratio, the number of correct signals, and the proportion of correct
signals computed as the ratio of the number of correct signals to the total
number of signals. Rows 4 and 5 respectively report the test statistics and
p-value for the P/E ratio. The subsequent rows present the same information

for the log P/E ratio.
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Horizon (days) 63 126 189 252
Uninformed probability pg 50.99% 59.59% 66.41% 69.57%
P/E ratio
Number of correct signals 18 18 18 18
Proportion of correct signals 57.89% 73.68% 89.47% 89.47%
Test statistics 0.3648 1.6561 5.4937° 4.31°
p-value 54.58% 19.81% 1.91%  3.79%
logP /E ratio
Number of correct signals 19 19 19 19
Proportion of correct signals 66.67% 77.78% 88.89% 88.89%
Test statistics 1.8093  2.6753 4.904"  3.8131f
p-value 17.86% 10.19% 2.68%  5.09%

T significant at the 10% level,

* significant at the 5% level;

** significant at the 1% level;
*** significant at the 0.5% level.

Table 11: SHCOMP: Accuracy and statistical significance of the P/E
ratio and log P/E ratio as a function of the forecasting horizon H.
The numbers presented in this table are based on a confidence parameter
a = 0.95. With this choice, both the P/E ratio generated 19 signals, and the
log P /E ratio produced 18 signals. Row 1 presents the uninformed probability
po that a random guess would correctly identify an equity market downturn.
Row 3 reports the number of correct signals, row 4, the proportion of correct
signals as the ratio of the number of correct signals to the total number of
signals for the P/E ratio. Rows 5 and 6 respectively report the test statistics
and p-value.The subsequent rows present the same information for the log

P/E ratio.
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Confidence 0.8 0.85 0.9 0.925 0.95 0.975 0.99

P/E ratio
Number of signals 12 12 9 11 9 7 7
Number of correct signals 11 11 8 10 8 6 6
Proportion of correct signals 91.67% 91.67% 88.89% 90.91% 88.89% 85.71% 85.71%
Test statistics 6.6736" 6.6736" 4.0607" 5.7831" 4.0607° 2.4528  2.4528
p-value 0.98% 0.98% 4.39% 1.62% 4.39% 11.73% 11.73%
logP /E ratio
Number of signals 11 10 9 10 9 8 6
Number of correct signals 10 9 8 9 8 7 5
Proportion of correct signals  90.91% 90.00% 88.89% 90.00% 88.89% 87.50% 83.33%
Test statistics 5.7831" 4.9107" 4.0607" 4.9107° 4.0607" 3.2387" 1.7150
p-value 1.62%  2.67% 4.39% 2.67% 4.39% 7.19%  19.03%

T significant at the 10% level,

* significant at the 5% level;

** significant at the 1% level;
*** significant at the 0.5% level.

Table 12: SZECOMP: Accuracy and statistical significance of the
P/E ratio and logP/E ratio as a function of the confidence level
a. The numbers presented in this table are based on a forecasting horizon
H = 252 days. With this choice, the uninformed probability that a random
guess would correctly identify an equity market downturn is py = 58.49%
Row 1,2 and 3 respectively report the total number of signals generated by
the P/E ratio, the number of correct signals, and the proportion of correct
signals computed as the ratio of the number of correct signals to the total
number of signals. Rows 4 and 5 respectively report the test statistics and
p-value for the P/E ratio. The subsequent rows present the same information
for the log P/E ratio.

nificance, declines overall as the «a increases. The accuracy of the models
decline from 91.67% at a = 80% to 85.71% at a = 99%. This is enough to
push the p-value up from 0.98% to 11.73%. This counterintuitive outcome
is a result of the fact that the total number of signals generally decrease,
as « increases. This is what we observe here: the models generate 11 to 12
signals at o = 80% but only 6 to 7 at o = 99%. Since the models are already
particularly accurate, an erroneous signal therefore results in a larger loss of
accuracy at a = 99% than at o = 80%.

The measures do not exhibit a high sensitivity to a change in the time
horizon H. The results of the analysis, summarized in Tablegiﬁ, show that
the models remain significant at the 90% confidence level across all four time
horizons: 63 days, 126 days, 189 days and 252 days.
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6 The Cyclically-Adjusted Price-to-Earnings
Ratio and the Bond-Stocks Earnings Yield
Differential Model

6.1 Scope of the Study

The P/E ratio calculated using current earnings might be overly sensitive to
current economic and market conditions. Graham and Dodd ([1934) warned
against this risk and advocated the use of a P/E ratio based on average
earnings over ten years. In their landmark survey, Campbell and Shiller
(1988) found that the R? of a regression of log returns on the S&P 500 with
a 10 year horizon against the log of the price-earnings ratio computed using
average earnings over the previous 10 and 30 years equals 0.566 and 0.401
respectively, hinting at a link between average past earning and future stock
prices. This later led Shiller to suggest the use of a Cyclically Adjusted Price-
to-Earnings ratio (CAPE), or a price-to-earnings ratio using 10-vear average
earnings, to forecast the evolution of the equity risk premium (Shiller, 2005).

The BSEYD, the second model we test, relates the yield on stocks (mea-
sured by the earnings yield, which is also the inverse of the P/E ratio) to
that on nominal Government bonds.

BSEYD(t) = r(t) — p(t) = r(t) — 2, (6.1)
P(t)

where p(t) is the earnings yield at time t and r(¢) is the current 10-year
government bond yield r(¢). The BSEYD was initially developed for the
Japanese market in 1988, shortly before the stock market crash of 1990,
based on the 1987 stock market in the US (Ziemba and Schwartz, 1991).
The BSEYD has since been used successfully on a number of international
markets (see the review article Lleo and Ziemba, 2015), and the 2007-2008
SHCOMP meltdown (Lleo and Ziemba, 2012).

We test the forecasting ability of four measures:

1. PEO: P/E ratio based on current earnings. This is the measure we
tested in Section f;

2. CAPE10: CAPE, which is a P/E ratio computed using average earn-
ings over the previous 10-years;
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Horizon (days) 63 126 189 252
Uninformed probability pg 19.56% 35.03% 48.79% 58.49%
P/E ratio
Number of correct signals 9 9 9 9
Proportion of correct signals  44.44% 66.67% 77.78% 88.89%
Test statistics 2.86467 3.7184T 3.189T  4.0607"
p-value 9.06% 5.38%  741%  4.39%
logP /E ratio
Number of correct signals 8 8 8 8
Proportion of correct signals 44.44% 66.67% 77.78% 88.89%
Test statistics 2.8646" 3.71847 3.1897  4.0607"
p-value 9.05%  5.38% 7.41%  4.39%

T significant at the 10% level,

* significant at the 5% level;

** significant at the 1% level;
*** significant at the 0.5% level.

Table 13: SZECOMP: Accuracy and statistical significance of the
P/E ratio and log P/E ratio as a function of the forecasting horizon
H. The numbers presented in this table are based on a confidence parameter
a = 0.95. With this choice, both the P/E ratio generated 19 signals, and the
log P /E ratio produced 18 signals. Row 1 presents the uninformed probability
po that a random guess would correctly identify an equity market downturn.
Row 3 reports the number of correct signals, row 4, the proportion of correct
signals as the ratio of the number of correct signals to the total number of
signals for the P/E ratio. Rows 5 and 6 respectively report the test statistics
and p-value.The subsequent rows present the same information for the log

P/E ratio.
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3. BSEYDO: BSEYD based on current earnings;
4. BSEYD10: BSEYD using average earnings over the previous 10-years.

We also test the logarithm of these measures: logPEO, logCAPE10, log-
BSEYDO and logBSEYD10. The logBSEYD is defined as:
E(t)

= n@ =Inr(t) —In—=
logBSEYD(t) =1 0 Inr(t) —1 208 (6.2)

Because the CAPE10 and BSEYD10 require 10 years of earnings data,
and the Bloomberg data series for 10-year government bonds only starts on
October 31, 2006, we cannot use the full range of stock market data. The
analysis in this section covers the period between October 31, 2006 and June
30, 2016. Over this period, the SHCOMP experienced seven declines of more
than 10%, while the SZECOMP had nine.

We omit from the discussion results related to Cantelli’s inequality be-
cause of space constraints. These results are nearly identical to the results
we obtain for measures based on a standard confidence interval.

6.2 Maximum Likelihood Estimate of p = P(Ciyl|S;)
and Likelihood Ratio Test

Table [14 displays results for the eight measures calculated with a confidence
interval based on a normal distribution on both stock market indexes.

Looking at the SHCOMP, none of the measures produced more than 5
signals. The CAPE, logCAPE and BSEYD10 generated 3 signals each. The
accuracy of the measures reaches a low of 40% for logBSEYDO and a high of
100% for CAPE10 and logCAPE10. Only five of the eight measures are 75%
accurate or better. By comparison, the uninformed prior probability that a
day picked at random will precede a crash identification date by 252 days or
less is po = 70.99%. Because of the relatively short period and small number
of downturns, only CAPE10 and logCAPE10 appear significant. However,
these two models only predicted three of the six crashes.

Overall, none of the models perform convincingly on the SHCOMP. The
PEO and logPEO ratio, which we found to be significant predictors over the
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entire dataset in the previous section, are not significant over this restricted
time period. With a 75% accuracy, they have a small edge over the uniformed
prior pg, but this edged is not significant. What’s more, the BSEYD-based
models do not perform as well as the P/E-based models. This is a puzzle
because the BSEYD model contains additional information that is not in the
P/E, namely government bond yields.The BSEYD and logBSEYD models
have also been shown to perform better than the P/E ratio and CAPE on
the American market (Lleo and Ziemba, 2017).

The situation on the SZECOMP is markedly different: all the measures,
but one, have a 100% accuracy on the six or seven signals that they gener-
ated. The remaining measure, logBSEYD10, had six correct predictions out
of seven signals, which implies a 85.71% accuracy. Although this is much
higher than the uniformed prior py at about 67%, the sample is to small for
the difference in accuracy to be statistically significant. The discrepancy be-
tween the results observed on the SHCOMP and SZECOMP raises a number
of questions. Is the difference in accuracy merely statistical, resulting from
the small number of equity market downturns in the sample, or does it reveal
a divergence in the microstructure of the two indexes? While the results com-
puted in Section B for the P/E ratio seem to hint at the former, the latter is
also a possibility, especially in light of the second Stylized Fact in Section @

6.3 Monte Carlo Study for Small Sample Bias

The results of the Monte Carlo analysis for small sample bias, presented in
table [L5 support the conclusions of the asymptotic maximum likelihood test.
In the case of the SZECOMP, the Monte Carlo analysis for small bias is not
informative because most measure have an infinite test statistic.

6.4 Optimal Parameter Choice and Parameter Robust-
ness

Finally, we explore the sensitivity of the measures to a change in the fore-
casting horizon H and confidence «.

Table ﬁ reports the results of an analysis of the measures’ sensitivity
to a change in the confidence parameter a on the Shanghai market. To the
exception of the logBSEYDO, the accuracy of the measures increase as «
increases. Five measures out of eight reach a 100% accuracy at a = 97.5%,
over two or three signals. The logBSEYDO0 and logBSEYD10 remain the
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Signal Model Total num- Number ML Estimate L(p) Likelihood Test statistics p-value

ber of signals  of P ratio A —2InA

correct

predic-

tions

SHCOMP
BSEYDO 4 3 75.00% 1.05E-01 0.717 0.6654 41.47%
logBSEYDO 5 2 40.00% 3.46E-02 0.7901 0.4713 49.24%
PEO 4 3 75.00% 1.05E-01 0.717 0.6654 41.47%
logPEO 4 3 75.00% 1.05E-01 0.717 0.6654 41.47%
BSEYD10 3 2 66.67% 1.48E-01 0.9228 0.1606 68.86%
logBSEYD10 5 3 60.00% 3.46E-02 0.9778 0.0449 83.23%
CAPE10 3 3 100.00% - - - -
logCAPE10 3 3 100.00% -
SZECOMP

BSEYDO 6 6 100.00% -
logBSEYDO 7 7 100.00%
PEO 6 6 100.00%
logPEO 6 6 100.00% - - - -
BSEYD10 7 6 85.71% 5.67E-02 0.5266 1.2826 25.74%
logBSEYD10 7 7 100.00% - - - -
CAPE10 6 6 100.00%
logCAPE10 5 5 100.00%

T significant at the 10% level,

* significant at the 5% level;

** significant at the 1% level;
*** significant at the 0.5% level.

Table 14: SHCOMP and SZECOMP: Maximum likelihood estimate
and likelihood ratio test for the BSEYDO, PEO, BSEYD10 and
CAPE10 and their logarithmThe Total Number of Signals is calculated
as the sum of all the entries of the indicator sequence S. The Number of Correct
Predictions is the tally of crashes preceded by the signal. It is calculated as the sum
of all the entries of the indicator sequence X. The Maximum Likelihood estimate
p is the probability of correctly predicting a crash that maximises the likelihood
function of the model. It is equal to the ratio of the number of correct prediction
to the total number of signals. L(p) is the likelihood of the crash prediction
model, computed using the maximum likelihood estimate p. The likelihood ratio
A= % is the ratio of the likelihood under the null hypothesis p = pg to
the likelihood using the estimated probability p. The estimated test statistics,
equal to —2In A, is asymptotically x2-distributed with 1 degree of freedom. The
p-value is the probability of obtaining a test statistic higher than the one actually
observed, assuming that the null hypothesis is true. The degree of significance and
the p-value indicated in the table are both based on this distribution. The critical
values at the 95%, 99% and 99.5% level are respectively 3.84, 6.63 and 7.88.
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Signal Model | Total number of signals ML Estimate p Critical Value Test statistics —21n A(py)
90% confidence 95% confidence 99% confidence ‘
SHCOMP
BSEYDO0 4 5% 4.74 4.74 6.44 0.6654
logBSEYDO 5 40% 2.62 5.92 8.05 0.4713
PEO 4 5% 4.74 4.74 6.44 0.6654
logPEO 4 75% 4.74 4.74 6.44 0.6654
BSEYD10 3 66.67% 3.55 4.83 4.83 0.1606
logBSEYD10 5 60% 2.62 5.92 8.05 0.0449
CAPE10 3 100.00% 3.55 4.83 4.83 -
logCAPE10 3 100% 3.55 4.83 4.83 -
SZECOMP
BSEYDO 6 100.00% 4.81 4.81 6.48 -
logBSEYDO 5 100.00% 4.31 5.61 5.61 -
PEO 6 100.00% 4.81 4.81 6.48 -
logPEO 6 100.00% 4.81 4.81 6.48 -
BSEYD10 7 85.71% 4.31 5.61 5.61 1.2826
logBSEYD10 7 100.00% 4.31 5.61 5.61 -
CAPE10 6 100.00% 4.81 4.81 6.48 -
logCAPE10 5 100.00% 4.01 4.01 4.66 -

T significant at the 10% level,

* significant at the 5% level;

** significant at the 1% level;
*** significant at the 0.5% level.

Table 15: SHCOMP and SZECOMP: Monte Carlo likelihood ratio
test for the BSEYDO, PEO, BSEYD10 and CAPE10 and their log-
arithm The Total Number of Signal is calculated as the sum of all the entries of
the indicator sequence S. The Maximum Likelihood estimate p is the probability
of correctly predicting a crash that maximises the likelihood function of the model.
It is equal to the ratio of the number of correct prediction to the total number of
signals. Colums 4 to 6 report the critical values at the 95%, 99% and 99.5% confi-
dence level for the empirical distribution generated using K = 10, 000 Monte-Carlo

simulation. The test statistics in column 7 is equal to —2In A(pg) = —21n LL(I?%J}@)
1
and that in column 9 is —2In A (%) = —2In %. The level of significance

indicated for both tests are based on the empirical distribution. The p-value is
the probability of obtaining a test statistic higher than the one actually observed,
assuming that the null hypothesis is true. The degree of significance indicated in
the test statistics column and the p-value indicated in the table are both based on
and empirical distribution generated through Monte-Carlo simulations.
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0.8 0.85 0.9  0.925 0.95 0975 099 | 0.8 0.85 0.9  0.925 0.95 0975 0.99

BSEYDO logBSEYDO
Number of signals 7 6 6 4 4 2 2 6 5 5 5 5 4 4
Number of corre als 4 3 3 3 3 2 2 3 2 2 2 2 2 2
Proportion of correct signals | 57.14% 50% 50% 5% 5% 100%  100% 50% 40% 10% 40% 10% 50% 50%
Test statistics 0.0095  0.0681  0.0681  0.6654 0.6654 - - | 0.0681 0.4713 04713 04713 04713  0.0454  0.0454
p-value 92.22% 79.42% 79.42% 41.47% 41.47% - - | 79.42%  49.24% 49.24% 49.24%  49.24% 83.13% 83.13%

PEO logPEO

Number of signals 5 5 4 4 4 3 3 5 5 4 4 4 3 2
Number of correct signals 3 4 3 3 3 3 3 3 4 3 3 3 3 2
Proportion of correct signals 60% 80% 5% 5% 5% 100%  100% 60% 80% 5% 75% 5% 100% 100%
Test statistics 0.0449  1.3445  0.6654 0.6654 0.6654 - -] 0.0449 1.3445 0.6654 0.6654  0.6654 - -
p-value 83.23% 24.62% 41.47% 4147% 41.47% - - [83.23% 24.62% 41.47% 41.47% 41.47%

BSEYD10 logBSEYD10
Number of signals 7 7 6 4 3 4 3 7 4 5 6 5 4 4

2 3 2 3 3 3 3 4 3 3

Number of correct signals 3 3 3 k 3
12.86%  33.33% 5%  66.67% 5%  100% | 42.86% 5% 60% 66.67% 60% 5% 5%

Proportion of correct signals | 42.86%

Test statistics 0436 0436 11741 0.6654  0.1606  0.6654 0436 0.6654 0.0449 0.3212  0.0449 0.6654  0.6654
p-value 50.91% 50.91% 27.86% 41.47% 68.86% 41.47% - | 50.91% 41.47% 83.23% 57.09% 83.23% 41.47% 41.47%
CAPE10 logCAPE10
Number of signals 4 3 4 4 3 3 3 4 3 4 3 3 3 2
Number of correct signals 3 3 4 4 3 3 3 3 3 4 3 3 3 2
Proportion of correct signals 5% 100% 100% 100% 100% 100%  100% 5% 100% 100% 100% 100% 100% 100%
Test statistics 0.6654 - - - - - 0.6654 - - - - - -
p-value 41.47% - - - - - - | 41.47%

T significant at the 10% level,

* significant at the 5% level;

** significant at the 1% level;
*** significant at the 0.5% level.

Table 16: sHCcoMP: Accuracy and statistical significance of the prediction models as a
function of the confidence level o. The numbers presented in this table are based on a forecasting
horizon H = 252 days. With this choice, the uninformed probability that a random guess would correctly
identify an equity market downturn is pp = 55.31% Row 1,2 and 3 respectively report the total number
of signals generated by the P/E ratio, the number of correct signals, and the proportion of correct signals
computed as the ratio of the number of correct signals to the total number of signals. Rows 4 and 5
respectively report the test statistics and p-value for the P/E ratio. The subsequent rows present the

same information for the log P/E ratio.

worst performing measures. On aggregate the measures behave as expected:
their accuracy increases as a increases, but they are not particularly sensitive
to our initial choice o = 0.95.

The results in Table @ indicate that BSEYDO, PEO, logPEO, BSEYD10
and logBSEYD10 perform best at H = 126, while CAPE10 and logCAPE10
reach 100% accuracy at H = 126. In fact, all the measures except log-
BSEYDO and logBSEYDI10 are significant at the 90% confidence with the
choice H = 126. We conclude that the measures are sensitive to the fore-
casting horizon, and that the standard choice H = 252 is suboptimal on
this dataset. This conclusion comes in support of the second hypothesis we
suggested to explain the relatively poor performance of the BSEYD models.
It does not, however, fully explain this relative underperformance.

On the Shenzhen market, the measures are resilient to a change in the ac-
curacy parameter a, as shown in Table . The logBSEYDO0, PEO, CAPE10
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\ [ 63 126 189 252 | 63 126 189 252

Uninformed probability py 2221%  331%  44.2% 55.31% | 22.21%  33.1%  44.2% 55.31%
BSEYDO logBSEYDO
Number of signals 4 4 4 4 5 5 5 5
Number of correct signals 2 3 3 3 1 2 2 2
Proportion of correct signals 50% 5% 5% 5% 20% 40% 40% 40%
Test statistics 1.4776 29393 1.5663 0.6654 | 0.0145 0.1043 0.0361 0.4713
p-value 22.41%  8.64%" 21.07% 41.47% | 90.41% T74.67% 84.93% 49.24%
PEO logPEO
Number of signals 4 4 4 4 4 4 4 4
Number of correct signals 1 3 3 3 2 3 3 3
Proportion of correct signals 25% 5% 5% 5% 50% 5% 5% 5%
Test statistics 0.0175 29393 1.5663 0.6654 | 1.4776 2.9393 1.5663 0.6654
p-value 89.48%  8.64%" 21.07% 41.47% | 22.41%  8.64%! 21.07% 41.47%
BSEYD10 logBSEYD10
Number of signals 3 3 3 3 5 5 5 5
Number of correct signals 1 2 2 2 2 3 3 3
Proportion of correct signals | 33.33% 66.67% 66.67% 66.67% 40% 60% 60% 60%
Test statistics 0.1947  1.4076 0.6132 0.1606 | 0.7951 1.5118 0.5019  0.0449
p-value 65.90% 23.55% 43.36% 68.86% | 37.26% 21.89% 47.87% 83.23%
CAPEI0 logCAPE10
Number of signals 3 3 3 3 3 3 3 3
Number of correct signals 2 3 3 3 2 3 3 3
Proportion of correct signals | 66.67% 100% 100% 100% | 66.67% 100% 100% 100%
Test statistics 2.7014 - - -| 2.7014 - - -
p-value 10.03% - - - 110.03% - - -

T significant at the 10% level;

* significant at the 5% level;

** significant at the 1% level;
*** significant at the 0.5% level.

Table 17: sHCcoMP: Accuracy and statistical significance of the BSEYD and log BSEYD
as a function of the forecasting horizon H. The numbers presented in this table are based on a
confidence parameter a = 0.95. With this choice, the BSEYD ratio generated 4 signals, and the log
BSEYD ratio produced 18 signals. Row 1 presents the uninformed probability pg that a random guess
would correctly identify an equity market downturn. Row 3 reports the number of correct signals, row
4, the proportion of correct signals as the ratio of the number of correct signals to the total number of
signals for the P/E ratio. Rows 5 and 6 respectively report the test statistics and p-value.The subsequent

rows present the same information for the log P/E ratio.
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0.8 0.85 0.9 0.925 0.95 0.975 [J,.‘l‘)‘ 0.8 0.85 0.9 0925 095 0975 0.99

BSEYDO logBSEYDO
Number of signals 8 6 7 6 6 5 4 5 6 7 8 7 4 4
Number of correct signals 7 6 7 6 6 5 4 5 6 7 8 7 4 4
Proportion of correct signals | 87.5% 100% 100% 100% 100% 100%  100% 100% 100% 100% 100% 100% 100% 100%
Test statistics 1.7971 - - - - - - - - - - - - -
p-value 18.01% - - - - - - - -
PEO logPE0
Number of signals 8 9 6 7 6 6 6 8 8 6 6 [§ 7 4
Number of correct signals 8 9 6 7 6 6 6 7 8 6 6 6 7 4
Proportion of correct signals 100% 100%  100% 100% 100% 100% 100% | 87.5% 100% 100% 100% 100% 100% 100%
Test statistics - - - - - - 1.7971 - - - - - -
p-value - - - | 18.01% - -
BSEYDI10 logBSEYD10
Number of signals 7 6 5 6 7 4 3 10 9 7 8 7 3 3

Number of correct signals 7 6 5 5 6 4 3 10 8 7 8 7 3 3
Proportion of correct signals 100% 100% 100% 83.33% 85.71% 100% 100% 100% 88.89% 100% 100% 100% 100% 100%

Test statistics 0.8162  1.2826 2.3477
p-value - - - 36.63% 25.74% - - - 12.55% - -
CAPE1L0 logCAPEL0
Number of signals 8 9 8 9 6 5 4 8 9 6 6 5 4 3

Number of correct signals 8 9 5 4 8 9 5 3
Proportion of correct signals | 100% 100% 100%  100% 100% 100% 100% | 100%  100% 100% 100% 100% 100% 100%
Test statistics - - - - - - - - - - - - - -
pvalue

T significant at the 10% level;

* significant at the 5% level;

** significant at the 1% level;
*** significant at the 0.5% level.

Table 18: szecomp: Accuracy and statistical significance of the prediction models as a
function of the confidence level a. The numbers presented in this table are based on a forecasting
horizon H = 252 days. With this choice, the uninformed probability that a random guess would correctly
identify an equity market downturn is pp = 66.99% Row 1,2 and 3 respectively report the total number
of signals generated by the P/E ratio, the number of correct signals, and the proportion of correct signals
computed as the ratio of the number of correct signals to the total number of signals. Rows 4 and 5
respectively report the test statistics and p-value for the P/E ratio. The subsequent rows present the

same information for the log P/E ratio.

and logCAPE10 maintain a 100% accuracy over the entire range of accu-
racy parameters. BSEYDO and logPE0O have a 100% accuracy on the range
[0.85,0.99], while BSEYD10 and logBSEYD10 are 100% accurate over most
of the range. None of the measures is less than 83.33% accurate.

Seven measures have a 100% accuracy at H = 189 and H = 252. At
a horizon H = 126 days, the accuracy of five of the measures is statisti-
cally significant at the 95% confidence level. At this horizon, the accuracy
of the worst performing measures is 71.43%, far above the prior probability
po = 44%. Further reducing the time horizon to H = 63 days, reduces the
accuracy of the measures. Still, three of the eight measure are statistically
significant at the 90% confidence level.
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\ [ 63 126 189 252 63 126 189 252
Uninformed probability py 24.93% 44.22% 58.47% 66.99% ‘ 24.93% 44.22% 58.47% 66.99%

BSEYDO logBSEYDO
Number of signals 6 6 6 6 7 7 7 7
Number of correct signals 3 5 6 6 4 6 7 7
Proportion of correct signals 50% 83.33%  100% 100% | 57.14% 85.71% 100% 100%
Test statistics 1.7367  3.9209 - - | 32717 5.2181 - -
p-value 18.76%  4.77%" - - | 7.05% 2.24%" - -
PEO logPEO
Number of signals 6 6 6 6 6 6 6 6

Number of correct signals 2 5 6 6 2 5 6 6
Proportion of correct signals | 33.33% 83.33% 100% 100% | 33.33% 83.33% 100% 100%

Test statistics 0.212  3.9209 - 0.212  3.9209 -

p-value 64.52%  4.7T%" - - | 64.52%  4TTR - -
BSEYD10 logBSEYD10

Number of signals 7 7 7 7 7 7 7 7

Number of correct signals 4 5 6 6 4 5 7 7

Proportion of correct signals | 57.14% 71.43% 85.71% 85.71% | 57.14% 71.43%  100%  100%

Test statistics 3.2717  2.1193 24553 1.2826 | 3.2717  2.1193 - -

p-value 7.05%" 14.54% 11.71% 25.74% | 7.05%' 14.54% - -
CAPE1L0 logCAPE10

Number of signals 6 [§ 6 6 5 5 5 5

Number of correct signals 3 5 6 6 2 4 5 5

Proportion of correct signals 50% 83.33%  100%  100% 40% 80%  100%  100%

Test statistics 1.7367  3.9209 - - | 0.5465  2.6916 - -

p-value 18.76%  4.77%" - - | 45.98% 10.09% - -

T significant at the 10% level;

* significant at the 5% level;

** significant at the 1% level;
*** significant at the 0.5% level.

Table 19: szEcomP: Accuracy and statistical significance of the BSEYD and log BSEYD
as a function of the forecasting horizon H. The numbers presented in this table are based on a
confidence parameter o = 0.95. With this choice, the BSEYD ratio generated 4 signals, and the log
BSEYD ratio produced 18 signals. Row 1 presents the uninformed probability pg that a random guess
would correctly identify an equity market downturn. Row 3 reports the number of correct signals, row
4, the proportion of correct signals as the ratio of the number of correct signals to the total number of
signals for the P/E ratio. Rows 5 and 6 respectively report the test statistics and p-value.The subsequent

rows present the same information for the log P/E ratio.
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7 Can We Use the Predictors to Construct
Active Investment Strategies?

We tested the statistical significance of the P/E ratio, CAPE, and BSEYD
as predictors of equity market downturns in China. The next question is
whether these crash predictors are relevant to asset managers. Can we use
the P/E ratio, the CAPE, and the BSEYD to construct active investment
strategies capable of outperforming a simple buy and hold investment?

To construct active strategies, we need to generate “buy” and “sell” sig-
nals based on the predictors and then trade in and out of the index based
on these signals. Then, the performance of the active strategies is assessed
against a simple buy and hold investment.

7.1 Buy and Sell Signals

We use the P/E ratio, CAPE, and BSEYD and their logarithms to generate
sell and buy signals: a sell signal occurs whenever a measure (PEO, BSEYDO,
CAPE10, BSEYDI10) crosses above a threshold, and a buy signal occurs
whenever the same measure crosses below a threshold:

All active strategies start with a 100% investment in the SHCOMP in-
dex or SZECOMP index. When a sell signal occurs, the portfolio manager
gradually sells the position in the index and invests the proceeds overnight
at the call money /interbank rate for China (source: Federal Reserve Bank of
St. Louis, https://fred.stlouisfed.org), which we use as a proxy for the
short-term rate. When a buy signal occurs, the portfolio manager gradually
invests in the stock index until the portfolio is fully invested. The active
strategies can neither be short on the index, nor leveraged on the index, so
at all time the portfolio is invested between 0% and 100% in the index.

We define the time-varying thresholds as a dynamic confidence interval
based on a Normal distribution:

h h h h
KSell = My + agen X Oy, KBuy =y — QBuy X 0y

The primary determinants of the thresholds are the reliability factors asen
and apyy, or equivalently, the confidence levels cgenp and cg,y. In practice, the
confidence level for crash prediction is usually 95%, but Berge et al| (2008)
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suggest using a 90%-95% confidence for sell thresholds and an 80%-85% con-
fidence for buy thresholds.

In this paper, we determine the confidence levels (csen, cpuy) € (0,1)% by
optimization to maximize the Sortino ratio of the active strategies. Because
the optimization problem is nonlinear and nonsmooth, we use the evolution-
ary method in Frontline System’s Solver for Microsoft Excel, with a popula-
tion of 200. Since nonlinear optimization methods are at risk of converging to
a local optimum, we performe the optimization starting from different initial
values and check the stability of the solutions obtained.

7.2 Trading on the Signals

Buy and sell transactions consider two sources of market liquidity constraints:
cost, and trading window. The transaction cost is the amount paid as com-
missions or bid-ask spread to enter or exit a position. The trading window
represents the number of days to execute the trade fully. Typically, the big-
ger the position, the higher the transaction cost and the longer the trading
window.

For a given position size, transaction costs and trading window are in-
versely related. A longer trading window typically provides the asset manager
with more time to trade, helping to reduce the effective transaction costs and
price impact of the trade. However, a longer trading window increases the
opportunity cost, in our case the cost associated with exiting the market too
late to protect the portfolio from a downturn, and the cost of entering the
market too later to take advantage of a recovery.

While the effect of transaction costs on active strategies is straightforward
as higher transaction costs reduce returns, the impact of the trading window
is less obvious: will a change in the trading window increase the opportunity
cost materially? To answer this question, we test the investment strategies
on the base case of a trading window of 90 days, and on two further cases:
30 days and 120 days.

Regarding execution, we assume for simplicity that the portfolio manager
sells a constant fraction. In the base case, the manager would sell (buy)
1/90th of their holdings each day of the 90-day trading window, starting on
the first day following a sell (buy) signal, and up until either:

1. The manager has shifted the entire portfolio into the short-term rate

42



(index) at the end of the 90-day trading window; or

2. A buy (sell) signal occurs, reversing the trading flow. Hence, we do not
assume any particular trading behavior during the window, although
in practice portfolio managers will try to optimize their execution to
add value to the strategy.

Note that the buy and hold investment is not subject to liquidity consid-
erations: it remains fully invested in the index.

7.3 Performance Evaluation

In total, we construct 20 active strategies for Shanghai and Shenzhen:

o Full period (1990-2016 for SHCOMP, 1991-2016 for SZECOMP): PEO
and logPEO;

e Period from October 31, 2006 to June 30, 2016: PEO and logPEO,
BSEYDO and logBSEYDO, CAPE10 and logCAPE10, BSEYD10 and
logBSEYD10.

The reference point for the evaluation is a simple buy and hold investment,
corresponding to a constant 100% position in the SHCOMP or SZECOMP

index.

For each strategy, we compute the daily excess return over the short-term
rate, net of transaction costs. Excess returns absorb the stochasticity of the
short-term rate and provide a more accurate measurement of the mean-risk
ratios and risk-adjusted measures than nominal returns.

We assess the performance of active strategies against a simple buy and
hold strategy using four categories of metrics: descriptive statistics, risk
measures, mean-to-risk ratios, and active risk and returns. The descriptive
statistics include mean, standard deviation, skewness, and kurtosis. The
risk measures include semi-deviation, maximum daily drawdown, 95% daily
Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR), and 99% VaR
and CVaR.

We then use these risk measures to define several mean-to-risk ratios:

Sharpe, Sortino, mean-to-95%VaR, mean-to-95%CVaR, mean-to-99%VaR,
and mean-to-99%CVaR. The mean-to-VaR and mean-to-CVaR are expressed

43



in percentage excess returns and are computed about the mean.

Finally, we produced active risk and return statistics by regressing the
excess returns of the active strategies against the excess return of the buy
and hold investment. The slope of the regression gives the beta of the active
strategy, the intercept corresponds to the risk-adjusted return or Jensen’s
alpha, the standard error of the regression is the active risk or omega. The
ratio of Jensen’s alpha to omega is the appraisal ratio.

7.4 Results: Full Period

Table @ presents the optimal confidence levels and the four categories of
metrics (descriptive statistics, risk measures, mean-to-risk ratios and active
risk and returns) for the buy and hold, PEO and logPEQ strategies on the
Shanghai and Shenzhen stock markets. For the active strategies, the percent-
age change in the statistics over the buy and hold investment are computed.
Overall, we find that it is possible to construct active PEO and logPEO-based
strategies outperforming a simple buy and hold investment.
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7.4.1 Results on the Shanghai Market

On the Shanghai market, active strategies outperform a buy and hold invest-
ment on all metrics. The confidence levels are optimized at 89%-90% for sell
signals and 83%-85% for buy signals.

For the descriptive statistics, active strategies generate a higher return
than the index (3 to 5 basis points a day, about 7% to 13% returns per year),
while reducing risk by 20% to 25%. Active strategies have a more pronounced
right skew than the index, indicating that active strategies have much more
instances of returns above than below the mean. The kurtosis also increases
noticeably, implying a hollowing out of the bulk of the distribution, and fat-
ter tails.

The risk measures indicate that the risk of the active strategies is lower
than that of the index. For example, the 99% CVaR is around 2% lower than
that of the index, meaning that for the 1% worst daily loss incurred over the
period, the active strategies would have lost 2% fewer assets on average per
day than the index. However, the maximum drawdown is not much lower
than that of the index, implying that the active strategies were unable to
avoid all of the worst one-day losses.

All of the mean-to-risk ratios show a dramatic improvement over the in-
dex (56% to 226%). The Sortino ratio improved the most because it is the
objective function in our optimization. All the other ratios improved over
the index by 56% to 190%, meaning that the active strategies deliver more
excess return per unit of risk (as measured by the standard deviation, semi-
deviation, VaRs, and CVaRs) than the index.

Considering active risk and return, the beta of the active strategies is only
0.5 to 0.6. Hence the active strategies are defensive. Both active strategies
generate positive alpha (between 0.6 basis points and 2.75 basis points a day,
roughly 4% to 7% per year), but with a substantial active risk as indicated
by omega, resulting in a moderately positive appraisal ratio.

7.4.2 Results on the Shenzhen Market

The results on the Shenzhen market are less clear-cut overall, although both
active strategies outperformed the index. The optimal confidence for the
PEO and logPEOQ strategy are 23% and 43% respectively for sell decisions,
and 99% and 93% respectively for buy decision.
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For the descriptive statistics, the mean excess return of the PEO-based
strategy is markedly higher than that of the index, while the excess return
of the logPE(-based strategy is virtually identical to that of the index. Both
strategies achieve a similar reduction in the standard deviation, but they
diverge again slightly on the skewness: the PEO-based strategy is a bit more
skewed to the left than the index, while the logPEO strategy is somewhat
skewed to the right. Both strategies have much fatter tails than the index.

The risk measures indicate that the risk of the active strategies is lower
than that of the index, although the maximum drawdown remains close to
that of the index. As a result, the mean-to-risk ratios are all markedly higher
than that of the index. The improvement ranges from 71% for the mean-
to-CVaR99 of the logPEQ strategy to 296% for the Sortino ratio of the PEO
strategy.

The beta of the active strategies is significantly lower than 1. Both strate-
gies generate positive alpha (between 1.56 basis points and 2.70 basis points
a day, roughly 1.5% to 7% per year), but with a large active risk as measured
by omega, resulting in a moderately positive appraisal ratio.

7.5 Results: Period 2006-2016

Similar to Table @ , Tables @ and @ present, for the Shanghai and Shenzhen
stock market respectively, the optimal confidence levels and four categories of
metrics for the buy and hold, PEO, logPEO, BSEYDO, logBSEYDO0, CAPE10,
logCAPE10, BSEYD10 and logBSEYDI10 strategies over the October 31,
2006 to June 30, 2016 period. For the active strategies, the percentage change
in the statistics over the buy and hold investment are computed. Overall, we
find that it is possible to construct active strategies outperforming a simple
buy and hold investment.

7.5.1 Results on the Shanghai Market

The confidence parameters displayed in Tables 1| appear relatively uniform,
although the optimal confidence levels for the sell and buy decisions are
asymmetric. The optimal confidence levels are between 40% and 76% for sell
decisions and between 0.5% and 5% for buy decisions. These results suggest
that a portfolio manager would only need to be 40% to 76% confident that a
correction will occur to sell, and only 0.5% to 5% confident that an increase

47



will happen to buy.

For the descriptive statistics, the active strategies do not outperform the
index regarding mean excess return, but they generate between 60% and
90% less risk than the index as measured by the standard deviation of excess
returns. The return distribution of the active strategies is less skewed to the
right than that of the index and has fatter tails.

All the risk measures related to the active strategies are between 51%
and 99% lower than for the index, confirming our earlier observation on the
standard deviation. Even the maximum drawdown dropped by 51% to 75%,
from 9.26% to a range of 2.15% to 4.44%, which was not the case over the
full period.

As a result, we observe a dramatic increase in all the mean-to-risk ratios,
and in particular the mean-to-VaR and mean-to-CVaR ratios. This observa-
tion is consistent with the interpretation that the optimal strategies on the
SHCOMP reduce risk more than they increase returns.

The analysis of active risk and return provides further evidence in this
direction: the beta of all the strategies is not significantly different from 0,
while all the strategies generate moderate amount of alpha (between 1.55
basis points and 2.12 basis points a day, roughly 1.5% to 5.3% per year),
with a moderate omega, resulting in a relatively high appraisal ratio.
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7.5.2 Results on the Shenzhen Market

The results on the Shenzhen market are more heterogeneous than on the
Shanghai market, as was the case in the full period. For six out of eight
strategies, the optimal confidence level for sell decisions is between 43% and
54%, and between 26% and 30% for the remaining two strategies. However,
the confidence levels for buy decisions show more variability, from lows of
5% to highs of 59%.

For the descriptive statistics, we observe that the mean excess return of
the active strategies is lower than the index. The standard deviation for the
active strategies is between 46% and 78% lower than for the index, while the
skewness is consistent with that of the index, and the kurtosis is much higher
than that of the index.

All the active strategies outperform the index in terms of risk measures.
Active strategies are between 25% and 88% less risky than the index, ex-
cept for the maximum drawdown where two of the strategies do not improve
markedly on the index.

The mean-to-risk ratios of the active strategies outperform the index
markedly, especially the Sharpe ratio, Sortino ratio and mean-to-VaR95 ra-
tio.

Regarding active risk and return, the active strategies have low betas,
ranging from 0.08 to 0.34. They generate a reasonably large alpha (between
2.2 basis points and 5 basis points a day, about 5.5% to 12.6% per year),
with a sizable omega, resulting in a relatively high appraisal ratio.

49



"S9YBUII)SS JO IOIID PIRPUR)S Y} 9)BIIPUI SOIISIIR)S
WINJOI PUR MSLI 9AI}OR 9} 0} X0l S)o3DRI] U0IM)Oq SIOqUINN “JUSUISOAUL P[OY pue Ang oyj o} paredurod adurid adejusdiod o) 9)edIpul
SOTYRI MSLI-UROUI PUR SOINSBOUI ISLI ‘SO1)SI)R)s 9AT)dLIOSOP 9} 0} JX0U $)oyorI( U90MId( SoSRIUSIID SOIISIRIS WINJOI PUR SLI SAIIOR
puR SOIYRI NSLI-UROUL ‘SOINSLIUl YSILI ‘s01ps1je)s oA1pdLIosop ‘(so13o1eIls oA1jor 10j) siojowrered odULPYUOD [[0S pue Ang oY) sjuesaid oqe)

O} ‘UWN[0D UL POIOPISUOD ATOJRIYS JUSUI)SOAUL [PRS 104 “(90TZ-9002) JINODHS 92U} uo so1dejerys oAy [ewrdQ (g 9[qe],

86500 £60°0 Lv0°0 cr0'0 2500 <0700 L680°0 0600 0 oryex [esreaddy
%ST29°0 %L912°0 %T6EE0 UTIFED %TGEE0 %698€°0 %STET 0 %STET 0 0 wow(y
(1000°0) %7800 (0) %T1020°0 (1000°0) %6510°0  (1000°0) ¢ (1000°0) %PL10°0  (1000°0) %9ST0°0  (0) %1200 (0) %2100 (0) %0 eydry
(200°0) 61°0 (¥200°0) €00 (8€00°0) 80°0 (6£00°0) 80°0 (8€00°0) L0°0 (£700°0) 60°0 (9200°0) €00 (9200°0) €0°0 (0) 1 v
wImnjoy pue Jsry SAIY

(%6L8) S0T00 ( %289) 81200 ( %96T) 2800°0 ( Q\cmw: 81000 ((%0er'3) ?mm 0 (%esT) 2000 (%¥19) 90200 (1%029) L0500 82000 66¥BAD-0}-UBa
(%e1p) €100 (%9.8°¢) avel'0  (%£82) 6310°0 (%%92) £210°0 (%597'19) L17L T (%9€8) ¥110°0 (9%L1G'e) gee1’0  ((%ELG'E) THET'0  $£00°0 66U BA-0)-UBOTN
(%W¥p) L2200 ( %LTE€eT) 86550 ( %ITFT) I88T0  ( %M: ) ¥8LT°0 A,_Em.@ 26650 ((%896°€) 926T0  ( %LEOET) €2FC0  ( %09S°TT) 2350 TFO00 GEUBAD-0)- T
(%188) 79900 ( %F¥8Fc) 88€9T ( %F60°82) 72s8'T  ( %00L'82) 6681 ( %0TF9Z) LIPLT ( %EET'8T) 6VS8T ( %991°FC) €765 T  ( %8¥0'F2) G98ST 99000 GEYBA-0}-URIIY
(%6£9) 6200 (%069°T) T8LT°0  ( %ELS) 2L90°0 (%E¥S) $90°0 ( xsg 26L0°0 ( 9%¢9%) 2950°0 (9%16S1) 2891°0  ((%F09°T) 969T°0  6600°0 OI}eI OUI}I0g
(%eep) €2600  ( %S9L) £60°0 (%1¥8) 62700 ((%€z€) 58700 (1%48¢) 1250°0 (%g86) c1700  (%geL) 86800  (%ghL) 90600 80100 oryex adreyg
SOINSBITA] SIY-URIIA

(%97-) %e6¢ (%L8- v 9%56°0 (%1L) %¥1e (%0L-) %61°C (%66-) %800 (9%99-) %1¢C (9%98-) %S0 (%987) %501 %68°L 66 UPAD
(%09°) %8ec  (%L67) %LT0 (%L27) %SET (%LL-) %6ET (%001-) %100 (%¥L7) %PST ((%26) %810 (%267) %81°0 %L6°S 66 A
(%c9-) %e8'1 (%66-) %¥0°0 (1%86-) %60°0 (%86-) %1°0 (1%86-) %80°0 (%86-) &: 0 (%66-) %700 (%66-) %1070 %¥8F G6 UBAD
(%6L7) %90 ( %S ) %100 (%001°) %100 (%001-) %100 (%001-) %100 (%001-) %100 (%001-) %100 (%001-) %100  %L0°€ 6 A
(%1e-) %1eL (9%LL7) %S1T (%es-) %¥v¥ (%eg-) %Fr ¥ (%99-) %F0F (9%19) %8S¥ (9%SL-) %85T (9%8L) %85T %9%°6 QAU WL UMOPMEID WINUIXE]
(%tL-) %950 (%¥6-) %e1°0 (19%287) %9270 (%L87) %80 (%88) %520 (9468-) %1£°0 (%¥6-) %E1°0 (%¥6-) %E1°0 %E0T UOIYRIADP-TUIDG
(ueaJA] WIOL]) SOINSEITA] {STY

(%L6€) 69°1€ (9%86L1) 90121 ( %689) 65°0% (1%L99) 88'8¥ (19%089) LL°6F (%509) L6°FF (%89L1) €T a: (%89L1) FI'6IT  8€'9 Jany
(%ge1) 60°T- (%1LeT-) €6°C (%gIT-) 90°0 ( %g67) v0°0- (%972-) 89°0 (%%g-) g0 ( \?S ) LG (%¥621-) 95°¢ L¥°0- SSOUMONG
(%29) %L0  ((%88) %Tz0 (%08-) %LE0 ((%08-) %8€°0 ( \zw ) %9€°0 (%LL7) %P0 (%28~ xwmo (%L87) %¥E0 %.8°T UOIRIADD PIRpURYG
( %¥01) %¥0°0 (%€) %c0°0 (%€1-) %2070 (%ST1-) %200 (1%9°) %200 (%€1-) %800 ( xb %20°0 ( &@ %3070 %20°0 WYY wedfy
so19817R)s 2A1dIIosa (]

%060 %080 %67°C %88 %8LY upee %PL0 %0¢°0 Ang
%F8'GL %F8°GL %6L 67 %EL Y %TLTH %LL°09 %T6'€S %8T°0F IEY

J9jouresed sduapyuo)

0TAAHSHS0[ 0TAAISH 0THd VD30 0TIdVD 0dAHSHS0] 0aAdSd 0dd01 0dd PIOH pue Ang

50



7.6 Discussion

These results suggest that it is possible to use PE and BSEYD-based mea-
sures to construct active strategies that outperform a simple buy and hold
investment on a risk-adjusted basis on the Shanghai and Shenzhen equity
markets. The conclusions are stronger on the Shanghai equity market than
on the Shenzhen equity market.

The confidence levels provide the most striking observation of this study.
The confidence levels for buy and sell do not match, and they are not close
to each other. For sell decisions, the confidence level is typically much lower
for asset management applications than for statistical investigation. This
means that asset managers may make wrong decisions occasionally but still
outperform a strategy that only trades when the confidence level is high.

So far, these active strategies are all based on a 90-day trading window,
meaning that managers have 90 days to trade following a signal. We also
performed the same analysis on trading windows of 30 days and 120 days.
Overall, the strategies performed better with longer trading windows.

At first, this result appears counterintuitive: experience suggests that
longer trading windows should result in higher opportunity costs and there-
fore reduce the effectiveness of active strategies. However, this statement
makes an implicit assumption: that the trading signal received should prompt
immediate action. This is not the case with the PE, CAPE, and BSEYD.
These measures tend to peak and generate a signal six to nine months before
a downturn occurs (as evidenced by the robustness tests).

This early warning feature gives the PE, CAPE, and BSEYD an ad-
vantage from an asset management perspective because it leaves portfolio
managers ample time to shift their positions in an orderly manner, and at
minimum liquidity cost to their funds. Furthermore, this early warning fea-
ture explains why acting immediately on the signal may be a bad idea: by
selling too soon (or buying too early), a portfolio manager may miss out a
part of the rally (or invest while the market is still correcting).
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8 Conclusion And Summary of the Main Re-
sults

The Chinese stock market is certainly one of the most interesting and com-
plex equity markets in the world. Its size, scope, structure and the the
rapidity of its evolution make it a uniquely challenging, and valuable test-
ing ground for crash prediction models. Overall, the studies in this paper
support the application of crash prediction models to the Chinese market,
and reveals further research questions both on the behavior of Chinese equity
markets, and on crash prediction models.

Over the entire length of the study (1990-2016 for the SHCOMP and
1991-2016 for the SZECOMP), our statistical test rejected the null hypoth-
esis that the logarithm of the P/E do not have predictive power. Moreover,
these results are not overly sensitive to changes in the two key parameters of
the model: the confidence level o and the forecasting horizon H.

A comparison of the BSEYD, PE and CAPE and their logarithm over a
shorter 9-year period, is less conclusive. On the SHCOMP, measures based
on the BSEYD do not perform as well as measures based on the P/E and in
particular, the CAPE. This is a puzzle because the BSEYD contains more in-
formation than the P/E and has been more successful in other markets since
1988. However, all measures perform surprisingly well on the SZECOMP.
Two possible explanations for this situation are that (i) the sample is small
so any correct or incorrect prediction has a large impact on the accuracy
of the measure and its statistical test, and (ii) the market microstructure
of the SHCOMP and SZECOMP differ because the Shanghai and Shenzhen
stock exchanges were created for two different types of companies: public
companies in Shanghai and privately-owned companies in Shenzhen. Both
explanations open up avenues for further research.

We also found that it is possible to use the PE, CAPE and BSEYD, and
their logarithms, to construct active strategies capable of outperforming a
simple buy and hold investment, even when transaction costs and liquidity
constraints are factored in. Overall, the active strategies carry a fraction of
the risk of the buy and hold investment, and produce higher returns per unit
of risk. This observation holds across multiple definitions of risk: standard
deviation, semi-deviation, VaR, CVaR, beta, and omega. These findings sug-
gest that PE, CAPE, and BSEYD-based strategies have their place in the
asset management world.
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A Appendix: An Overview of Hidden Markov
Models

A.1 Basic Structure

We start from the assumption that at any point in time ¢, the financial in-
dex, whether the SHCOMP or the SZECOMP, can be in any of N distinct
states S1,.9.,...,95,. Denote by ¢; the actual state of the system at time
t=1,2,..., and by {q = S;} the event ‘being in state ¢ at time ¢t

On any day, the index may change state with probability
Plg: = Silqi—1 = Si, q4—2 = Sk, . . ]

We further assume that the state transitions satisfy the Markov property,
which implies that

P [Qt = Sj‘Qt—l = Si, G—2 = Sk, - - ] =P [Qt = Sj|Qt—1 = Sz‘]

we model this as a discrete (first order) Markov Chain with a transition
probability matrix A = (a;;), 4,7 = 1,..., N of the form

ai; = Plg = Sjlg—1 = Si] (A.1)
where the state transition coefficients a;; satisfy

Q45 Z 0
N
Z [ 1

Jj=1

Next, denote the initial state probabilities by
Wi:P[ql:Si], Zzl,,N

The observation sequence O = {O;, 05 ...Or} records the actual states
that have occurred from time 1 to time 7. We allow Oy, O, ... to be the
vector of returns on the index.

In simple cases, we could read the state directly (as an example, we could
think about weather condition outside our window). If we have observed

state S7 at time 1, S3 at time 2, S7 at time 3 and S, at time 4, then the
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observation sequence is O = {57, S3, 51, S2}. Often, the current state of the
system is not directly observable. In this sense the actual sate of the Markov
chain is ‘hidden’. As a result, we need to rely on observations to infer the
current state of the market. For example, the current state of the a financial
market is not directly observable: we need to infer it from the returns we
observe.

The theory of HMM was originally built around the idea of discrete obser-
vation symbols associated with each states. These observation symbols form
an alphabet of size M. We denote by V the set of all observation symbols,
ie.

V= {Ul,Ug,...,Uk,...UM}
Think of V' as a set of letters or sounds (music notes, syllables...)

The probability of the observation symbol given that the system is in
state j is

bj(k) = P lug at t|g, = Sj] 1<j<N,1<k<M (A.2)

The probability distribution of the observation symbol is the matrix B =
(bj(k)), 1<j <N 1<k<M.

The idea of a discrete observation set does work for simple coin toss or
ball-and-urn experiments as well as for some data processing applications,
but it has severe limitations for financial markets where the observation se-

quence is represented by asset returns.

As a result, we need to change the standard model to allow continuous
observation sets and continuous probability distributions.

To that effect, we model the returns in each state as a M-component
Gaussian mixture. The mathematical specification of this model is:

M
b(0) = 3 N (O, tjus Bj), 1< <N (A.3)
m=1

where

e O is a d-dimensional observation vector;
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o N is the Gaussian pdfa.

* Cjp is the mixture coefficient for the j-th state and m-th mixture;
e [ijm is the mean vector for the j-th state and m-th mixture;

e X, is the covariance matrix for the j-th state and m-th mixture.

The mixture coefficient c;,, satisfies the following constraints:

Cim Z 0
M
Zij =1 <A4)
m=1

Moreover, for b to be a properly defined pdf we need to have

+oo
/ bj(z)de =1, 1<j<N (A.5)

[e.o]

When M = 1, we revert to the case where the returns in each state are
conditionally jointly-Normally distributed.

To sum things up, our HMM model is comprised of:
1. N unobervable states Si, 59, ..., SN;
2. a N x N transition probability matrix A = (a;;) where
ai; = Plg = Sjlgi-1 = Si] (A.6)
3. initial state probabilities

Wi:P[(]lzsi], Zzl,N

Y

4. a sequence of d-dimensional vectors {O,},_, with observation proba-
bility given by a M-dimensional Gaussian mixture:

M
b;(0) = > imN (O, tjm, i), 1<j <N (A.7)
m=1

We denote by B(O) the N-dimensional pdf vector.

4Any log-concave or elliptically-symmetric probability would work, although in reality
most people will use Gaussian distributions
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A.2 The Three (Basic) Problems for HMMs And How
to Solve Them

We express the set of model parameters A as A = (A, B, 7). Rabiner (1989,
p. 261)) summarizes the three ‘basic’ problems for HMMs:

1. Given an observation sequence O = 0105...0O7 and a model \ =
(A, B, ), how do we compute efficiently the probability of the obser-
vation sequence P(O|\)?

2. Given an observation sequence O = 010 ... Op and the model A\, how
do we choose a corresponding state sequence () = ¢1¢s . ..qr which is
optimal in some meaningful sense (i.e. best “explains” the observa-
tions?

3. How do we adjust the model parameters A = (A, B,7) to maximise

P(O|N)?

Solving the first problem requires a forward-backward numerical proce-
dure. The Viterbi algorithm (?) solves the second problem. In terms of
structure, the Viterbi algorithm is similar to a forward procedure developed
to solve the first problem, but it also includes a maximization at each node
and a backtracking step.

The third problem is the most difficult of the three. The standard way of
solving it is due to Baum and his coauthors and is known as the Baum-Welch
algorithm (Baum et al), 1970, and references within). The Baum-Welch al-
gorithm is in fact a special case of another celebrated algorithm: the EM or
Expectation-Maximization algorithm (Dempster et al), 1977).

The Baum-Welch algorithm works by iteratively choosing a set of parame-
ters A = (A4, B, 7) to maximise P(O|\). The iterative reestimation procedure
is shown to converge monotonically to a local maximum. Like the EM al-
gorithm, the Baum-Welch algorithm only identifies local maxima. From a
practical perspective, this means that it is important to run the algorithm
multiple times with different starting values to ensure that the solution ob-
tained is the global maximum and not just a local one.
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A.3 Model Selection

One of the difficulties with HMM models is to select the optimal number of
states. We cannot use the Likelihood or the Loglikelihood directly, because
the likelihood will increase as we increase the number of states. One way of
addressing this problem is by selecting the model that optimzes one of the
following information criteria:

1. The Akaika information criterion (AIC) is
AIC = —-2InL+2p (A.8)

where L denotes the likelihood of the model and p is the number of
parameters.

2. Schwartz’ Bayesian information criterion (BIC) is
SBIC = —-2InL+2plnT (A.9)
where 7' is the number of observations.
3. The Hannan-Quinn criterion (HQIC) is
HQIC = —2In L + 2pIn(In(7)) (A.10)
where 7' is the number of observations.

All three information criteria maximize the log likelihood of the model
penalized by the number of parameters. The key difference between the
three criteria relates to the treatment of the number of observations. While
the Akaika information criterion ignores the number of observations, the
Bayesian information criterion penalizes by the log of the number of obser-
vations. The Hannan-Quinn criterion is in between: the penalty is linked to
the number of observations, but it is less stiff than the Bayesian information
criterion.

In this paper, we consider both the AIC and BIC to determine the optimal
number of states.
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