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1 Introduction

An interest rate swap is an agreement to exchange a series of floating interest payments based
on the future realizations of a short-term reference rate—the “floating leg”—for a series of
fixed interest payments—the “fixed leg”. With more than $370 trillion of outstanding notional
value as of 2021, the market for interest rate swaps is the world’s largest derivatives market.1

Investors and borrowers use these swaps to manage their exposures to interest-rate risk.
Since their advent in the late 1980s until 2008, the fixed rates on swaps had always re-

mained above the corresponding rates on like-maturity government bonds. In other words,
swap spreads, the difference between swap rates and government bond rates, had been uni-
formly positive. However, beginning in the Global Financial Crisis, the fixed rates on long-
dated swaps—for instance, the 30-year swaps—have fallen below government bond yields,
resulting in negative long-dated swap spreads.2 Negative swap spreads seemingly represent a
pure arbitrage opportunity, a puzzle in a large and liquid market. As such, negative spreads
have been alternatively attributed to large increases in the demand for long-dated swaps from
end users or to rising balance sheet costs at the financial intermediaries that supply swaps.3

Disentangling these forces in the swap market can help distinguish between periods in which
intermediaries withdraw from arbitrage trades, and periods in which the large swings in investor
demand outstrip intermediaries’ capacity and cause market dislocations.4 In addition, negative
swap spreads provide a context for understanding the government borrowing costs through the
lens of the differences in investor base for interest rate swaps and that of Treasury securities.5

In this paper, we develop a theoretical framework to study the effect of demand and supply
forces on swap spreads. Using this framework, we separately identify investors’ demand for
swaps and financial intermediaries’ supply of swaps, and decompose the variation in swap
spreads into the respective contributions of these two forces. Moreover, we highlight a key
determinant of swap spreads that has been overlooked in the literature: Financial intermediaries
need to be compensated for the risk that spreads may temporarily widen because of future
shocks to demand or supply. We show that compensation for this risk explains a significant
fraction of the returns to swap arbitrage.

We build a model in which the demand of preferred habitat investors, such as mortgage
investors and pension funds, for receiving the fixed rate (and paying the floating rate) in long-
term interest rate swaps is not naturally offset by opposing demands from other investors and
has to be accommodated by risk-averse and leverage-constrained financial intermediaries. In-
termediaries’ binding leverage constraints limit the arbitrage between the swap market and the

1See https://stats.bis.org/statx/srs/table/d5.1.
2See Boyarchenko et al. (2018) for an overview of the negative swap spreads witnessed since 2008.
3See Klingler and Sundaresan (2019) and Jermann (2020) for, respectively, a demand and a supply perspective

on negative swap spreads.
4The latter situation corresponds, for instance, to the March 2020 stress in fixed-income markets; see Duffie

(2020) and Vissing-Jorgensen (2021).
5This point was recently underscored by the Treasury Borrowing Advisory Committee; see TBAC (2021).
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Treasuries market, where intermediaries hedge the interest rate risk of their swap positions.
These binding leverage constraints open the door to nonzero swap spreads, which are a failure
of the Law of One Price (LoOP). In equilibrium, swap spreads are driven by both shocks to
end users’ net demand for swaps and shocks to intermediaries’ wealth, which can either relax
or tighten their leverage constraints and thereby shift the supply of swaps.

Demand shocks and supply shocks naturally induce different co-movements between swap
spreads and intermediaries’ swap positions. Specifically, positive shocks to end-user demand
for swaps increase the magnitude of both swap spreads and intermediaries’ swap positions,
whereas shocks to intermediaries’ supply of swaps—shocks to intermediaries’ wealth—decrease
the magnitude of swap spreads but increase the magnitude of swap positions. Indeed, our model
has a natural representation as a structural vector auto-regression (VAR) in which demand and
supply shocks can be identified with sign restrictions on the responses of swap spreads and
swap positions to these shocks. Estimating the structural VAR implied by our model, we find
that demand and supply shocks both contribute significantly to the variation in swap spreads
after 2009, each capturing a starkly distinct aspect of this variation. Moreover, shifting hedg-
ing demand from mortgage investors appears to be the main driver of net end-user demand for
swaps.

In addition to the interplay between demand and supply, our model points to arbitrage risk

as a key determinant of long-dated swaps spreads: Arbitraging long-dated swap spreads is not
only balance sheet consuming, but also risky for financial intermediaries. Specifically, future
shocks to either demand or supply may temporarily widen swap spreads, leading to capital
losses for financial intermediaries. As a result, intermediaries will require compensation for this
arbitrage risk which takes the form of demand–supply imbalance risk, increasing the magnitude
of swap spreads at longer maturities. In other words, once LoOP violations arise because of
limits to arbitrage, they are amplified by arbitrage risk. The presence of arbitrage risk implies
that measures of intermediaries’ positions in the swap arbitrage trade should predict the returns
to this trade, even after controlling for measures of intermediaries’ balance sheet costs. We
verify this proposition in the data using predictive regressions.

While demand and supply both play important roles in driving the variation in swap spreads,
we should expect end-user demand to be a stronger predictor of the returns to swap arbitrage
than supply. Intuitively, positive demand shocks simultaneously increase the compensation
intermediaries require for committing their scarce balance sheet to swap arbitrage and the com-
pensation they require for bearing future swap spread risk. By contrast, a negative supply
shock—a negative shock to intermediaries’ wealth—reduces intermediaries’ exposure to swap
spread risk and the associated premium while increasing the compensation required for using
the balance sheet. Because these two effects partially offset each other, supply shocks have a
smaller impact on the returns to swap arbitrage than do demand shocks. We verify this predicted
asymmetry in the data, providing further evidence in support of the arbitrage risk channel.

Interestingly, the model also points to the possible determinants of the balance sheet cost
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associated with intermediating swaps. To the extent that intermediaries allocate their scarce
balance sheet between swap arbitrage and other risky investments, the market price of risk rep-
resents the opportunity cost of committing the balance sheet to swap arbitrage. Thus, in the
model, there is a link between risk premia and swap spreads, which does not rely on interme-
diaries being the marginal investor in the market for the risky assets. Our findings are in line
with this prediction.

Finally, we show that decomposing swap spreads into demand and supply components helps
understand the relationship of negative swap spreads to other LoOP violations, such as the
deviations from the covered interest parity. In particular, we find that swap supply is primarily
correlated with short-maturity covered interest parity deviations whereas swap demand—with
long-maturity covered interest parity deviations.

Our model builds on Vayanos and Vila (2021) and, as a result, is related to the growing liter-
ature on demand factors in the government bond market; see Greenwood and Vayanos (2014),
Hanson (2014), Malkhozov et al. (2016), Gourinchas et al. (2020), and Greenwood et al. (2020),
among others. Our model is different from the above papers along two dimensions. First, we
consider long-maturity swap spreads that arise because of limits to arbitrage rather than long-
maturity bond yields. Second, we allow for the variation in both demand and supply in the
swap market, and use model predictions to disentangle these two forces empirically.

Our work is also related to De Long et al. (1990) who show that noise traders can create a
risk in the price of an asset that deters rational arbitrageurs from aggressively betting against
mispricings caused by these noise traders. In their model, an equilibrium with noise trader risk
can exist alongside a more standard equilibrium in which arbitrageurs eliminate all mispricings
and noise trader risk does not arise.6 In contrast, we show that noise trader risk does not have
to rely on the special type of equilibrium considered in De Long et al. (1990). In our model,
the violations of the LoOP arise because intermediaries, who play the role of arbitrageurs, are
subject to a leverage constraint. Once these violations are present, they are amplified by the
risk of demand and supply shocks. Our results are also related to Spiegel (1998) as our model,
which features demand shocks, has multiple equilibria that qualitatively differ from each other.
While we discuss the existence of other equilibria of our model, we focus on the unique stable
equilibrium to derive testable predictions.

Swap rates and Treasury yields have been extensively studied in previous literature. A
stream of literature calibrates dynamic term structure models to understand the dynamics of
swap spreads; see, for instance, Duffie and Singleton (1997), Lang et al. (1998), Collin-
Dufresne and Solnik (2001), Liu et al. (2006), and Feldhütter and Lando (2008), among others.
The ones closest to our paper are Klingler and Sundaresan (2019) and Jermann (2020) who
focus on, respectively, the demand and the supply channels in the swap market in isolation.

Finally, our work is also related to Cohen et al. (2007), Chen et al. (2018), and Goldberg and

6Loewenstein and Willard (2006) argue that the equilibrium with noise trader risk in De Long et al. (1990) has
several unappealing properties.
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Nozawa (2021) who identify demand and supply shifts in shorting, index option, and corporate
bond markets, respectively. In our paper, we focus on demand and supply forces in the swap
market. Moreover, we show how shifts in demand and supply constitute a source of risk for
the arbitrageurs in this market, who consequently require a premium reflected in long-maturity
swap spreads.

The rest of the paper is organized as follows. Section 2 provides background on interest
rate swap contracts and their market. Section 3 presents a theoretical framework to study the
impact of demand and supply risk on swap spreads and derives testable predictions. Section
4 describes our data and Section 5 presents our main empirical findings. Section 6 concludes.
An Online Appendix gathers additional results omitted from the main paper.

2 Background

Before delving into our theoretical and empirical analysis, we provide background to the market
for interest rate swaps. After explaining the mechanics of these derivative contracts, we review
the no-arbitrage pricing logic that makes negative swap spreads so surprising. We then discuss
the swap market participants, dividing them into “end users” and specialized “intermediaries.”
Finally, we describe how the swap market evolved since its advent in the 1980s with a focus on
the major changes this market has undergone since the Global Financial Crisis.

2.1 Interest rate swap mechanics

An interest rate swap is an agreement between two counterparties to exchange a series of in-
terest payments over time based on some notional principal amount. In a plain-vanilla interest
rate swap, the first counterparty pays the second a series of fixed and known payments based
on the swap rate set at the contract’s inception; the second counterparty pays the first a series
of floating and initially unknown payments based on the future realizations of some short-term
reference rate. The fixed swap rate is set so that the swap has zero value at inception. Thus,
the fixed swap rate is equivalent to a par coupon yield derived from the underlying reference
curve. As a result, the counterparty who is receiving (paying) the fixed swap rate acquires an
financial exposure that is similar to that obtained by borrowing (investing) cash at the short-
term interest rate and taking a long (short) position in long-term bonds. A par swap spread is
the difference between the fixed swap rate and the par coupon yield of a Treasury bond with
the same maturity.

Historically, the floating leg on most interest rate swaps was tied to the 3-month London
Interbank Offer Rate (LIBOR), which is an indicative unsecured 3-month borrowing rate for
major global banks. In recent years, swaps tied to overnight interbank unsecured borrowing
rates and overnight secured borrowing have been replacing LIBOR-based swaps as the market
standard, and LIBOR was discontinued at the end of 2021. Specifically, Overnight Index Swaps
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(OIS) are tied to the effective federal funds rate—an overnight unsecured interbank borrowing
rate—and SOFR swaps are tied to the Secured Overnight Financing Rate (SOFR)—a rate based
on overnight repurchase agreements collateralized by Treasury securities.

Since its birth in the 1980s, the market for U.S. dollar interest rate swaps has grown into the
largest derivatives market in the U.S. with over $115 trillion of outstanding notional value and
a gross market value exceeding $2.3 trillion as of 2020.7 The market for U.S. dollar interest
rate swaps is highly liquid with an average daily trading volume of roughly $500 billion in
2020.8 A typical bid-ask spread for 10-year interest rate swaps is around 1 basis point whereas
a typical bid-ask spread on a 10-year Treasury note is roughly 0.25 basis points.

2.2 No-arbitrage pricing bounds

To begin, note that, in the absence of frictions, a non-zero spread on a SOFR swap constitutes
a failure of the LoOP—i.e., it implies the existence of a zero-cost portfolio that generates a
riskless stream of positive cashflows—and hence an arbitrage. Suppose, for instance, that the
SOFR swap spread is positive at some initiation time t = 0. Entering a receive-fixed SOFR
swap and taking an offsetting short position in like-maturity Treasuries (and investing the short-
sale proceeds at SOFR) generates a stream of riskless cashflows equal to this positive swap
spread. In symbols, the cashflow on this zero-cost position that is a “long SOFR swap spread”
at any time t > 0 is:

CF (Long SOFR swap spread)t =

CF (Receive-fixed SOFR swap)t︷ ︸︸ ︷
(ySOFR swap

0 − SOFRt) +

CF (Short Treasury position)t︷ ︸︸ ︷
(−yTreasury

0 + SOFRt)

= (ySOFR swap
0 − yTreasury

0 )︸ ︷︷ ︸
SOFR swap spread0>0

> 0.

Alternately, if the SOFR swap spread is negative at t = 0, entering a pay-fixed SOFR swap and
taking a long position in Treasuries (that is financed at SOFR) generates a stream of riskless
cashflows equal to the negative one times the swap spread:

CF (Short SOFR swap spread)t =

CF (Pay-fixed SOFR swap)t︷ ︸︸ ︷
(−ySOFR swap

0 + SOFRt) +

CF (Long Treasury position)t︷ ︸︸ ︷
(yTreasury

0 − SOFRt)

= −(ySOFR Swap
0 − yTreasury

0 )︸ ︷︷ ︸
SOFR swap spread0<0

> 0.

7See https://stats.bis.org/statx/srs/table/d5.1. The gross market value of the interest rate swap market is the ab-
solute value of the market value of all outstanding receive fixed swap contracts. By way of comparison, at the end
of 2020, there were roughly $21 trillion of outstanding U.S. Treasury securities, $16 trillion of corporate bonds,
and $9 trillion of MBS. Across all currencies, the BIS reports that there were over $350 trillion of outstanding
notional of interest rate swaps at the end of 2020 with a gross market value exceeding $10 trillion.

8This is based on the total volume of swaps cleared through central counterparty clearing house (CCPs);
see https://www.clarusft.com/2020-ccp-volumes-and-market-share-in-ird/. By way of comparison, according to
SIFMA, the average daily trading volume in 2020 was roughly $600 billion for U.S. Treasury securities, $300
billion for U.S. MBS and $40 billion for U.S. corporate bonds.
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By contrast, assuming that the 3-month LIBOR will always exceed the secured financing rate
for Treasuries—a highly plausible assumption since LIBOR contains compensation for credit
risk—a positive spread on a LIBOR swap does not represent a failure of LoOP or of no ar-
bitrage. For instance, receiving fixed on a LIBOR swap and shorting Treasuries amounts to
receiving a fixed swap spread and paying the floating spread between LIBOR and the secured
financing rate:

CF (Long LIBOR swap spread)t = (y
LIBOR swap
0 − y

Treasury
0 )︸ ︷︷ ︸

LIBOR swap spread0>0

− (LIBORt − SOFRt)︸ ︷︷ ︸
Short-rate differentialt≥0

.

As a result, CF (Long LIBOR swap spread)t will be negative if the short-rate differential is
large enough. However, if LIBORt − SOFRt ≥ 0 in all possible states, a negative LIBOR
swap spread is a violation of no arbitrage. In that case, a short position in the LIBOR swap
spread—paying fixed on a LIBOR swap and taking an offsetting long position in Treasuries—
is a zero-cost portfolio with strictly positive cashflows in all possible states given by:

CF (Short LIBOR swap spread)t = −(y
LIBOR swap
0 − y

Treasury
0 )︸ ︷︷ ︸

LIBOR swap spread0<0

+ (LIBORt − SOFRt)︸ ︷︷ ︸
Short-rate differentialt≥0

> 0.

2.3 Swap market participants

Who are the participants in the interest rate swap market? We find it useful to categorize market
participants into “end users” and specialized “ intermediaries.” End users—for instance, finan-
cial institutions, corporations, and governments—generally use swaps to manage their pre-
existing exposures to interest-rate risk. To clear the swap market, specialized intermediaries—
who we associate with broker-dealers and fixed-income hedge funds—must accommodate the
net end-user demand to either receive or pay the fixed swap rate. These specialized intermedi-
aries hedge the interest rate risk associated with their swap positions by taking offsetting posi-
tions in the Treasuries market. As a result, these intermediaries are primarily concerned with
the relative valuation of swaps and Treasuries—i.e., with the level of swap spreads and any
mismatch between the short-term rate referenced by swaps and the short-term financing rate on
their offsetting Treasuries positions. In addition to the cashflows and potential changes in the
mark-to-market value of their swap spread positions, swap intermediaries must also weigh the
fact that these swap spread positions will consume their scarce risk-bearing capital.

End users of interest rate swaps are agents who want long or short exposure to long-term
bonds, but who for regulatory, accounting, or other frictional reasons prefer to obtain their
desired bond exposure using interest rate swaps as opposed to Treasuries or other cash instru-
ments. As explained in the U.S. Treasury Borrowing Advisory Committee’s TBAC (2021)
report on the swap market, there are several important groups of end users in the swap market.

Insurers and pensions use swaps to manage their pre-existing interest-rate risk exposures.
Insurers and pensions typically receive the fixed swap rate on net—i.e., they use swaps to add
duration—to offset the fact that the duration of their liabilities generally exceeds the duration
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of their preferred mix of on-balance sheet assets; see, e.g., Klingler and Sundaresan (2019)
and TBAC (2021). In the case of pension funds, Klingler and Sundaresan (2019) argue that
this desire to receive fixed increases when pensions become more underfunded.9 Furthermore,
since the convexity of their liabilities generally exceeds that of their assets, when long-term
interest rates fall, insurers and pensions often need to enter into additional receive-fixed swaps
to manage their exposure to interest rates; see Domanski et al. (2017).10

Commercial banks also typically receive fixed on net; see, for instance, Begenau et al.
(2020) and TBAC (2021). Although banks borrow short-term and lend long-term, banks are
generally hurt by declining interest rates because their loans reprice far more quickly than
their deposit liabilities, which reprice very slowly if at all; see Driscoll and Judson (2013) and
Drechsler et al. (2021), among others. To offset these pre-existing exposures, banks generally
receive the fixed swap rate on net to add duration.

Non-financial corporations typically receive the fixed swap rate in order to convert fixed-
rate bonds that they issued into synthetic floating-rate funding; see TBAC (2021). Chernenko
and Faulkender (2011), in particular, argue that these firms are more likely to swap existing
fixed rate debt to floating—i.e., to receive fixed—when the yield curve is steep.

Relative-value mortgage investors typically pay the fixed swap rate on net; see TBAC
(2021). These investors—most prominently Fannie Mae and Freddie Mac, but also relative-
value fixed-income asset managers—attempt to exploit the fact that passthrough mortgage-
backed securities (MBS) sometimes trade cheap relative to a dynamic replicating portfolio of
pay-fixed swaps.11 These investors generally prefer to hedge their MBS holdings with swaps
instead of Treasuries due to a combination of regulatory and accounting reasons and the fact
that swaps have historically been a more effective hedge for MBS. When long-term rates fall,
expected mortgage prepayments rise, causing MBS duration to decline. This prompts mortgage
investors to enter receive-fixed swaps to reduce the net size of their pay-fixed swap hedge; see
Perli and Sack (2003), Feldhütter and Lando (2008), Hanson (2014), and Malkhozov et al.
(2016).

Mortgage servicers are institutions that earn a stream of fees to process mortgage pay-
ments; they collect monthly mortgage-related payments from homeowners and pass them along
to MBS investors, local tax authorities, and property insurers. Mortgage servicers have an eco-
nomic exposure similar to the holder of an interest-only (IO) MBS strip, which typically has
a negative duration: their value declines when interest rates fall because the resulting rise in

9To see the idea, recall that a pension’s amount of underfunding is the difference between the value of its
liabilities and its assets UF ≡ L − A. As a result, a pension’s dollar duration gap DGAP ≡ DL · L −DA · A
can be written as DGAP = (DL −DA) ·L+DA ·UF , which is increasing in underfunding UF , all else equal.

10TBAC (2021) argues that the need to hedge variable annuity liabilities plays an especially important role in
driving insurers’ desire to pay the fixed swap rate.

11Because conventional fixed-rate mortgage embed a zero penalty prepayment option, MBS are akin to callable
bonds—i.e., a combination of a long position of a regular non-callable bond and a short position in a call option
on that same bond. As such, one can hedge a position in MBS with a dynamic replicating portfolio of pay-
fixed swaps. However, in the case of MBS, the exercise behavior of the holders of this call option—individual
homeowners—is quite complex and difficult to forecast; see Hanson (2014) and Malkhozov et al. (2016).
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expected prepayments means that the IO holder expects to receive fewer interest payments. To
offset the negative duration of their assets, servicers are typically net receivers of the fixed swap
rate. Further, since IO strips are negatively convex just like passthrough MBS, servicers tend
to increase their receive-fixed swap positions when long-term rates fall; see TBAC (2021).

Fixed-income money managers such as mutual funds use swap positions to adjust the
duration of their portfolios and are typically net payers of the fixed swap rate; see TBAC (2021).
These players typically hold cash bonds and prefer to use pay-fixed swap positions to attain
their portfolio duration targets.

To summarize, most major groups of end users—including banks, insurers, pensions, cor-
porations, and mortgage servicers—are typically net receivers of the fixed swap rate. The main
net payers of the fixed swap rate are relative-value mortgage investors—for instance, Fannie
Mae and Freddie Mac—and fixed-income money managers. Furthermore, since for many end
users the duration of their interest rate exposure declines when rates fall, end-user demand to
receive the fixed swap rate often rises when long-term rates decline; see TBAC (2021).

2.4 The evolution of the swap market

From the inception of the swap market in the 1980s until late 2008 at the height of the Global
Financial Crisis (GFC), swap yields had always exceeded like-maturity Treasury yields—i.e.,
swap spreads had always been positive. The most straightforward explanation for positive swap
spreads is that LIBOR always exceeded Treasury repo rates because (i) LIBOR is an unsecured
3-month bank borrowing rate that includes compensation for credit risk (Collin-Dufresne and
Solnik, 2001) and (ii) Treasury yields and Treasury repo rates are depressed by a money-like
convenience premium specific to these extremely safe and liquid assets (Feldhütter and Lando,
2008). However, there is also evidence that demand-and-supply forces in the swap market
played a role in supporting the level of swap spreads before 2008.

Pre-GFC, hedged mortgage investors played a dominant role in the swap market and there
was generally a net end-user demand to pay the fixed swap rate; see TBAC (2021). To accom-
modate this net demand to pay fixed, specialized intermediaries—broker-dealers and fixed-
income hedge funds—were generally “long swap spreads,” meaning that they received the
fixed swap rate and took offsetting short positions in Treasuries; see, e.g., Duarte et al. (2006).
Indeed, the 1998 bond market crisis involving Long Term Capital Management (LTCM) re-
vealed that major fixed-income hedge funds (LTCM and D.E. Shaw) and large broker-dealers
(Bank of America, Barclays, Goldman Sachs, Morgan Stanley, and Salomon Smith Barney)
had substantial long positions in this swap spread trade; see, e.g., Lowenstein (2000).

This pattern is illustrated in Figure 1, which plots 30-year swap spreads alongside primary
dealers’ net position in U.S. Treasuries from 2001 to 2020. As shown in Figure 1, primary
dealers were indeed net short in Treasuries pre-GFC when swap spread were positive. Our
interpretation is that this net short Treasury position was driven, in significant part, by the
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dealers’ long position in the swap spread trade. Indeed, we will use dealers’ net position in
Treasuries as an (admittedly noisy) proxy for the sign and magnitude of dealers’ positions in
the swap spread trade.

At the height of the GFC in late 2008, long-dated LIBOR swap spreads turned negative
and have remained negative since, leading to an apparent violation of no arbitrage. Spreads’
move into negative territory in the wake of the GFC occurred against the backdrop of three
major changes in the swap market. First, there was a significant shift in the end-user demand
for swaps, with net end-user demand swinging from a desire to pay fixed to a desire to receive
fixed; see TBAC (2021). Second, financial intermediaries became far more concerned with
husbanding their scarce loss-bearing capital. As a result, the shadow value of intermediary
capital has been increasingly impounded into market prices, leading to a noteworthy rise in
deviations from the LoOP across a number of intermediated markets; see, e.g., Gârleanu and
Pedersen (2011), Du et al. (2018), and Siriwardane et al. (2021). Finally, there was a substantial
increase in outstanding Treasury debt during the GFC and, historically, increases in Treasury
supply have tended to reduce the money-like convenience premium in Treasury yields and
hence swap spreads; see, e.g., Cortes (2003), and Krishnamurthy and Vissing-Jorgensen (2012).
We next discuss these three forces in greater detail.

First, as shown in Figure 1, primary dealers’ net position in Treasuries switched from net
short to net long in early 2009—just around the time when 30-year swap spread turned negative.
We interpret this expanding long Treasury position as being driven, in significant part, by the
growing short position dealers were taking in the swap spread trade in response to a swing in
net end users’ desire from paying fixed to receiving fixed.

What drove the shift in net end-user demand? TBAC (2021) points to a decline in the
demand to pay the fixed swap rate from hedged mortgage investors. Following their placement
into conservatorship in late 2008, Fannie Mae and Freddie Mac began gradually shrinking
the size of their on-balance-sheet or “retained” mortgage portfolios; see, e.g., Frame et al.
(2015). The combined size of these retained portfolios shrank from roughly $1.5 trillion in 2008
(about 14% of outstanding residential mortgages) to $350 billion by 2020 (3% of outstanding
mortgages), leading to a sizeable reduction in this traditional source of end-user demand to pay
fixed. At the same time, the Federal Reserve’s large-scale purchases of MBS—the Fed built its
MBS holdings from zero in 2008:Q2 to $1.9 trillion in 2014, or roughly 19% of outstanding
mortgages—had the effect of further removing MBS from the hands of investors who were
inclined to hedge their value using pay-fixed swaps. A complementary explanation comes
from Klingler and Sundaresan (2019) who argue that an increase in underfunding following
the GFC led pensions to manage their duration by receiving the fixed rate on long-term swaps
rather than by buying long-term bonds. As a result, it appears that the balance of end-user
demand swung from a net desire to pay the fixed swap rate to a net desire to receive fixed.

Second, during the GFC, many financial intermediaries suffered large losses and became
concerned with husbanding their increasingly scarce loss-bearing capital. And then, motivated
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by a desire to safeguard financial stability in the aftermath of the GFC, regulators have subjected
large dealer banks to more stringent capital regulations; see, e.g., Hanson et al. (2010). Because
it is expensive for dealer banks to finance themselves with equity instead of debt and because, as
argued by Boyarchenko et al. (2020), dealers effectively pass along their capital requirements
to the hedge funds who rely on them for leverage, these heightened capital requirements have
further increased the cost of intermediation. Indeed, the shadow value of intermediary capital
has increasingly been impounded into market prices since the GFC, leading to a rise in persis-
tent deviations from the LoOP in a range of intermediated markets; see Gârleanu and Pedersen
(2011).12 Most importantly for us, U.S. regulators introduced the supplementary leverage ratio
(SLR) in early 2014 after nearly six years of public discussion. In a nutshell, the SLR requires
large dealer banks to have Tier 1 capital equal to 5% of their “total leverage exposure,” defined
as the sum of on-balance-sheet assets plus an adjustment for off-balance-sheet exposures. Cru-
cially, unlike the more traditional forms of risk-based capital regulation, the SLR depends only
on the notional scale of dealers’ exposures and not on their assessed risk. Overall, the SLR has
become the binding capital constraint for most large dealer banks; see, e.g., Duffie (2017) and
Greenwood et al. (2017).13

Finally, there was a substantial increase in outstanding Treasury debt following the onset of
the GFC. Specifically, the ratio of marketable Treasury debt to GDP rose rapidly from 31% at
the end of 2007 to 59% at the end of 2010.14 Historically, increases in Treasury supply tended to
reduce swap spreads, arguably because they reduce the money-like safety or liquidity premium
commanded by Treasuries when the latter are scarce; see Cortes (2003) and Krishnamurthy and
Vissing-Jorgensen (2012). As a result, it is conceivable that the substantial post-GFC expansion
in Treasury supply largely sated this special demand for Treasuries, effectively eliminating the
convenience premium on Treasuries and leading to a decline in swap spreads.15

In the next section, we propose a model which helps us disentangle the role that end-user
demand for swaps and constrained intermediaries’ supply of swaps played in driving negative
swap spreads since the GFC.

12See also Du et al. (2018) for a detailed study of one widely-discussed post-GFC breakdown of the LoOP,
namely the deviations from covered interest parity in the market for foreign exchange futures; Boyarchenko et al.
(2020) for estimates of the required capital needed to exploit various deviations from the LoOP; and Siriwardane
et al. (2021) for a empirical investigation of the commonalities in various deviations from the LoOP.

13In response to the March 2020 Treasuries market disruption, the Federal Reserve Board temporarily removed
on-balance sheet positions in U.S. Treasuries (as well as central bank reserves) from dealers’ total leverage ex-
posure under the SLR. While this temporary exemption expired in March 2021, the Federal Reserve Board is
considering proposed modifications to the SLR.

14Debt-to-GDP gradually rose further from 59% in 2010 to 78% in 2019. It then leapt to 100% at the end of
2020 due to the massive fiscal response to the COVID-19 pandemic and recession.

15Consistent with this view, the spread between the 3-month overnight index swap rate and the 3-month Trea-
sury repo rate declined significantly in late 2008 and early 2009. This spread averaged +8 basis point from 2001
to 2008 and -7 basis points from 2009 to 2020.
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3 Model

In our model, end users demand long-maturity interest rate swaps that are supplied by risk-
averse and leverage-constrained intermediaries, who specialize in the swap market. These spe-
cialized intermediaries—who we associate with broker-dealers and fixed income hedge funds—
hedge the interest rate risk associated with their swap positions in the Treasury market and, thus,
are only concerned with the relative valuation of swaps and Treasuries—i.e., with the level of
swap spreads. As a result, the level of swap spreads reflects the interplay between end-user
demand for swaps and intermediaries’ willingness to supply swaps.

3.1 Setting

Time is discrete and infinite, and is indexed by t. To begin, we consider a single perpetual in-
terest rate swap and a single perpetual Treasury bond with their coupons declining at the same
rate 0 < δ < 1. Later we extend the model to the entire term structure of swap spreads.

The swap arbitrage trade. Let ySt denote the fixed rate on this perpetual swap at time t and
iSt the short-term rate referenced by the swap—i.e., the London Interbank Offer Rate in the
case of LIBOR swaps, the effective federal funds rate in the case of OIS swaps, or the Secured
Overnight Financing Rate in the case of SOFR swaps. The excess return on a receive-fixed
interest rate swap from t to t+ 1 is given by

rSt+1 ≡
(
ySt − iSt

)
− δ

1− δ

(
ySt+1 − ySt

)
, (1)

where 1/ (1− δ) represents the duration of the swap. The excess return on this receive-fixed
swap consists of a carry term ySt − iSt and a capital gain term − (δ/ (1− δ))

(
ySt+1 − ySt

)
that

arises from any changes in the swap fixed rate from t to t + 1. Similarly, the excess return on
a position in perpetual Treasury bonds with yield yTt that is financed at the secured short-term
financing rate applicable to Treasuries iTt —i.e., the rate on repurchase agreements backed by
Treasury bonds (SOFR)—is

rTt+1 ≡
(
yTt − iTt

)
− δ

1− δ

(
yTt+1 − yTt

)
. (2)

The corresponding perpetual swap spread is then the difference between the fixed rate on
perpetual interest rate swaps and the yield on perpetual Treasury bonds: st ≡ ySt − yTt . The
excess return from t to t + 1 on a swap arbitrage trade that receives the fixed swap rate and
hedges the associated interest rate by going short Treasury bonds becomes

rSpreadt+1 ≡ rSt+1 − rTt+1 = (st −mt)−
δ

1− δ
(st+1 − st) , (3)
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where mt ≡ iSt − iTt is the short rate differential: the spread between the short-term rate
referenced by the swap iSt and the short-term Treasury financing rate iTt .

We posit mt = m + zmt , where E [mt] = m is the unconditional mean level of the short
rate differential and zmt is a mean-zero state variable that captures its fluctuations. A non-
zero mt might either derive from (i) the fact that the short-term interest rate referenced by the
swap iSt contains a time-varying compensation for credit risk—as with 3-month LIBOR—or
(ii) that short-term Treasury rates embed a special money-like convenience premium relative to
other money-market rates. In both cases, we would expect fluctuations in mt over time, and we
generically expect to havemt ≡ iSt −iTt ≥ 0 almost surely, as it has been the case historically.16

Our primary focus is on the level of swap spreads, st, and the equilibrium expected re-
turns on the swap spread arbitrage trade, Et[r

Spread
t+1 ]. Thus, for simplicity, we think of iSt , iTt ,

and yTt as given exogenously and pinned down by forces outside of our model. Furthermore,
while we allow mt ≡ iSt − iTt to differ from zero and to fluctuate stochastically over time,
we will routinely emphasize the case where mt = 0 for all t almost surely—e.g., as would
approximately be the case for swaps tied to the SOFR. In this case, long-term swaps and Trea-
suries have identical payoffs. Therefore, in the absence of frictions, we should have zero swap
spreads by the LoOP. However, in our model we have non-zero swap spreads even if the short
rate differential is always zero: The LoOP will fail because of binding intermediary leverage
constraints, opening the door to purely demand-and-supply driven fluctuations in swap spreads.

Intermediaries in the swap market. At time t, risk-averse and leverage-constrained inter-
mediaries who specialize in the swap market allocate their scarce capital wt between the swap
spread arbitrage trade and an outside risky investment opportunity. The excess return on this
outside investment opportunity is rot+1, and we assume that its first two moments are exoge-
nously given by Et

[
rot+1

]
= ro > 0 and Vart

[
rot+1

]
= σ2

o > 0.17 For simplicity, we as-
sume an overlapping generations structure where date-t intermediaries are exogenously born
with capital equal to wt = w + zwt , where w ≡ E [mt] > 0 and zwt is an exogenous mean-
zero state-variable that captures shifts in intermediary net worth.18 Date-t intermediaries have
mean-variance preferences over their one-period ahead wealth wt, t+1 and have an absolute
risk-aversion of α.

More formally, letting xt denote intermediaries’ position in the receive-fixed swap arbitrage

16For LIBOR swap spreads, we think of the short rate differential as mt = iSt − iTt = mConv.
t +mCred.

t , where
the first term (mConv.

t ) reflects the money-like safety and liquidity premium on Treasuries and the second (mCred.
t )

reflects the credit risk component of LIBOR. In the case of OIS swaps, we simply have mt = iSt − iTt = mConv.
t .

17In the Online Appendix, we present a version of the model in which the outside opportunity is another viola-
tion of the LoOP rather than a risky investment; this is isomorphic to the baseline version of the model.

18Thus, we are not modelling the mechanism through which initial losses on the swap spread arbitrage trade
could lead to amplification because these losses reduce intermediaries’ net worth and tighten future leverage
constraints as in Brunnermeier and Pedersen (2009). Specifically, we could model amplification of this sort if we
assumed that intermediary wealth evolved endogenously according to wt+1 = wt + rSpread

t+1 xt + rot+1ot. This
extension would lead to non-linear dynamics and would add significant complexity: st would depend on wt as in
our model with exogenous wealth shocks, but wt would in turn also depend endogenously on st through the law
of motion for intermediary wealth.
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trade and ot their position in the outside investment opportunity, date-t intermediaries solve:

max
xt, ot

Et [wt, t+1]−
α

2
Vart [wt, t+1] , (4)

subject to the budget constraint

wt, t+1 = wt + xtr
Spread
t+1 + otr

o
t+1 (5)

and the leverage constraint
κx |xt|+ κo |ot| ≤ wt. (6)

Here κx, κo ∈ [0, 1] are the capital requirements associated with the swap arbitrage trade and
the outside investment opportunity, respectively. For instance, in order to undertake a swap
arbitrage trade of notional size |xt| intermediaries must commit κx |xt| of their scarce capital.

End-user demand for swaps. End users of interest rate swaps—such as banks, insurers, pen-
sions, corporations, and mortgage servicers—are agents who demand exposure to long-term
bonds, but who for regulatory, accounting, or other frictional reasons prefer to obtain their de-
sired bond exposure using interest rate swaps as opposed to Treasuries. Importantly, financial
intermediaries only need to accommodate the net demand from end users to the receive fixed
swap rate—i.e., the end-user demand to receive fixed that is not offset by other end-user demand
to pay fixed. Since end users can also substitute between interest rate swaps and Treasuries,
we allow net end-user demand to receive the fixed rate to potentially be increasing in the swap
spread. Specifically, we assume that net end-user demand takes the form

dt = d+ zdt + γst, (7)

where γ ≥ 0, and zdt is a mean-zero state variable capturing shifts in end-user swap demand.

Market clearing. Since interest rate swaps are in zero net supply, market clearing requires
dt + xt = 0. In particular, if the net demand from end users to receive the fixed swap rate is
positive, dt > 0, then in equilibrium intermediaries must take on a short position in the swap
arbitrage trade (paying the fixed swap rate and going long Treasuries) equal to xt = −dt < 0

to accommodate this demand. By contrast, if there is net end-user demand to pay the fixed
swap rate, dt < 0, then intermediaries must take on a long position in the swap arbitrage trade
(receiving the fixed swap rate and going short Treasuries).

3.2 Equilibrium swap spreads

We begin by providing a general characterization of swap spreads that is applicable in envi-
ronments where intermediary leverage constraints may only bind periodically and where end
user net demand may change signs over time. We then provide a more precise characteriza-
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tion of swap spreads that is valid in settings when (i) the leverage constraint is always binding
and (ii) the sign of end-user demand is constant over time. This case is particularly helpful in
understanding the post-GFC period that is the main focus of our empirical analysis.

3.2.1 General characterization

Letting ψt ≥ 0 denote the Lagrange multiplier associated with the leverage constraint in (6) and
assuming Covt[zt+1, r

o
t+1] = 0 where zt = [zmt , z

d
t , z

w
t ]

′, intermediaries’ first-order condition
for xt is

Et[r
Spread
t+1 ] = κxsgn (xt) · ψt + αVt · xt, (8)

where Vt ≡ Vart[r
Spread
t+1 ] =

(
δ

1−δ

)2 Vart[st+1] is the conditional variance of rSpreadt+1 .19 Similarly,
the first order condition for ot is

ro = κosgn (ot) · ψt + ασ2
o · ot. (9)

Since ro > 0 and ψt ≥ 0, it must be the case that ot > 0, so date-t Langrange multiplier is

ψt =
ασ2

o

κo

(
ro
ασ2

o

− ot

)
≥ 0.

Thus, the shadow value of intermediary capital is proportional to the difference between the
unconstrained investment in the outside opportunity, ro/ (ασ2

o), and intermediaries’ current
investment, ot. Combining (6) and (9), we have

ψt = ψ (wt, |xt|) = max

{
0,
ro − ασ2

o
1
κo
wt + ασ2

o
κx
κo

|xt|
κo

}
. (10)

Naturally, the shadow value of capital is greater when intermediaries’ capital wt is lower and
when the scale of their position in the swap arbitrage trade |xt| is larger.

Combining (3), (8) and (10), and imposing market clearing, we find that the equilibrium
expected return to swap arbitrate, Et[r

Spread
t+1 ], satisfies:

Expected return to swap

arbitrage: Et[r
Spread
t+1 ]︷ ︸︸ ︷

(st −mt)−
δ

1− δ
(Et [st+1]− st) =

Compensation for using scarce

capital: (−κx)sgn (dt) · ψt︷ ︸︸ ︷
(−κx)sgn (dt) · ψ (wt, |dt|) +

Compensation

for risk︷ ︸︸ ︷
(−α)Vt · dt . (11)

Since in equilibrium intermediaries must take positions that are equal in size and opposite

19We assume that outside investment opportunity returns are orthogonal to state variables describing the swap
market for simplicity, without affecting our model predictions. In the general case, the risk associated with swap
arbitrage trade has an additional term proportional to the conditional covariance between the outside investment
opportunity and swap arbitrage trade returns Covt[r

Spread
t+1 , rot+1]. However, this term is small if intermediaries

are specialized, i.e, if they allocate their balance sheet primarily to swap arbitrage.
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in sign to those of end users, the equilibrium expected return on a long swap arbitrage position,
Et[r

Spread
t+1 ], has the opposite sign of the net end-user demand to receive the fixed swap rate,

dt. For instance, if the net demand to receive fixed is negative—as was arguably the case prior
to the GFC—then we must have Et[r

Spread
t+1 ] > 0 to induce intermediaries to take the required

long position in the swap arbitrage trade. By contrast, if the net demand to receive fixed is
positive—as appears to be the case since the GFC—then we must have Et[r

Spread
t+1 ] < 0 to

induce intermediaries to take the required short position in the swap arbitrage trade.
Equation (11) also highlights the two key forces that shape the equilibrium expected returns

on the swap arbitrage trade: compensation for using scarce intermediary capital and compensa-
tion for risk. When κx > 0, constrained intermediaries will require compensation for commit-
ting their scarce capital to the swap arbitrage trade even if this trade is completely riskless. And,
being risk-averse, specialized intermediaries will require additional compensation for bearing
the risk that they may suffer losses on their swap arbitrage trades due to unexpected changes in
swap spreads.

Iterating (11) forward, we find an expression for the equilibrium swap spread level:

st =

Expected short-rate differentials︷ ︸︸ ︷
(1− δ)

∑∞

k=0
δkEt [mt+k] +

Expected compensation for scarce capital︷ ︸︸ ︷
(1− δ)

∑∞

k=0
δkEt [(−κx) sgn (dt+k)ψ (wt+k, |dt+k|)]

+(1− δ)
∑∞

k=0
δkEt [(−α)Vt+kdt+k]︸ ︷︷ ︸

Expected compensation for risk

. (12)

The first term on the right-hand side of (12) is the fundamental component of swap spreads.
Recalling that mt ≡ iSt − iTt , this is simply the expected future differential between the short-
term rate referenced by the swap, iSt , and the secured Treasury financing rate, iTt , averaged over
the lifetime of the swap. Under the assumption that mt > 0 almost surely, as would be the case
for LIBOR-based swaps, this fundamental term pushes towards having positive swap spreads.
However, this term is negligible for SOFR and other OIS swaps where mt ≈ 0.

The second term is the expected future compensation for consuming scarce intermediary
capital over the life of the swap. Since ψt = ψ (wt, |dt|) ≥ 0, this term has the opposite sign
of the net end-user demand, dt. For instance, if the net demand to receive the fixed swap rate is
typically positive, this second term pushes towards having negative swap spreads.

The third and final term is the expected future compensation for bearing the risk associated
with swap spread volatility over the life of the swap. Just like the second term, this final term
has the opposite sign of the net end-user demand to receive the fixed swap rate.

This general characterization highlights the fact that our main theoretical conclusions do
not rely on the assumption that intermediaries’ leverage constraints are always binding. Even if
leverage constraints are not binding at time t and ψt = 0, the mere potential for them to bind in
the future makes swap spread arbitrage risky for intermediaries and they will only accommodate
end-user demand for long-term swaps if they are compensated for this risk. Furthermore, even
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away from the constraint, fluctuations in intermediary capital will shape the likelihood that the
constraint will bind in the future and hence the level of swap spreads. Thus, shifts in demand dt
and intermediary capital wt will have qualitatively similar effects on swap spreads in a model
with periodically binding constraints and where demand can change sign.

3.2.2 An affine equilibrium

To derive an affine equilibrium that we can readily take to the post-GFC data, we assume the
model parameters are such that we almost surely have

0 < dt <
1

κx
wt <

κo
κx

ro
ασ2

o

+ dt. (13)

The first inequality (0 < dt) means that end-user net demand to receive the fixed swap rate
is always positive. This sign restriction is consistent with the prime dealers’ net positioning
in long-term Treasuries and the negative swap spreads that have been observed since 2008.
The second inequality (κxdt < wt) says that intermediaries always have sufficient capital to
accommodate end-user demand in the swap market. Thus, when their leverage constraints bind,
intermediaries are forced to downsize their investments in the outside investment opportunity.
And, the returns to swap spread arbitrage must then adjust to compensate intermediaries for
consuming their scarce capital.

The third inequality (wt < κo · ro/ (ασ2
o) + κx · dt) ensures that the intermediaries’ lever-

age constraint (6) is always binding, as the unconstrained optimal positions are not available.
Thus, ψt > 0 always. This condition rules out non-linearities that arise if leverage constraints
only bind periodically.20 Under these parametric restrictions, the equilibrium condition (11)
becomes

(st −mt)−
δ

1− δ
(Et [st+1]− st) = (−κx) ·

ψt︷ ︸︸ ︷
ασ2

o

κ2o

(
κo

ro
ασ2

o

+ κxdt − wt

)
+ (−α)V · dt. (14)

Further, we assume an autoregressive process for the three state variables governing the
evolution of the short rate differential (zmt ), end-user demand (zdt ), and intermediary wealth
(zwt ). Specifically, we assume that the vector of state variables zt = [zmt , z

d
t , z

w
t ]

′ follows

zt+1 = ϱzt + εt+1, (15)

where ϱ = diag (ρm, ρd, ρw) is a diagonal matrix of AR(1) coefficients ρm, ρd, ρw,∈ [0, 1) and
εt = [εmt , ε

d
t , ε

w
t ]

′ is the vector of structural shocks. Let Var
[
εit+1

]
= σ2

i , i = m,w, d denote the
variances of the structural shocks. For simplicity, we assume that the three structural shocks
are orthogonal to each other, i.e., Vart[εt+1] = diag (σ2

m, σ
2
d, σ

2
w).

20We can construct a symmetric equilibrium where 0 < −dt < wt

κx
< κo

κx

ro
ασ2

o
− dt almost surely.
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We conjecture that equilibrium swap spreads st are an affine function of the state vector zt:

st = A0 + Amz
m
t + Adz

d
t + Awz

w
t . (16)

A rational expectations equilibrium of our model is a fixed point of an operator which gives
the price-impact coefficients Am, Ad, and Aw that clear the swap market when intermediaries
believe the risk of swap spread arbitrage trade is determined by some initial set of price-impact
coefficients. Combining the conjectured affine form (16), the end-user demand curve (7), and
the equilibrium condition (14), we have:

Theorem 1 In the affine equilibrium,

A0 =
m− α

(
κx
κo

)2
σ2
o

[
κo
κx

ro
ασ2

o
+ d− 1

κx
w
]
− αV d

1 + αγ

[(
κx
κo

)2
σ2
o + V

] , (17a)

Am =
1

1−ρmδ
1−δ + αγ

[(
κx
κo

)2
σ2
o + V

] , (17b)

Ad = −
α

[(
κx
κo

)2
σ2
o + V

]
1−ρdδ
1−δ + αγ

[(
κx
κo

)2
σ2
o + V

] , (17c)

Aw =

1
κx
α
(
κx
κo

)2
σ2
o

1−ρwδ
1−δ + αγ

[(
κx
κo

)2
σ2
o + V

] , (17d)

and

V =

(
δ

1− δ

)2 (
A2
mσ

2
m + A2

dσ
2
d + A2

wσ
2
w

)
. (18)

Equations (17b)-(17d) and (18) define a system of higher-order polynomial equations in Am,

Ad, and Aw. A solution to this system exists as long as risk aversion α is below a threshold

α > 0. In general, there exist multiple solutions corresponding to multiple affine equilibria.

To provide intuition for the nature of model equilibria, we consider a range of special cases.
If there exists a non-trivial interest rate differential (mt ̸= 0 for all t due to m ̸= 0 and/or

σ2
m > 0), and in absence of frictions (κx = 0) and of demand and supply shocks (σ2

d = σ2
w = 0),

the model has a unique affine equilibrium with non-zero swap spreads. In particular, if interest
rate differential is positive almost surely as in the case of LIBOR swaps, equilibrium swap
spreads are also positive. Note that interest rate differentials on their own do not induce LoOP
violations or equilibrium multiplicity, yet have a mechanical effect on the swap spread level.
Therefore, to better illustrate the role of the other forces in the model, in the following examples
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we shut down the interest rate differential channel by setting mt = 0 for all t. In other words,
we consider SOFR swaps. We also begin by assuming that end-user demand is completely
inelastic, γ = 0.

With limits to arbitrage in the form of binding leverage constraints (κx > 0) but no demand
risk (σ2

d = 0), the model has a unique affine equilibrium, in which swap spreads are determined
by the level and fluctuations of intermediaries’ capital.

When end-user demand is stochastic (σ2
d > 0) but there are no frictions (κx = 0), the model

can have two affine equilibria—a “low-volatility” equilibrium in which the LoOP holds and
swap spreads are always zero, and a “high-volatility” equilibrium in which swap spread risk
deters intermediaries from eliminating non-zero spreads.21 With demand risk, the underlying
fixed-point problem is more complicated because the risk of the swap arbitrage depends on
how spreads react to future demand shocks. For example, if intermediaries believe that future
demand shocks will have a large impact on swap spreads, they will perceive the swap arbitrage
trade as being highly risky. As a result, intermediaries will only absorb current demand shocks
if they are compensated by large spread changes and high expected future returns, making their
initial belief self-fulfilling. Yet, only the low-volatility equilibrium in which swap spreads are
always zero is stable in the sense that this equilibrium (i) is robust to small perturbations in
investors’ beliefs about equilibrium price impact and (ii) does not diverge in the limit when
σ2
d → 0.22 Note that this special case is similar to De Long et al. (1990) and Spiegel (1998).

With both demand risk (σ2
d > 0) and frictions (κx > 0), the model can have two affine

equilibria, only one of which is stable in the sense defined above. However, this stable equilib-
rium is no longer trivial and features non-zero swap spreads. Agents understand that binding
leverage constraints will prevent intermediaries from enforcing LoOP in the future. As a result,
shocks to both end-user demand and intermediary supply will impact future swap spreads, cre-
ating demand–supply imbalance risk the exposure to which risk-averse intermediaries must be
compensated. Thus, unlike in De Long et al. (1990) and Spiegel (1998), arbitrage risk arises
even in the stable equilibrium of our model.

Finally, our conclusions hold with a few modifications when end-user demand is elastic.
With demand risk (σ2

d > 0), frictions (κx > 0), and elastic demand (γ > 0), the model can have
three affine equilibria, only one of which is stable in the sense defined above.23 This stable
equilibrium features non-zero swap spreads. The three self-fulfilling equilibria, as opposed
to the two in De Long et al. (1990) and Spiegel (1998), originate from the fact that end-user
demand itself depends on the level of the swap spreads as in Vayanos and Vila (2021); when
γ → 0, these collapse to only two equilibria.

21In this case the system (17c)-(18) reduces to a quadratic equation in Ad which has real foots if investors’ risk
aversion α is sufficiently small.

22By contrast, similar to De Long et al. (1990), the high-volatility equilibrium is a knife-edge outcome which
is not robust to small perturbations in investors’ beliefs. In this equilibrium, the LoOP fails because all agents
believe that LoOP will fail in the future. However, if a small number of investors believe that LoOP will hold in
the future, then those investors will enforce LoOP and it will indeed hold.

23In this case, the fixed-point problem is equivalent to a cubic equation.
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In conclusion, our model features multiplicity because of the demand shocks. In the rest of
the analysis, we will focus exclusively on the unique stable equilibrium of the model. In this
equilibrium, spreads are less volatile and demand shocks have a smaller price impact compared
to the non-stable equilibria. Nevertheless, swap spreads in the stable equilibrium are non-
zero, reflecting the combined effect of short rate differential, binding leverage constraints, and
demand–supply imbalance risk.

3.3 Predictions

3.3.1 Average swap spread level

Our model naturally allows for non-zero long-maturity swap spreads and outlines the forces
that determine the average swap spread level. We have:

Proposition 1 Swap spreads are on average negative, A0 < 0, if the average short rate differ-

ential satisfies m < m for some m > 0 constant given in the Appendix.

From (17a), the average level of swap spreads, A0, is determined by a combination of three
forces. First, the spread is increasing in the short rate differential. This differential is positive
and potentially large for LIBOR swaps, but negligible for OIS and SOFR swaps. The other two
forces push the swap spreads in the negative territory as long as end users demand to receive
the fixed swap rate, dt > 0. In this case, intermediaries require a negative swap spread as
compensation for (i) committing their scarce capital to a short position in the swap arbitrage
trade and (ii ) for bearing the risk associated with this position. Thus, our model predicts
negative average OIS and SOFR swap spreads. Relative to those, the interest rate differential
pushes the average level of the LIBOR swap spread towards positive territory, but as long as m
is small, the balance sheet and risk considerations dominate the interest rate differential effect
and LIBOR spreads at long maturities are negative.

3.3.2 Identification of demand and supply shocks

Our model provides restrictions that can help us identify the structural demand (εdt ) and supply
(εwt ) shocks using data on short rate differential (mt), swap spread level (st), and intermediaries’
swap spread arbitrage trade position (xt). In particular, we obtain the following result:

Proposition 2 The short rate differentialmt, the equilibrium swap spread st, and intermediary

positions in the long-term swap spread arbitrage trade xt can be written as

yt︷ ︸︸ ︷ mt

st

xt

 =

a︷ ︸︸ ︷ m

A0

−
(
d+ γA0

)
+

A︷ ︸︸ ︷ 1 0 0

Am Ad Aw

−γAm − (1 + γAd) −γAw


zt︷ ︸︸ ︷ zmt

zdt

zwt

. (19)
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Combined with (15), we have the structural VAR representation of the model’s equilibrium:

yt+1 =
(
I−AϱA−1

)
a+AϱA−1yt +Aεt+1, (20)

where I denotes the 3× 3 identity matrix. Moreover, assuming that γ > 0 and κx > 0, we have

Am > 0, Ad < 0, Aw > 0, −γAm < 0, − (1 + γAd) < 0, and −γAw < 0.

Proposition 2 implies that the matrix A of structural VAR coefficients can be identified
using a combination of sign and zero restrictions.24 In particular, positive demand shocks lower
the equilibrium swap spread (i.e., make it more negative) and intermediaries’ swap positions
(i.e., increase the amount supplied), whereas positive shocks to intermediaries’ wealth increase
the swap spread (i.e., make it less negative) while decreasing swap positions (i.e., increase the
amount supplied).

To better understand the sign restrictions, note that higher end-user demand naturally in-
creases the size of intermediaries’ short position in the swap arbitrage trade (− (1 + γAd) < 0)
and the compensation they require for taking this position (Ad < 0).25 On the other hand,
higher intermediaries’ capital relaxes their leverage constraints. If end-user demand is elastic
(γ > 0), lower shadow cost of intermediary capital increases the size of intermediaries’ short
positions (−γAw < 0). The effect on the swap spread depends on the combination of lower
compensation for using scarce capital and higher compensation for the risk associated with a
larger short position. On net, we show that higher intermediaries’ capital makes swap spreads
less negative (Aw > 0).

3.3.3 Swap arbitrage returns

Our model outlines the drivers of expected returns to long-maturity swap arbitrage. Equation
(14) directly implies the following result:

Proposition 3 The expected one-period return to swap arbitrage, Et[r
Spread
t+1 ] ≡ (st −mt) −

δ
1−δ (Et [st+1] − st), is increasing in intermediaries’ position, xt (i.e., decreasing in end-user

demand dt), even after controlling for the shadow cost of intermediary capital.

Proposition 3 states that, in equilibrium, returns to swap arbitrage compensate investors for
swap spread risk, in addition to the cost of committing their scarce capital to this trade. The
required compensation for swap spread risk is increasing in the amount of risk that intermedi-
aries hold, V . As a result, expected returns have to be more negative when intermediaries take
a larger short position in the swap arbitrage trade, even after controlling for compensation these
intermediaries require for using their scarce capital over the return period.

24When taking the model to the data, we will identify the structural shocks up to scale. Specifically, we will
assume that the structural shocks are orthogonal and each have unit variance, and thus we will identify AΣ1/2.

25These effects are mitigated when demand is elastic and sensitive to more negative swap spreads, γ > 0. To
see this, consider the expression for the coefficient Ad in (17c) and − (1 + γAd).
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The model also characterizes the sign and the relative magnitude of the effects that shifts in
short rate differential (zmt ), demand (zdt ), and supply (zwt ) have on Et[r

Spread
t+1 ]. Using (19), we

obtain the following results:

Proposition 4 The expected one-period return to swap arbitrage can be expressed as

Et[r
Spread
t+1 ] = B0 +Bmz

m
t +Bdz

d
t +Bwz

w
t , (21)

where the loadings on state variables satisfy B0 = A0 − m < 0, Bm = 1−δρm
1−δ Am − 1 ≤ 0,

Bd = 1−ρdδ
1−δ Ad < 0, and Bw = 1−ρwδ

1−δ Aw > 0. Moreover, we have |Bd| > |κxBw| as long as

either ρd ≤ ρw or 0 ≤ γ < γ for some γ > 0 constant given in the Appendix.

Besides describing the directional impact of the three types of shocks on returns, Propo-
sition 4 also highlights that, for a wide range of parameter values, shifts in demand alter
Et[r

Spread
t+1 ] by more than shifts in supply of comparable size. Specifically, we compare the

respective effects of a demand and a supply shift that move the two sides of (6) by the same
amount, which corresponds to a comparison between |Bd| and |κxBw|.

Intuitively, note that demand shifts move both compensation for using scarce intermedi-
ary capital and compensation for swap spread risk in the same direction. By contrast, supply
shifts move these two components of expected returns to swap arbitrage in opposite directions.
For instance, a negative shift in intermediary capital reduces the magnitude of their position,
thereby decreasing compensation for holding swap spread risk. This partly offsets the increased
shadow cost of the now scarcer capital.26 As a result, we can show that demand shifts have a
larger effect than supply shifts, provided that demand and supply shifts have similar persistence
or, alternatively, provided that demand is not too sensitive to the swap spread level.27 In the
special case when γ = 0, we simply have |Bd| − |κxBw| = αV > 0. In this case, inelastic
demand determines the equilibrium position of intermediaries in the swap arbitrage trade. As
a result, demand shifts alter both the compensation that intermediaries require for using scarce
capital and compensation for the amount of swap spread risk they hold, whereas supply shifts
only alter compensation for using scarce capital while the amount of the swap spread risk held
by intermediaries and the compensation they require for it do not change. This intuition carries
through as long as the demand-sensitivity parameter γ is not too large.28

26Formally, combining (14) and (19), we have

∂Et[r
Spread
t+1 ]

∂zdt
= α

[(
σoκx
κo

)2

+ V

]
×

−(1+γAd)<0︷︸︸︷
∂xt
∂zdt

and
∂Et[r

Spread
t+1 ]

∂zwt
=
ασ2

oκx
κ2o

+α

[(
σoκx
κo

)2

+ V

]
×

−γAw<0︷︸︸︷
∂xt
∂zwt

.

27The latter condition ensures that exogenous demand and supply shocks do not induce large endogenous de-
mand adjustments in response to changes in the swap spread level.

28Proposition 4 also implies that when end-user demand to receive fixed does not depend on the swap spread,
γ = 0, we have Bm = 0, and hence changes in the short-rate differential mt do not alter Et[r

Spread
t+1 ], even if they
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3.3.4 Term structure

Our model focuses on modelling the long end of the swap spreads curve. In order to derive
predictions for the entire term structure, in the Appendix we introduce a series of n-period zero-
coupon swaps alongside the perpetual swap. We then derive the equilibrium n-period swap
spreads, s(n)t , assuming that corresponding zero-coupon swaps are not traded in equilibrium—
specifically, we consider intermediaries’ first order conditions in the limit as end-user demand
for the zero-coupon swaps goes to zero. In particular, we find that the one-period swap spread,
s
(1)
t , which corresponds to the riskless one-period arbitrage, simply depends on the short rate

differential and the shadow cost of intermediary capital: s(1)t = mt − κxψt.
Using the term structure extension of our model, we derive several properties of the swap

spread term structure slope st − s
(1)
t . First, we have

Proposition 5 The slope of the swap spread term structure is on average negative:

E[st − s
(1)
t ] = −αV E [dt] < 0.

Proposition 5 states that, when end-user demand to receive fixed rate is positive, long-
maturity swap spreads are on average lower than short-maturity spreads. In particular, the
model allows for on average positive short-maturity and on average negative long-maturity
spreads. Negative term structure slope arises because long-maturity swaps arbitrage is subject
to swap spread risk, for which intermediaries require compensation. By contrast, neither the
short rate differential nor the shadow cost of capital committed to arbitrage contribute to the
average term structure slope.

Because the term structure slope depends on the compensation for swap spread risk, it has
predictive power for returns to swap spread arbitrage. We obtain the following result:

Proposition 6 A higher slope of the swap term structure forecasts higher returns to swap ar-

bitrage trade, i.e., running the regression

rSpreadt+1 = α + β1(st − s
(1)
t ) + ϵt+1

we find that β1 > 0 as long as 0 ≤ γ ≤ γ for some γ > 0 constant given in the Appendix.

The Appendix provides a range of additional results on the term structure of swap spreads.

contribute to swap cash flow. This is because, when γ = 0, the short rate differential has no effect on end-user
demand and thus on the equilibrium amount of swap spread risk intermediaries must hold. However, when γ > 0,
movements in the short rate differential mt induce changes in demand and change the equilibrium amount of
swap spread risk held by intermediaries. In this case, for instance, an increase in mt must be accompanied by a
more negative Et[r

Spread
t+1 ] to induce intermediaries to accommodate this demand by engaging in pay-fixed swap

arbitrage trade.
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3.3.5 Swap spreads and risk premia

In the model, equilibrium swap spreads depend on the expected return (ro) and the risk (σ2
o) of

the outside investment opportunity. We have the following result:

Proposition 7 Holding σ2
o constant, ∂A0/∂ (ro/σ

2
o) < 0: the swap spread st decreases while

the intermediary position xt increases in the outside investment opportunity risk-return tradeoff

ratio ro/σ2
o . In turn, holding ro/σ2

o constant, ∂A0/∂σ
2
o < 0: the spread st decreases while the

intermediary position xt increases in the outside investment opportunity risk.

The relationship between swap spreads and risk premia in Proposition 7 arises because in-
termediaries allocate their scarce capital between swap spread arbitrage and the outside risky
investment opportunity. Thus, ro/σ2

o , which is proportional to the optimal unconstrained po-
sition in the outside investment option, represents the opportunity cost of committing scarce
capital to the swap arbitrage trade and determines the level of swap spreads. Note that the
direction of the causality is from the risky asset market to the intermediaries, unlike in the
models that rely on intermediaries being the marginal investor in the risky asset markets; see,
for instance, He and Krishnamurthy (2013), Adrian et al. (2014), and He et al. (2017).

Note that fluctuations in the outside investment opportunity risk-return tradeoff ratio, ro/σ2
o ,

would induce supply shifts similar to those stemming from fluctuations in intermediary capital
wt. Intuitively, fluctuations in both ro/σ2

o and wt influence the shadow cost of intermediary
capital ψt and hence the opportunity cost of supplying swaps to end users.29

4 Data

We use three main types of time series data in our analysis: data on swap spreads and other
relevant market prices, data on primary dealers’ Treasury positions, and data that we use to
proxy for end-user demand for swaps. Our main dataset is weekly and runs from July 2001 to
December 2020.

First, we obtain LIBOR, Fed Funds, and SOFR swap rates from Bloomberg and constant
maturity Treasury rates from the Federal Reserve Board’s H.15 Statistical Release. Naturally,
we have data on LIBOR swap rates throughout our full sample whereas data on Fed Funds and
SOFR swaps become available to us only in September 2012 and December 2018, respectively.
We compute swap spreads as the difference between the swap rate and the constant maturity

29The Online Appendix presents a formal extension of the model in which ro,t =Et[r
o
t+1] fluctuates exoge-

nously over time. In this extension, we have

ψt = ψ (ro,t, wt, |xt|) = max

{
0, ασ2

o

ro,t
ασ2

o
− 1

κo
wt +

κx

κo
|xt|

κo

}
. (22)
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Treasury rate at the same maturity. In addition, we obtain 3-month LIBOR and the 3-month
Treasury Eurodollar (TED) spread—the difference between 3-month LIBOR and the 3-month
Treasury bill yield—from the Federal Reserve Bank of St. Louis’ FRED database. The mid-
market rate on 3-month general collateral repurchase agreements—i.e., 3-month loans collat-
eralized by Treasuries—is taken from Bloomberg. Finally, we compute the τ -week holding
period returns on a LIBOR swap arbitrage trade following Boyarchenko et al. (2020):

Rt,:t+τ =
τ−1∑
h=0

[(
Swap spreadt+h − (LIBORt+h − Repot+h)

)
52

− DV01t+h ×∆Swap spreadt+h+1

]
,

where DV01 is the dollar value of a basis point.30 The term in square brackets is the weekly
holding period return from t+h to t+h−1, which naturally is the sum of a “carry” component
known at t+h and a mark-to-market component depending on the change in spreads from t+h

to t+ h− 1. The τ -week holding period returns is just the sum of the next τ weekly returns.
We obtain a variety of other market prices. We obtain an estimate of the term premium

component of 10-year Treasury yields from Adrian et al. (2013) which is available from New
York Fed’s website. Our measure of yield curve noise—the root mean-squared yield fitting-
error obtained from using a Svensson (1994) curve to fit cross-section of Treasuries at a given
point in time—is from Hu et al. (2013) and is accessed through Jun Pan’s website. We retrieve
the VIX SP500 option-implied equity volatility index and the VXTY 10-year Treasury futures
option-implied volatility index are from the Chicago Board of Options Exchange. The 10-year
U.S. sovereign credit default swap spread is retrieved from Bloomberg. We obtain data on
deviations from covered interest rate parity (CIP) from Borio et al. (2018).

Next, we collect data on primary dealers’ positions in Treasury securities. These data are
from Form A of the FR2004 Primary Government Securities Dealers Reports, are available at a
weekly frequency, and detail positions as of market-close on Wednesday of the relevant week.
Form FR2004 underwent a significant revision in July 2001, which is why our main sample
begins at that date. The net position is calculated as the difference between long and short
outright Treasury positions at market value. We focus on nominal coupon-bearing Treasury
securities—which are most likely to be tied to swap spread positions— and therefore exclude
bills, TIPS, and FRNs. For additional analysis, we collect data from Form A of the FR2004 on
primary dealers’ positions in federal agency and government sponsored enterprise mortgage-
backed securities, federal agency and government sponsored enterprise securities other than

30The DV01 for a T -year swap arbitrage trade is simply the T -year annuity factor divided by 10,000. In other
words, assuming the fixed swap leg is paid semi-annually as is the case with LIBOR swaps, we have

DV01t =
1
2

∑2T
i=1 exp(−y

(i/2)
t

i
2 )

10, 000
,

where y(i/2)t is the (i/2)-year zero-coupon yield at time t. And, this annuity factor is identical to the modified
duration of a par coupon bond.
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mortgage-backed securities, and corporate debt securities. We also collected the amount of
Treasury securities collateralizing financing agreements where primary dealers are the cash
lender—their “securities in” through financing arrangements—from Form C of the FR2004.
These financing arrangements include reverse repos, securities borrowing, and securities re-
ceived as margin collateral. Finally, we obtain the value-weighted average of primary dealers’
interest rate Value-at-Risk from Anderson and Liu (2021).

Moving to the determinants of the demand for receiving fixed in the swap market, the
MBS dollar duration is calculated by multiplying the level of the Barclays U.S. MBS market
value index by its modified duration, both available through Datastream. We use the pension
underfunding measure of Klingler and Sundaresan (2019). The gross domestic public issuance
of bonds by U.S. non-financial corporations is from the Federal Reserve Board.

5 Empirical evidence

5.1 Swap spreads and dealers’ positions

Our model connects long-term swap spreads and intermediaries’ positions in the swap arbitrage
trade. In our empirical tests, we focus primarily on the 30-year LIBOR swap spreads. The
30-year swap spread corresponds most closely to the long-term swap spread in the model:
intermediaries who engage in swap arbitrage at a 30-year maturity both consume scarce capital
and they can suffer large short-term fluctuations in the mark-to-market value of their swap
positions. Moreover, 30-year LIBOR swaps represent a major source of duration for end users
in the swap market.

Unfortunately, data on intermediaries’ positions in the swap arbitrage trade are not directly
available. Since broker-dealers are critical intermediaries in the swap market who generally
enter into swap agreements with end users and then take offsetting positions in Treasuries to
hedge the resulting interest rate risk, we use primary dealers’ net position in Treasuries to
proxy for their position in swap arbitrage. To support this choice, we note that primary dealers’
net Treasury positions do not appear to be tightly linked to their net exposure to interest rate
risk: for instance, the correlation of primary dealers’ net position changes and their interest
rate book Value-at-Risk changes is only about 0.05 between 2001 and 2018 and 0.08 between
2009 and 2018.31 This implies that the direct interest rate exposure from dealers’ net position
in Treasuries is offset, in large part, by positions in swaps and other fixed income instruments,
suggesting that dealer’s net Treasury positions largely hedge these positions in swaps and other
fixed-income instruments.

Table 1 reports summary statistics for our data on 30-year swap spreads, primary dealers’

31We also note that the Value-at-Risk fell considerably after 2009 and stayed at a stable low level ever since. The
dollar duration of primary dealers’ interest rate book, a more direct measure of their interest rate risk exposure, is
unfortunately not available to us.
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net position in Treasuries, and several of the other time-series we use in our analysis. Our data
here are weekly and runs from July 2001 to December 2020. We report summary statistics
for the 2001-2008 and 2009-2020 subsamples. Figure 1 plots 30-years swap spreads alongside
primary dealers’ net Treasury position.

From Table 1 and Figure 1, we observe a simultaneous switch in the signs of the swap
spreads and primary dealers’ positions around 2009. The 30-year spread averaged 45 basis
points between 2001 and 2008. Starting from 2009, the spread has been consistently negative
in an apparent violation of the LoOP, averaging −25 basis points between 2009 and 2020.32

In addition, the term structure of swap spreads steepened considerably in 2009. While the
difference between the 30-year and the 10-year spreads was negligible prior to 2009, it averaged
−30 basis points between 2009 and 2020, with the 30-year spread consistently more negative
than the 10-year spread. As the 30-year swap spread turned negative, the primary dealers’
position in Treasuries simultaneously switched from net short to net long.

The combination of negative long-maturity swap spread, downward sloping swap spread
term structure, and dealers’ long net position in Treasuries is in line with our model’s regime in
which dealers are constrained and supply fixed rate in the swap market; see Propositions 1 and
5. Thus, in what follows we test the model’s more specific predictions pertaining to this regime
using the series of swap spreads and dealers’ net Treasury positions starting in 2009.

5.2 Demand and supply decomposition

We use a structural vector auto-regression (VAR) to disentangle the effects of end-user demand
and intermediary supply on the level of 30-year swap spreads. We set-identify this structural
VAR using the pure sign restrictions approach of Uhlig (2005).

We begin with the reduced-form representation of the structural VAR implied by our model:[
30y swap spreadt
−PD net positiont

]
= c+

L∑
l=1

Cl

[
30y swap spreadt−i
−PD net positiont−i

]
+ ξt. (23)

Equation (23) corresponds to our model, assuming there is no short rate differential (mt = 0)
and allowing for a general autoregressive lag structure (for parsimony, we have L = 1 in the
model); see Proposition 2. We choose a lag length of L = 2 in equation (23) which minimizes
the Akaike Information Criterion (AIC).33 Naturally, the shocks ξt in this reduced-form VAR
do not have a meaningful structural interpretation: they reflect a combination of the structural
shocks to end-user demand and intermediary supply.

32Figure 1 also shows the 30-year OIS and the 30-year SOFR swap spreads. These two spreads are highly
correlated with the 30-year LIBOR swap spread but are even more negative on average, making the apparent
violation of the LoOP during the shorter period for which OIS and SOFR swap rates are available even more clear.
Indeed, the short rate differential is smaller for the OIS swaps compared to the LIBOR swaps, while non-zero
SOFR swap spreads by definition represent a violation of the LoOP.

33Nonetheless, our results are robust to alternate choices of L as well as to the inclusion of a time trend.
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Following Proposition 2, we posit that this reduced-form representation results from the
equilibrium relationship between 30-year swap spreads and intermediaries’ position in the swap
arbitrage trade measured by xt = −PD net positiont on the one hand, and the unobserved
structural demand and supply factors on the other:[

30y swap spreadt
−PD net positiont

]
= a+A

[
Demandt
Supplyt

]
, (24)

combined with the dynamics of the structural factors[
Demandt
Supplyt

]
=

L∑
l=1

Dl

[
Demandt−i
Supplyt−i

]
+ εt, (25)

where εt is the vector of orthogonal structural shocks each with unit variance—i.e., Var[εt]=
I.34 Together, equations (24) and (25 ) imply that[

30y swap spreadt
−PD net positiont

]
=

(
I−

L∑
l=1

ADlA
−1

)
a+

L∑
l=1

ADlA
−1

[
30y swap spreadt−i
−PD net positiont−i

]
+Aεt,

which corresponds to equation (20) in the model.
We identify the structural demand and supply shocks in εt by imposing the sign restrictions

from Proposition 2 on the matrix A which maps structural shocks εt into reduced-form shocks
ξt. Specifically, we assume that a positive shock to end-user demand to receive fixed rate makes
swap spreads more negative and increases the scale of intermediaries’ short position in the swap
arbitrage (pushing down −PD net positiont). By contrast, we assume that a positive shock to
intermediary supply makes swap spreads less negative, while increasing intermediaries’ short
position in the swap arbitrage. In other words, we assume that the reduced-form shocks are
related to the structural shocks by some matrix A whose four elements satisfy the following
sign restrictions:35

ξt =

[
− +

− −

]
︸ ︷︷ ︸

A

εt. (26)

We set identify A using the pure sign restrictions approach of Uhlig (2005). We briefly dis-
cuss the intuition for this identification approach. Since Var[εt]= I—the structural shocks are

34The assumption that the demand and supply shocks are orthogonal is necessary for our identification approach
and is useful for these shocks to have a straightforward structural interpretation. While imperfect, the assump-
tion that demand and supply shocks are orthogonal is reasonable for the swap market since the institutions that
receive the fixed rate—for instance, end users such as pension funds—and those that pay the fixed rate—for in-
stance, intermediaries such as broker-dealers on the pay-fixed side—have very different investment objectives and
investment horizons and face different institutional constraints.

35Note also that the sign restrictions apply only to the contemporaneous responses of spreads and positions to
demand and supply shocks; we do not impose restrictions on the responses at horizons of one week or more. That
said, the properties of the identified demand and supply point to two clearly distinct forces as discussed below.
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assumed to be orthogonal and we are only attempting to identify their impact “up to scale”—
the variance of reduced form shocks provides us with three restrictions on the four elements
of A, namely Var[ξt]= AA′. Of the set of matrices A that satisfy these three restrictions, the
identified set then consists of those matrices that also satisfy the sign restrictions in equation
(26). Following Fry and Pagan (2005, 2011) and Cieslak and Pang (2020), we select the value
of A within this identified set for which instantaneous responses to structural shocks are the
closest to the median response. We then invert equation (24) using this “closest to median”
matrix, enabling us to estimate the latent demand and supply factors.36

In Appendix C, we consider a tri-variate VAR which includes the LIBOR-repo spread and
corresponds to the version of our model with a non-zero short rate differential (mt ̸= 0). As
explained in the Appendix, structural shocks in this VAR are identified using a combination
of sign and zero restrictions implied by Proposition 2. We find that this short-rate differential
explains a very small portion of the variation in 30-year swap spreads since 2009. Furthermore,
including this short-rate differential does not have a significant effect on our estimates of the
latent demand and supply factors. See Figure A2 in the Appendix. Indeed, the fact that short-
rate differential plays a small role in explaining 30-year swap spreads is consistent with our
model which predicts that transient fluctuations in mt—for instance, due to a temporary rise
in concerns about the creditworthiness of large banks—should play only a minor role in ex-
plaining movements in long-dated swap spreads. Consequently, we use the more parsimonious
specification in (23) whose identification requires fewer restrictions as our baseline.

Figure 2 shows the historical decomposition of (de-meaned) swap spreads in equation (24)
implied by our VAR. As shown in Figure 2, fluctuations in end-user demand and in interme-
diary supply both play an important role in explaining variation in swap spreads over time.
For instance, our estimates suggest that an inward shift in intermediary supply starting from
the second half of 2014 helped push spreads well into negative territory. This inward supply
shift coincides with a series of regulatory changes that arguably increased the balance-sheet
costs faced by intermediaries, including the implementation of the supplementary leverage ra-
tio through 2014 and the introduction of the Volker rule in July 2015; see also Boyarchenko
et al. (2020). Then, in 2016, our estimates suggest that rising end-user demand to receive the
fixed rate pushed swaps even further below zero.

The forecast error variance decomposition, which quantifies the relative contribution of
structural shocks to the residual variation in swap spreads at different horizons, confirms that
both demand and supply shocks play an important role. Demand and supply shocks each ex-
plain roughly 50% of the residual variation in 30-year swap spread at a weekly horizon. Our
finding that both demand and supply shocks play an important role in driving swap spreads

36The “closest to median” value of A is preferred to a simple median because it corresponds to a particular VAR
model in the identified set. By contrast, the median A mixes different models and lacks a structural interpretation.
We note that demand and supply factors implied by the “closest to median” value of A are effectively identical to
the median factors and thus satisfy a basic check on our identification suggested by Fry and Pagan (2005, 2011).
See Figure A1.
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contrasts with Goldberg and Nozawa (2021), who find that, in the corporate bond market,
intermediary supply shocks play a dominant role in driving variation in market liquidity. Inter-
estingly, the contribution of supply shocks increases to 65% at an annual horizon. Supply plays
a more important role at longer horizons because our estimates imply that the latent supply
factor is more persistent than the demand factor.37

Columns (1), (3), and (5) in Table 2 shows that demand and supply factors capture two
distinct aspects of the variation in swap spreads. The columns report the regressions of swap
spreads, demand factor, and supply factor on a range of variables that capture market condi-
tions, namely the Adrian et al. (2013) estimate of the term premium component of 10-year
Treasury yields, the VXTY Treasury yield option-implied volatility index, the 10-year U.S.
sovereign credit default swap spread, the Hu et al. (2013) yield curve noise measure capturing
the scarcity of intermediary capital in the cash Treasury market, and the VIX option-implied
equity volatility index. We find that higher Treasuries term premium is associated with higher
(less negative) level of swap spreads, and this through a negative relationship between the term
premium and the demand for swaps by end users. In turn, higher implied volatility of Trea-
sury yields is associated with lower (more negative) level of swap spreads, and this through a
negative relationship between implied volatility and the supply for swaps by intermediaries. In
addition, higher U.S. sovereign credit default swap spreads are associated with higher demand
and lower (more negative) level of swap spreads. This is consistent with lower demand for
Treasuries relative to interest rate swaps when investors perceive the sovereign risk of Trea-
suries to be elevated. That said, the sovereign risk channel accounts for only a small fraction of
the variation in swap spreads, with univariate R2 of 0.01.

We note that elevated risk premia—as proxied either by the term premium or by the im-
plied volatility— seem to be associated with lower-than-normal end-user demand to receive
the fixed swap rate (which makes spreads less negative) and lower-than-normal intermediary
supply (which makes spreads more negative). In other words, market conditions appear to have
a starkly different effect on swap spreads depending on whether they influence the demand or
the supply of swaps. This different effect is also confirmed by looking at pairwise correlations
of the demand and supply factors with variables capturing market conditions reported in Ap-
pendix Table A1. For a meaningful comparison, the supply factor is multiplied by minus one so
higher values of both factors correspond to more negative swap spreads. Higher values of risk
premia and intermediary funding illiquidity measures tend to be associated with lower values
of our estimated demand factor and higher values of our inverse supply factor. As a result,
the comovement of swap spreads with market conditions may be ambiguous and depend on
whether the associated inward demand shift or the inward supply shift dominates.

The observed negative correlation between the intermediary supply of swaps and the level

37As we will see shortly, the estimated demand factor appears to be closed linked to mortgage-related hedging
flows and these mortgage hedging flows are themselves thought to be fairly transient in nature; see Hanson (2014)
and Malkhozov et al. (2016).
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of risk premia outside the swap market is in line with our model. In particular, according to
Proposition 7, when the expected return on intermediaries’ outside investment opportunity (ro)
increases, the shadow value of intermediary capital (ψt) increases, leading to a decline in both
the equilibrium level of swap spreads and in the size of intermediaries’ short position in the
swap arbitrage trade. Thus, if we allowed the expected return on this outside investment to
be time-varying, positive shocks to outside risk premia would be equivalent to negative shocks
to intermediary capital, which naturally decrease supply.38 Note that this relationship between
dealers’ supply and risk premia outside of the swap market does not rely on the idea that swap
intermediaries are also marginal investors in the market for these outside risky assets. This
contrasts to more “integrated-market” theories of intermediary-based asset pricing—including
He and Krishnamurthy (2013), Adrian et al. (2014), and He et al. (2017)—where the exact
same set of intermediaries are assumed to be marginal in very broad array of financial asset
classes. Instead, the outside risk premium in our model simply impacts the opportunity cost of
committing scarce balance sheet to the swap arbitrage.

Our model is silent about the drivers of end-user demand to receive the fixed swap rate. In
fact, an advantage of the identification strategy based on sign restrictions is that we do not need
to specify proxies for demand drivers or, for that matter, supply drivers ex ante. That said, it
is instructive to investigate which of the candidates proposed in the literature have a stronger
association with our demand factor.

First, Hanson (2014), Malkhozov et al. (2016) , and TBAC (2021) argue that the desire of
hedged mortgage investors and mortgage servicers to receive the fixed swap rate rises when
interest rates fall. The idea is that declines in interest rates increase expected prepayments,
leading to a decline in the duration of outstanding mortgage-backed securities (and mortgage
services rights). And, mortgage investors then want to receive the fixed swap rate to add back
duration to their portfolios. Thus, we would expect that end-user demand to receive fixed will
be negatively related to mortgage duration.

Second, insurers and pension funds receive fixed to manage the gap between the duration of
their liabilities and their preferred mix of on-balance sheet assets. And, Klingler and Sundare-
san (2019) argue that the pension’s incentives to receive fixed increases when pension funds
become more underfunded.

Finally, the bond issuance of corporates, whom TBAC (2021) also identifies as receivers of
fixed, could influence their demand for swaps.

Columns (2) and (4) in Table 2 reports the regressions of 3-month changes in swap spreads
and our estimated demand factor on changes in MBS dollar duration, pension underfunding
measure, and corporate bond issuance. The results in Table 2 suggest that MBS investors are
an important driver of the swap spreads and, more specifically, of end-user demand to receive
fixed, echoing earlier findings in Feldhütter and Lando (2008) and Hanson (2014). Illustrating
this finding, Figure 3 shows the time series of MBS dollar duration and the demand factor, and

38Appendix presents a model extension with a time-varying outside investment opportunity expected return.

30



the patterns are almost a mirror images of each other.
Several additional comments are in order. First, we expect the explanatory power of investor

variables to be stronger for the demand factor compared to the swap spread itself. This is
because the latter reflects the interplay of both demand and supply. We confirm this for our
demand factor. Second, the preponderance of the MBS variable in the regressions does not
imply the exclusive role of MBS investors in the swap market. Indeed, Domanski et al. (2017)
argue that, similar to MBS investors, insurers and pension funds also buy duration when interest
rates fall in order to offset the increasing mismatch between their assets and liabilities. Thus,
MBS dollar duration may capture the demand of insurers and pension funds in addition to MBS
investors’ demand. Finally, the demand by MBS investors can explain the negative correlation
between the demand factor and the term premium reported in Table 2 and illustrated on Figure
3. Indeed, Hanson (2014) and Malkhozov et al. (2016) show that MBS dollar duration predicts
Treasury returns. In turn, we find that MBS duration is negatively related to the demand for
receiving fixed in the swap market.

5.3 Arbitrage risk

We now use our model’s predictions to gauge the importance of arbitrage risk for swap spreads.
Proposition 3 states that expected holding period returns to swap arbitrage is comprised of

two terms: the cost of committing the balance sheet to swap arbitrage over the holding period
and the premium for arbitrage risk proportional to dealers’ aggregate swap position. In other
words, quantities should predict returns to swap arbitrage even after controlling for the short-
term arbitrage spreads. We test this prediction by regressing returns to swap arbitrage Rt,t+τ on
the primary dealers’ net Treasuries position and the repo-OIS spread, a measure of short-term
balance sheet cost:

Rt, t+τ = β0 + β1PD nett + β2 Repo-OISt + βT
c Controlst + ϵt, t+τ .

As reported in Table 3, positions strongly predict returns at both τ =3-month and τ =12-
month horizons even after controlling for the short-term balance sheet cost. The negative sign
of the estimated coefficient β1 implies that larger short positions in the swap arbitrage trade
correspond to higher expected returns on this short position, in line with our model prediction.39

Institutions other than primary dealers — for instance, hedge funds — can also engage in the

39Note that here we consider returns on swap arbitrage trades implemented with par-coupon swaps and Trea-
suries. We have also examined the return on swap arbitrage trades involving zero-coupon swaps and Treasuries,
which involves fitting zero-coupon curves for these two sets of instruments. We generally find noticeably stronger
forecasting results for returns on spread trades involving long-dated zero-coupon instruments than spread trades
involving long-dated par instruments. This is intuitive since (1) movements in more distant forward rates pri-
marily reflect variation in expected future returns as opposed to expected future interest rate differentials and (2)
par-coupon rates place less weight on more distant forward rates whereas zero-coupon rates equally weight all
forward rates over an instrument’s life. Nonetheless, we focus on trades involving par instruments in the main text
since these trades are far more common in practice and so as to sidestep issues related to yield curve fitting.
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swap arbitrage. To account for this, we consider collateralized Treasuries financing extended
by primary dealers to other financial institutions — also referred to as “securities in” — which
would allow the latter to enter the swap arbitrage:

Rt, t+τ = β0 + β1PD nett + β′
1PD sec. in.t + β2Repo-OISt + βT

c Controlst + ϵt, t+τ

This additional measure of positions also predicts swap arbitrage returns, albeit less strongly
than primary dealers’ own position. The R2 of the predictive regression for 3-month returns
which includes both primary dealers’ own position and their financing operations reaches ap-
proximately 15%.

Table 4 reports several additional results. First, we confirm that primary dealers’ position
predicts swap arbitrage returns when we use the TED spread instead of the repo-OIS spread as
a measure of short-term balance sheet cost. Second, we find that primary dealers’ net position
in Treasuries with maturities of 11 years and higher — closest to the maturity of the 30-year
swaps — on their own predict swap arbitrage returns. Third, we note that primary dealers’ gross
position in Treasuries has considerably less predictive power compared to the net position. This
lends further support for the arbitrage risk channel: whereas the gross position measures the
commitment of primary dealers’ balance sheet, the net position captures their exposure to the
arbitrage risk. Finally, we find that primary dealers’ positions in agency MBS, agency securities
other than MBS, and corporate debt securities have little incremental predictive power for swap
arbitrage returns.

Next, Proposition 4 states that, in presence of arbitrage risk, demand should be a stronger
predictor of the swap spread trade returns than supply. This is because negative supply shocks
increase intermediaries’ balance sheet cost but, at the same time, reduces their exposure to
arbitrage risk; in contrast, demand shocks increase both the balance sheet cost and the arbitrage
risk exposure. To test this prediction, we regress swap arbitrage returns on the demand and
supply factors identified in Section 5.2:

Rt, t+τ = β0 + β1Demandt + β2 Supplyt + βT
c Controlst + ϵt, t+τ

As reported in Table 3, the demand factor strongly predict returns at both 3-month and 12-
month horizons. The negative sign of the estimated coefficient β1 implies that higher demand
for receiving fixed corresponds to higher expected returns on the short position in the swap
arbitrage trade, in line with our model prediction. In contrast, the supply factor is not statisti-
cally significant. The R2 of the predictive regression for 3-month returns reaches approximately
15%, similar to that of the regression with primary dealer positions.

When we extend our sample up to end-2020, primary dealers’ net position is no longer
significant in the return predictive regressions; see Appendix Table A2. The period starting
from mid-2018 is characterized by the Tax Cuts and Jobs Act-related Treasuries issuance and
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the Fed balance sheet unwinding, and later in the sample by the exceptional fiscal and monetary
policy response to the onset of COVID-19 pandemic. Both Treasuries issuance and changes in
the Fed Treasuries holdings have an effect on primary dealers’ inventory of Treasuries; see, for
instance, Fleming and Rosenberg (2008). This effect is unrelated to the mechanism studied in
our paper, which can explain the poor performance of primary dealers’ position in the extended
sample. Indeed, as also reported in Appendix Table A2, orthogonalizing primary dealers’ net
position with respect to issuance and Fed holdings, we recover significance in the extended
with the same signs of the coefficients as in our baseline regressions.

Finally, Propositions 5 and 6 rely only on the information in the swap spreads and not the
information in dealers’ positions. Testing these propositions allows us to further support the
importance of arbitrage risk, including in the later part of the sample. In line with Proposition
5, we observe that the term structure of swap spreads is on average downward-sloping through
our sample starting from 2009. In particular, the 30-year spread remained consistently more
negative than the 10-year spread. Recall that in the model the on average downward-sloping
term structure reflects the premium required by intermediaries for holding swap spread risk.
Next, we test Proposition 6 using a version of the Fama-Bliss regression. Specifically, we
regress returns to swap arbitrage trade on the slope of the swap spread term structure defined
as the difference between the 30-year and the 10-year swap spreads:

Rt, t+τ = β0+β1 (30y swap spreadt − 10y swap spreadt)+β2Repo-OISt+β
T
c Controlst+ϵt, t+τ .

As reported in Table 3, the slope is a significant predictor of swap arbitrage returns over the
entire period between 2009 and 2020.40 The positive sign of the estimated coefficient β1 implies
that a more negative slope corresponds to higher expected returns on the short position in the
swap arbitrage trade.

Additionally, we find that primary dealers’ positions in Treasuries and swap spread term
structure slope predict returns to swap arbitrage prior to the GFC, albeit somewhat less strongly
than in our baseline sample; see Appendix Table A3. Interestingly, in contrast to our baseline
sample, we find that primary dealers’ positions in agency MBS have predictive power for swap
arbitrage returns in addition to their positions in Treasuries. This is consistent with a larger
importance of MBS in investors’ portfolios prior to the large scale purchases of MBS by the
Federal Reserve in the aftermath of the GFC.

5.4 Term structure

Our analysis so far focused on the long end of the swap spread curve, and this for several
reasons. First, long-maturity swap arbitrage is subject to more swap spread risk and, as a result,
long-maturity swap spreads are more informative about the arbitrage risk channel. Second,

40We find very similar results when using alternative measures of the slope.
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additional factors, distinct from those most relevant for long-maturity swaps, may influence the
end-user demand for shorter-maturity swaps. Finally, while the SLR applies to all positions
regardless of their risk, other capital requirements—for instance, leverage ratio and margin
requirements for swaps—may be less stringent for shorter-maturity instruments, with the 5-
year maturity being a typical cut-off; see Boyarchenko et al. (2020).

That said, it is nonetheless instructive to see whether the properties of the entire term struc-
ture of swap spreads are in line with our model predictions. First, Figure 4 shows the average
term structures of LIBOR, OIS, and SOFR spreads. Starting from 2009 or from the date for
which data become available, the term structures are on average downward-sloping. Further,
average OIS and SOFR swap spreads are lower compared to the LIBOR swap spreads of the
same maturity. In particular, at the short end, the 2-year LIBOR swap spreads are on aver-
age positive, whereas the 2-year OIS and SOFR swap spreads are on average negative. These
patterns fit well with our model. Indeed, intermediaries require a negative swap spread as com-
pensation for committing their scarce capital to a short position in the swap arbitrage and for
bearing the risk associated with this position. Thus, our model predicts unambiguously nega-
tive average OIS and SOFR swap spreads. Relative to those, the difference between LIBOR
and repo rates pushes the average level of the LIBOR swap spread towards positive territory.
In addition, arbitrage risk and associated risk premium is larger for longer-maturity swaps,
resulting in downward-sloping average term structures.41

Next, we verify that primary dealers’ positions, demand and supply factors, and swap spread
term structure slope predict returns to swap arbitrage if we consider 10-year swap spreads in-
stead of 30-year swap spreads. As reported in Appendix Table A4, results for 10-year maturity
are in line with those for the 30-year maturity. At the same time, consistent with 30-year swap
arbitrage being subject to more swap spread risk compared to the 10-year swap arbitrage, we
find that predictive variables are more strongly significant for returns to 30-year swap arbitrage
compared to 10-year swap arbitrage.

Finally, we consider maturity-specific demand factors. Our model does not provide a pre-
cise way to disentangle multiple demand factors. As a result, the analysis that follows is
more exploratory in nature. Specifically, we assume that end-user demand to receive fixed
rate has two separate components—demand for short-maturity swaps and demand for long-
maturity swaps—and, importantly, that intermediaries who accommodate the end-user demand
for swaps hedge the resulting interest rate risk using Treasuries primarily in the maturity range
close to that of the swap they supply. As explained in the Appendix C, we use these additional
assumptions to identify short-maturity demand, long-maturity demand, and supply shocks in a
structural VAR that includes 5-year swap spread, 30-year swap spread, primary dealers’ posi-
tion in Treasuries with maturities of up to 6 years, and primary dealers’ position in Treasuries

41In the Appendix we generalize Proposition 5 to the “local” slope s(n)t − s
(n−1)
t and provide a range of addi-

tional technical results for the term structure of swap spreads.
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with maturities of more than 6 years.42 The identified short-maturity demand shock, which by
construction has a larger effect on primary dealers’ position in Treasuries with shorter maturi-
ties, explains 39% of the variation in the 5-year swap spread and only 6% of the variation in
the 30-year swap spread at the one-year horizon. By contrast, the long-maturity demand shock,
which by construction has a larger effect on primary dealers’ position in Treasuries with longer
maturities, explains only 3% of the variation in the 5-year swap spread and 70% of the variation
in the 30-year swap spread at the one-year horizon. To shed light on the properties of short-
maturity and long-maturity demand for swaps, Appendix Table A5 reports the regressions of
3-month changes in our estimated short-maturity and long-maturity demand factors on changes
in MBS dollar duration, Klingler and Sundaresan (2019) pension underfunding measure, and
corporate bond issuance. Our results suggest that MBS investors drive the demand for both
short-maturity and long-maturity swaps. In addition, pension underfunding plays a role for
long-maturity swap demand.

5.5 Relationship to other arbitrages

We now test whether negative swap spreads are related to LoOP violations in other markets and
whether it is end-user demand or intermediary supply that account for any such relationship.
Specifically, we consider the deviations from covered interest parity (CIP) documented in Du
et al. (2018). Similar to negative swap spreads, large deviations from CIP appeared in the
aftermath of the GFC. Also similar to swap spreads, the CIP deviations have a term structure
dimension, with different magnitude of deviations observed at different maturities.

In Table 5, we regress the CIP deviations at, respectively, 3-month and 5-year maturities τ
on swap demand and swap supply factors identified in Section 5.2:43

CIPτt = β0 + β1Demandt + β2 Supplyt + βT
c Controlst + ϵt

First, we note that the 30-year swap spread itself is correlated with both 3-month and 5-year CIP
deviations. However, there is a stark contrast between the drivers of this relationship at different
maturities. At the short end, only the swap supply factor is statistically significant, whereas the
opposite is generally true at the long end. Interestingly, demand and supply remain strongly
significant in respective regressions even after we control for the CIP at the other maturity (5-
year in the 3-month CIP regression and vice versa). This finding points to a multi-factor CIP
term structure and suggests that swap demand and supply contain non-trivial information about
this term structure.

The relationship between 3-month CIP deviation and the supply factor is perhaps not sur-
prising as the latter captures the tightness of intermediaries’ balance sheet constraints. In turn,
the relationship between long-maturity CIP deviations and the demand factor could reveal a

42The choice of maturity buckets is determined by data availability.
43In choosing 3-month and 5-year CIP maturities we follow Du et al. (2018).
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possible correlation between the demand for interest rate swaps and the demand for FX deriva-
tives. Alternatively, large exposure to swap spread risk resulting from the higher demand for
swaps could make dealers less willing to take on correlated long-maturity CIP deviation risk,
leading to larger CIP deviations at the long end. Whereas the latter explanation is in line with
our model and specifically with the arbitrage risk channel, a formal analysis of the demand for
FX derivatives is outside the scope of this paper.

6 Conclusion

We find that both end-user demand and intermediary supply play an important yet starkly dis-
tinct role in explaining the variation in long-maturity swap spreads. In considering demand and
supply forces jointly, our work speaks to the different nature of observed episodes of financial
market dislocations, as argued by policymakers and academics, such as during the GFC and at
the onset of COVID-19 pandemic in early 2020.

In addition to the interplay between the demand and the supply forces, we show that arbi-
trage risk is a key determinant of longer-maturity LoOP violations. Indeed, our model high-
lights that once LoOP violations arise because of limits to arbitrage, they are amplified by the
presence of arbitrage risk. We also provide empirical support for all of these channels.

Our framework does not only speak to negative swap spreads, but can also be applied to
other limited arbitrage settings—for instance, to deviations from the covered interest parity
(CIP). We leave this for future research.
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A Proofs and derivations
Proof of Theorem 1. We write the swap spread as

st = A0 + a′szt

where as = [Am, Ad, Aw]
′. The generalization of our affine equilibrium to a generic VAR(1) data generating

process (zt+1 = ϱzt + εt+1 with ϱ and Vart[εt+1] = Σ potentially non-diagonal), yield the fixed-point condition
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where I denotes the 3× 3 identity matrix, em = (1, 0, 0)

T , ed = (0, 1, 0)
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Letting a∗s = F (a∗s) denote a solution to this fixed-point problem, we then have
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In the particular diagonal case, (A-1) and (A-2) simplify to the equations (17b)-(18).

To understand the relevant cases for equilibrium existence and multiplicity, consider first γ = 0. Equations
(17b)-(18) then simplify to

Am =
1− δ

1− ρmδ
> 0, (A-3a)

Ad = − 1− δ
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(

δ
1−δ

)2 (
A2

mσ
2
m +A2

dσ
2
d +A2

wσ
2
w

)
. Thus, Am and Aw are known constants and we only need to

solve for Ad, which in turn is the solution to the following quadratic equation:

0 =

(
δ

1− δ
σd

)2

·A2
d +

1

α

1− ρdδ

1− δ
·Ad +

[(
κx
κo
σo

)2

+

(
δ

1− δ

)2 (
A2

mσ
2
m +A2

wσ
2
w

)]
.

Assuming we are not in the deterministic demand case σ2
d = 0, which would naturally impose Ad = 0, we obtain

two solutions, given by

Ad =

− 1
α

1−ρdδ
1−δ ±

√(
1
α

1−ρdδ
1−δ

)2
− 4

(
δ

1−δσd

)2 [(
κx

κo
σo

)2
+
(

δ
1−δ

)2
(A2

mσ
2
m +A2

wσ
2
w)

]
2
(

δ
1−δσd

)2 ,

will only exists as long as α is sufficiently small relative to σ2
d, namely as long as

1− ρdδ ≥ 2δασd

√√√√√(κx
κo
σo

)2

+

(
δ

1− δ

)2
( 1− δ

1− ρmδ

)2

σ2
m +

(
1− δ

1− ρwδ

1

κx

(
κx
κo

)2

ασ2
o

)2

σ2
w

.

Note that the two roots, as long as they exist, both satisfy Ad ≤ 0. Importantly, however, they behave differently
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when σ2
d → 0. The one with the negative sign satisfies limσ2

d→0Ad,− = −∞, while the one with the positive
sign, i.e. the one with smaller absolute value (being closer to zero) has a finite limit

lim
σ2
d→0

Ad,+ = − 1− δ

1− ρdδ
α

[(
κx
κo
σo

)2

+

(
δ

1− δ

)2 (
A2

mσ
2
m +A2

wσ
2
w

)]

The latter solution is also the stable solution of the model in the sense that it is robust to a small perturbation in
investors’ beliefs regarding equilibrium price impact.

It is also useful to solve for the fixed point in terms of V—in some cases this is more tractable mathematically.
Still sticking to the γ = 0 case we have Am and Aw constants, so substituting (17b)-(17d) into (18), the system
implies

0 =

(
ασd

δ

1− ρdδ

)2

· V 2 +

[
2

(
ασd

δ

1− ρdδ

)2(
κx
σo
κo

)2

− 1

]
· V

+

[(
ασd

δ

1− ρdδ

)2(
κx
σo
κo

)4

+

(
δ

1− δ

)2 (
A2

mσ
2
m +A2

wσ
2
w

)]
≡ AV V

2 +BV V + CV ,

which again has a unique root as long as σd = AV = 0; and when AV > 0, the two solutions are given by

V+,− =
−BV ±

√
B2

V − 4AV CV

2AV
.

Since AV , CV ≥ 0,
√
B2

V − 4AV CV ≤ |BV |, implying that the only valid solution in terms of variance is V+,
which also turns out to be the stable solution.

Using the above results, consider the following special cases:

1. If κx = 0 and mt = σm = 0, then we have Am = Ad = Aw = 0 in the unique stable equilibrium.
However, there is an unstable equilibrium with Ad,− < 0. This is equivalent to the De Long et al. (1990)
knife-edge equilibrium in which LoOP fails because investors think it will fail in the future. However, this
equilibrium is not robust to small perturbations in intermediary beliefs.

2. If κx = 0 and σm > 0, then we have Am > 0, Ad < 0, and Aw = 0 in the unique stable equilibrium. This
is just a textbook Greenwood and Vayanos (2014)-style equilibrium with a risky fundamental (short-rate
differential) and random net supply.

3. If κx > 0 and mt = σm = 0, then we have Am = 0, Ad < 0, and Aw > 0 in the unique stable equilib-
rium. This is just a textbook Greenwood and Vayanos (2014)-style equilibrium with a risky frictional cost
(shadow value of capital) that functions like a risky fundamental and random supply.

4. Finally, recall from (A-3a)-(A-3c) above that if κx > 0 and σm > 0, then we have Am > 0, Ad < 0, and
Aw > 0 in the unique stable equilibrium.

Next we consider the γ > 0 case. When σ2
d = 0, there is a unique equilibrium. Specifically, we can think

about this system as a fixed point in terms of V ∈ [0,∞) of the form

V =

(
δ

1− δ

)2 (
σ2
m (Am [V ])

2
+ σ2

w (Aw [V ])
2
)

, (A-4)

where Am [V ] and Aw [V ] are given by (17b) and (17d).The RHS of (A-4) is non-negative and decreasing in V ,
is strictly positive when V = 0, while it approaches 0as V → ∞. The LHS is non-negative and increasing in V ,
equals zero when V = 0, and approaches ∞ as V → ∞. Therefore, a solution always exists and is unique, and
features Am > 0 and Aw > 0.

When γ > 0 and σ2
d > 0, equilibria may or may not exist, and if one exists, it will generally not be unique.

For example, assuming away the constraint on agents, i.e. setting κx = Aw = 0, the system of equations collapses
to a single higher order polinomial—5th order in the general case, but cubic already in the special case when, e.g.,
ρm = ρd. In this setting, we can already show that (i) the trivial V = 0 is not one of the solutions, and (ii) at
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least two of the solutions are valid since they feature V > 0. In fact, this complexity, which exists in any model of
this sort so long as there are (i) demand shocks (σ2

d > 0) and (ii) price-sensitive demand (γ > 0), is the standard
multiplicity issue highlighted by Spiegel (1998) and others. In the bond market context, this complexity arises,
for instance, in Vayanos and Vila (2021) with random supply. In the Online Appendix we discuss equilibrium
stability and multiplicity further.

Proof of Proposition 1. From (17a), it is imminent that A0 < 0 as long as m < m, where this latter is defined as

m = α
(

κx

κo

)2
σ2
o

[
κo

κx

ro
ασ2

o
+ d− 1

κx
w
]
+ αV d.

Proof of Proposition 4. The results on the Bi, i = {m, d,w}, coefficients follow directly from the the definition
of swap returns and the equilibrium coefficients (17b)-(17a). Next, we write

|Bd| − |κxBw| =

∣∣∣∣1− ρdδ

1− δ
Ad

∣∣∣∣− ∣∣∣∣κx 1− ρwδ
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o
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κx

κo
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]

=
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1−ρdδ
1−δ

[(
κx

κo

)2
σ2
o + V

]
− 1−ρwδ

1−δ

(
κx

κo

)2
σ2
o

}
α2γ

[(
κx

κo

)2
σ2
o + V

]
+ 1−ρwδ

1−δ
1−ρdδ
1−δ αV(

1−ρdδ
1−δ + αγ
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κx

κo

)2
σ2
o + V

])(
1−ρwδ
1−δ + αγ
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κx

κo

)2
σ2
o + V

]) ,

so |Bd| > |κxBw| is equivalent to{
1− ρdδ

1− δ

[(
κx
κo

)2

σ2
o + V

]
− 1− ρwδ

1− δ

(
κx
κo

)2

σ2
o

}
α2

[(
κx
κo

)2

σ2
o + V

]
γ +

1− ρwδ

1− δ

1− ρdδ

1− δ
αV > 0,

which in turn holds for all γ ≥ 0 as long as the term in braces is positive—i.e. when

V >
δ

1− ρdδ
(ρd − ρw)

(
κx
κo

)2

σ2
o , (A-5)

which is more likely to hold, e.g., when δ and
(

κx

κo

)2
σ2
o are small, ρd ≤ ρw, or σ2

m, σ2
d, and σ2

w are large—or
when

0 < γ < γ ≡ − 1{
1−ρdδ
1−δ

[(
κx

κo
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o + V

]
− 1−ρwδ

1−δ
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} 1−ρwδ
1−δ

1−ρdδ
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)2
σ2
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as long as (A-5) does not hold, i.e. when δ and
(

κx

κo

)2
σ2
o are large, ρd ≫ ρw, or σ2

m, σ2
d, and σ2

w are small.

Proof of Proposition 7. From (17a), ∂A0/∂
(
ro/σ

2
o

)
< 0 since an increase in ro/σ2

o strictly lowers the nominator
of A0 but does not affect its denominator. On the other hand, an increase in σ2

o lowers the nominator and has a
non-negative impact on the denominator of A0, i.e., ∂A0/∂σ

2
o < 0.
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B Term structure model
Since it features a single long-term perpetual swap, our baseline model does not deliver specific implications for
the full term structure of swap spreads. In order to study this term structure in a simple fashion, we introduce a
series of n-period zero-coupon swaps alongside the perpetual swap introduced above. We then take the limit as
net end-user demand for these zero-coupon swaps goes to zero. Using this approach, we can derive the spreads on
these non-traded n-period zero-coupon swaps from intermediaries’ first order conditions.

A position in the n-period swap spread trade receives the fixed rate on an n-period zero-coupon swap and
hedges the associated interest rate risk by going short n-period zero-coupon Treasury bonds. As a result, the
return on this n-period receive-fixed spread trade is

r
Spread(n)
t+1 = ns

(n)
t − (n− 1) s

(n−1)
t+1 −mt,

where s(n)t ≡ y
S(n)
t − y

T (n)
t —i.e., the n-period zero-coupon swap spread is defined as the between the n-period

swap yield, yS(n)
t , and the n-period Treasury yield, yT (n)

t .44

General analysis. Intermediaries maximize

max
ot,xt,{x(n)

t }N
n=1

Et [wt,t+1]−
α

2
Vart [wt,t+1] , (B-6)

subject to the budget constraint

wt,t+1 = wt + xtr
Spread
t+1 +

∑N

n=1
x
(n)
t r

Spread(n)
t+1 + otr

o
t+1 (B-7)

and the leverage constraint

κx |xt|+ κx
∑N

n=1
|x(n)t |+ κo |ot| ≤ wt. (B-8)

In other words, we now allow intermediaries to take positions in the perpetual long-term swap as well as in
n-period zero-coupon swaps for n = 1, ..., N .45

The first-order condition for the position in n-period swaps (x(n)t ) is

Et[r
Spread(n)
t+1 ] = κxsgn(x

(n)
t ) · ψt + αCovt[r

Spread(n)
t+1 , wt,t+1]. (B-9)

The first-order conditions for the position in the perpetual swap (xt) and the outside investment opportunity (ot)
are

Et[r
Spread
t+1 ] = κxsgn (xt) · ψt + αCovt[r

Spread
t+1 , wt,t+1] and (B-10)

ro = κo · sgn (ot)ψt + ασ2
o · ot. (B-11)

Since ot > 0, we have

ψt = max

0,
ro − ασ2

o
1
κo
wt + ασ2

o
κx

κo

(
|xt|+

∑N
n=1 |x

(n)
t |
)

κo

 .

To compute equilibrium swap spreads, we impose market clearing, setting xt = −dt and x(n)t = −d(n)t for all
n. To close the model a parsimonious way, we assume the same demand process for the generic long-term swap

44The return on an n-period zero coupon swap from t to t+1 is rS(n)
t+1 ≡ ny

S(n)
t − (n− 1) y

S(n−1)
t+1 − iSt where

y
S(n)
t is the n-period zero-coupon swap yield at time t. Similarly, the excess return on an n-period zero-coupon

Treasury is rT (n)
t+1 ≡ ny

T (n)
t − (n− 1) y

T (n−1)
t+1 − iTt where yT (n)

t is the n-period zero-coupon Treasury yield
at time t.Thus, the return on the n-period swap spread arbitrage trade from t to t + 1 is equal to rSpread(n)

t+1 ≡
r
S(n)
t+1 − r

T (n)
t+1 = ns

(n)
t − (n− 1) s

(n−1)
t+1 −mt.

45A simplifying assumption here is that all swap spread arbitrage positions have the same margin requirement
κx irrespective of maturity n. Allowing these margin requirements to vary by maturity would introduce additional
complexity without qualitatively changing our results.
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dt introduced above in (7) and then take the limit as d(n)t approaches zero from one side. Taking this one-sided
limit as positions in the n-maturity swaps grow small is necessary to preserve the terms relating to balance sheet
costs.46

Taking this limit , we obtain

Et[r
Spread(n)
t+1 ]︷ ︸︸ ︷

ns
(n)
t − (n− 1)Et[s

(n−1)
t+1 ]−mt = −αCovt[r

Spread(n)
t+1 , rSpread

t+1 ]dt − sgn(d
(n)
t )κxψt. (B-12)

Iterating this equation forward, we obtain the following expression the n-period swap spread

s
(n)
t =

Expected short-rate differentials︷ ︸︸ ︷
n−1

∑n−1

k=0
Et[mt+k] +

Expected compensation for using scarce capital︷ ︸︸ ︷
n−1

∑n−1

k=0
Et[(−κx) sgn(d(n−k)

t )ψ (wt+k, |dt+k|)](B-13)

+n−1
∑n−1

k=0
(−α)Et[C(n−k)

t+k dt+k]︸ ︷︷ ︸ ,

Expected compensation for risk

where C(n)
t ≡ Covt[r

Spread(n)
t+1 , rSpread

t+1 ] = (n− 1) δ
1−δCovt[s

(n−1)
t+1 , st+1] is the risk of n-period swaps captured

by their return co-movement with the return on the long-maturity swap. This expression naturally generalizes
equation (12) above.

Consider the spreads on 1-period swaps, s(1)t . Since the return on a 1-period swap spread trade is riskless, we
have C(1)

t = 0 implying that
s
(1)
t = mt + (−κx) sgn(d(1)t )ψ (wt, |dt|) . (B-14)

Thus, the short-dated spread is the sum of the current short-rate differential (mt) and a term that is proportional
to the current shadow cost of intermediary capital (ψt ≥ 0). If the net demand to receive fixed is always positive
for all maturities n—i.e., sgn(d(n)t ) = sgn(dt) = 1 for all t and n, then s(1)t = mt + (−κx)ψ (wt, dt) and
s
(n)
t = n−1

∑n−1
k=0 Et[s

(1)
t+k] + n−1

∑n−1
k=0 (−α)Et[C(n−k)

t+k dt+k]. In this case, the short-term swap spread s(1)t

plays a role that is analogous to that played by short-term interest rates in traditional term structure models.47

Assume that mt ≡ 0 for all t as is the case for a SOFR swap, so that any frictionless model would predict that
s
(n)
t = 0 for all n and t by the LoOP. Naturally, this obtains in our model in the limit where κx = 0. However,

when κx > 0, swap spreads will no longer be zero due to the potential for binding intermediary capital constraints.
Indeed, the current short-term spread (s(1)t ) reveals the current shadow value of intermediary capital (ψt) up to a
constant of proportionality. In particular, if mt ≡ 0, short-dated spreads will be zero at t if the constraint is slack
at t (ψt = 0).

Now consider the spreads on swaps with n ≥ 2 periods and continue to assume that mt ≡ 0 for all t.
Crucially, s(n)t can still be non-zero for n ≥ 2 and will be impacted by supply and demand even when ψt = 0

today—i.e., even when the current shadow value of capital is zero. In order to have s(n)t ̸= 0 for n > 1, we only
need to have Et[ψt+k] > 0 for some k ≤ n − 1—i.e., the constraint must be expected to bind sometime over the
life of the swap.

Furthermore, even if the constraint is slack at time t, the expected returns from t to t + 1 for spread arbi-
trage on long-dated swaps will be non-zero if there can be news at t + 1 about the severity of future constraints.
Specifically, even if ψt = 0, we can have Et[r

Spread(n)
t+1 ] = −αCovt[r

Spread(n)
t+1 , rSpread

t+1 ]dt ̸= 0, so long as
Vart[Et+1[ψt+k]] > 0 for some k ≤ n − 1. That is, even if the constraint is slack at t, intermediaries need to be
compensated for the risk of swap spread movements at t+1 due to news about the tightness of future constraints.

46As explained in the Online Appendix, there are other ways we could close the model. Specifically, we could
set dt ≡ 0 and specify a demand process for the set of swap maturities {d(n)t }Nn=1. This approach would allow
us to consider separate shocks to the demand for swaps with different maturities. We have opted to close the
model in a more parsimonious way here since our focus is mainly on how the general demand for swaps of long
maturities impacts the term structure of swap spreads as opposed to providing a general theory of the swap spread
term structure.

47In the limiting case where end-user demand to receive fixed is completely inelastic (γ = 0), s(1)t does not
depend on the amount of swap spread risk—i.e., s(1)t does not depend on σ2

m, σ2
d, or σ2

w. However, when γ > 0,
s
(1)
t will depend on swap-spread risk since the equilibrium demand for the generic long-term swap dt is influenced

by risk.
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As a result, intermediaries still need to be compensated for between t and t + 1 for bearing demand-and-supply
risk even when the constraint is not currently binding at t.

An affine equilibrium. To obtain an affine model of the term structure of swap spreads, we conjecture that

s
(n)
t = A

(n)
0 +A(n)

m zmt +A
(n)
d zdt +A(n)

w zwt .

We then impose the restriction (13) and take the upper limit as d(n)t approaches zero from above for all n—i.e.,
we assume that intermediaries have a vanishingly small short position in the pay-fixed swap spread arbitrage for
all maturities n. We obtain the following result:

Theorem 2 The equilibrium n-period swap spread is given by

s
(n)
t = A

(n)
0 +A(n)

m zmt +A
(n)
d zdt +A(n)

w zwt , (B-15)

with the exact functional forms of A(n)
0 , A(m)

d , A(n)
d , and A(n)

w provided in the Appendix. When γ = 0, A(n)
0 is

negative and decreasing in maturity n, A(n)
m and A(n)

w are positive and decreasing in n, and A(n)
d is negative for

all n and either increasing or U-shaped.

Swap spreads are the average returns on swap spread arbitrage throughout the lifetime of a swap, and hence
are determined by the joint effect of expectations and risk premia until their maturity, as shown by (B-13). In
particular, swap spreads are determined by expected future short-rate differentials, expected compensation for
using scarce capital throughout the life of swaps, and expected compensation for risk.

A key implication of our model is that the swap spread curve is downward-sloping on average when end-
user demand to receive fixed is positive (dt > 0). This result arises because, at least when end-user demand is
completely inelastic (γ = 0), C(n) ≡ Covt[r

Spread(n)
t+1 , rSpread

t+1 ] is an increasing function of maturity n—i.e., the
returns on longer-dated swaps covary more strongly with the returns on intermediaries’ portfolios—implying that
longer-dated swaps are riskier for intermediaries. The greater average magnitude of longer-dated spreads reflects
the greater risk compensation that intermediaries require on these longer-dated swaps. Regarding the level of
spreads, when E[mt] = m ≥ 0 is sufficiently small, such as for OIS swaps, A(n)

0 < 0 for all n. For LIBOR
swaps where m is sufficiently large, A(n)

0 > 0 for all n. In the intermediate case where m is moderately positive,
A

(n)
0 > 0 for small n and A(n)

0 < 0 for larger n. These cases highlight that a higher interest rate differential
pushes all swap spreads towards positive values, however, the balance sheet cost and the risk compensation terms
push swap spreads towards negative levels. The relative magnitudes of these forces determine the overall sign of
A

(n)
0 , with longer maturity spreads more likely to be negative.

The term A
(n)
m reflects variation in the expected future short rate differentials (mt) over the life of the swap

and, thus, is positive and locally downward-sloping across maturities n. Similarly, A(n)
w reflects variation in the

impact of intermediary wealth on expected future balance sheet costs (−κxψt) over the life of the swap and, thus,
is positive and locally downward-sloping across maturities n.

Finally, A(n)
d is negative for all maturities n and reflects both the (i) expected balance sheet costs and (ii)

compensation for risk over the life of the swap. When the volatility of swap spreads is sufficiently low, (i)
dominates for all maturities, and A(n)

d is an increasing function of maturity n. When the volatility of swap spreads
is higher, (ii) can became strong for longer maturities. In this case, A(n)

d is downward-sloping across maturities n
when ρd is sufficiently high and is a U-shaped function of maturity n when ρd is lower.

When γ > 0, end users submit price-sensitive demands and hence movements in zmt and zwt affect interme-
diaries’ equilibrium exposure to swaps; this implies that A(n)

m and A(n)
w now also reflect compensation for risk.

However, by continuity, all analytical results of the γ = 0 case continue to hold when end-user demand is some-
what inelastic, i.e., for γ > 0 sufficiently small. However, as we show in the Appendix, the local shape of the swap
spread curve can become more complex when γ > 0 is larger, i.e., when end-user demand is highly elastic, which
creates strong feedback effects between current and expected future swap spreads and can lead to theoretical swap
spread curves with undesirable oscillatory properties.

Using the term structure extension of our model, we can further study both the global as well as the local
shape of the spread curve. Our measure of the global shape of the spread curve, Slopet ≡ st − s

(1)
t , is simply

the difference in spreads between the long-term generic swap—which we associate with a swap with the average
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duration of end-user demand, which then also equalts intermediaries’ average exposure—and a 1-period swap.48

Further, we also study the local shape of the term structure, i.e., the determinants of Slope(n)t ≡ s
(n)
t − s

(n−1)
t for

some n. The next two Propositions summarize our results about the global and local shape of the term structure:

Proposition 8 Using (16) and (B-15), the global slope of the term structure of swap spreads is given by

Slopet =
(
A0 −A

(1)
0

)
+
(
Am −A(1)

m

)
zmt +

(
Ad −A

(1)
d

)
zdt +

(
Aw −A(1)

w

)
zwt . (B-16)

The coefficients in (B-16) satisfy A0 −A
(1)
0 , Am −A

(1)
m , Aw −A

(1)
w < 0, while Ad −A

(1)
d < 0 so long as

δ

1− δ
(1− ρd)

(
κx
κo

)2

σ2
o < V .

Proposition 8 compares the level and shock sensitivity of the long-term generic swap to those of the 1-period
swap. On average, we find that term structure is globally downward-sloping in the sense that E[Slopet] = A0 −
A

(1)
0 = −αV E [dt] < 0—see also Proposition 8. The average slope is more negative when intermediaries’ risk

aversion α is higher, the swap spread risk V > 0 is higher, and when the average demand from end users to
receive the fixed swap rate, E [dt] = d+ γA0 > 0, is higher. We also find that positive shocks to the interest rate
differential and to intermediaries’ wealth increases the slope (since the slope is negative, this corresponds to the
curve becoming flatter); for example, higher intermediary wealth relaxes their balance sheet constraint, leading
to lower required compensation for supplying swaps, and this effect is stronger for longer maturities. Finally,
we show that shocks to investor demand can have ambiguous impact on the slope, depending on whether the
expectation hypothesis term or the risk compensation term dominate long-term swaps spreads: the first one has a
larger impact on short-term swap spreads, while the second becomes important for longer maturities. This implies
that positive demand shocks are more likely to lower long-term spreads more than short-term spreads and thus
make the slope more negative when σ2

o is small and when ρd, σ2
m, σ2

d, and σ2
w are large.

While the global slope of the term structure only shows that the average level of the long-term generic swap
is more negative than the average level of the 1-period swap, looking at the local properties can highlight non-
monotonic effects of the forces that shape swap spreads:

Proposition 9 Using (16) and (B-15), the local slope of the term structure of swap spreads is given by

Slope
(n)
t =

(
A

(n)
0 −A

(n−1)
0

)
+
(
A(n)

m −A(n−1)
m

)
zmt +

(
A

(n)
d −A

(n−1)
d

)
zdt +

(
A(n)

w −A(n−1)
w

)
zwt . (B-17)

When end-user demand is completely inelastic (γ = 0), we find that A(n)
0 − A

(n−1)
0 , A

(n)
m − A

(n−1)
m , A

(n)
w −

A
(n−1)
w < 0 for all maturities n, while A(n)

d −A
(n−1)
d is ambiguous: either A(n)

d −A
(n−1)
d < 0 for all maturities

n, or A(n)
d −A

(n−1)
d < 0 for short maturities and A(n)

d −A
(n−1)
d > 0 for long maturities.

Expected returns also have a term structure, as follows:

Proposition 10 The expected return on the n-period swap spread trade is given by

Et[r
Spread(n)
t+1 ] = B

(n)
0 +B(n)

m zmt +B(n)
m zdt +B(n)

w zwt , (B-18)

with the exact functional forms given below.
When end-user demand is completely inelastic (γ = 0), (i) B(n)

0 is negative and decreasing in maturity n,
(ii) B(n)

m = 0 for all n, (iii) B(n)
d is negative and decreasing in n, and (iv) B(n)

w is positive and constant across
maturities.

When end-user demand is somewhat inelastic (γ is positive, but not too large), (i) B(n)
0 < 0, (ii) B(n)

m < 0,
(iii) B(n)

d < 0, and (iv) B(n)
w > 0, Since C(n) is increasing in n when γ is not too large, all four coefficients are

decreasing in maturity n.

48Alternatively, we could define Slope∗t ≡ s
(n)
t − s

(1)
t as the difference between the n- and the 1-period swaps;

while the exact coefficients and certain conditions change, our qualitative results presented in Proposition 5 remain
the same.
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When γ = 0, interest rate differential shocks and supply shocks have the same effect on the expected swap
arbitrage returns, as measured by B(n)

m and B(n)
w , respectively. In fact, B(n)

m = 0 for all maturities because,
just like in the case of the perpetual long-term swap spread, changes in the short-rate differential mt impact
swap cash flows, but do not affect the equilibrium amount of swap spread risk intermediaries must hold. In
turn, the constancy of B(n)

w reflects the fact that as long as γ = 0, the B(n)
w zwt term in (B-18) purely reflects

compensation for consuming scarce capital, and all swaps, irrespective of maturity, consume the amount of capital
per unit notional.49 By contrast, the B(n)

d zdt term reflects both compensation for consuming scarce capital and
compensation for risk. The fact that B(n)

d is decreasing in n reflects the fact that longer-term swaps are riskier for
intermediaries; this in turn implies that average expected returns, B(n)

0 , must also increase (in absolute terms) for
longer maturities to compensate intermediaries—i.e., C(n) is increasing in n.

When end-user demand is somewhat inelastic (γ is positive, but not too large), B(n)
0 , B(n)

m , B(n)
d , and B(n)

w

are each decreasing in n. This decline reflects the facts that (i) Et[r
Spread(n)
t+1 ] = −αC(n)dt − κxψ (wt, dt), (ii)

C(n) is increasing in n, and (iii) dt = d+ zdt + γst is increasing in zmt , zdt , and zwt when γ > 0.

Our framework also has important implications predicting swap returns. To this end, we calculation Fama-
Bliss-style regression coefficients. In particular, we obtain the following results

Proposition 11 A higher slope of the swap term structure forecasts higher returns on the n-period swap spread
trade, i.e., running the regressions

r
Spread(n)
t+1 = α+ β1(st − s

(1)
t ) + ξ

(n)
t+1

or
r
Spread(n)
t+1 = α+ β2(s

(n)
t − s

(1)
t ) + ξ

(n)
t+1,

we find that under mild conditions the regression coefficients β1 and β2 are positive.

Finally, our framework also allows to study swap spread volatility. In particular, we obtain the following
result:

Proposition 12 The conditional and unconditional volatilities of swap spreads are given by

Vart−1[s
(n)
t ] = (A(n)

m )2σ2
m + (A

(n)
d )2σ2

d + (A(n)
w )2σ2

w

and

Var[s(n)t ] = (A(n)
m )2

σ2
m

1− ρ2m
+ (A

(n)
d )2

σ2
d

1− ρ2d
+ (A(n)

w )2
σ2
w

1− ρ2w
.

When end-user demand is completely inelastic (γ = 0) or moderately inelastic (γ is not too large), and swap
spread risk is meaningful (σ2

m, σ2
d, and σ2

w are large small relative to σ2
o), (i) shocks to short-rate differentials and

intermediary wealth drive more of the volatility of short-dated swaps (n small) whereas (ii) shocks to end-user
demand drive more of the volatility of long-dated swaps (n large). When (i) dominates, swap spread volatility is
a decreasing function of maturity n; when (ii) is strong enough, swap spread volatility is a hump-shaped function
of maturity n.

Formally, this follows from the fact that |A(n)
m | and |A(w)

m | are decreasing in n, whereas |A(n)
d | is either de-

creasing or a hump-shaped function of n. Intuitively, the changing drivers of swap spread volatility at different
maturities arises from the fact that shocks to short-rate differentials and intermediary wealth primarily affect the
term structure by changing the expected short-dated spread over the life of a swap. Since these shocks are mean re-
verting, this expectations-hypothesis-like channel plays an greater role in driving movements in short-dated swap
spreads. By contrast, shocks to demand primarily affect the term structure by changing the expected compensa-
tion for risk over the life of a swap. This term-premium-like channel plays a greater role in driving movements in
long-dated spreads.

49Formally, we have (i) Et[r
Spread(n)
t+1 ] = −αC(n)dt − κxψ (wt, dt), (ii) C(n) is increasing in n, and (iii)

dt = d+ zdt is independent of zwt when γ = 0. Thus, ∂Et[r
Spread(n)
t+1 ]/∂zwt = −κx · ∂ψt/∂z

w
t for all n.
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Proofs and derivations

Proof of Theorem 2. To derive the solution to our affine term structure model, we start from (14) and (B-12) in
the case when dt > 0 and d(n)t ↘ 0, and thus sgn(d(n)t ) = sgn(d

(n)
t ) = 1. Combining these equations, we obtain

Et[r
Spread(n)
t+1 ]︷ ︸︸ ︷

ns
(n)
t − (n− 1)Et[s

(n−1)
t+1 ]−mt + α

C(n)︷ ︸︸ ︷
Covt[r

Spread(n)
t+1 , rSpread

t+1 ]dt = Et[r
Spread
t+1 ] + αV dt = −κxψt. (B-19)

Using our affine conjecture for the n-period swap spread (B-15) to express Et[r
Spread(n)
t+1 ], combining it with (7)

and (21), (B-19) implies

(nA
(n)
0 − (n− 1)A

(n−1)
0 −m+ α

(
d+ γA0

)
C(n)) + (nA(n)

m − ρm (n− 1)A(n−1)
m − 1 + αγAmC(n)) · zmt

+(nA
(n)
d − ρd (n− 1)A

(n−1)
d + α (1 + γAd) C(n)) · zdt + (nA(n)

w − ρw (n− 1)A(n−1)
w + αγAwC(n)) · zwt

=
(
B0 + αV

(
d+ γA0

))
+ (Bm + αγV Am) · zmt

+(Bd + αV (1 + γAd)) · zdt + (Bw + αγV Aw) · zwt .

Letting D(n)
j ≡ nA

(n)
j for j ∈ {0,m, d, w} and noting that

C(n) ≡ Covt[r
Spread(n)
t+1 , rSpread

t+1 ] =
δ

1− δ

(
D(n−1)

m Amσ
2
m +D

(n−1)
d Adσ

2
d +D(n−1)

w Awσ
2
w

)
,

we can write this system of recursive equations more compactly as
D

(n)
0

D
(n)
m

D
(n)
d

D
(n)
w

 = Φ1


D

(n−1)
0

D
(n−1)
m

D
(n−1)
d

D
(n−1)
w

+Φ0,

with

Φ1 =


1 −α δ

1−δσ
2
m

(
d+ γA0

)
Am −α δ

1−δσ
2
d

(
d+ γA0

)
Ad −α δ

1−δσ
2
w

(
d+ γA0

)
Aw

0 ρm − αγ δ
1−δσ

2
mA

2
m −αγ δ

1−δσ
2
dAdAm −αγ δ

1−δσ
2
wAwAm

0 −α δ
1−δσ

2
m (1 + γAd)Am ρd − α δ

1−δσ
2
d (1 + γAd)Ad −α δ

1−δσ
2
w (1 + γAd)Aw

0 −αγ δ
1−δσ

2
mAmAw −αγ δ

1−δσ
2
dAdAw ρw − αγ δ

1−δσ
2
wA

2
w

 (B-20)

and

Φ0 =


B0 + αγV A0 +m+ αV d

Bm + αγV Am + 1
Bd + αγV Ad + αV
Bw + αγV Aw

 =


(1 + αγV )A0 + αV d(

1−δρm

1−δ + αγV
)
Am(

1−ρdδ
1−δ + αγV

)
Ad + αV(

1−ρwδ
1−δ + αγV

)
Aw

 , (B-21)

and the initial conditions D(0)
0 = D

(0)
m = D

(0)
d = D

(0)
w = 0. The solution of this system of recursive equations is

then [
D

(n)
0 D

(n)
m D

(n)
d D

(n)
w

]′
= (1− Φ1)

−1
(1− Φn

1 ) Φ0. (B-22)

For example, the 1-period swap rate at time t is given by

s
(1)
t = mt − κxψt = A

(1)
0 +A(1)

m zmt +A
(1)
d zdt +A(1)

w zwt ,

where [A
(1)
0 , A(1)

m , A(1)
d , A(1)

w ]′ = [D
(1)
0 , D

(1)
m , D

(1)
d , D

(1)
w ]′ = Φ0 with A(1)

m > 0, A(1)
d < 0, and A(1)

w > 0, and
A

(1)
0 depending on

Since B0 + m = A0, it follows that E[st − s
(1)
t ] = A0 − A

(1)
0 = −αV E[dt] < 0, implying that the term

structure of swap spreads—summarized using the difference between the generic long-term spread st and the 1-
period spread—is downward-sloping on average. The average slope is a function of intermediaries’ risk aversion
α, swap spread risk V , and the average demand from end-users to receive the fixed swap rate, E[dt] = d+γA0 > 0.
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To understand how the D(n)
j coefficients behave as a function of n, note that (B-22) implies

D
(n)
0

D
(n)
m

D
(n)
d

D
(n)
w

−


D

(n−1)
0

D
(n−1)
m

D
(n−1)
d

D
(n−1)
w

 = Φn−1
1 Φ0,

or, ignoring the constant term,  D
(n)
m

D
(n)
d

D
(n)
w

−

 D
(n−1)
m

D
(n−1)
d

D
(n−1)
w

 = Γn−1
1

 D
(1)
m

D
(1)
d

D
(1)
w

 ,

where Γ1 is the 3× 3 obtained from Φ1 by deleting the first row and the first column:

Γ1 =

 ρm − αγ δ
1−δσ

2
mA

2
m −αγ δ

1−δσ
2
dAdAm −αγ δ

1−δσ
2
wAwAm

−α δ
1−δσ

2
m (1 + γAd)Am ρd − α δ

1−δσ
2
d (1 + γAd)Ad −α δ

1−δσ
2
w (1 + γAd)Aw

−αγ δ
1−δσ

2
mAmAw −αγ δ

1−δσ
2
dAdAw ρw − αγ δ

1−δσ
2
wA

2
w

 ,

and where D(1)
m > 0, D(1)

d < 0, and D(1)
w > 0.

In the general case where γ > 0, the behavior of the D(n)
j , j ∈ {m, d,w}, coefficients can be quite complex

as we explain below and in the Online Appendix. However, their behavior in the case when end-user demand is
inelastic (γ = 0) is straightforward and intuitive. When γ = 0, letting ϕd ≡ ρd − α δ

1−δσ
2
dAd > ρd > 0, we have D

(n)
m

D
(n)
d

D
(n)
w

−

 D
(n−1)
m

D
(n−1)
d

D
(n−1)
w

 =

 ρm 0 0
−α δ

1−δσ
2
mAm ϕd −α δ

1−δσ
2
wAw

0 0 ρw

n−1
 D

(1)
m

D
(1)
d

D
(1)
w


=

 ρn−1
m 0 0

−α δ
1−δσ

2
mAm · (

∑n−2
k=0 ϕ

n−2−k
d ρkm) ϕn−1

d −α δ
1−δσ

2
wAw · (

∑n−2
k=0 ϕ

n−2−k
d ρkw)

0 0 ρn−1
w


 D

(1)
m

D
(1)
d

D
(1)
w

 .

It follows that

D(n)
m −D(n−1)

m = ρn−1
m ·D(1)

m > 0,
D(n)

w −D(n−1)
w = ρn−1

w ·D(1)
w > 0,

and

D
(n)
d −D

(n−1)
d = −α δ

1− δ
σ2
mAm · (

∑n−2

k=0
ϕn−2−k
d ρkm) ·D(1)

m

+ ϕn−1
d ·D(1)

d

− α
δ

1− δ
σ2
wAw · (

∑n−2

k=0
ϕn−2−k
d ρkw) ·D(1)

w < 0.

Thus, when γ = 0, D(n)
m , D(n)

d , and D(n)
w are monotonic functions of n with the same signs as Am, Ad, and Aw.

From here it also follows that C(n) is increasing in n.
Further, we can also express the functions A(n)

m , A(n)
d , and A(n)

w After some algebra, we obtain the following
closed-form expressions:

A(n)
m =

1

1− ρm

1− δρm
1− δ

Am
1− ρnm
n

> 0, (B-23)

A(n)
w =

1

1− ρw

1− ρwδ

1− δ
Aw

1− ρnw
n

> 0, (B-24)
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and
A

(n)
d = θo ·

1

n

1− ϕnd
1− ϕd

+ θm · S(n) (ϕd, ρm) + θw · S(n) (ϕd, ρw) , (B-25)

where

θo = −α
(
κx
σo
κo

)2

< 0,

θm = −α δ

1− δ
σ2
mAm = −ασ2

m

δ

1− δρm
< 0, and

θw = −α δ

1− δ

1− ρwδ

1− δ
A2

wσ
2
w = −ασ2

w

δ

1− ρwδ

(
ακx

(
σo
κo

)2
)2

< 0

and

S(n) (a, b) ≡ 1

1− b

1

n

(
1− an

1− a
− bn − an

b− a

)
> 0.

In (B-25), the first term reflects a combination of (i) expected future compensation for using scarce capital
and (ii) expected future compensation for risk due to shocks to zdt (recall that ϕd − ρd = −α δ

1−δσ
2
dAd > 0) and

(ii) . This term is only present when κx > 0, but exists even when σ2
m, σ

2
d, σ

2
w → 0. The second two terms in

square brackets reflect expected future compensation for risk due to shocks to zmt and zwt (as amplified amplified
by the risk of shocks to zdt ) and are only present when σ2

m > 0 and σ2
w > 0, respectively.

Turning to the shape of these these functions, n−1
∑n−1

k=0 ϕ
k
d = n−1 (1− ϕnd ) / (1− ϕd) is a decreasing

function of n when ϕd < 1, increasing when ϕd > 1, and constant when ϕd = 1. S(n) (ϕd, ρz) is a hump-shaped
function of n when ϕd < 1 and an increasing function of n when ϕd ≥ 1. Since ϕd > ρd, this means that the last
two terms tend to be increasing in n when ρd is large and hump-shaped in n when ρd is low. For instance, in the
limit where σd → 0, ϕd → ρd < 1, and both of these terms will be hump-shaped. This hump shape stems from
the fact that A(n)

d = n−1
∑n

k=1 ρ
n−k
d B

(k)
d —i.e., the impact of a shift in demand on n-period swap spreads in an

average of the expected risk premia (the ρn−k
d B

(k)
d ) over the life of the swap. When demand shocks are sufficiently

persistent (ρd is large), the A(n)
d coefficients will rise with n since the impact of demand on risk premia B(n)

d rises
with n. However, when demand shocks are more transitory theA(n)

d coefficients become hump-shaped since these
higher risk premia are only expected to persist for a short fraction over the life of the swap.
Proof. By continuity of the model’s solution in γ, these same conclusions must also hold when γ > 0 is sufficiently
near 0. However, these conclusions need hold for γ large. Specifically, when γ is large, one can construct extreme
parameterizations where D(n)

w and C(n) are not monotonic. For instance, take the special case of the model where
σ2
m = σ2

d = 0 and σ2
w > 0—i.e., the limit with wealth shocks only. In this case, Am and Ad are irrelevant, and

Aw is the unique solution to

Aw =
ακx

(
σo

κo

)2
1−ρwδ
1−δ + αγ

[(
κx

σo

κo

)2
+
(

δ
1−δ

)2
A2

wσ
2
w

] .

Uniqueness follows from the fact that the right-hand side is positive, strictly decreasing in Aw, and converges to 0

as Aw → ∞. In this case, the dynamics of the vector
[
D

(n)
m , D

(n)
d , D

(n)
w

]T
becomes

 D
(n)
m

D
(n)
d

D
(n)
w

−

 D
(n−1)
m

D
(n−1)
d

D
(n−1)
w

 =

Γn−1
1︷ ︸︸ ︷ ρn−1

m 0 X(n−1)

0 ρn−1
d Y (n−1)

0 0 ϕn−1
w


 D

(1)
m

D
(1)
d

D
(1)
w

 ,

where ϕw ≡ ρw − αγ δ
1−δσ

2
wA

2
w and D

(1)
w > 0 (and X(n−1) and Y (n−1) are irrelevant constants obtained

by computing Φn−1
1 ). Thus, if ρw is small and γ is large enough, we can construct equilibria where ϕw =

ρw − αγ δ
1−δσ

2
wA

2
w < 0. This means that D(n)

w will oscillate between increasing and decreasing as a function of

n. As a result, C(n) ≡ δ
1−δD

(n−1)
w Awσ

2
w will also oscillate between increasing and decreasing. One can construct
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similar examples where D(n)
m and C(n) are not monotonic by, e.g., taking the limit where σ2

w = σ2
d = 0 and

σ2
m > 0. Then, if ρm is sufficiently small and γ is sufficiently large, we obtain oscillatory patterns.

In the Online appendix, we provide closed-form solutions for D(n)
j , j ∈ {m,n,w}, in the γ > 0 case, which

illustrates the exact role of the elements of Φn−1
1 .

Proof of Proposition 5. Combining (17b)-(18) with (B-21), we obtain


A0 −A

(1)
0

Am −A
(1)
m

Ad −A
(1)
d

Aw −A
(1)
w

 =


−α

(
d+ γA0

)
V < 0

−
[

δ
1−δ (1− ρm) + αγV

]
Am < 0

−
[

δ
1−δ (1− ρd) + αγV

]
Ad − αV

−
[

δ
1−δ (1− ρw) + αγV

]
Aw < 0


From here, Ad −A

(1)
d < 0 iff

δ

1− δ
(1− ρd)

(
κx
κo

)2

σ2
o < V , (B-26)

which is more likely when
(

κx

κo

)2
σ2
o is small and when ρd, σ2

m, σ2
d, and σ2

w are large. Thus, in our general model,
the term structure is downward-sloping on average. Shocks to zmt and zwt have a larger impact on short-dated
spreads than on longer-term spreads. Since these variables raise the level of spreads, positive values of zmt and
zwt are associated with a more downward-sloping spread curve. By contrast, negative values of zmt and zwt are
associated with a less downward-sloping spread curve. Finally, Shocks to zdt have an ambiguous implact the slope
of the swap spread curve, with having a smaller (less negative) impact on short-dated spreads than longer-term
spreads when (B-26).

Proof of Proposition 9. For the local slope of the swap spread curve, we are interested in

s
(n)
t − s

(n−1)
t =

<0︷ ︸︸ ︷[
A

(n)
0 −A

(n−1)
0

]
+

<0︷ ︸︸ ︷[
A(n)

m −A(n−1)
m

]
zmt +

>0︷ ︸︸ ︷[
A

(n)
d −A

(n−1)
d

]
zdt +

<0︷ ︸︸ ︷[
A(n)

w −A(n−1)
w

]
zwt .

Focusing on the γ = 0 case, from (B-23)-(B-25), after some algebra, we obtain

A(n)
m −A(n−1)

m =

<0︷ ︸︸ ︷
1

(1− ρm)

[
1− ρnm
n

− 1− ρn−1
m

n− 1

] >0︷ ︸︸ ︷[
1− δρm
1− δ

+ αγV

]
Am < 0, (B-27)

A(n)
w −A(n−1)

w =

<0︷ ︸︸ ︷
1

(1− ρw)

[
1− ρnw
n

− 1− ρnw
n− 1

] >0︷ ︸︸ ︷[
1− ρwδ

1− δ
+ αγV

]
Aw < 0,

and

A
(n)
d −A

(n−1)
d =

<0︷ ︸︸ ︷
1

(1− ϕd)

[
1− ϕnd
n

−
1− ϕn−1

d

n− 1

] <0︷ ︸︸ ︷([
1− ρdδ

1− δ
+ αγV

]
Ad + αV

)
(B-28)

−

ambiguous︷ ︸︸ ︷
1

(1− ϕd)

 1
n

(
1−ρn

m

(1−ρm) −
ϕn
d−ρn

m

ϕd−ρm

)
− 1

n−1

(
1−ρn−1

m

(1−ρm) −
ϕn−1
d −ρn−1

m

ϕd−ρm

)  ·

>0︷ ︸︸ ︷
α

δ

1− δ
A2

mσ
2
m

[
1− δρm
1− δ

+ αγV

]

−

ambiguous︷ ︸︸ ︷
1

(1− ϕd)

 1
n

(
1−ρn

w

(1−ρw) −
ϕn
d−ρn

w

ϕd−ρw

)
− 1

n−1

(
1−ρn

w

(1−ρw) −
ϕn−1
d −ρn−1

w

ϕd−ρw

)  ·

>0︷ ︸︸ ︷
α

δ

1− δ
A2

wσ
2
w

[
1− ρwδ

1− δ
+ αγV

]
,

where the signs of the multiplicative constants are straightforward from (17b)-(17d), and the signs of the terms
that depend on n follow from the following Lemma:
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Lemma 1 Suppose 0 < a, b < 1 and n ∈ Z, n ≥ 1. Then

1

n

1− an

1− a

is positive and decreasing in n, and

f (n; a, b) ≡ 1

n

(
1− an

1− a
− bn − an

b− a

)
is positive, and either decreasing of hump-shaped in n.

Proof. Simple algebra shows that

1

n

1− an

1− a
=

1

n

[
1 + a+ ...+ an−1

]
, (B-29)

where 1 > ak > ak+1 > 0 for all k ≥ 1. Therefore, the RHS of (B-29) is trivially positive. Moreover,

1

n+ 1

[
1 + a+ ...+ an−1 + an

]
=

1

n+ 1

[
1 + a+ ...+ an−1

n
n+ an

]
,

a higher n in (B-29) corresponds to taking the average of a series that includes smaller additional elements. Hence,
1
n

[
1 + a+ ...+ an−1

]
> 1

n+1 [1 + a+ ...+ an].
Similarly, we write

1

n

(
1− an

1− a
− bn − an

b− a

)
=

1

n

(
1 + a+ ...+ an−1 −

[
bn−1 + abn−2 + ...+ an−2b+ an−1

])
(B-30)

Since 0 < a, b < 1, 0 < akbl < ak < 1 for all k, l ≥ 1. Therefore, the RHS of (B-30) is trivially positive.
Moreover,

df (n; a, b)

dn
=

(
− ln a·an

1−a − ln b·bn−ln a·an

b−a

)
n−

(
1−an

1−a − bn−an

b−a

)
n2

=

(
1
n ln 1 · 1n − 1

n2 · 1n
)
−
(
1
n ln a · an − 1

n2 a
n
)

1− a
−
(
1
n ln b · bn − 1

n2 · bn
)
−
(
1
n ln a · an − 1

n2 a
n
)

b− a

Note that these terms are actually the slopes of chords of the function

g (n;x) ≡ 1

n
lnx · xn − 1

n2
· xn

between 1 and a, and b and a, respectively. But the function g (n;x) has (limit) values

lim
x↘0

g (n;x) =
1

n
lim
x↘0

lnx · xn =
1

n
lim
x↘0

lnx

x−n
=

1

n

1
x

−nx−n−1
= − 1

n2
lim
x↘0

xn = 0

and g (n; 1) = − 1
n2 , and its slope is

d

dx
g (n;x) ≡ 1

n

d

dx
(lnx · xn)− 1

n2
· d
dx
xn =

1

n

(
1

x
xn + n lnx · xn−1

)
− 1

n2
· nxn−1 =

1

n
(1 + n lnx)xn−1 − 1

n
xn−1

= lnx · xn−1 < 0

d2

dx2
g (n;x) =

d

dx

(
lnx · xn−1

)
= [1 + (n− 1) lnx]xn−2 > 0 iff x > e−

1
n−1

if n ≥ 2 whereas if n = 1 we have

d2

dx2
g (n;x) =

d

dx

(
lnx · xn−1

)
=

1

x
> 0

From here, we conclude that as long as a and b are close to 1, f (n; a, b) is decreasing because the g function is
convex on (min {a, b} , 1), otherwise f (n; a, b) is hump-shaped.
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From here, the sign of A(n)
d − A

(n−1)
d depends on the value of ϕd; as long as the highligted f (n; ρm, ϕd) −

f (n− 1; ρm, ϕd) and f (n; ρw, ϕd)− f (n− 1; ρw, ϕd) terms in (B-28) are negative, A(n)
d −A

(n−1)
d > 0; other-

wise A(n)
d can be U-shaped and thus locally increasing (for long maturities).

Proof of Proposition 10. The expected returns on a position in the n-period swap spread arbitrage trade are given
by

Et[r
Spread(n)
t+1 ] = ns

(n)
t − (n− 1)Et[s

(n−1)
t+1 ]−mt = B

(n)
0 +B(n)

m zmt +B
(n)
d zdt +B(n)

w zwt ,

where

B
(n)
0 = D

(n)
0 −D

(n−1)
0 −m = B0 + α

(
d+ γA0

)
· (V − C(n))

B(n)
m = D(n)

m − ρmD
(n−1)
m − 1 = Bm + αγAm · (V − C(n))

B
(n)
d = D

(n)
d − ρdD

(n−1)
d = Bd + α (1 + γAd) · (V − C(n))

B(n)
w = D(n)

w − ρwD
(n−1)
w = Bw + αγAw · (V − C(n)).

Thus, B(n)
z − Bz for z ∈ {0,m, d, w} is proportional to V − C(n) = Covt[r

Spread
t+1 − r

Spread(n)
t+1 , rSpread

t+1 ]. We
have B(1)

0 < 0, B(1)
m ≤ 0 (< 0 when γ > 0), B(n)

d < 0, and B(1)
w > 0.

When C(n) ≡Covt[r
Spread(n)
t+1 , rSpread

t+1 ] is a monotonically increasing function of n, it follows that B(n)
0 ,

B
(n)
m , B(n)

d , and B(n)
w are all weakly decreasing in maturity n and strictly so when γ > 0. This result obtains

because end-user demand for swaps, dt =
(
d+ γA0

)
+ γAmz

m
t +(1 + γAd) z

d
t + γAwz

w
t , is weakly increasing

in all three state variables (strictly so when γ > 0). Since intermediaries must accomodate larger swap demand
when any of these variables is high and because the returns on longer-date swaps co-move more strongly with
intermediary wealth (under the assumption that C(n) is increasing in n), expected returns must decline more
steeply with maturity n when either zmt , zdt , and zwt are large.

Proof of Proposition 6. When we estimate regressions of the form

rSpread
t+1 = α+ β1(st − s

(1)
t ) + ξ

(n)
t+1

or
r
Spread(n)
t+1 = α+ β2(s

(n)
t − s

(1)
t ) + ξ

(n)
t+1,

we find that under mild conditions the slope of the spread curve positively predicts future returns to spread arbi-
trage on long-term swaps. For instance, a larger negative slope (s(n)t −s(1)t more negative) is associated with more
negative values of rSpread(n)

t+1 . Since

Et[r
Spread(n)
t+1 ] = −αC(n)

(
d+ zdt

)
− κxψ

(
w + zwt , d+ zdt

)
=

[
−αC(n)d− κxψ

(
w, d

)]
︸ ︷︷ ︸

B
(n)
0 <0.

+
[
−αC(n) − κxψ2

]
︸ ︷︷ ︸

B
(n)
d <0

zdt + [−κxψ1]︸ ︷︷ ︸
B

(n)
w =Bw>0

zwt ,

the model-implied regression results are given by

β1 =

Ambiguous︷ ︸︸ ︷
[Ad −A

(1)
d ]×

<0︷︸︸︷
[Bd]× σ2

d

1−ρ2
d
+

<0︷ ︸︸ ︷
[Aw −A(1)

w ]×
>0︷︸︸︷
[Bw]× σ2

w

1−ρ2
w

[Ad −A
(1)
d ]2 × σ2

d
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d
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w ]2 × σ2

w

1−ρ2
w

.

and

β2 =

Ambiguous︷ ︸︸ ︷
[A

(n)
d −A

(1)
d ]×

<0︷ ︸︸ ︷
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d ]× σ2

d

1−ρ2
d
+

<0︷ ︸︸ ︷
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w ]×
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w ]× σ2
w
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w
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d ]2 × σ2

d

1−ρ2
d
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w −A
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,

respectively.
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Coefficient β1 is, for example, positive when

(Ad −A
(1)
d )Bd

σ2
d

1− ρ2d
+ (Aw −A(1)

w )Bw
σ2
w

1− ρ2w
> 0

or

0 < −

(
δ (1− ρd)

1− ρdδ

[(
κx
κo

)2

σ2
o + V

]
− V

)[(
κx
κo

)2

σ2
o + V

]
σ2
d

1− ρ2d
(B-31)

−δ (1− ρw)

1− ρwδ

[
1

κx

(
κx
κo

)2

σ2
o

]2
σ2
w

1− ρ2w
.

In particular, notice that as long as
δ

1− δ
(1− ρd)

(
κx
κo

)2

σ2
o > V ,

which is more likely to hold when ρd and V are small, (B-31) cannot hold as the RHS is negative for sure.
For β2, if an increase in zdt reduces s(n)t − s(1)t (i.e., A(n)

d −A(1)
d < 0)—which is more likely when V is large,

ρd is fairly persistent, and σ2
o is not too large, then β is the sum of a negative piece and a positive piece. Which

term dominates depends on whether demand or supply shocks are more volatile.
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C Additional VARs
To check that our identification of demand and supply shocks is not sensitive to the inclusion of the LIBOR-repo
spread as an additional variable in the VAR, we consider the following tri-variate specification: LIBOR-repot

30y swap spreadt
−PD net positiont

 = c+

L∑
i=1

Ci

 LIBOR-repot−i

30y swap spreadt−i

−PD net positiont−i

+ ξt.

Following Proposition 2, we identify the structural demand, supply, and LIBOR-repo shocks by imposing a com-
bination of sign and zero restrictions. Specifically, in addition to the structural shock orthogonality and the sign
restrictions that we imposed in our baseline VAR, we assume that LIBOR-repo spread does not respond on impact
to demand and supply shocks, and that both spreads’ on-impact responses to LIBOR-repo shock have the same
sign. Thus, structural shocks εt are related to reduced-form VAR residuals ξt by the mapping

ξt =

 + 0 0
+ − +
. − −

 εt.
We estimate the structural VAR using the sign and zero restriction approach of Arias et al. (2018) with lag length
set to L = 4. The historical decomposition implied by the estimated VAR and shown on Figure A2 suggests that
LIBOR-repo shocks contribute very little to the swap spread variation. This is confirmed by the forecast error
variance decomposition: LIBOR-repo shocks account for just 2.88% of the swap spread variance in the long run.

To study maturity-specific end-user demand to receive fixed rate, we consider the following VAR specification:
5y swap spreadt

30y swap spreadt
−PD net positiont

−PD net position LT - STt

 = c+

L∑
i=1

Ci


5y swap spreadt−i

30y swap spreadt−i

−PD net positiont−i

−PD net position LT - STt−i

+ ξt.

We identify the structural short-maturity demand, long-maturity demand, and supply shocks by imposing a combi-
nation of sign restrictions. First, we assume that positive demand shocks (both short-maturity and long-maturity)
make swap spreads (both 5-year and 30-year) more negative and increase the scale of intermediaries’ overall short
position in swap arbitrage, pushing down −PD net positiont = − (PD net position>6yt + PD net position<6yt).
Moreoever, we assume that shocks to short-maturity demand have a larger effect on intermediaries’ position in
short-maturity Treasuries relative to long-maturity Treasuries and vice versa: a positive short-maturity demand
shock pushes −PD net position LT - STt = − (PD net position>6yt − PD net position<6yt) up, while a positive
long-maturity demand shock pushes it down. We also assume that a positive shock to intermediary supply makes
swap spreads (both 5-year and 30-year) less negative, while increasing intermediaries’ overall short position in
the swap arbitrage. The fourth shock in the VAR is not identified. Thus, structural shocks εt are related to
reduced-form VAR residuals ξt by the mapping

ξt =


− − + .
− − + .
− − − .
+ − . .

 εt.
We estimate the structural VAR with the pure sign restrictions approach of Uhlig (2005) with lag length L = 2.
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D Tables

Table 1: Summary statistics: This table reports the means, the standard deviations, and the correlations with the
30-year swap spread of the 30-year swap spread (Swap spread), the spread between the 3-month general collateral
repo rate and the 3-month OIS rate (Repo - OIS), the Primary Dealers’ net position in coupon-bearing Treasury
securities (PD net), the Primary Dealers’ gross position in coupon-bearing Treasury securities (PD gross), and the
spread between the 3-month USD LIBOR rate and the 3-month general collateral repo rate (LIBOR - repo). Data
are weekly and run from July 2001 to December 2008 (01-08) and from January 2009 to December 2020 (09-20).

Mean St. dev. Corr. with swap spread
01-08 09-20 01-08 09-20 01-08 09-20

Swap spread, bps 45 -25 16 15 1.00 1.00

Repo - OIS, bps -8 7 12 8 -0.41 -0.47

PD net, bln -95.63 59.32 36.12 64.46 -0.27 -0.31

PD gross, bln 350.02 392.41 64.73 60.09 0.15 0.05

LIBOR - repo, bps 35 18 44 18 -0.35 -0.05
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Table 2: Demand and supply drivers: This table reports the slope and intercept coefficients from regressions
of, respectively, the 30-year swap spread (regressions 1-2), the demand factor (regressions 2-4) and the supply
factor (regression 5) on the Adrian et al. (2013) term premium (Term premium), the VXTY Treasury volatility
index (Treasury volatility), the 10-year U.S. sovereign credit default swap spread (Sovereign risk), the Hu et al.
(2013) yield curve fitting error (Yield curve noise), the VIX volatility index (Stock volatility), the aggregate
dollar duration of mortgage-backed securities (Mortgage duration), the Klingler and Sundaresan (2019) pension
fund underfunding factor (Pension underfunding), and the U.S. corporate bond issuance (Corporate issuance). In
regressions (1), (3) and (5), data are weekly and run from January 2009 to June 2018. In regressions (2) and (4),
data are quarterly and run from January 2009 to June 2018, and variables are in 3-month changes. Newey and
West (1987, 1994) standard errors are reported in parentheses. ***, **, and * denote statistical significance at the
1%, 5%, and 10% levels, respectively.

Swap spread Demand Supply

(1) (2) (3) (4) (5)

Term premium 10.552∗∗∗ −4.561∗∗∗ 0.553
(2.032) (0.606) (0.506)

Treasury volatility −3.441∗∗∗ 0.634∗ −1.037∗∗∗

(1.309) (0.375) (0.351)
Sovereign risk −0.205∗∗ 0.079∗∗∗ −0.020

(0.083) (0.023) (0.023)
Yield curve noise −0.357 0.104 −0.069

(0.852) (0.252) (0.180)
Stock volatility 0.175 −0.051 0.034

(0.245) (0.065) (0.069)
Mortgage duration 0.624∗∗∗ −0.257∗∗∗

(0.153) (0.081)
Pension underfunding 30.075 15.230

(67.376) (23.573)
Corporate issuance −8.427 12.540

(34.612) (10.451)
Constant −7.993 0.361 −1.445 0.175 6.068∗∗∗

(5.248) (1.469) (1.458) (0.401) (1.391)

Observations 495 37 495 37 495
Adjusted R2 0.232 0.020 0.461 0.113 0.162
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Table 3: Swap spread trade returns predictability: This table reports the slope and intercept coefficients from regressions of, respectively, the 3-month holding period
return on the 30-year swap spread trade (regressions 1-4), and the 12-month holding period return on the 30-year swap spread trade (regressions 5-8) on the Primary Dealers’
net position in coupon-bearing Treasury securities (PD net), the Primary Dealers’ outstanding balances of Treasury securities in through financing arrangements (PD securities
in), the demand (Demand) and supply (Supply) factors, the difference between the 30-year swap spread and the 10-year swap spread (Slope), the spread between the 3-month
general collateral repo rate and the 3-month OIS rate (Repo - OIS), and the spread between the 3-month USD LIBOR rate and the 3-month general collateral repo rate (LIBOR
- repo). Data are weekly and run from January 2009 to June 2018. Newey and West (1987, 1994) standard errors are reported in parentheses. ***, **, and * denote statistical
significance at the 1%, 5%, and 10% levels, respectively.

3-month returns 12-month returns

(1) (2) (3) (4) (5) (6) (7) (8)

PD net −1.597∗∗∗ −1.618∗∗∗ −5.308∗∗∗ −5.414∗∗∗

(0.384) (0.383) (1.004) (0.825)
PD securities in −0.242∗ −1.230∗∗∗

(0.137) (0.197)
Demand −12.920∗∗∗ −52.809∗∗∗

(2.876) (5.252)
Supply −2.905 6.192

(3.197) (7.665)
Slope 6.502∗∗∗ 20.974∗∗∗

(1.346) (2.516)
Repo - OIS 3.176 2.585 1.960 3.329 0.333 2.282

(3.218) (2.976) (2.043) (5.888) (5.162) (3.475)
LIBOR - repo −1.577 −1.750 −1.451 0.458 −5.660∗∗∗ −6.539∗∗∗ −4.766∗∗∗ −0.762

(1.267) (1.250) (1.249) (1.121) (1.479) (1.375) (1.366) (1.635)
Constant 46.232∗ 506.807∗ 8.583 162.787∗∗∗ 217.122∗∗∗ 2555.930∗∗∗ 47.988 603.727∗∗∗

(27.905) (258.198) (27.795) (39.312) (63.203) (389.578) (45.193) (83.539)

Observations 495 495 495 615 495 495 495 576
Adjusted R2 0.118 0.145 0.148 0.123 0.291 0.437 0.552 0.331
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Table 4: Swap spread trade returns predictability, additional results: This table reports the slope and intercept coefficients from regressions of, respectively, the 3-month
holding period return on the 30-year swap spread trade (regressions 1-4) and the 12-month holding period return on the 30-year swap spread trade (regressions 5-8) on Primary
Dealers’ net position in coupon-bearing Treasury securities (PD net), Primary Dealers’ net position in coupon-bearing Treasury securities with maturity of 11 years and higher
(PD net 11y+), Primary Dealers’ gross position in coupon-bearing Treasury securities (PD gross), the Primary Dealers’ net position in federal agency and government sponsored
enterprise mortgage-backed securities (PD net, agency MBS), the Primary Dealers’ net position in federal agency and government sponsored enterprise securities excluding
mortgage-backed securities (PD net, agency ex. MBS), the Primary Dealers’ net position in corporate debt securities (PD net, corporate), the difference between the 30-year
swap spread and the 10-year swap spread (Slope), the spread between the 3-month LIBOR rate and the 3-month Treasury bill rate (TED), the spread between the 3-month
general collateral repo rate and the 3-month OIS rate (Repo - OIS), and the spread between the 3-month USD LIBOR rate and the 3-month general collateral repo rate (LIBOR
- repo). Data are weekly and run from January 2009 to June 2018 for regressions 1-3 and 5-7, and from January 2009 to December 2020 for regressions 4 and 8. Newey and
West (1987, 1994) standard errors are reported in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

3-month returns 12-month returns

(1) (2) (3) (4) (5) (6) (7) (8)

PD net −1.797∗∗∗ −2.889∗∗∗ −5.048∗∗∗ −7.307∗∗∗

(0.392) (0.571) (1.101) (1.221)
PD net 11y+ −0.633∗∗∗ −1.202∗∗

(0.159) (0.527)
PD gross −0.530∗∗ −1.999∗∗∗

(0.238) (0.392)
PD securities in −0.263∗ −0.986∗∗∗

(0.141) (0.199)
PD net, agency MBS 0.001 −0.002

(0.001) (0.002)
PD net, agency ex. MBS 0.002∗ −0.001

(0.001) (0.002)
PD net, corporate −0.004∗∗ −0.003

(0.002) (0.003)
TED 4.175∗ −0.733

(2.315) (4.283)
Repo - OIS 2.604 −1.164 −0.412 −2.855 −11.435∗ −1.316

(3.094) (2.885) (2.931) (6.594) (6.155) (6.418)
LIBOR - repo −5.395∗∗ −1.366 −2.246∗ −1.584 −5.036 −5.188∗∗∗ −8.206∗∗∗ −5.498∗∗∗

(2.390) (1.290) (1.269) (1.122) (4.780) (1.693) (1.805) (1.264)
Constant 9.473 70.621∗∗ 232.566∗∗ 672.790∗∗∗ 236.110∗∗∗ 214.735∗∗∗ 935.760∗∗∗ 2494.352∗∗∗

(34.166) (31.374) (95.472) (238.597) (64.479) (73.666) (173.351) (384.776)

Observations 495 495 495 495 495 495 495 495
Adjusted R2 0.140 0.097 0.050 0.205 0.289 0.127 0.160 0.468
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Table 5: Covered interest parity violations: This table reports the slope and intercept coefficients from regressions of, respectively, the deviation from the 3-month EURUSD
covered interest parity (CIP 3m, regressions 1-4) and the deviation from the 5-year EURUSD covered interest parity (CIP 5y, regressions 5-8) on the 30-year swap spread, the
demand (Demand) and supply (Supply) factors, the spread between the 3-month general collateral repo rate and the 3-month OIS rate (Repo - OIS), the spread between the
3-month USD LIBOR rate and the 3-month general collateral repo rate (LIBOR - Repo), the deviation from the 3-month EURUSD covered interest parity (CIP 3m), and the
deviation from the 5-year EURUSD covered interest parity (CIP 5y). Data are monthly and run from January 2009 to June 2018. Newey and West (1987, 1994) standard errors
are reported in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

CIP 3m CIP 5y
(1) (2) (3) (4) (5) (6) (7) (8)

Swap spread 0.675∗∗∗ 0.610∗∗∗

(0.172) (0.078)
Demand −0.770 −0.863 1.563 −1.736∗∗∗ −1.487∗∗∗ −1.527∗∗∗

(0.524) (0.563) (0.931) (0.259) (0.234) (0.196)
Supply 2.338∗∗∗ 2.257∗∗∗ 1.624∗∗∗ 0.531∗ 0.407 −0.103

(0.673) (0.657) (0.468) (0.311) (0.292) (0.244)
Repo - OIS 0.189 −0.381∗∗

(0.370) (0.168)
LIBOR - Repo −0.266 −0.265∗∗∗

(0.227) (0.066)
CIP 3m 0.271∗∗∗

(0.041)
CIP 5y 1.344∗∗∗

(0.451)
Constant −16.525∗∗∗ −32.486∗∗∗ −28.197∗∗∗ 7.931 −15.852∗∗∗ −30.068∗∗∗ −23.183∗∗∗ −21.258∗∗∗

(4.232) (3.468) (4.020) (11.618) (2.521) (1.364) (1.563) (1.609)

Observations 113 113 113 113 113 113 113 113
Adjusted R2 0.192 0.215 0.244 0.496 0.481 0.528 0.654 0.697
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Figure 1: Swap spread and Primary Dealers’ position: This figure shows the 30-year LIBOR swap spread
(30y swap spread), the 10-year LIBOR swap spread (10y swap spread), the 30-year OIS swap spread (30y OIS
swap spread), and the Primary Dealers’ net position in coupon-bearing Treasury securities (PD net position). Data
are weekly and run from January 2001 to December 2020.
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Figure 2: Swap spread historical decomposition: This figure shows the contribution of demand and supply
shocks to the 30-year swap spread variation. Data are weekly and run from January 2009 to June 2018.
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Figure 3: Demand factor and aggregate MBS dollar duration: This figure shows the series of the demand
component of the 30-year swap spread (Demand factor), the aggregate dollar duration of U.S. mortgage-backed
securities (MBS dollar duration), and the Adrian et al. (2013) term premium (Term premium). Data are weekly
and run from January 2009 to June 2018.

64



0 5 10 15 20 25 30
Maturity, years

-70

-60

-50

-40

-30

-20

-10

0

10

20

30

S
w

ap
 s

pr
ea

d,
 b

ps

LIBOR 2009-20
LIBOR 2011-20
OIS      2011-20
LIBOR 2018-20
OIS      2018-20
SOFR  2018-20

Figure 4: Term structure of swap spreads: This figure shows the average LIBOR, OIS, and SOFR swap
spreads for 2-, 5-, 10- and 30-year maturities for periods starting in January 2009 (2009-20), September 2011
(2011-20) and December 2018 (2018-20), and ending in December 2020. Data are weekly.
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F Additional tables and figures

Table A1: Demand and supply properties: This table reports the pairwise correlations of the 30-year swap
spread (Swap spread), the demand factor (Demand) and minus one times the supply factor (-Supply) with, re-
spectively, the Adrian et al. (2013) term premium (Term premium), the VXTY Treasury volatility index (Treasury
volatility), the 10-year U.S. sovereign credit default swap spread (Sovereign risk), the Hu et al. (2013) yield curve
fitting error (Yield curve noise), the VIX volatility index (Stock volatility). The supply factor is multiplied by
minus one so higher values of both demand and supply factors correspond to more negative swap spreads. Data
are weekly and run from January 2009 to June 2018.

Swap spread Demand -Supply

Term premium 0.33 −0.62 0.19
Treasury volatility −0.02 −0.27 0.39
Sovereign risk −0.12 0.02 0.19
Noise −0.05 −0.15 0.29
Stock volatility −0.05 −0.16 0.30

Swap spread 1.00 −0.87 −0.76
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Table A2: Swap spread trade returns predictability, sample extended until end of 2020: This table reports the slope and intercept coefficients from regressions of,
respectively, the 3-month holding period return on the 30-year swap spread trade (regressions 1-4) and the 12-month holding period return on the 30-year swap spread trade
(regressions 5-8) on Primary Dealers’ net position in coupon-bearing Treasury securities (PD net), the Primary Dealers’ outstanding balances of Treasury securities in through
financing arrangements (PD securities in), Primary Dealers’ net position in coupon-bearing Treasury securities orthogonalized with respect to a time trend, coupon-bearing
Treasury securities held by the Federal Reserve and the 12-month average of coupon-bearing Treasury securities net issuance (PD net), the Primary Dealers’ outstanding
balances of Treasury securities in through financing arrangements orthogonalized with respect to a time trend, coupon-bearing Treasury securities held by the Federal Reserve
and the 12-month average of coupon-bearing Treasury securities net issuance (PD securities in), the spread between the 3-month general collateral repo rate and the 3-month
OIS rate (Repo - OIS), and the spread between the 3-month USD LIBOR rate and the 3-month general collateral repo rate (LIBOR - Repo). Data are weekly and run from
January 2009 to December 2020. Newey and West (1987, 1994) standard errors are reported in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and
10% levels, respectively.

3-month returns 12-month returns

(1) (2) (3) (4) (5) (6) (7) (8)

PD net −0.116 −0.015 −0.789 −0.455
(0.382) (0.370) (0.800) (0.785)

PD securities in −0.183 −1.083∗∗∗

(0.122) (0.208)
PD net −0.842∗ −0.724 −3.759∗∗∗ −2.814∗∗∗

(0.467) (0.487) (0.884) (0.727)
PD securities in −0.249∗∗ −1.601∗∗∗

(0.122) (0.202)
Repo - OIS 0.862 1.083 1.075 1.514 1.320 1.885 1.206 1.841

(2.956) (2.870) (2.257) (2.167) (6.059) (5.853) (4.592) (3.755)
LIBOR - repo −1.073 −1.087 −0.778 −0.723 −6.231∗∗∗ −7.327∗∗∗ −4.473∗∗∗ −5.178∗∗∗

(1.136) (1.177) (1.126) (1.171) (1.599) (1.435) (1.609) (1.502)
Constant 12.941 353.357 −0.337 −4.342 144.273∗∗ 2182.976∗∗∗ 69.743 78.899

(27.377) (226.592) (27.317) (27.189) (61.073) (404.179) (59.952) (53.425)

Observations 615 615 614 614 576 576 576 576
Adjusted R2 0.007 0.021 0.023 0.044 0.069 0.185 0.140 0.339

67



Table A3: Swap spread trade returns predictability, pre-2008 sample: This table reports the slope and intercept coefficients from regressions of, respectively, the 3-month
holding period return on the 30-year swap spread trade (regressions 1-4) and the 12-month holding period return on the 30-year swap spread trade (regressions 5-8) on Primary
Dealers’ net position in coupon-bearing Treasury securities (PD net), the Primary Dealers’ outstanding balances of Treasury securities in through financing arrangements (PD
securities in), the Primary Dealers’ net position in federal agency and government sponsored enterprise mortgage-backed securities (PD net, agency MBS), the Primary Dealers’
net position in federal agency and government sponsored enterprise securities excluding mortgage-backed securities (PD net, agency ex. MBS), the Primary Dealers’ net
position in corporate debt securities (PD net, corporate), the difference between the 30-year swap spread and the 2-year swap spread (Slope), the spread between the 3-month
general collateral repo rate and the 3-month OIS rate (Repo - OIS), and the spread between the 3-month USD LIBOR rate and the 3-month general collateral repo rate (LIBOR
- repo). Data are weekly and run from December 2001 to December 2007. Newey and West (1987, 1994) standard errors are reported in parentheses. ***, **, and * denote
statistical significance at the 1%, 5%, and 10% levels, respectively.

3-month returns 12-month returns

(1) (2) (3) (4) (5) (6) (7) (8)

PD net −1.426∗∗∗ −1.420∗∗∗ −1.465∗∗ −1.474∗

(0.402) (0.386) (0.690) (0.769)
PD securities in −0.210∗∗∗ −0.231∗∗∗ −0.528∗∗∗ −0.475∗∗∗

(0.042) (0.057) (0.088) (0.091)
PD net, agency MBS −1.709∗∗ −2.804∗∗

(0.837) (1.091)
PD net, agency ex. MBS 0.516 0.212

(1.305) (1.606)
PD net, corporate 0.214 −0.511

(0.672) (0.863)
Slope 5.067∗∗∗ 16.140∗∗∗

(1.492) (2.464)
Repo - OIS 3.749∗∗ 0.889 1.105 5.978∗∗∗ 16.571∗∗∗ −8.405∗∗ −10.009∗∗ 19.959∗∗∗

(1.577) (2.196) (2.074) (1.625) (5.818) (4.267) (4.085) (4.244)
LIBOR - repo 1.809∗∗∗ 2.821∗∗∗ 2.851∗∗∗ 3.397∗∗∗ 13.122 3.800 1.286 10.645∗

(0.673) (0.527) (0.768) (0.753) (8.398) (5.675) (5.553) (6.012)
Constant 0.716 237.731∗∗∗ 248.375∗∗∗ −51.292∗∗∗ −130.465 752.079∗∗∗ 799.230∗∗∗ −168.972∗

(18.926) (61.364) (85.317) (19.642) (119.411) (155.517) (156.551) (89.232)

Observations 304 304 304 304 265 265 265 265
Adjusted R2 0.042 0.237 0.260 0.168 0.108 0.488 0.521 0.455
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Table A4: Swap spread trade returns predictability, 10-year swap spread: This table reports the slope and intercept coefficients from regressions of, respectively, the
3-month holding period return on the 10-year swap spread trade (regressions 1-4), and the 12-month holding period return on the 10-year swap spread trade (regressions 5-8)
on the Primary Dealers’ net position in coupon-bearing Treasury securities (PD net), the Primary Dealers’ outstanding balances of Treasury securities in through financing
arrangements (PD securities in), the Primary Dealers’ net position in coupon-bearing Treasury securities with maturity of 11 years and higher (PD net 11y+), the demand
(Demand) and supply (Supply) factors, the difference between the 10-year swap spread and the 2-year swap spread (Slope), the spread between the 3-month general collateral
repo rate and the 3-month OIS rate (Repo - OIS), and the spread between the 3-month USD LIBOR rate and the 3-month general collateral repo rate (LIBOR - repo). Data are
weekly and run from January 2009 to June 2018. Newey and West (1987, 1994) standard errors are reported in parentheses. ***, **, and * denote statistical significance at the
1%, 5%, and 10% levels, respectively.

3-month returns 12-month returns

(1) (2) (3) (4) (5) (6) (7) (8)

PD net −0.195 −1.098∗∗∗

(0.141) (0.222)
PD net 11y+ −1.653∗∗∗ −2.800∗∗∗

(0.492) (0.999)
PD securities in −0.149∗∗∗ −0.164∗∗∗ −0.334∗∗∗ −0.353∗∗∗

(0.049) (0.049) (0.074) (0.080)
Demand −2.492∗∗ −13.113∗∗∗

(1.044) (1.442)
Supply 1.923 12.167∗∗∗

(1.512) (2.718)
Slope 1.027∗∗ 4.328∗∗∗

(0.511) (0.689)
Repo - OIS −0.750 0.236 0.623 0.464 −0.717 2.013

(0.967) (0.874) (1.034) (1.614) (1.634) (1.485)
LIBOR - repo −0.412 −0.375 −0.237 0.063 0.610 0.701 −0.307 2.410∗∗∗

(0.330) (0.316) (0.319) (0.365) (0.518) (0.542) (0.487) (0.559)
Constant 294.413∗∗∗ 333.373∗∗∗ 5.249 14.116 651.079∗∗∗ 690.455∗∗∗ 10.590 22.967

(93.312) (94.366) (9.092) (10.531) (145.890) (160.739) (15.436) (17.557)

Observations 495 495 495 495 495 495 495 495
Adjusted R2 0.093 0.122 0.072 0.026 0.273 0.190 0.445 0.165

69



Table A5: Short-term and long-term demand factors: This table reports the slope and intercept coefficients
from regressions of, respectively, the 5-year swap spread (5y spread), the 30-year swap spread (30y spread), the
short-term demand factor (ST demand) and the long-term demand factor (LT demand) on the aggregate dollar
duration of mortgage-backed securities (Mortgage duration), the Klingler and Sundaresan (2019) pension fund
underfunding factor (Pension underfunding), and the U.S. corporate bond issuance (Corporate issuance). Data are
quarterly and run from January 2009 to June 2018, and variables are in 3-month changes. Newey and West (1987,
1994) standard errors are reported in parentheses. ***, **, and * denote statistical significance at the 1%, 5%, and
10% levels, respectively.

5y spread 30y spread ST demand LT demand

Mortgage duration −0.278 0.624∗∗∗ −0.131∗ −0.222∗∗

(0.311) (0.153) (0.070) (0.093)
Pension underfunding 214.389∗∗∗ 30.075 −37.326 48.972∗∗

(71.112) (67.376) (26.344) 18.413
Corporate issuance 24.597 −8.427 −0.217 15.848

(38.446) (34.612) (8.675) (11.866)
Constant −0.216 0.361 0.197 0.053

(1.065) (1.469) (0.365) (0.447)

Observations 37 37 37 37
Adjusted R2 0.137 0.020 0.010 0.177
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Figure A1: Impulse response functions and factors: The figure show the impulse response functions from
the structural VAR. Median, “closest to median,” and 15th-85th percentiles correspond to the set of responses that
satisfy the identification restrictions. Data are weekly and run from January 2009 to June 2018.
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Figure A2: Swap spread historical decomposition: This figure shows the contribution of LIBOR-repo, de-
mand, and supply shocks to the 30y swap spread. Shocks are identified using the structural VAR described in
Appendix C. Data are weekly and run from January 2009 to June 2018.
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