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Abstract
We study a financial market in which agents with interdependent values bid
for a risky asset. Some agents are privately informed of their own value for
the asset while others seek to infer it from the equilibrium price. Due to
adverse selection, uninformed agents are less willing than the informed to
provide liquidity, and engage in greater bid shading when prices are more in-
formative. While increased participation by informed agents leads to perfect
competition in the limit, the market remains illiquid to some degree even
with free entry of uninformed traders. The incentive to produce information
is increasing in market size and is maximal in a perfectly competitive econ-
omy. Price informativeness, on the other hand, is independent of market
size. Curtailing information production by one group can reduce adverse
selection, and improve liquidity and welfare for all agents.
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1 Introduction

We study a financial market in which agents with interdependent values bid for
a risky asset. There are several types of bidders distinguished by their value for
the asset, which is uncertain ex ante. For a given type, all bidders have the same
value but some are privately informed about it while others are not.

The trading protocol is a multi-unit uniform-price double auction. We present
our model in terms of bidding for a financial asset, but it is applicable to many
divisible-good settings, such as wholesale electricity, spectrum or emission permits.
In a financial market, heterogeneity in values can be due to di↵erent hedging or
liquidity needs, or because of di↵ering investment opportunities.1 The auction
takes the form of a demand submission game wherein each bidder submits a de-
mand schedule, which is a function of his private signal (if he has one) and the
price. Agents take account of their price impact and incorporate the informational
content of the price into their bids.

The paper builds on Kyle (1989), who analyzes the common values case, with
noise traders to prevent prices from being fully revealing. Vives (2011) and Rostek
and Weretka (2012, 2015) study the case of interdependent values in a symmetric
economy in which all traders submit the same demand function (i.e. with the same
weight on their private signal and on the price). Their analysis precludes hetero-
geneous outcomes such as when some agents choose to collect information while
others do not. The model that we present in this paper admits non-symmetric
equilibria, and has novel implications for price discovery, liquidity, information
acquisition and welfare.

Formally our setup is as follows. There are several types of agents distinguished
by their value for the asset. For type i, this value is a random variable ✓i.2 There
are Ni agents of type i who are privately informed; these agents know ✓i. The
remaining agents of type i have no private information and rely on the price to
infer information about ✓i. There are no noise traders. We assume that the values
{✓i} are jointly normally distributed, and study linear Bayesian Nash equilibria of
a demand submission game.

Price informativeness varies for uninformed agents of di↵erent types. A lower
price is an indicator of lower value, and this e↵ect is stronger if prices are more
informative. Thus higher price informativeness is associated with greater adverse
selection, which manifests itself in the form of greater bid shading. Demand
functions are more inelastic for agents who learn more from the price and are

1Vives (2011) discusses heterogeneous values in Treasury and electricity auctions. In Rostek
and Weretka (2012) values depend on group a�liations or on the geographic location of traders.
In Goldstein et al. (2021) investors with environmental or social concerns have a di↵erent value
for the asset than traditional investors. Rahi and Zigrand (2018) show how diversity in values can
be microfounded by adding hedgers to a model along the lines of Grossman and Stiglitz (1980)
or Hellwig (1980). Rahi (2021) provides examples of interdependent values in a production
economy with uncertain cost or demand. Glebkin and Kuong (2021) show how di↵erences in
trading speed can account for heterogeneous values.

2In our model, the asset value for type i is the sum of two independent random variables, ✓i
and ⌘i. Here we assume that ⌘i = 0 for ease of exposition.
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upward sloping for those who learn the most.
We analyze the e↵ect of market size, as measured by the number of traders, on

information aggregation and competitiveness. First, price informativeness does
not depend on the size of the economy per se, but on the relative number of
informed agents of di↵erent types. If we increase the number of agents of all types
without changing their relative proportions, price informativeness is una↵ected.
Second, price-taking behavior is obtained if there is a large number of agents,
but this does not require a large number of all types. What is crucial is that
there is a large number of informed agents of at least one type. Interestingly,
a large number of uninformed agents does not imply price-taking behavior —
strategic trading survives even with free entry of uninformed investors. This is
due to adverse selection. Uninformed agents who learn the most from prices have
upward sloping demands. These agents use up liquidity rather than providing it.
Uninformed agents with downward sloping demands do provide liquidity, but as
more of these agents enter the market they shade their bids more, limiting the
liquidity that they o↵er.

One aspect of convergence to competitive equilibrium as the number of in-
formed agents goes to infinity is that market depth goes to infinity (or price im-
pact, which is the reciprocal of depth, goes to zero). Depth and welfare go up
monotonically if the number of informed agents of all types goes up in the same
proportion.3 But neither depth nor welfare is monotone in the number of informed
agents of a given type. It is possible for an increase in the number of informed
agents of some type to make all agents worse o↵.

Next, we study information acquisition. The incentive to acquire information
is lower when the market is imperfectly competitive compared to the perfectly
competitive case. With imperfect competition, agents not only have price impact
but this impact is greater for informed agents, due to adverse selection which
impedes liquidity provision by the uninformed. The adverse selection e↵ect can
be so strong that informed agents are worse o↵ relative to the uninformed even if
information is costless. The incentive to acquire information increases with market
size, though price informativeness does not.

We show that there can be complementarities in information acquisition. If
more agents of one type become informed, the value of information production
can go up for other types, both because price impact is lower for these agents and
because prices are less informative for them.

Finally, we study the social optimality of information production. Curtailing
information production by one group can reduce adverse selection and enhance
liquidity, making all agents better o↵.

Related literature

The basic model of noisy rational expectations equilibrium in a financial market
where informed and uninformed traders compete in demand functions goes back
to Kyle (1989). Kyle finds that the information content of prices is lower with

3This is true in a subclass of economies in which there is free entry of uninformed agents of
one type.
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imperfect competition, and is increasing in the number of uninformed agents.
In recent years, a number of papers have sought to generalize Kyle (1989) to

allow for interdependent values. In such a setting, prices are partially revealing
without the modeling device of noise traders. Vives (2011) studies the constant
correlation case, in which the correlation between values is the same for any pair
of bidders. Equilibrium is “privately revealing” in the sense that, for every agent,
the price together with his own private information is a su�cient statistic for the
information of all agents. Price informativeness is increasing in the number of
agents. Rostek and Weretka (2012, 2015) allow for a more general correlation of
values. They impose an “equicommonality” assumption, namely that the average
correlation between the value of the asset for a bidder and those for the remaining
bidders is the same for all bidders. Prices are not privately revealing, and as
the number of agents goes up, price informativeness can change in an essentially
arbitrary way, depending on how the average correlation between values changes
with market size.

In our model, correlations between values can be arbitrary. Price informative-
ness is typically di↵erent for agents of di↵erent types. A proportionate increase
in the number of informed and uninformed agents of all types leaves price infor-
mativeness unchanged for all types. This result is in marked contrast to those in
the papers cited above. The reason is that when we consider a larger economy we
do not alter its characteristics or the relative weight of di↵erent types of traders.
When Kyle (1989) compares an imperfectly competitive economy to the corre-
sponding competitive economy, the noise trade is assumed to be the same in both
economies. In our setting, the noise from the perspective of one group of agents
comes from other groups who have a di↵erent motive for trade; the degree of
competition a↵ects all groups equally. In Vives (2011), adding more agents to the
economy injects more information as well since the new agents possess information
that the existing ones do not.4 This is also true in Rostek and Weretka (2012,
2015), with the additional consideration of correlations between values changing
as the market grows in size.

In Vives (2011) and Rostek and Weretka (2012, 2015) the analysis is restricted
to symmetric equilibria in which all agents submit the same bid function. In our
model, strategies di↵er across agents depending on their information, including
the information that they glean from prices (which di↵ers across traders). This
allows us to study the impact of increased market participation by a subset of
agents. For example, we find that the liquidity provided by uninformed agents
is limited by adverse selection to a greater degree than the liquidity provided by
informed agents. In Kyle (1989), more uninformed traders make the market more
liquid, thereby stimulating informed trade and making prices more informative.
This is not the case in our model. While an increase in the number of uninformed
traders does increase liquidity if these traders have downward sloping demands,
this is exploited by informed traders of all categories, so that there is no impact
on price informativeness; there are no noise traders whose trades are una↵ected

4The same e↵ect is at play in Kawakami (2017), where the price becomes fully revealing as
the number of agents goes to infinity.
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by the enhanced liquidity.
Thus our analysis shows that the results in Kyle (1989) on market participation

and price informativeness depend crucially on the assumption of exogenous noise
trade. While Vives (2011) and Rostek and Weretka (2012, 2015) dispense with
noise trade, their results are influenced by considerations that go beyond just
market size.5

Vives (2011) finds that, in an imperfectly competitive economy, adverse selec-
tion increases illiquidity as measured by price impact. We expand on this theme
by showing that the illiquidity e↵ect is stronger for those agents who learn less
from the price. It is most pronounced for informed agents (who do not learn
from the price), thereby reducing their incentive to acquire information in the
first place. Due to the private revelation property, the price-taking equilibrium in
Vives (2011) is ex post first-best e�cient. This is not the case in our setting; our
welfare analysis involves a comparison of second-best outcomes.

Vives (2011) analyzes information acquisition (in the online appendix), but
due to symmetry restrictions, his model only admits the case where all agents
acquire information of the same precision. Kyle (1989) studies an equilibrium
in which informed and uninformed agents coexist, but he does not examine its
welfare properties.

Glebkin and Kuong (2021) and Manzano and Vives (2021) study variants of
the Vives (2011) model that feature some heterogeneity in bid functions, but in
settings that are di↵erent from ours. In Glebkin and Kuong (2021) there are two
types, one of which consists of price-taking agents. Manzano and Vives (2021) have
two types that di↵er in the precision of agents’ private signals; the equilibrium is
privately revealing as in Vives (2011).

Rostek and Yoon (2020) provide a general overview of the literature on uniform-
price double auctions in a linear-normal setting. A number of papers study com-
petitive equilibria with interdependent values, sidestepping the di�culties that
arise when agents have market power and act strategically: Vives (2014) is a
perfectly competitive version of Vives (2011); Rahi and Zigrand (2018) and Rahi
(2021) analyze learning externalities in information production.6

The rest of the paper is organized as follows. We introduce the model in the
next section and provide an equilibrium existence result in Section 3. In Section
4 we discuss how private information a↵ects liquidity. In Section 5 we present
our results on convergence to competitive equilibrium, followed by an analysis
of incentives to acquire information in Section 6. In Section 7 we introduce an
economy with free entry and show how market participation a↵ects depth and

5Later we discuss the precise sense in which the notion of market size in these papers di↵ers
from ours (see Proposition 5.5).

6Other papers in which agents have interdependent values and equilibrium prices convey
information include Bergemann et al. (2021) and Heumann (2021), who introduce multidimen-
sional signals into the Vives (2011) model, Babus and Kondor (2018), in which dealers engage
in bilateral trading on a network, Bernhardt and Taub (2015) on learning about common and
private values in a duopoly, and Du and Zhu (2017) on the optimal frequency of trading. Kyle
et al. (2018) discuss the similarities between a model with interdependent values and one with
overconfident traders who agree to disagree.
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welfare. We endogenize information acquisition in Section 8. Concluding remarks
follow in Section 9. All proofs are in the appendix.

2 The Economy

There is a single risky asset in zero net supply. There are several types of agents
distinguished by their value for the asset. Let L := {1, . . . , L} denote both the set
and the number of types. The asset value for an agent of type i 2 L is vi = ✓i+⌘i.
Agents of type i may be informed or uninformed; an informed agent privately
observes ✓i. The random variables {✓i, ⌘i}i2L are jointly normal with mean zero.
For each i, ⌘i is independent of ✓ := (✓i)i2L, and Var(✓i) is the same for all i. Let
R denote the correlation matrix of ✓, with ij’th element ⇢ij := corr(✓i, ✓j); in the
two-type case we drop the subscripts and write ⇢12 simply as ⇢. We assume that
R is positive definite.

The payo↵ of an agent of type i is Wi := (vi � p)q � (k/2)q2, where p is the
asset price, and q is the number of units of the asset bought by the agent. The
scalar k is positive and can be interpreted as an inventory cost parameter or proxy
for risk aversion.

The price is determined in a trading game as follows. Each agent submits a
demand function that is linear in his private signal (if he has one) and in the
price,7 whereupon the “auctioneer” finds a price at which excess demand is zero,
and allocates to each agent the quantity demanded by him at that price. If there
are multiple market-clearing prices, the price with the lowest absolute value is
chosen (the positive value in case of ties). If there is no market-clearing price, no
trade takes place.

For type i 2 L, the number of informed traders is Ni and the number of
informed traders is Mi, with Ni + Mi � 1 for all i. Let LI := {i 2 L|Ni � 1}
and LU := {i 2 L|Mi � 1}. Thus LI is the set of types that have at least one
informed agent, and LU is the set of types that have at least one uninformed agent.
We will use the notation LI and LU to also denote the cardinality of the sets LI

and LU , respectively. We assume that 2  LI  L. This rules out equilibria in
which the price is fully revealing for some type. We put no restriction on LU ;
thus 0  LU  L. Let N :=

P
i2L Ni and M :=

P
i2L Mi. It will sometimes

be convenient to use the shorthand notation � for the vector (Ni)i2L and ⌫ for
the vector (Mi)i2L. All vectors are column vectors by default. We assume that
R

>
i � � 0 for all i. As we shall see, this is equivalent to Cov(✓i, p) � 0 for all i.
We denote the demand functions of informed and uninformed agents of type

i by q
I
i (p, ✓i) and q

U
i (p), respectively. Given our linearity assumption, these func-

tions take the form

q
I
i (p, ✓i) = µi✓i � ↵ip, i 2 LI , (1)

q
U
i (p) = ��ip, i 2 LU ,

7As in Kyle (1989), we can consider strategies that are more general but lead to the same
linear equilibrium.
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for some scalars µi, ↵i and �i. Hence, aggregate demand D(p, ✓) is given by

D(p, ✓) =
X

i2LI

Niq
I
i (p, ✓i) +

X

i2LU

Miq
U
i (p)

=
X

i2LI

Niµi✓i �
"
X

i2LI

Ni↵i +
X

i2LU

Mi�i

#
p.

Letting
� :=

X

i2LI

Ni↵i +
X

i2LU

Mi�i, (2)

we can write
D(p, ✓) =

X

i2LI

Niµi✓i � �p. (3)

We assume that � > 0; we will verify shortly that this assumption is always
satisfied. Thus � is the absolute value of the slope of the aggregate demand
function (for any given ✓). The market-clearing condition is D(p, ✓) = 0. If
there is an exogenous market order z, the market-clearing condition becomesP

i2LI
Niµi✓i � �p + z = 0, so that � = (@p/@z)�1. Thus we can interpret �

as the overall depth of the market, which we will call market depth.
Agents behave strategically, taking into account the impact of their bids on

the equilibrium price. Given the market-clearing condition, an informed agent of
type i understands that if he buys q units of the asset, the equilibrium price is
determined by the equation q + D(p, ✓) � (µi✓i � ↵ip) = 0. Hence, from (3), the
inverse demand function p

I
i that this agent faces is

p
I
i (q) = �

�1
i q + �

�1
i

"
X

j2LI

Njµj✓j � µi✓i

#
, (4)

where
�i = �� ↵i. (5)

Similarly, the inverse demand function for an uninformed agent of type i is ob-
tained from the equation q +D(p, ✓) + �ip = 0. It is given by

p
U
i (q) = �

�1
i q + �

�1
i

X

i2LI

Niµj✓i, (6)

where
�i = �� �i. (7)

Thus ��1
i and ��1

i are the price impact parameters, and �i and �i the correspond-
ing depth parameters, for informed and uninformed agents of type i, respectively.
Depth di↵ers across agents depending on their type and on whether they are in-
formed or not. This is because the residual supply function that an agent faces
depends on his own contribution to net aggregate demand. We will restrict at-
tention to equilibria at which the depth parameters of informed and uninformed
agents of every type are strictly positive.8

8In fact, depths must be strictly positive at any interior equilibrium (at which the trades of
all agents are finite).

7



Definition 2.1 (Equilibrium) A profile of demand schedules {{qIi }i2LI , {qUi }i2LU}
is a Bayesian Nash equilibrium of the trading game if qIi (p, ✓i) maximizes

E(Wi|✓i, p) =
⇥
✓i � p

I
i (q)

⇤
q � k

2
q
2
, (8)

and q
U
i (p) maximizes

E(Wi|p) =
⇥
E(✓i|p)� p

U
i (q)

⇤
q � k

2
q
2
. (9)

Note that market clearing is implicit in this definition and the equilibrium price
satisfies p = p

I
i (q

I
i (p, ✓i)) for all i 2 LI , and also p = p

U
i (q

U
i (p)) for all i 2 LU . In

the next section we show that there exists a unique equilibrium.

3 Equilibrium

Calculating agents’ optimal portfolios, we find that the depth parameter for in-
formed agents is the same for all types. We denote this common depth parameter
by �. We begin by characterizing demand functions, equilibrium prices, and mar-
ket depth in terms of � and {�i}i2LU . For random variables x and y, we denote the
covariance of x and y by �xy, and the variance of x by �2

x. Given our assumption
that the variance of ✓i is the same for all i, we write Var(✓i) as �2

✓ .

Proposition 3.1 (Demand functions, price function) For an economy with
depth parameters � and {�i}i2LU , agents’ demand functions are given by

q
I
i = ↵(✓i � p), i 2 LI , (10)

q
U
i =

�i

k�i + 1

⇥
E(✓i|p)� p

⇤
= ��ip, i 2 LU , (11)

where

↵ = �� � =
�

k�+ 1
, (12)

�i = �� �i (13)

=
�i

k�i + 1


1� �✓ip

�2
p

�
(14)

=
�i

k�i + 1


1� R

>
i �

�>R�
(k�+ 2)

�
. (15)

The price function is given by

p = (k�+ 2)�1
�
>
✓, (16)

and market depth is

� = �
k�+ 2

k�+ 1
. (17)

8



Comparing (10) with (1), we see that µi = ↵i = ↵ for all i 2 LI . Demand functions
are completely described by the slope parameters ↵ and {�i}i2LU . Note that �i
and �i are defined only for i 2 LU .

The price function takes a very simple form. It depends only on the number of
informed agents across types, {Ni}i2L, and on �, the depth parameter of informed
agents. We will see shortly that � depends on the correlation matrix R, on N :=P

i2L Ni, and on {Mi}i2L. The depth parameters for uninformed agents, {�i}i2LU ,
do not explicitly appear in the price function. Market depth � is positive since �
is positive, and is increasing in �. The slope parameter ↵ is positive as well. We
will discuss the signs of the slope parameters {�i}i2LU later.

Proposition 3.1 gives us prices and demand functions in terms of depths. In or-
der to complete our equilibrium characterization, we need to calculate the depths.
Substituting for ↵ and � in (2) gives us

X

i2LU

Mi�i =
�

k�+ 1

⇥
(k�+ 2)�N

⇤
. (18)

From (13), (15), (17) and (18), we obtain the following system of equations:

X

i2LU

Mi


�
k�+ 2

k�+ 1
� �i

�
=

�

k�+ 1

⇥
(k�+ 2)�N

⇤
, (19)

�
k�+ 2

k�+ 1
= �i

2

41�
R>

i �
�>R� (k�+ 2)

k�i + 1
+ 1

3

5 , i = 1, . . . , LU . (20)

An equilibrium can then be described in reduced form as a vector of depths
(�, �1, . . . , �LU ) 2 RLU+1

++ that solves (19) and (20). This equation system has
a simple solution if there are no uninformed traders (the set LU is empty) and
N � 3. Then we have k� + 2 = N and hence p = N

�1
�
>
✓, from (16). The same

equilibrium arises if there are uninformed agents but their optimal bids are zero
(�i = 0 for all i 2 LU); we shall see later that this is the case if price informative-
ness is the same for all types (Proposition 4.3 (iv)). In general, however, there is
no closed-form solution.

Proposition 3.2 (Existence) For any given distribution of agents {Ni,Mi}i2L
satisfying N � 3 and R

>
i �/�

>
R�  1/2 for all i 2 LU , there exists a unique

equilibrium. It is completely characterized by �; for i 2 LU , �i = gi(�), where gi

is a strictly increasing function.

Given the characteristics of the economy, described by the correlation matrix R

and the distribution of agents across types {Ni,Mi}i2L, there exists a positive
solution � to the equation system (19)–(20). The value of � in turn pins down
�i = gi(�) for all i 2 LU , and also the market depth �, from (17). Uniqueness
of equilibrium follows from the specification of the trading game. If there are
multiple solutions for �, the trading game stipulates that the highest solution be
chosen, since this corresponds to the price with the lowest absolute value (due to
(16)). This also corresponds to the highest level of �i, for each i 2 LU , and of �.
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Proposition 3.2 requires that R
>
i �/�

>
R�  1/2 for all i 2 LU . Su�cient

conditions for this to hold can be deduced from the following lemma.9

Lemma 3.3 Suppose one of the following conditions is satisfied: (i) Ni � 2; (ii)
Ni � 1 and R � 0; or (iii) ⇢ij = ⇢ for all i 6= j. Then R

>
i �/�

>
R�  1/2.

4 Adverse Selection, Liquidity and Bid Shading

In this section we study the connection between learning from prices and adverse
selection. Adverse selection in turn impacts liquidity and bid shading. We use the
terms liquidity and depth interchangeably. It will be clear from the context if we
are referring to depth for a specific agent type (e.g. � for informed agents or �i for
uninformed agents of type i) or for the market as a whole (as measured by �).
We also speak more informally of the elasticity of an agent’s demand function as a
measure of his willingness to provide liquidity.10 In our linear setting, bid shading
by an agent means that his demand function is less elastic than in a perfectly
liquid market with no informational frictions.

Uninformed agents make inferences from the price about their own value. We
use the following measure of price informativeness for type i:

Vi :=
Var(✓i)� Var(✓i|p)

Var(✓i)
.

Given our assumption that Ni � 1 for at least two types, it follows from the price
function (16) that Vi 2 [0, 1); prices are partially revealing for each type. We say
that A / B if A and B have the same sign (A = cB, for some c > 0). In the
next proposition we collect some results about price informativeness from Rahi
and Zigrand (2018).

Proposition 4.1 (Price informativeness) Given � := (Ni)i2L, price informa-
tiveness for type i is

Vi =
(R>

i �)
2

�>R�
. (21)

Furthermore,
@Vi

@Ni
/ R

>
i �. (22)

Given our assumption that R>
i � � 0 for all i, price informativeness for each type

is increasing in the number of informed agents of that type. Price informativeness
does not depend on the number of uninformed agents of any type. Moreover, Vi

is homogeneous of degree zero in � := (Ni)i2L; if we scale the number of informed

9Proposition 3.2 does not require any upper bound on the average correlation as in the
existence results in Rostek andWeretka (2012, 2015). This is because we do not require individual
demand functions to be downward sloping. Indeed, in our model, some demand functions will
typically be upward sloping (see Proposition 4.3).

10This is the same notion of liquidity provision as in Glebkin and Kuong (2021).
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agents up or down, keeping fixed their relative proportions across types, price
informativeness is una↵ected.

Since depths and slopes are two sides of the same coin, due to the relation
�i = � � �i (equation (13)), we state our results on both and then discuss them
together.

Proposition 4.2 (Depths) The depth parameters � and {�i}i2LU satisfy the fol-
lowing properties:

i. �i � � for all i 2 LU , and �i = � if and only if Vi = 0.

ii. �i = �j if and only if Vi = Vj, and �i > �j if and only if Vi > Vj.

iii. If M = 0, then k�+ 2 = N . If M � 1, then k�+ 2  N +M , with equality
if and only if Vi = 0 for all i 2 LU .

Proposition 4.3 (Slopes) The slope parameters ↵ and {�i}i2LU satisfy the fol-
lowing properties:

i. ↵ > 0.

ii. �i  ↵ for all i 2 LU , and �i = ↵ if and only if Vi = 0.

iii. �i = �j if and only if Vi = Vj, and �i < �j if and only if Vi > Vj.

iv. Suppose LU = L. Then �i = 0 for all i if and only if Vi = Vj for all i, j.

v. Suppose LI = LU = L, and Vi 6= Vj for some i, j. Then, mini2L �i < 0 <

maxi2L �i.

In order to interpret these results, it is useful to compare the economy to one in
which agents are “naive” in the sense that they ignore the information contained in
prices. If an uninformed agent of type i is naive, he behaves as though Vi = 0. The
following observation is immediate from Propositions 4.2 and 4.3, and equation
(12).

Lemma 4.4 (Naive economy) If all uninformed agents are naive, k� + 2 =
N +M . Furthermore, �i = � and �i = ↵ = �/(k�+ 1), for all i 2 LU .

In an economy with naive agents the slope and depth parameters are the same
for all types and the same for informed and uninformed agents. Note that ↵ <

lim�!1 ↵ = k
�1, i.e. the common slope parameter is lower than what would arise

in a perfectly liquid naive economy (we will discuss competitive equilibrium in
detail later; see Proposition 5.1). Thus there is some bid shading in a naive
economy due to imperfect competition, but none due to adverse selection.

Now we ask what happens when we introduce adverse selection through learn-
ing from prices. All informed agents have the same slope parameter ↵ and the
corresponding depth parameter �. But these parameters are lower than in the
economy with naive agents; from Proposition 4.2 (iii), k� + 2 < N +M if prices
are informative for at least one type. The additional bid shading by informed
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Figure 1: Inverse demand functions

agents, beyond that in the naive economy, is due to lower liquidity provision by
uninformed agents. For an uninformed agent, a lower price is bad news about his
value for the asset (since Cov(✓i, p) / R

>
i � � 0 for all i). Learning from prices

induces him to reduce his quantity response to a lower price. Indeed, this learning
e↵ect can be so strong that an uninformed agent buys less when the price falls.
Thus adverse selection induces uninformed agents to shade their bids, the more
so the more they learn from prices. This in turn implies that they provide less
liquidity to informed agents, so the latter have greater price impact (� is lower).

In Figure 1, we show inverse demand functions for the case of two types, with
a nonzero number of informed and uninformed agents of both types (see (10)
and (11)). In a naive economy, the blue curves are flatter and the red curves
(that pass through the origin) are parallel to the blue curves. When uninformed
agents learn from prices, demand becomes more inelastic for all agents but more
so for the uninformed. If price informativeness is the same for both types, we
have �1 = �2 = 0, and demands are perfectly inelastic (at zero quantity) for all
uninformed agents. If price informativeness di↵ers for the two types, the demand
curve of the less informed type is downward sloping while that of the more informed
type is upward sloping.

More generally, suppose that there are informed and uninformed agents of all
types. Then the following statements are equivalent: (a) Vi > Vj, (b) �i > �j, and
(c) �i < �j. Among uninformed agents, those who learn the least from prices have
the most elastic demand and contribute the most to liquidity provision. The ones
who learn the most have an upward sloping demand curve; these agents use up
liquidity instead of providing it. Agents who have the most elastic demand are also
those whose counterparties have less elastic, or even upward sloping, demands. As
a result, any deviation by the former from their equilibrium demand at any given

12



price requires a greater price adjustment in order for the market to absorb it.
Thus uninformed agents for whom price informativeness is the lowest, by virtue
of having the most elastic demands also have the greatest price impact, or lowest
depth. Conversely, agents who learn the most from prices have upward sloping
demands and the least price impact, or highest depth.

From the expression for �i given by (14), we see that the parameter that mea-
sures adverse selection for uninformed agents of type i is the regression coe�cient
of ✓i on p, given by

 i :=
�✓ip

�2
p

=
R

>
i �

�>R�
(k�+ 2). (23)

We refer to  i as the price sensitivity for type i. At a given equilibrium,  i >

 j if and only if Vi > Vj. This allows us to rank depths and slopes by price
informativeness.11 It is worth emphasizing that bid shading and price impact for
an agent of type i depends on the sensitivity of ✓i to p, not on how much he knows
about ✓i. If Vi = 0, �i = ↵ and �i = �; an uninformed agent who learns nothing
shades his bid no more than an informed agent, and has the same price impact.
On the other hand, if Vi is close to one, an uninformed agent shades his bid more,
and has a lower price impact, than an informed agent, even though the two agents
have almost the same information in equilibrium.

We have used an economy with naive agents as a benchmark for our economy.
Another instructive benchmark is the full-information economy in which all agents
of type i observe ✓i, for all i. Let H be the total number of agents, informed or
uninformed. If all agents are informed (N = H), then k�+2 = H, by Proposition
4.2 (iii). If some of the H agents are uninformed but naive, we again have k�+2 =
H, by Lemma 4.4. On the other hand, if there are uninformed agents who extract
information from prices, we have k� + 2 < H (using Proposition 4.2 (iii) once
again). These observations imply that �, and therefore market depth �, is the
same in the full-information economy and the naive economy, but is lower if there
are some agents who are rational and uninformed. Learning from prices leads to
more bid shading, and hence lower market depth, than in an economy with no
informational frictions. It is in this sense that adverse selection impacts liquidity
in our setting.

5 Convergence to Competitive Equilibrium

In this section we show that the economy converges to a (perfectly) competitive
limit as the number of agents grows without bound. Our competitive benchmark
is the economy described in Section 2 but with a continuum of informed and
uninformed agents of each type, reinterpreting Ni and Mi as the mass (rather than
the number) of informed and uninformed agents of type i. Thus an individual
agent has zero price impact, or equivalently all depths are infinite. We begin

11From (14), �i is the product of two terms: (1� i) which captures the direct learning e↵ect,
and �i/(k�i+1) which reflects the e↵ect of learning on depth. If Vi > Vj , then the direct learning
term is lower for i while the depth term is higher. The former dominates, so that �i < �j .
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by characterizing the equilibrium of a competitive economy, denoting the price
function by p̂ and the slope parameters by ↵̂ and {�̂i}i2LU in order to distinguish
them from the price function and slope parameters of the economy in Section 2.

Proposition 5.1 (Competitive equilibrium) In a competitive economy with
the mass of agents given by {Ni,Mi}i2L, the price function is

p̂ = �
�1
�
>
✓, (24)

where

� :=
N +M

1 +
P

i2LU
Mi

R>
i �

�>R�

, (25)

and the slope parameters are

↵̂ = k
�1
, (26)

�̂i = k
�1

"
1� �✓ip̂

�
2
p̂

#
, i 2 LU . (27)

The slope parameters satisfy all the properties in Proposition 4.3.

Comparing (26) with (27), we see that uninformed agents shade their bids when
they learn from prices. This is due to adverse selection just as in the imperfectly
competitive case. We provide a fuller discussion of this point after Proposition
7.2.

Recall that � := (Ni)i2L and ⌫ := (Mi)i2L. It will be convenient to refer to
the equilibrium of the imperfectly competitive economy and the equilibrium of the
corresponding competitive economy by E(�, ⌫) and Ê(�, ⌫), respectively, where

E(�, ⌫) :=
⇣
p, (Vi)i2L,↵,�, (�i, �i)i2LU

⌘
,

Ê(�, ⌫) :=
⇣
p̂, (Vi)i2L, ↵̂, �̂, (�̂i, �̂i)i2LU

⌘
.

For notational convenience, we suppress the dependence of the parameters de-
scribing an equilibrium on (�, ⌫). The parameters p̂, ↵̂, {�̂i}i2LU are given by
Proposition 5.1, while �̂ = 1 and �̂i = 1 for all i 2 LU . Price informativeness
for each type is the same for both economies; even though p and p̂ are not equal,
they are both proportional to �>✓.12

If M � 1, we define � := M
�1
P

i2LU
Mi�i; thus � is the (weighted) average

depth parameter for uninformed agents. We parametrize the economy by ⇠, ⇠ � 1.

Proposition 5.2 (Convergence I) The equilibrium E converges to Ê as the num-
ber of agents increases in fixed proportion: lim⇠!1 E(⇠�, ⇠⌫) = Ê(�, ⌫). Further-
more, � and � are strictly increasing in ⇠.

12In Rostek and Weretka (2012, 2015), the equilibrium price function is the same for the imper-
fectly competitive and the perfectly competitive economy. Since we allow for a non-symmetric
equilibrium, this is not the case in our model.
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We interpret the original economy as one for which ⇠ = 1. As we increase ⇠, the
number of informed and uninformed agents of each type goes up, but their relative
proportions remain the same. The proposition says that the limiting equilibrium
is competitive.13

Next, we show that the market becomes perfectly liquid, or infinitely deep,
even if we fix the number of uninformed agents of each type, increasing (in fixed
proportion across types) only the number of informed agents. Somewhat more
surprisingly, the market becomes perfectly liquid even if we only let the number of
informed agents of a single type go to infinity, keeping fixed not only the number of
uninformed agents of each type, but also the number of informed agents of all other
types. The limiting equilibrium in these cases is not the competitive equilibrium
described in Proposition 5.1. Rather, it coincides with the corresponding limit of
the competitive equilibrium.

Proposition 5.3 (Convergence II) We have the following convergence results:

i. lim⇠!1 E(⇠�, ⌫) = lim⇠!1 Ê(⇠�, ⌫). Furthermore, � and � are strictly in-
creasing in ⇠.

ii. Suppose R` � 0. Then, limN`!1 E(�, ⌫) = limN`!1 Ê(�, ⌫).

While the market becomes infinitely deep when the number of informed agents
(of any type) goes to infinity, this is not the case when the number of uninformed
agents becomes large. When we consider the e↵ect of a change in Mi on � and
�i, we write �(Mi) and �i(�(Mi)) to make this dependence explicit. Note that �i
depends on � but not directly on Mi.

Proposition 5.4 Suppose Ni � 2 and R
>
i � > 0 for all i. Then:

i. There exist strictly positive scalars  and ̄ such that {�, �1, . . . , �LU} ⇢ [, ̄]
for all (M1, . . . ,ML) 2 RL

+.

ii. �(Mi)� �(M 0
i) / �i(�(M 0

i)), for all Mi > M
0
i � 1.

iii. limMi!1 �i = 0 and limMi!1 Mi�i < 1.

Thus the depth parameter � is a bounded function of Mi for all i, and it is
also bounded away from zero. These properties are inherited by {�i}i2LU , as
well as by market depth �, as these are pinned down by �. Any change in �

is accompanied by a change in {�i}i2LU and � in the same direction. If �i is
(initially) positive, entry of uninformed agents of type i improves market liquidity,
but since �i converges to zero, the market remains illiquid to some degree (all the
depth parameters are bounded) even when entry of these agents is unrestricted.
If �i is (initially) negative, greater market participation by uninformed agents of
type i lowers market liquidity; these agents absorb liquidity rather than providing
it. In Figure 1, as Mi increases, the inverse demand functions of uninformed

13By p ! p̂ we mean that p converges to p̂ almost surely (we simply check that the coe�cients
of p converge to the corresponding coe�cients of p̂).
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agents of type i eventually become steeper, converging to the vertical axis as
Mi goes to infinity. The relative positions of the inverse demand functions for
uninformed agents of di↵erent types are the same for all Mi. This is because the
slope parameters {�j}j2LU are ranked by price informativeness (Proposition 4.3
(iii)), which does not depend on Mi.

The last observation about price informativeness being invariant with respect
to Mi highlights the point that we made earlier about adverse selection being
measured by price sensitivity, given by (23). An increase in Mi leaves price infor-
mativeness Vi unchanged, but it does a↵ect price sensitivity  i through its e↵ect
on �. If �i > 0, � goes up, increasing  i and driving �i to zero as Mi grows
without bound. While liquidity improves, it is limited by adverse selection. If
�i < 0, an increase in Mi reduces liquidity due to the upward sloping demands of
these agents, even though this is o↵set to some extent by a reduction in  i.

In the foregoing analysis we have investigated the consequences of increasing
market size, where market size is interpreted as (�, ⌫) := (Ni,Mi)i2L. Price infor-
mativeness does not depend on ⌫, and it is invariant to any scaling of �. We can
also ask what happens to price informativeness if we think of market size as the
number of types L. This is essentially the approach taken by Rostek and Weretka
(2012). In their model, Ni = 1 and Mi = 0 for all i, and ✓ satisfies the “equicom-
monality” assumption, which means that the average correlation of ✓i with {✓j}j 6=i

is the same for all i, i.e. (L � 1)�1
P

j 6=i ⇢ij = ⇢̄, for all i. They postulate a func-
tion ⇢̄(L), which describes how the “commonality” parameter ⇢̄ varies with L.
The shape of this commonality function depends on how heterogeneity in values
arises (e.g. through di↵erences in geographical location or from group a�liations).
The following proposition is the analog of their price informativeness result in our
setting. The symbol � denotes a change in a variable when the number of types
goes up from L to L+ 1.

Proposition 5.5 (Equicommonal auctions) Suppose ✓ satisfies the equicom-
monality assumption, and Ni = N̄ � 1 for all i. Then Vi = V̄ :=

⇥
1+(L�1)⇢̄

⇤
L
�1
,

for all i. Given a commonality function ⇢̄(L), �V̄ > 0 if and only if �⇢̄ >

(1� ⇢̄)/L2.

Under the assumption of equicommonality, and with an equal number of in-
formed agents of each type, price informativeness is the same for all types. It
goes up with L provided there is a su�ciently large increase in the commonality
parameter ⇢̄. Unlike the result in Rostek and Weretka (2012), price informative-
ness falls if ⇢̄ is constant. This includes what they call the “fundamental value”
case (⇢ij = ⇢ > 0, for all i 6= j) and the “independent values” case (⇢ij = 0, for
all i 6= j). We obtain a di↵erent result because in our setting, there are multiple
bidders who share the same value. The price is informative about ✓i because it
reflects the bids of informed agents of type i. The bids of types j 6= i cloud this
information. Adding another type clouds it even further.
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6 Incentives for Information Production

In this section we lay the groundwork for our welfare analysis and analyze the
incentives of agents to acquire information. We can calculate ex ante utilities by
plugging in the demand function of each agent into his objective function (given
by (8) or (9)). In order to interpret the resulting expressions some definitions will
be useful. As in Rahi (2021), we define the gains from trade for type i by

Gi :=
�
2
✓i�p

�
2
✓

. (28)

Agents of type i have more profitable trading opportunities the greater the distance
between their own value ✓i and the market value p. Indeed, if p = ✓i, there are no
gains from trade for these agents and their optimal trade is zero. We define the
function F : (0,1) ! (0,1) by

F (x) :=
x(kx+ 2)

(kx+ 1)2
. (29)

It is easy to check that F is strictly increasing. We denote the ex ante utilities of
informed and uninformed agents of type i by U I

i and UU
i , respectively.

Lemma 6.1 (Utilities) Ex ante utilities are given by

U I
i =

�
2
✓

2
F (�)Gi, i 2 LI , (30)

UU
i =

�
2
✓

2
F (�i)

⇥
Gi � (1� Vi)

⇤
, i 2 LU . (31)

Note that �i � �, and hence F (�i) � F (�), with equality if and only if Vi = 0 (see
Proposition 4.2 (i)). Comparing the utilities of informed and uninformed agents
of the same type, we see that privileged information is a double-edged sword.
If there is no information leakage (Vi = 0), informed agents are unambiguously
better o↵. If prices reveal some information, however, adverse selection kicks in
and liquidity (as measured by depth) is lower for the informed. As we shall see
below, the adverse impact on liquidity can outweigh the informational advantage
of informed agents so that they are worse o↵ relative to the uninformed, even if
information is costless. We denote the utility di↵erential between the informed
and uninformed of type i by �Ui := U I

i �UU
i , which we can think of as a measure

of the incentive to acquire information for agents of type i. Henceforth, when we
refer to U I

i , UU
j or �U`, it is understood that i 2 LI , j 2 LU and ` 2 LI \ LU ,

respectively. We denote the corresponding competitive equilibrium variables with
a “hat”.

Proposition 6.2 (Incentives for information production) For given {Ni,Mi}i2L,
utility di↵erentials satisfy the following properties:

i. �Ui < �Uj if and only if Vi > Vj.
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ii. There exists a threshold level of price informativeness V⇤ such that �Ui > 0
if and only if Vi < V⇤.

iii. �Ui < �Ûi = �
2
✓(2k)

�1(1� Vi).

Parts (i) and (ii) of Proposition 6.2 provide a comparison of utility di↵erentials
for di↵erent types at a given equilibrium. The incentive to become informed is
lower for types with higher price informativeness. In fact, informed agents are
worse o↵ relative to uninformed agents of the same type if price informativeness
exceeds a certain threshold level. Part (iii) says that the incentive to acquire
information is weaker with imperfect competition than with perfect competition.
This is because agents not only have price impact when the market is imperfectly
competitive, but this impact is greater for informed agents. In a competitive
economy, agents can trade in an infinitely deep market with no price impact,
and information always has positive value (though this value declines with price
informativeness).

We now provide an example that shows that informed agents may be worse
o↵ compared to the uninformed due to adverse selection, as suggested by our
discussion of Lemma 6.1 and by Proposition 6.2 (ii).14

Example 6.1 Suppose there are three types, with N1 � 2, N2 = N3 � 2, Mi � 1
for all i, and

✓1 = ✓̃1, ✓2 = a✓̃2 + ✏1, ✓3 = �a✓̃2 + ✏2,

where {✓̃1, ✓̃2, ✏1, ✏2} are mutually independent, 0 < a < 1, and

�
2
✓̃1
= �

2
✓̃2
= 1, �

2
✏1 = �

2
✏2 = �

2
✏ , a

2 + �
2
✏ = 1.

Hence ⇢12 = ⇢13 = 0 and ⇢23 = �a
2, so that R

>
1 � = N1 and R

>
2 � = R

>
3 � =

N2(1�a
2). By Proposition 3.2, there exists a unique equilibrium (the assumption

that Ni � 2 ensures that R>
i �/�

>
R�  1/2, by Lemma 3.3).

We consider limits as �2
✏ goes to zero, and hence a goes to 1. From (21), we

see that

V1 =
(R>

1 �)
2

�>R�
=

N
2
1

N
2
1 + 2N2

2 (1� a2)
,

which converges to 1 as �2
✏ goes to 0. Thus, in the limit, prices become perfectly

informative for type 1. We claim that gains from trade for type 1 do not vanish,
however, i.e. lim�2

✏!0 G1 > 0. From (16) and (28),

Gi = 1 +
�
2
p

�
2
✓

� 2
�✓ip

�
2
✓

= 1 +
�
>
R�

(k�+ 2)2
� 2

R
>
i �

k�+ 2
. (32)

It is straightforward to check that if lim�2
✏!0 G1 = 0, then lim�2

✏!0(k�+ 2) = N1,
implying from (15) that lim�2

✏!0 �i � 0 for all i. Hence, from (18), lim�2
✏!0(k� +

2) � N > N1, a contradiction.

14This result should be distinguished from the Hirshleifer e↵ect (Hirshleifer (1971)), which
refers to a welfare loss due to more information. Here we are comparing the welfare of informed
and uninformed agents rather than providing a comparative static with respect to information.
Our result is due to an adverse depth e↵ect; it does not arise in a competitive economy.
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Recall that �i � �, with equality if and only if Vi = 0 (Proposition 4.2 (i)).
Since lim�2

✏!0 V1 = 1, we must have lim�2
✏!0 �1 > lim�2

✏!0 �. Therefore, from
Lemma 6.1, �U1 < 0 for su�ciently small �2

✏ . The informed have lower ex ante
utility than the uninformed because the informed have greater price impact even
as their informational advantage vanishes. k

7 Market Size, Depth and Welfare

For the remainder of the paper we focus on a limiting case of our economy in
which there is free entry of uninformed agents of one type. This is reminiscent
of the analysis in Kyle (1989) of free entry of uninformed speculators, but with
interdependent rather than common values, and no noise traders. As in Kyle
(1989), we use the limiting economy to study information acquisition. But we also
go beyond Kyle (1989) in providing a number of welfare results. In this section we
investigate the impact of market size on depth and welfare. In the next section we
endogenize information acquisition and address the question of whether incentives
to collect information are aligned with social objectives.

Definition 7.1 (F`-economy) Suppose N` � 2 for some ` 2 LI , and R
>
i � > 0

for all i 2 LI . Then we refer to the limiting economy as M` ! 1 as an F`-
economy.

The symbol F serves as a mnemonic for “free entry”, and the subscript ` indicates
that there is free entry of uninformed agents of type `.15

Lemma 7.1 An F`-economy has a unique equilibrium with � > 0 and �` = 0.
The equilibrium price is given by

p = E(✓`|p) =
R

>
` �

�>R�
�
>
✓, (33)

and � solves

 ` =
R

>
` �

�>R�
(k�+ 2) = 1. (34)

Free entry of uninformed agents of type ` wipes out their trading profits. In the
limiting economy, �` = 0. Thus each uninformed agent of type ` trades a zero
amount and his equilibrium utility UU

` is zero. From (11), the equilibrium price
is given by p = E(✓`|p), and hence the regression coe�cient of ✓` on p, which is
equal to the price sensitivity  ` defined in (23), is equal to 1. Equation (34) can
be interpreted as a “zero-profit” condition.

Uninformed agents of type ` enter the market as long as there are profits to be
made. If  ` < 1, then �` > 0 (see equation (15)), i.e. their demand functions are
downward sloping. As more of them enter, they provide higher liquidity to other
traders. On the hand, if  ` > 1, then �` < 0. In this case, entry of uninformed

15Note the joint restrictions on R and {Ni}i2LI implied by the assumption that R>
i � > 0 for

all i 2 LI . For example, in the two-type case, we require that ⇢ > �min{N2/N1, N1/N2}.

19



agents of type ` drains liquidity from the market. An equilibrium with free entry
is established when � satisfies (34). An F`-economy is tractable since we can
obtain a closed-form solution for �, and moreover because � does not depend
on the number of uninformed agents of any type (apart from the condition that
M` ! 1).

For an F`-economy, we can strengthen Proposition 5.2 on convergence to com-
petitive equilibrium to monotone convergence (Proposition 5.2 shows monotone
convergence for � and � := M

�1
P

i2LU
Mi�i, but not for the individual depths

{�i}i2LU or for agents’ utilities). As in the general case, we distinguish variables
for a competitive F`-economy with a “hat”. The competitive depth parameters
are equal to infinity.

Proposition 7.2 (Monotone convergence) Consider an F`-economy parametrized
by ⇠�, ⇠ � 1. The price function p(⇠�) and the vector

⌅(⇠�) :=
⇣
↵,�, (|�i|, �i)i2LU , (U I

i )i2LI , (UU
i )i2LU

⌘

do not depend on Mi, i 6= `. We have p(⇠�) = p(�) = p̂(�), ⌅(⇠�) is increasing in
⇠, and lim⇠!1 ⌅(⇠�) = ⌅̂(�).16 Furthermore, if N` � 4, then �Ui(⇠�) is strictly
increasing in ⇠, for all i 2 LI \ LU .

As we mentioned earlier, � does not depend on Mi, i 6= `, which is a consequence
of the zero-profit condition (34). Hence the same property holds for p and ⌅. If a
change in Mi, i 6= `, disturbs (34), more uninformed agents of type ` enter until
(34) is restored.

As the number of informed agents of all types goes up in the same proportion,
the price function remains unchanged, the depth parameters increase monotoni-
cally to infinity, and demand functions become more responsive to the price. Thus
increased competition leads to lower price impact but has no e↵ect on prices. All
agents are better o↵ as a result: utilities increase monotonically, converging to
their competitive equilibrium values. The utility of the informed increases at a
faster rate than that of the uninformed, so that the incentive to acquire informa-
tion increases with market size. These welfare e↵ects are driven entirely by depth;
since p does not depend on ⇠, gains from trade and price informativeness are not
a↵ected by market size.

An F`-economy provides a useful way to understand the connection between
bid shading, adverse selection and liquidity. Consider first the case of perfect com-
petition. Then agents can trade with no price impact and bid shading is purely
a consequence of adverse selection. Comparing (26) and (27), uninformed agents
shade their bids if they learn from prices and agents who learn the most have
upward sloping demands. The magnitude of bid shading for type i is measured
by �✓ip̂/�

2
p̂. In the case of imperfect competition, we can compare (12) and (14).

Since p = p̂, we see that the adverse selection component of bid shading, which
is measured by �✓ip/�

2
p for type i, is the same as in the corresponding compet-

itive economy. But there is an additional e↵ect due to price impact, for both

16If �j = 0 (this must be the case for j = `), then �j = �̂j = 0 and UU
j = ÛU

j = 0 for all ⇠.
Monotonicity in ⇠ is strict for all other elements of ⌅.
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informed and uninformed agents. This depth e↵ect reduces ↵ and |�i| below their
competitive levels.

While depth and welfare increase monotonically if the number of informed
agents goes up in the same proportion for all types, they are not in general mono-
tone in the number of informed agents of a given type.17

Proposition 7.3 (Depth) In an F`-economy,

i. � is strictly convex in Ni for all i 2 LI .

ii. @�/@N` > 0 if and only if V` > 1/2.

iii. Consider i 2 LI , i 6= `. Suppose ⇢mj = ⇢ for all m 6= j, and N` + Ni � Nj

for all j 6= `, i. Then @�/@Ni > 0.18

The relationship between � and N` is U -shaped. For given {Nj}j2L, � is pinned
down by the zero-profit condition (34). A simple calculation shows that, keeping
� fixed, price sensitivity  ` is increasing in N` if and only if V` < 1/2. Hence,
for low values of N`, an increase in N` leads to a higher  `, inducing uninformed
agents of type ` to tilt their demand functions so that they are upward sloping
(�` < 0; see (15)). More uninformed agents enter, reducing � (due to their upward
sloping demands; see Proposition 5.4 (ii)), and thereby restoring the zero-profit
condition. For large values of N`,  ` is decreasing in N` (for fixed �). In this case,
�` becomes positive, and entry of uniformed agents raises �. Thus the U -shaped
relationship between � and N` is attributable to the hump-shaped relationship
between adverse selection, as measured by  `, and N`.

From Lemma 6.1, welfare depends on depth and gains from trade. On the
latter, we have the following result:

Lemma 7.4 (Gains from trade) Consider an F`-economy. Suppose ⇢ij = ⇢

for all i 6= j. Then

Gi = (1� Vi) +
(1� ⇢)2(Ni �N`)2

�>R�
. (35)

In particular,
G` = 1� V`. (36)

From (28), Gi is a measure of the distance between ✓i and p. The first term of (35)
indicates that this distance is inversely related to price informativeness. Indeed,
it is intuitive to think of price informativeness for type i as being high when p

is close to ✓i and hence Gi is low. This intuition is correct for type `. For other
types, however, it is incomplete, and we need to take account of the second term
in (35). This term captures the distance between ✓i and p in terms of the distance

17Rostek and Weretka (2015) show that market participation can have an arbitrary e↵ect on
depth and welfare depending on how the average correlation between values changes with market
size. This is a di↵erent comparative statics exercise from ours; see the discussion of Proposition
5.5.

18In the two-type case, @�/@Ni > 0 for i 6= `, since the condition on Ni is trivially satisfied.
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between Ni and N`, the number N` being key in determining the equilibrium price
given by (33).

We now bring together our results on depth and gains from trade to show
that an increase in N` can make all agents worse o↵. The following proposition
is for the case of two types; under stronger assumptions, it can be generalized to
arbitrarily many types.

Proposition 7.5 (Welfare) Consider an F2-economy with two types. Suppose
⇢  1/2 and N2  N1/3. Then UU

2 = 0 for all N2, and the utility of all other
agents is strictly decreasing in N2.

Under the conditions of the proposition, an increase in N2 leads to lower welfare
for all agents (other than the uninformed of type 2 whose utility is zero for any
level of N2 due to free entry). This is a consequence of lower depth as well as lower
gains from trade. The depth e↵ect comes from the downward sloping part of the
U -shaped relationship between � and N` discussed earlier. Gains from trade for
type 2 are lower because G2 = 1�V2 and V2 is increasing in N2. For type 1, price
informativeness falls as N2 increases but, for low values of N2 relative to N1, gains
from trade are nevertheless lower due to the second term in (35).

8 Information Acquisition

In order to study information acquisition we restrict ourselves to an F`-economy,
i.e. an economy with free entry of uninformed agents of type `, and we ignore
integer constraints. An agent of type i can choose to become informed by paying
a fixed positive cost ci. We first investigate the value of information for agents of
type `, keeping fixed the number of informed and uninformed agents of all other
types. Since UU

` = 0, the utility di↵erential �U` is equal to U I
` .

Lemma 8.1 In an F`-economy,

�U` = U I
` =

�
2
✓

2
F (�)(1� V`). (37)

If N` � 3, we have @(�U`)/@N` < 0, and limN`!1 �U` = 0.

Equation (37) is immediate from (30) and (36). Recalling that F is an increasing
function, we see that informed agents of type ` are better o↵ if they have lower
price impact (higher �) and if less of their private information leaks through prices
(lower V`). An increase in N` leads to a higher V` (see (22)), while the e↵ect on
depth is U -shaped (Proposition 7.3 (ii)). However, the first e↵ect dominates if
N` � 3, so that �U` declines as more agents become informed.

Let N
e
` be the equilibrium number of informed agents of type `, and N̂

e
` the

corresponding number when the market is perfectly competitive.19

19Strictly speaking, N̂e
` is the mass of informed agents of type `, but we can think of it as

a number in order to compare it to Ne
` , with the proviso that these agents act as though they

have no price impact.
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Proposition 8.2 (Information acquisition) In an F`-economy, there exists a
scalar c̄ > 0 such that for any {Ni}i2L\{`} and c` < c̄, there is a unique N

e
` � 3.

Furthermore, N e
` < N̂

e
` , @N

e
` /@c` < 0 and limc`!0 N

e
` = 1.

The proposition says that for a given cost c`, where c` is low enough to allow at
least three agents to profitably collect information, there is a unique N

e
` that is

decreasing in c`. Moreover, in comparison to the corresponding perfectly compet-
itive economy, the number of informed agents is lower because the incentive to
acquire information is weaker (Proposition 6.2 (iii)).

Our next task is to investigate how N
e
` is a↵ected by the number of informed

agents of other types (the number of uninformed agents has no impact).

Proposition 8.3 (Complementarities) Consider an F`-economy. Suppose c` <
c̄. Then we have the following results for i 2 LI , i 6= `:

i. Suppose Ri � 0. Then limNi!1 N
e
` = 1.

ii. Suppose ⇢mj = ⇢ for all m 6= j, and N` + Ni � Nj for all j 6= `, i. Then
@�/@Ni > 0, @V`/@Ni < 0, and @N e

` /@Ni > 0.

The result says that there is a complementarity in information acquisition. A large
number of agents of type ` collect information if there are many informed agents
of some other type. In the constant correlation case, we get a stronger result,
provided N` +Ni exceeds the number of agents of any other type (this condition
is vacuously satisfied if LI = 2): a higher Ni induces more agents of type ` to
acquire information. The reason is two-fold. A higher Ni implies a higher depth
�. It also implies that price informativeness V` is lower, and hence there is less
leakage of private information through prices for type ` agents.

We now consider an F2-economy with two types, and study the welfare prop-
erties of equilibrium with endogenous information acquisition by both types. Let
H1 be the number of agents of type 1. Thus H1 = N1+M1 and N1  H1. There is
no upper bound on N2 since there is free entry of uninformed agents of type 2 and
any number of these agents can choose to become informed. Let (N e

1 , N
e
2 ) be an

equilibrium allocation of information. In order to evaluate the welfare properties
of this equilibrium, we consider a hypothetical planner who can choose an alter-
native allocation of information (N⇤

1 , N
⇤
2 ), with informed agents of type i paying

ci. Any such allocation chosen by the planner gives rise to a unique equilibrium of
the demand submission game, by Lemma 7.1. When we say that an equilibrium is
Pareto ine�cient, we mean that the planner can find an allocation of information
which leads to a Pareto improvement.

Proposition 8.4 (Ine�cient information acquisition) Consider an F2-economy
with two types and an equilibrium allocation of information (N e

1 , N
e
2 ). Suppose

⇢  1/2 and N
e
2  H1/3. Then the equilibrium is Pareto ine�cient. If N e

1 < H1,
scaling up (N1, N2) is Pareto improving. If N e

1 = H1, a Pareto improvement can
be achieved by lowering N2.
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If N e
1 < H1, increasing the number of informed agents of both types is welfare

improving by Proposition 7.2. For the case of N e
1 = H1, the result follows from

Proposition 7.5, and the observation that U I
2 � c2 = UU

2 = 0, which implies that
the agents of type 2 who switch from informed to uninformed as a consequence of
lowering N2 are no worse o↵. Given the monotonic relationship between c2 and
N2 (Proposition 8.2), the condition N

e
2  H1/3 is equivalent to c2 being higher

than some cuto↵ value.

9 Conclusion

In this paper we analyze an imperfectly competitive asset market with interde-
pendent values. Some agents are privately informed of their own value for the
asset while others extract information about their value from the equilibrium
price. Learning from prices is the conduit through which adverse selection af-
fects trading behavior. Agents who learn more engage in greater bid shading,
thereby limiting the liquidity that they provide to others. While a large number
of informed traders leads to perfect competition, markets remain illiquid to some
degree even with free entry of uninformed traders. An increase in the number of
informed traders in one sector of the economy can be Pareto worsening. While the
incentive to acquire information is lower with imperfect competition, there may
nevertheless be excessive information production in equilibrium.

Appendix: Proofs

Proof of Proposition 3.1 Using (4) and (8), the first-order condition for an
informed agent of type i is ✓i�p

I
i (q)���1

i q�kq = 0. The second-order condition,
k+2��1

i > 0, is satisfied. Noting that pIi (q
I
i ) = p, we obtain the optimal portfolio:

q
I
i =

�i

k�i + 1
(✓i � p). (38)

Comparing this expression for q
I
i with (1), we see that µi = ↵i = �i/(k�i + 1).

From (5),

� = �i + ↵i = �i +
�i

k�i + 1
.

Since the right-hand side of this equation is increasing in �i, and is equal to the
same value � for all i, �i must be the same for all i, and so must ↵i. Letting
�i = � and ↵i = ↵ for all i 2 LI gives us (12), from which (17) also follows.

Similarly, using (6) and (9), we can derive the optimal portfolio for an unin-
formed agent of type i:

q
U
i =

�i

k�i + 1

⇥
E(✓i|p)� p

⇤
= � �i

k�i + 1


1� �✓ip

�2
p

�
p, (39)

thus establishing (14). Equation (13) follows from (7). Using the market-clearing
condition D(p, ✓) = 0, and noting that µi = ↵, we have p = ��1

↵
P

i2LI
Ni✓i =
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��1
↵�

>
✓. The price function given by (16) now follows from (12) and (17). Using

this price function, we have �✓ip = �
2
✓(k�+2)�1

R
>
i �, and �

2
p = �

2
✓(k�+2)�2

�
>
R�,

so that �✓ip/�
2
p = (R>

i �/�
>
R�)(k� + 2). Substituting this expression into (14)

gives us (15). ⇤

Proof of Proposition 3.2 Equation (20) can be written as

k�
2
i + bi�i � �

k�+ 2

k�+ 1
= 0, (40)

where

bi := 2� R
>
i �

�>R�
(k�+ 2)� k�

k�+ 2

k�+ 1
, (41)

for i 2 LU . Since � and {�i}i2LU must be strictly positive, the only admissible
solution to (40) is

�i = gi(�) :=
�bi +

q
b
2
i + 4k�k�+2

k�+1

2k
. (42)

Substituting for �i in (19), we get an equation which involves only the variable �:

f(�) :=
�

k�+ 1

⇥
(k�+ 2)�N

⇤
+
X

i2LU

Mi


gi(�)� �

k�+ 2

k�+ 1

�
= 0. (43)

We have

gi(0) = 0, (44)

g
0
i(0) =


1� R

>
i �

�>R�

��1

, (45)

lim
�!1

gi(�)

�
= 1 +

R
>
i �

�>R�
, (46)

and consequently, f(0) = 0, and

f
0(0) = �(N � 2) +

X

i2LU

Mi

"✓
1� R

>
i �

�>R�

◆�1

� 2

#
,

lim
�!1

f(�)

�
= 1 +

X

i2LU

Mi
R

>
i �

�>R�
.

Since lim�!1 f(�)/� > 0, we have lim�!1 f(�) = 1. Moreover, sinceR>
i �/�

>
R� 

1/2 for all i 2 LU , and N � 3,

f
0(0)  �(N � 2) +

X

i2LU

Mi

"✓
1� 1

2

◆�1

� 2

#
= �(N � 2) < 0.

Therefore, by the continuity of f , there exists � > 0 such that f(�) = 0. Sub-
stituting this � into (42), we get a positive solution gi(�) for �i, i 2 LU . It is
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apparent from (40) that gi is strictly increasing in �. ⇤

Proof of Lemma 3.3 We have

R
>
i �

�>R�
=

R
>
i �

NiR
>
i � +

P
j 6=i NjR

>
j �

. (47)

We will invoke our standing assumptions that LI � 2, and R
>
j � � 0 for all j.

Condition (i): The su�ciency of this condition is immediate from (47).

Condition (ii): If Ni � 2, condition (i) applies. If Ni = 1, and all correlations are
nonnegative, we have

R
>
i �

�>R�
=

1 +
P

j 6=i ⇢ijNj⇥
1 +

P
j 6=i ⇢ijNj

⇤
+
P

j 6=i Nj

⇥
Nj +

P
`6=j ⇢j`N`

⇤


1 +

P
j 6=i ⇢ijNj⇥

1 +
P

j 6=i ⇢ijNj

⇤
+
P

j 6=i Nj[Nj + ⇢ij]

=
1 +

P
j 6=i ⇢ijNj

2
⇥
1 +

P
j 6=i ⇢ijNj

⇤
+
P

j 6=i N
2
j � 1

 1

2
.

Condition (iii): If all pairwise correlations are equal to ⇢, we have

R
>
i �

�>R�
=

(1� ⇢)Ni + ⇢N

(1� ⇢)
P

j N
2
j + ⇢N2

.

If Ni � 2, condition (i) applies. If Ni is equal to 0 or 1, we have

R
>
i �

�>R�
 1

N

(1� ⇢)Ni + ⇢N

(1� ⇢) + ⇢N
 1

N
 1

2
. ⇤

Proof of Proposition 4.2 Proof of (i): From (20),

�i
k�i + 2

k�i + 1
� �

k�+ 2

k�+ 1
=

R
>
i �

�>R�
(k�+ 2)

�i

k�i + 1
. (48)

Since x(kx+ 2)/(kx+ 1) is strictly increasing in x, the result follows.

Proof of (ii): We can rewrite (48) as

k�i + 2� (k + �
�1
i )�

k�+ 2

k�+ 1
=

R
>
i �

�>R�
(k�+ 2).

The left-hand side of this equation is strictly increasing in �i, for given �. The
result follows.

Proof of (iii): If M = 0 (LU = ?), then k� + 2 = N from (18). Now suppose
M � 1 (LU 6= ?). From (12), (13), and part (i) of this proposition, we have
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�i  ↵ for all i 2 LU , and �i = ↵ if and only if Vi = 0. Hence, from (12) and (18),
↵[(k� + 2) � N ] =

P
i2LU

Mi�i  M↵, with equality if and only if Vi = 0 for all
i 2 LU . This proves the result. ⇤

Proof of Proposition 4.3 Proof of (i): This is immediate from (12).

Proof of (ii) and (iii): From (12) and (13), ↵��i = �i��. Hence, statements (ii)
and (iii) are equivalent to statements (i) and (ii) of Proposition 4.2, respectively.

Proof of (iv): Suppose LU = L. If �i = 0 for all i, then R
>
i � must be the same

for all i from (15). It follows that Vi is the same for all i. Conversely, if Vi is the
same for all i, then so is �i from Proposition 4.2 (ii), and hence �i due to (13). We
denote the common value of �i across all types i by �. Since Vi is the same for all
i, so is R>

i �, and hence R
>
i �/�

>
R� = 1/N . From (15), � / 1� (1/N)(k�+ 2) /

N � (k� + 2). On the other hand, from (18), � / (k� + 2) � N . It follows that
� = 0 and k�+ 2 = N .

Proof of (v): Suppose LI = LU = L. Let i0 and j0 be types with the lowest and
highest price informativeness, respectively, i.e. R>

i0� = mini2L R
>
i � and R

>
j0� =

maxi2L R>
i �. Since price informativeness is not the same for all types, R>

i0� < R
>
j0�.

Using the result in part (iii), �i0 = maxi2L �i > mini2L �i = �j0 . If R
>
i0� > 0, then

using the assumption that LI = L, and hence Ni � 1 for all i 2 L,

R
>
i0�

�>R�
=

R
>
i0�P

i NiR
>
i �

<
R

>
i0�P

i NiR
>
i0�

=
1

N
.

It follows that, whether R>
i0� is positive or equal to zero,

R
>
i0�

�>R�
<

1

N
. (49)

Using an analogous argument,

R
>
j0�

�>R�
>

1

N
. (50)

It su�ces to show that it is impossible that �i � 0 for all i, or that �i  0 for all
i. We establish this by contradiction. Suppose �i � 0 for all i. Then, from (18),
k�+2 � N . Consequently, using (50), 1� (R>

j0�/�
>
R�)(k�+2) < 0. Hence, from

(15), �j0 < 0, a contradiction. Similarly, if �i  0 for all i, then k�+2  N . Using
(49), 1 � (R>

i0�/�
>
R�)(k� + 2) > 0. Hence, from (15), �i0 > 0, a contradiction.

⇤

Proof of Proposition 5.1 Solving for agents’ portfolio choices, analogous to
(38) and (39) but with zero price impact, we obtain the slope coe�cients ↵̂ and
�̂i given by (26) and (27), respectively. Using the market-clearing condition,

X

i2LI

Ni↵̂(✓i � p̂)�
X

i2LU

Mi�̂ip̂ = 0,
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the equilibrium price is
p̂ = �̂�1

↵̂�
>
✓, (51)

where
�̂ := N ↵̂ +

X

i2LU

Mi�̂i. (52)

Therefore, �✓ip̂/�
2
p̂ = (R>

i �/�
>
R�)�̂↵̂�1, so that, from (26) and (27),

�̂i = k
�1


1� R

>
i �

�>R�
�̂↵̂�1

�
. (53)

Plugging this expression into (52), and using (26),

�̂↵̂�1 = N +
X

i2LU

Mi


1� R

>
i �

�>R�
�̂↵̂�1

�
,

which gives us �̂↵̂�1 = �, where � is defined by (25). Equations (24) now follows
from (51). Also, from (53),

�̂i = k
�1


1� R

>
i �

�>R�
�

�
. (54)

Finally, we verify that the slope parameters satisfy all the properties in Propo-
sition 4.3. Parts (i), (ii) and (iii) are obvious. For part (iv), observe that if �̂i = 0
for all i, then Vi = Vj for all i, j, by part (iii). Conversely, if Vi = Vj for all i, j,
then R

>
i �/�

>
R� = N

�1 for all i, so that � = N from (25). Plugging these values
into (54), we see that �̂i = 0 for all i. For part (v), we use the same argument
as in the proof of Proposition 4.3 (v). Equations (49) and (50) still apply. If
�̂i � 0 for all i, then, from (54), R>

i �/�
>
R�  �

�1 for all i. Hence, from (25),
�
�1  N

�1. Taken together, we have R
>
i �/�

>
R�  N

�1 for all i, contradicting
(50). A similar argument shows that we cannot have �̂i  0, for all i, either. ⇤

Proof of Proposition 5.2 From (43), � satisfies the following equation for all
⇠ (for notational ease, we suppress the dependence of � on ⇠):

k�+ 2

k�+ 1
� ⇠N

k�+ 1
+ ⇠

X

i2LU

Mi


gi(�; ⇠)

�
� k�+ 2

k�+ 1

�
= 0, (55)

where

gi(�; ⇠) =
�bi(�; ⇠) +

q
b
2
i (�; ⇠) + 4k�k�+2

k�+1

2k
, (56)

bi(�; ⇠) = 2� R
>
i �

⇠�>R�
(k�+ 2)� k�

k�+ 2

k�+ 1
. (57)

It is convenient to think of ⇠ taking integer values, {1, 2, . . .}. We claim that
lim⇠!1 � = 1. Suppose not. Then {�(⇠)} is a bounded sequence, which we can
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assume to be convergent without loss of generality (since we can always consider
a convergent subsequence). From (13), (15) and (17),

k�+ 2

k�+ 1
� gi(�; ⇠)

�
=

gi(�; ⇠)/�

kgi(�; ⇠) + 1


1� R

>
i �

⇠�>R�
(k�+ 2)

�
.

Taking ⇠ to be large enough so that the term in square brackets on the right-hand
side is positive, we have

gi(�; ⇠)

�
=

k�+ 2

k�+ 1

✓
1 +

1

kgi(�; ⇠) + 1


1� R

>
i �

⇠�>R�
(k�+ 2)

�◆�1

.

Since lim⇠!1 gi(�; ⇠) 2 [0,1), lim⇠!1 gi(�; ⇠)/� < lim⇠!1(k� + 2)/(k� + 1).
Therefore (55) cannot hold for su�ciently large ⇠ (this is true even if LU is empty).
This is a contradiction. Hence we must have �! 1.

Since �i � � (Proposition 4.2), �i ! 1 as well, for all i 2 LU . From (12),
↵ ! k

�1 = ↵̂. In order to calculate the limits of p and �i, we need to compute
the rate at which � increases relative to ⇠. From (55), we have

0 =
k�+ 2

k�+ 1
� ⇠(N +M)

k�+ 1
+ ⇠

X

i2LU

Mi


gi(�; ⇠)

�
� 1

�

=
k�+ 2

k�+ 1
� ⇠(N +M)

k�+ 1
+
X

i2LU

Mi

⇥
hi(�; ⇠)� ⇠

⇤
, (58)

where

hi(�; ⇠) :=
gi(�; ⇠)⇠

�
= �bi(�; ⇠)⇠

2k�
+

s
bi(�; ⇠)⇠

2k�

�2
+

k�+ 2

k�(k�+ 1)
⇠2. (59)

Note that hi(�; ⇠) is strictly positive and satisfies

0 = [hi(�; ⇠)]
2 +

bi(�; ⇠)⇠

k�
hi(�; ⇠)�

k�+ 2

k�(k�+ 1)
⇠
2

= hi(�; ⇠)


hi(�; ⇠)� ⇠ � R

>
i �

�>R�

✓
1 +

2

k�

◆
+

2⇠

k�
� ⇠

k�+ 1

�
� k�+ 2

k�(k�+ 1)
⇠
2

= hi(�; ⇠)


hi(�; ⇠)� ⇠ � R

>
i �

�>R�

✓
1 +

2

k�

◆�
+

k�+ 2

k�(k�+ 1)
[hi(�; ⇠)� ⇠] ⇠.

Dividing both sides of this equation by hi(�; ⇠), and noting that ⇠/hi(�; ⇠) =
�/gi(�; ⇠), we obtain

hi(�; ⇠)� ⇠ =


1 +

k�+ 2

k�(k�+ 1)

�

gi(�; ⇠)

��1
R

>
i �

�>R�

✓
1 +

2

k�

◆
. (60)

We have already established that �! 1 as ⇠ ! 1. From (59),

gi(�; ⇠)

�
= �bi(�; ⇠)

2k�
+

s
bi(�; ⇠)

2k�

�2
+

k�+ 2

k�(k�+ 1)
.
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Since bi(�; ⇠)/� ! �k, we see that gi(�; ⇠)/� ! 1, so that hi(�; ⇠) � ⇠ !
R

>
i �/�

>
R� from (60). It follows from (58) that k�/⇠ ! �, where � is defined by

(25). Therefore, from (15),

�i =
�i

k�i + 1


1� R

>
i �

⇠�>R�
(k�+ 2)

�
=

�i

k�i + 1


1� R

>
i �

�>R�

✓
k�

⇠
+

2

⇠

◆�
, (61)

which converges to �̂i, given by (54). Similarly, from (16),

p = (k�+ 2)�1(⇠�)>✓ =

✓
k�

⇠
+

2

⇠

◆�1

�
>
✓, (62)

which converges to p̂, given by (24). Finally, we show that � and � are monotonic
in ⇠. From (43), �(⇠) solves

f(�(⇠); ⇠) :=
�

k�+ 1

⇥
(k�+ 2)� ⇠N

⇤
+ ⇠

X

i2LU

Mi


gi(�; ⇠)� �

k�+ 2

k�+ 1

�
= 0, (63)

where gi(�; ⇠) is given by (56), and bi(�; ⇠) by (57); we suppress the dependence
of � on ⇠ to economize on notation. For given �, bi(�; ⇠) is increasing in ⇠, and
hence from (40), gi(�; ⇠) = �i(�; ⇠) is decreasing in ⇠. We have

@f(�(⇠); ⇠)

@⇠
= � �

k�+ 1
N +

X

i2LU

Mi


gi(�; ⇠)� �

k�+ 2

k�+ 1

�
+ ⇠

X

i2LU

Mi
@gi(�, ⇠)

@⇠

= ��
⇠


k�+ 2

k�+ 1

�
+ ⇠

X

i2LU

Mi
@gi(�, ⇠)

@⇠
,

which is negative (the second equality follows from (63)). Hence, for any ⇠ � 1,
there exists ✏ > 0 such that for all ⇠0 2 (⇠, ⇠ + ✏), f(�(⇠), ⇠0) < 0. Since �(⇠) is
defined as the highest solution to f(�; ⇠) = 0, �(⇠0) > �(⇠). It follows that � is
strictly increasing in ⇠.

Assuming that LU is nonempty, we have (from (43)),

�(�(⇠); ⇠) := M
�1
X

i2LU

Migi(�; ⇠) =
⇠M � 1

⇠M
�
k�+ 2

k�+ 1
+

N

M

�

k�+ 1
.

Since �(·; ·) is strictly increasing in both arguments, and � is strictly increasing in
⇠, it follows that � is strictly increasing in ⇠. ⇤

Proof of Proposition 5.3 Proof of (i): The depth parameter � satisfies the
following equation:

k�+ 2

k�+ 1
� ⇠N

k�+ 1
+
X

i2LU

Mi


gi(�; ⇠)

�
� k�+ 2

k�+ 1

�
= 0, (64)

which is the same as (55), except that ⇠ does not multiply Mi. The proof that
� ! 1, �i ! 1, ↵ ! ↵̂, and gi(�; ⇠)/� ! 1, is identical to that in Proposition
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5.2. Using the last of these results, it follows from (64) that k�/⇠ ! N . Therefore,
from (61) and (62),

lim
⇠!1

�i = k
�1


1� R

>
i �

�>R�
N

�
, and lim

⇠!1
p = N

�1
�
>
✓.

From (25), for the economy parametrized by (⇠�, ⌫),

� =
⇠N +M

1 +
P

i2LU
Mi

R>
i �

⇠�>R�

,

so that �/⇠ ! N . Using (24) and (54), we conclude that lim⇠!1 �i = lim⇠!1 �̂i

and lim⇠!1 p = lim⇠!1 p̂.
We establish the monotonicity properties in the same way as in the proof of

Proposition 5.2. Here we have

f(�(⇠); ⇠) :=
�

k�+ 1

⇥
(k�+ 2)� ⇠N

⇤
+
X

i2LU

Mi


gi(�; ⇠)� �

k�+ 2

k�+ 1

�
= 0,

so that
@f(�(⇠); ⇠)

@⇠
= � �

k�+ 1
N +

X

i2LU

Mi
@gi(�, ⇠)

@⇠
< 0,

implying that � is strictly increasing in ⇠. Also,

�(�(⇠); ⇠) =
M � 1

M
�
k�+ 2

k�+ 1
+
⇠N

M

�

k�+ 1
,

from which we can conclude that � is strictly increasing in ⇠.

Proof of (ii): We need to assume that R` � 0, otherwise our standing assumption
that R>

i � � 0 for all i will be violated for large N`. We can write

R
>
i �

�>R�
=

⇢i`N` +
P

j 6=` ⇢ijNj

N`

⇥
N` +

P
j 6=` ⇢`jNj

⇤
+
P

j 6=`Nj

⇥
⇢j`N` +

P
m 6=` ⇢jmNm

⇤ . (65)

Hence, if N` ! 1,
R

>
i �

�>R�
! 0. (66)

By exactly the same arguments as in the proof of part (i), we can show that
�! 1, �i ! 1 for all i 2 LU , ↵ ! ↵̂, and

k�

N`
! 1. (67)

Using (65) and (67),

R
>
i �

�>R�
k� =

N`

⇥
⇢i`N` +

P
j 6=` ⇢ijNj

⇤

N`

⇥
N` +

P
j 6=` ⇢`jNj

⇤
+
P

j 6=`Nj

⇥
⇢j`N` +

P
m 6=` ⇢jmNm

⇤
✓
k�

N`

◆
,
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which converges to ⇢i`. From (15) and (66), we conclude that �i ! k
�1(1 � ⇢i`)

which, from (54), is equal to limN`!1 �̂i. Finally, from (16) and (67),

p = (k�+ 2)�1
X

i

Ni✓i =

✓
k�

N`
+

2

N`

◆�1✓
✓` +

X

i 6=`

Ni

N`
✓i

◆
,

which converges to ✓` as ⇠ ! 1. From (24) and (25), p̂ converges to ✓` as well.
⇤

Proof of Proposition 5.4 Proof of (i): We need to check that the depth
parameters are bounded, as well as bounded away from zero, as the number of
uninformed agents of any type goes to infinity. From (43), � satisfies

k�+ 2

k�+ 1
� N

k�+ 1
+
X

i2LU

Mi


gi(�)

�
� k�+ 2

k�+ 1

�
= 0. (68)

Suppose Mi ! 1 for some i and consider the sequence {�(Mi)}. If � ! 1,
then from (46), and the assumption that R

>
i � > 0, lim�!1 gi(�)/� > 1, and

hence (68) cannot be satisfied for large Mi. It follows that {�(Mi)} is bounded.
We assume without loss of generality that it is convergent (as otherwise we can
choose a convergent subsequence). If �(Mi) ! 0, then using (44) and (45), and
the assumptions that Nj � 2 and R

>
j � > 0 for all j,

lim
�!0

gi(�)

�
=


1� R

>
i �

�>R�

��1

<


1� 1

Ni

��1

 2.

Again, (68) cannot hold for large Mi, and consequently {�(Mi)} must be bounded
away from zero. In addition, for every j 2 LU , {�j(Mi)} is a bounded sequence
due to (42), and bounded away from zero since �j � �.

Proof of (ii): From (15) and (18), and recalling that �i = gi(�), �(Mi) solves

f(�(Mi);Mi) :=
�

k�+ 1

⇥
(k�+ 2)�N

⇤
�
X

j2LU

Mj�j(�) = 0, (69)

where

�j(�) =
gj(�)

kgj(�) + 1

"
1�

R
>
j �

�>R�
(k�+ 2)

#
, (70)

and we suppress the dependence of � on Mi. Consider Mi and M
0
i satisfying

Mi > M
0
i � 1. Three cases arise depending on the sign of �i(�(M 0

i)).

Case 1: �i(�(M 0
i)) > 0. From (69), f(�(M 0

i);Mi) < f(�(M 0
i);M

0
i) = 0. Since

�(Mi) is defined as the highest solution to f(·;Mi) = 0, and lim�!1 f(�;Mi) = 1
for given Mi, we have �(Mi) > �(M 0

i).

Case 2: �i(�(M 0
i)) < 0. From (70), �i(�) < 0 for all � � �(M 0

i). Hence, from
(69), f(�;Mi) > f(�;M 0

i) � f(�(M 0
i);M

0
i) = 0 for all � � �(M 0

i). Hence, �(Mi) <
�(M 0

i).
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Case 3: �i(�(M 0
i)) = 0. From (69), f(�(M 0

i);Mi) = f(�(M 0
i);M

0
i) = 0. Moreover,

for any � > �(M 0
i), �i(�) < 0, so that f(�;Mi) > f(�;M 0

i) > f(�(M 0
i);M

0
i) = 0.

Hence �(M 0
i) is the highest zero of f(·;Mi), i.e. �(Mi) = �(M 0

i).

Putting these three cases together, we see that �(Mi)� �(M 0
i) / �i(�(M 0

i)).

Proof of (iii): Since � is bounded, so are �, ↵, and {�i}i2LU , from Proposition
3.1. From (2), � = N↵ +

P
j2LU

Mj�j. Therefore, as Mi goes to infinity, Mi�i

remains bounded. This in turn implies that �i converges to zero. ⇤

Proof of Proposition 5.5 Let 1 denote the L-vector each element of which is
1. Then price informativeness for type i is

Vi =
(R>

i 1)
2

1>R1
=

[1 + (L� 1)⇢̄]2

L[1 + (L� 1)⇢̄]
=

1 + (L� 1)⇢̄

L
.

Writing ⇢̄(L) as ⇢̄L, we have

�V̄ =
1 + L⇢̄L+1

L+ 1
� 1 + (L� 1)⇢̄L

L

/
⇥
L+ L

2
⇢̄L+1

⇤
�
⇥
L+ 1 + (L2 � 1)⇢̄L

⇤

= L
2(⇢̄L+1 � ⇢̄L)� (1� ⇢̄L),

which gives us the desired result. ⇤

Proof of Lemma 6.1 From (8), (10) and (12), we see that

U I
i = E

⇥
E(Wi|✓i, p)

⇤

= E

(✓i � p)qIi �

k

2
(qIi )

2

�

= E

k�+ 2

2�
(qIi )

2

�

=
k�+ 2

2�
↵
2
�
2
✓i�p (71)

=
k�+ 2

2�


�

k�+ 1

�2
�
2
✓i�p.

Using (28) and (29), we obtain (30). Similarly, from (9), (11), (15) and (16),

UU
i = E

⇥
E(Wi|p)

⇤

= E
⇥
E(✓i|p)� p

⇤
q
U
i � k

2
(qUi )

2

�

= E

k�i + 2

2�i
(qUi )

2

�

=
k�i + 2

2�i
�
2
i �

2
p (72)
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=
k�i + 2

2�i


�i

k�i + 1

�2 
1� R

>
i �

�>R�
(k�+ 2)

�2
�
2
✓�

>
R�

(k�+ 2)2
.

Using (29) and (32), we obtain (31). ⇤

Proof of Proposition 6.2 We fix an equilibrium of a given economy (in par-
ticular, we fix �,↵, �2

p and �
>
R�), and consider the utilities of agents of type i

for di↵erent hypothetical values of R>
i �, and hence of  i, given by (23). There

is a one-to-one correspondence between  i, Vi, �i and �i; a higher value of  i is
associated with a higher value of Vi and �i, and a lower value of �i.

From (30) and (32), the utility of an informed agent can be written as

U I
i =

�
2
✓

2
F (�)


1 +

�
>
R�

(k�+ 2)2
(1� 2 i)

�
, (73)

which is linear and strictly decreasing in  i. From (13) and (72),

UU
i =

k�i + 2

2�i
(�i � �)2�2

p.

Di↵erentiating with respect to �i, we obtain

@UU
i

@�i
= (�i � �)(k + �

�1
i + �

�2
i �)�2

p, (74)

@
2UU

i

@�
2
i

= (k + 2��3
i �2)�2

p. (75)

From (40) and (41),

@�i

@ i
=

�i

2k�i + bi
, (76)

@
2
�i

@ 
2
i

=
(2k�i + bi)

@�i
@ i

� �i

h
2k @�i

@ i
� 1
i

(2k�i + bi)2
=

2�i(k�i + bi)

(2k�i + bi)3
. (77)

From (17) and (40),
�i(k�i + bi) = �. (78)

Di↵erentiating UU
i with respect to  i, and noting that 2k�i + bi > 0 (from (42)),

we have
@UU

i

@ i
=
@UU

i

@�i

@�i

@ i
/ �i � �. (79)

Using (74)–(79),

@
2UU

i

@ 
2
i

=
@
2UU

i

@�
2
i


@�i

@ i

�2
+
@UU

i

@�i

@
2
�i

@ 
2
i

/
⇥
k + 2��3

i �2
⇤ �

2
i

(2k�i + bi)2
+ (�i � �)

⇥
k + �

�1
i + �

�2
i �

⇤2�i(k�i + bi)

(2k�i + bi)3

34



/
⇥
k�

3
i + 2�2

⇤
�i(2k�i + bi) + 2(�i � �)

⇥
k�

2
i + �i + �

⇤
�i(k�i + bi)

=
⇥
k�

3
i + 2�2

⇤⇥
k�

2
i + �

⇤
+ 2(�i � �)

⇥
k�

2
i + �i + �

⇤
�

= k
2
�
5
i + 3k�3i�+ 2�2i�,

which is positive. Hence, UU
i is strictly convex in  i, achieving its minimum value

of 0 at  i = 1, which corresponds to �i = 0 or �i = �.

Proof of (i): We will show that �Ui := U I
i � UU

i is strictly decreasing in  i. We
have already established that U I

i is linear in  i, and UU
i is strictly convex in  i, so

that �Ui is strictly concave in  i. Hence it su�ces to show that @(�Ui)/@ i < 0
at  i = 0. From (73), (74), (76), and the relations �2

p = �
2
✓(k� + 2)�2

�
>
R�,

�i| i=0 = �, and (2k�i + bi)| i=0 =
q
4 +

�
k�

k�+2
k�+1

�2
, we have

@(�Ui)

@ i

�����
 i=0

/


�i

2k�i + bi
(�� �i)(k + �

�1
i + �

�2
i �)� F (�)

� �����
 i=0

=
�r

4 +
⇣
k�

k�+2
k�+1

⌘2 (�� �)(k + �
�1 + �

�2�)� F (�)

/ (k�+ 1)2 + (k�+ 2)� (k�+ 2)

s

4 +

✓
k�

k�+ 2

k�+ 1

◆2

/
⇥
(k�+ 1)2 + (k�+ 2)

⇤2
(k�+ 1)2

� (k�+ 2)2
⇥
4(k�+ 1)2 + (k�)2(k�+ 2)2

⇤

= �2(k�)3 � 8(k�)2 � 12k�� 7,

which is negative.

Proof of (ii): We will show that U I
i ( i) � UU

i ( i) > 0 if and only if  i 2 [0, ⇤),
for some cuto↵ value  ⇤

> 1. This cuto↵ value corresponds to a slope parameter
�
⇤
< 0 for uninformed agents, and price informativeness V⇤.
If  i = 1, then �i = 0, and hence �Ui = U I

i > 0. From part (iii), �Ui is strictly
decreasing in  i, implying that �Ui( i) > 0 for all  i 2 [0, 1]. If �Ui( i) > 0 for
all  i, we can pick  ⇤ = maxi  i + ✏, for some small ✏ > 0, and we are done. If
not, �Ui( ⇤) = 0 for some  ⇤

> 1. Since �Ui is strictly decreasing in  i, it is
positive for  i <  

⇤ and negative for  i >  
⇤.

Proof of (iii): The utility calculations are as in the imperfectly competitive case
(see the proof of Lemma 6.1), but with zero price impact. From (26), (27), (71)
and (72), we have

Û I
i =

k

2
↵̂
2
�
2
✓i�p̂ =

1

2k
�
2
✓i�p̂, (80)

ÛU
i =

k

2
�̂
2
i �

2
p̂ =

1

2k

"
1� �✓ip̂

�
2
p̂

#2
�
2
p̂. (81)
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Therefore,

�Ûi =
1

2k

 
�
2
✓ + �

2
p̂ � 2�✓ip̂ �

"
�
2
p̂ +

�
2
✓ip̂

�
2
p̂

� 2�✓ip̂

#!
=
�
2
✓

2k
(1� Vi), (82)

where the second equality follows from (21) and (24).
Using Lemma 6.1, (29) and (82), and recalling that �i � �, and hence F (�i) �

F (�), we have

�Ui =
�
2
✓

2

h
F (�i)(1� Vi)� [F (�i)� F (�)]Gi

i
 �

2
✓

2
F (�i)(1� Vi) <

�
2
✓

2k
(1� Vi).

The result follows from (82). ⇤

Proof of Lemma 7.1 Using the same argument as in the proof of Proposition 5.4,
we see that the sequences {�(M`)} and {�`(M`)} are both bounded and bounded
away from zero. Since we only require these results for i = ` rather than for all i,
the conditions on {Ni, R

>
i �}i2L (given in Definition 7.1) are weaker than those in

Proposition 5.4.
From Proposition 5.4 (iii), �` = 0. It follows from (11) that p = E(✓`|p) =  `p,

and hence  ` = 1. Equation (34) follows from (23), and equations (16) and (34)
together give us the right-hand side of (33). ⇤

Proof of Proposition 7.2 Taking the limit of (24) as M` ! 1 , we see that
the price function of the competitive F`-economy coincides with that of the F`-
economy, which is given by (33). Moreover, it is clear from (33) that this price
function is invariant with respect to ⇠.

From (34), it is immediate that � is strictly increasing in ⇠, and lim⇠!1 � = 1.
From (12) and (26), ↵ is also strictly increasing in ⇠ and converges to ↵̂.

From (17), (34), (40) and (41), �i solves

k�
2
i + bi�i � � = 0, (83)

where

bi := 2� R
>
i �

R
>
` �

� k�. (84)

Note that
@�

@�
= 1 +

1

(k�+ 1)2
> 0. (85)

From (83), the derivative of �i with respect to any variable x satisfies 2k�i�0i +
b
0
i�i+bi�

0
i��0 = 0 (denoting derivatives with respect to x by a prime), which gives

us

�
0
i =

�0 � b
0
i�i

2k�i + bi
. (86)

Note that, from (83), 2k�i + bi > k�i + bi = �/�i > 0. Now taking x to be the
variable ⇠, we have �0

> 0 due to (85), and b
0
i = �k�0

< 0. Therefore, �0i > 0.
Moreover, since �i � �, lim⇠!1 �i = 1.
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From (15) and (34),

�i =
�i

k�i + 1


1� R

>
i �

R
>
` �

�
.

It is clear that if �i = 0, it is invariant with respect to ⇠, and if �i 6= 0, it depends
on ⇠ only through �i. Moreover, in the latter case, |�i|0 / �

0
i. Hence, the stated

properties of |�i| follow from the corresponding properties of �i.
From (30), U I

i = (�2
✓/2)F (�)Gi. Since p = p̂ for all ⇠, Gi is invariant with

respect to ⇠. Since F
0(�) > 0, and � is strictly increasing in ⇠, U I

i is strictly
increasing in ⇠. It converges to (2k)�1

�
2
✓Gi, which is equal to Û I

i , from (80). From
(33), �2

p = �
2
✓V`, which is invariant with respect to ⇠. Hence, the statements about

UU
i follow from (72) and (81).
Finally we show that �Ui is strictly increasing in ⇠. Note that Vi and Gi do

not depend on ⇠, @�/@⇠ > 0, �i depends on ⇠ only through � (see (83) and (84)),
and

F
0(x) = 2(kx+ 1)�3

, (87)

from (29). Hence, from (30), (31), (42), (84), (85) and (86), we have

@(�Ui)

@⇠
/ GiF

0(�)�
⇥
Gi � (1� Vi)

⇤
F

0(�i)
@�i

@�

� Gi


F

0(�)� F
0(�i)

@�i

@�

�

/ F
0(�)� F

0(�i)
@�i

@�

=
2

(k�+ 1)3
� 2

(k�i + 1)3
(k�i + 1)@�@�
2k�i + bi

� 2

(k�+ 1)3
� 2

(k�+ 1)2(2k�i + bi)

@�

@�

/ (2k�i + bi)� (k�+ 1)
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1
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✓
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◆2

+

✓
R
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R
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◆2

� 2
R

>
i �

R
>
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✓
2� k�

k�+ 2

k�+ 1

◆
�
✓
k�+ 1 +

1
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◆2

=

✓
R

>
i �

R
>
` �

◆2

� 2
R

>
i �

R
>
` �

✓
2� k�
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◆
.

By the definition of an F`-economy, R>
j � > 0 for all j 2 LI . Hence, @(�Ui)/@⇠ > 0
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if

k�
k�+ 2

k�+ 1
� 2. (88)

Using (34),

k�+ 2 = ⇠
�
>
R�

R
>
` �

� �
>
R�

R
>
` �

> N`.

Since k�(k�+ 2)/(k�+ 1) is strictly increasing in �,

k�
k�+ 2

k�+ 1
> (N` � 2)

N`

N` � 1
.

The right hand side of this inequality is increasing in N`. Therefore, if N` � 4,
(88) is satisfied. This completes the proof. ⇤

Proof of Proposition 7.3 Proof of (i): From (34), we obtain

@�

@Ni
= k

�12(R
>
` �)(R

>
i �)� ⇢i`�

>
R�

(R>
` �)

2
. (89)

Therefore,

@
2
�

@N
2
i

/ (R>
` �)

2�2⇢i`(R
>
` �)(R

>
i �)+⇢

2
i`�

>
R� = (R>

` ��⇢i`R>
i �)

2+⇢2i`�
>
R�(1�Vi),

which is positive.

Proof of (ii): From (89),
@�

@N`
= k

�1(2� V�1
` ), (90)

from which the result is immediate.

Proof of (iii): Suppose all pairwise correlations are equal to ⇢. From (89),
@�/@Ni > 0 if ⇢ < 0. For ⇢ � 0, using the condition that N` + Ni � Nj for
all j 6= `, i, we have

@�

@Ni
/ 2(R>

` �)(R
>
i �)� ⇢�

>
R�

> (R>
` �)(R

>
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X
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Nj
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Ni + ⇢N` + ⇢

X
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Nj

�
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
N

2
` +N

2
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X

j 6=`,i

N
2
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�
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2


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X

j 6=`,i
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X

j 6=`,i

Nj � ⇢(1� ⇢)
X
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N
2
j

� (1� ⇢
2)N`Ni,
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which is positive. ⇤

Proof of Lemma 7.4: Using (32) and (34),

Gi = 1 +
(R>

` �)(R
>
` � � 2R>

i �)

�>R�
= 1 +

(R>
` � �R

>
i �)

2 � (R>
i �)

2

�>R�
, (91)

which gives us the desired expression for Gi. ⇤

Proof of Proposition 7.5 By the definition of an F2-economy, UU
2 = 0 for

all N2. We will show that @U I
1/@N2 < 0, @UU

1 /@N2 < 0, and @U I
2/@N2 < 0.

Utilities are given by Lemma 6.1, where we recall that F 0
> 0. It is easy to check

that @V1/@N2 < 0. Hence it su�ces to show that @�/@N2  0, @�1/@N2  0,
@G1/@N2 < 0, and @G2/@N2 < 0.

(i) Proof of @�/@N2  0: In view of (90), we can equivalently show that V2  1/2.
It is easy to check that

V2 =
(⇢N1 +N2)2

N
2
1 +N

2
2 + 2⇢N1N2

 1

2

if and only if N2  (
p
1� ⇢2 � ⇢)N1. For ⇢ 2 (�1, 1/2], the function

p
1� ⇢2 � ⇢

is minimized at ⇢ = 1/2, and the minimum value is greater than 1/3. Hence, given
our assumptions that ⇢  1/2 and N2  N1/3, we have V2  1/2.

(ii) Proof of @�1/@N2 < 0: From (84) and (86),

@�1

@N2
/ @�

@�

@�

@N2
+

2

4
@

R>
1 �

R>
2 �

@N2
+ k

@�

@�

@�

@N2

3

5 �1. (92)

From (85), @�/@� > 0. Also,

@
R>

1 �

R>
2 �

@N2
=
⇢R

>
2 � �R

>
1 �

(R>
2 �)

2
= �(1� ⇢

2)N1

(R>
2 �)

2
,

which is negative. Hence, from (92), @�1/@N2 < 0.

(iii) Proof of @G1/@N2 < 0: From (91),
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=
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⇥
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>
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which is negative if and only if N2 <

p
5�4⇢�1

2 N1. This condition is satisfied for
⇢  1/2 and N2  N1/3.

(iv) Proof of @G2/@N2 < 0: This follows from (22) and (36). ⇤

Proof of Lemma 8.1 Equation (37) follows from (30) and (36). Di↵erentiating,
we obtain

@U I
`

@N`
/ (1� V`)F 0(�)

@�

@N`
� F (�)

@V`
@N`

. (93)

Di↵erentiating (21) gives us
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@N`

=
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⇥
�
>
R� � (R>

` �)
2
⇤

(�>R�)2
=

2R>
` �(1� V`)
�>R�

.

The derivative @�/@N` is given by (90). Therefore, from (93),

@U I
`

@N`
/ �2F (�)

R
>
` �

�>R�
+ k

�1
F

0(�)(2� V�1
` ).

The function F is given by (29), and its derivative F
0 by (87). Using (34),
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`


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X
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NjR
>
j � + 1

�
,

which is negative if N` � 3. Moreover, from (37), limN`!1 U I
` = 0 (since F is

bounded and limN`!1 V` = 1). ⇤

Proof of Proposition 8.2 We define c̄ as the lowest possible value of U I
` when

N` = 3. More precisely, using (37),

c̄ := inf
X

U I
` =

�
2
✓

2
inf
X

⇥
F (�)(1� V`)

⇤
, (94)

where
X :=

n
{Ni}i2L

��N` = 3, Ni � 1 for some i 6= `

o
.

Note that �>R�/R>
` � > N`. If N` = 3, then � > k

�1 from (34), and hence
F (�) > (3/4)k�1 from (29). Moreover, for any i 6= `, limNi!1 V` = ⇢

2
i` < 1,

and hence infX(1 � V`) > 0. It follows that c̄ > 0. Now we see from Lemma
8.1 that @N e

` /@c` < 0 and limc`!0 N
e
` = 1. Proposition 6.2 (iii) implies that
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N
e
` < N̂

e
` . ⇤

Proof of Proposition 8.3 Proof of (i): We need to assume that Ri � 0 in order
to ensure that our standing assumption that R>

j � � 0 for all j is not violated for
large Ni. Let Ni ! 1, and suppose the sequence {N e

` (Ni)} is bounded. Then
� ! 1 from (34), and hence F (�) ! k

�1 from (29). Also, V` ! ⇢
2
i` from (21),

so that, from (37), limNi!1 U I
` = �

2
✓(2k)

�1(1 � ⇢
2
i`). Moreover, the same limit

is obtained if N` is fixed at 3. Hence, due to the definition of c̄, given in (94),
limNi!1 U I

` � c̄ > c`. This is a contradiction. Hence limNi!1 N
e
` = 1.

Proof of (ii): Now we specialize to the case where all pairwise correlations are the
same, and N` +Ni � Nj for all j 6= `, i. From Proposition 7.3 (iii), @�/@Ni > 0.
From (21),

@V`
@Ni

=
2⇢(R>

` �)(�
>
R�)� 2(R>

` �)
2(R>

i �)

(�>R�)2
/ ⇢�

>
R� � (R>

` �)(R
>
i �),

which is negative (see the proof of Proposition 7.3 (iii)). Consequently @U I
` /@Ni >

0 from (37). Using Proposition 8.2, it follows that @N e
` /@Ni > 0. ⇤
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