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Abstract
This article considers bivariate mixed Poisson INAR(1) regression models with corre-
lated randomeffects formodelling correlations of different signs andmagnitude among
time series of different types of claim counts. This is the first time that the proposed
family of INAR(1) models is used in a statistical or actuarial context. For exposi-
tory purposes, the bivariate mixed Poisson INAR(1) claim count regression models
with correlated Lognormal and Gamma random effects paired via a Gaussian copula
are presented as competitive alternatives to the classical bivariate Negative Binomial
INAR(1) claim count regression model which only allows for positive dependence
between the time series of claim count responses. Our main achievement is that we
develop novel alternative Expectation-Maximization type algorithms for maximum
likelihood estimation of the parameters of the models which are demonstrated to per-
form satisfactory when the models are fitted to Local Government Property Insurance
Fund data from the state of Wisconsin.
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1 Introduction

Over the past decade, there has been a growing literature on bivariate (and/or multi-
variate) claim count regression models which can efficiently capture the dependence
between claims from the same policy and/or different coverages bundled into a single
policy. The interested reader is referred to Refs. [1–7, 9, 11, 13, 15, 23–25, 28, 29],
among many others.

Pechon et al. [23] proposed the use of bivariate mixed Poisson count regression
models, with correlated random effects for capturing the interactions between the dif-
ferent coverages purchased by members of the same household. In particular, Pechon
et al. [23] considered the bivariate Poisson-Gamma (BPGGA) regression model with
Gaussian copula and the bivariate Poisson-Lognormal (BPLN) regression model. In
the former model the random effects are distributed according to two Gamma distribu-
tions with unit means and the dependence between the random effects is introduced by
means of a Gaussian bivariate copula whereas in the latter model these random effects
are distributed according to the bivariate Lognormal mixing distribution. Bermúdez
et al. [4], following the setup of Pedeli and Karlis ([26] and [27]), were the first to
derive a bivariate Poisson integer-valued autoregressive process of order 1 (BINAR(1))
claim count regressionmodel which can account both for cross-sectional and temporal
dependence between multiple claim types. The model they developed was employed
for addressing the ratemaking problem of pricing an insurance contract in the case
of positively correlated claims from different types of coverage in non-life insurance.
Finally, Bermúdez and Karlis [5] built on the previous paper by using a multivariate
INAR(1) (MINAR(1)) regression model based on the Sarmanov family of distribu-
tions. TheMINAR(1) regressionmodels based on the Sarmanov family of distributions
are also restricted to a positive correlation structure between the claim count response
variables. However, it enjoys some advantages compared to a different approachwhich
can allow for both positive and negative correlations by using copulas for the specifi-
cation of the joint distribution of the innovations. See, for instance, Refs. [8, 17, 18,
20–22] among others. Firstly, it avoids identifiability issues which may arise when a
continuous copula distribution is paired with discrete marginals, see Ref. [12]. As is
well known, the lack of identifiability means that it cannot be guaranteed that model
fitting is unique and this may lead to problems in statistical inference, for example,
one might receive no meaningful values for the standard errors of the parameters.
Secondly, the computational intensity for discrete copula-based models increases as
the dimension of the model increases and hence, as is also mentioned by the authors,
their approach, which relies on the use of the Sarmanov family, provides models that
are less computationally intensive to estimate and can still have a reasonable range for
positive dependence structure between the claim count responses.

In this study, we introduce a family of bivariate mixed Poisson INAR(1) claim
count regression models with correlated random effects for modelling the dependence
structure between times series of different types of claim counts from the same and/or
different types of coverage. The bivariate mixed Poisson INAR(1) regression models
with correlated random effects are a broad class of models which can accommo-
date overdispersion, which is a direct consequence of unobserved heterogeneity due
to systematic effects in the data, and correlations of different signs and magnitude.

123



EM estimation for bivariate mixed poisson INAR(1) claim count...

For demonstration purposes, we consider the bivariate mixed Poisson INAR(1) claim
count regression models which are derived by using the bivariate Lognormal and
Gaussian copula paired with gamma marginals as mixing densities, which we refer to
as BINAR(1)-LN and BINAR(1)-GGA claim count regression models respectively.
Bothmodels can be regarded as extensions of the classical bivariate Negative Binomial
INAR(1) claim count regression model with a shared gamma random effect, which
we refer to as BINAR(1)-GA claim count regression model, in the sense that they pro-
vide more flexibility for modelling overdispersed bivariate time series of count data
compared to the BINAR(1)-GA model which is derived by pre-imposing the restric-
tive positive correlation assumption between time series of different claim types of
claim counts, since in some cases negative correlations may be of interest as well.
Furthermore, unlike previous copula-based count regression models for which identi-
fiability issues can arise when a continuous copula distribution is paired with discrete
marginals, in the proposed family of models identifiability of the bivariate distribution
of the innovations is guaranteed by imposing a unit mean constraint for the Gamma
continuous mixing densities which are paired with a Gaussian copula.

The main contributions we make are as follows:

• Firstly, beforewe introduce the time series components,wepresent a unified frame-
work for statistical inference via the Expectation-Maximization (EM) algorithm
for the BPGA, BPLN and BPGGA regression models.1

• Secondly, we develop novel EM type algorithms for maximum likelihood (ML)
estimation of the BINAR(1)-GA, BINAR(1)-LN and BINAR(1)-GGA regression
models,which has not been explored in the literature so far. Themain reason for this
is because the joint distribution of the innovations cannot be written in closed form
in either model and hence its maximization is not possible via standard numerical
optimization as is done in Refs. [4, 5, 17, 26, 27].

The rest of the paper is organized as follows. Section 2 presents the model specifi-
cations for the bivariate mixed Poisson regression models we consider and describes
their ML estimation via the EM algorithm. Section 3 presents the derivation of their
INAR(1) extensions that we first proposed herein and outlines the EM type algorithms
we developed for statistical inference. Section 4 presents our empirical analysis which
is based on the LGPIF dataset. Concluding remarks are given in Sect. 5. The interpre-
tation of abbreviations used in the paper and some other technical details are provided
in Appendix A.1.

2 The bivariate mixed Poisson regressionmodel

2.1 Model specifications

The bivariate Poisson mixture is constructed by two independent Poisson random
variables conditional on a randomeffect vector (or scalar) θ = (θ1, θ2) such that N (i) ∼
1 Note that EM estimation for the parameters of the BPGA regression model with a shared random effect
and the BPLN regression model has been discussed in Refs. [14] and [30] respectively. However, this is the
first time that the EM algorithm is used for estimating the parameters of the BPGA regression model with
Gaussian copula.
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Pois(λi,tθi ), i = 1, 2. The bivariate mixed Poisson regression is then constructed by
further allowing the rate λi to be modelled as functions of explanatory variables zi,t
such that λi,t = exp{zTi,tβ i }. Denote the mixing density function of the random effect
as fφ(θ) parametrized by φ. To avoid the identifiability issue, we have to restrict the
expectation E[θi ] to be a fixed constant. One usually lets E[θi ] = 1 so that λt :=
(λ1,t , λ2,t ) will fully explain the frequency of a event and φ will explain the variation
and correlation of the whole bivariate sequence. In the following, we will discuss
three different mixing densities, univariate gamma (shared random effect), bivariate
Lognormal and Gaussian copula paired with Gamma marginals.

(a) Univariate Gamma density
In this case, the bivariate mixed Poisson regression model shares the same random
effect N (i)

t ∼ Pois(λi,tθ) i = 1, 2.Denote themixing density function as fφ(θ) =
fφ(θ) and it has following expression

fφ(θ) = φφ

�(φ)
θφ−1e−φθ , (1)

which has unit mean and variance 1
φ
. Then the unconditional probability mass

function fPG(k, t) of Nt := (N (1)
t , N (2)

t ) can be written down in a closed form

fPG(k, t) = λ1,t

k1!
λ2,t

k2!
∫ ∞

0
e−(λ1,t+λ2,t )θ θk1+k2 fφ(θ)dθ

= �(φ + k1 + k2)

�(φ)�(k1 + 1)�(k2 + 1)

φφλ
k1
1,tλ

k2
2,t

(φ + λ1,t + λ2,t )φ+k1+k2
.

(2)

(b) Bivariate Lognormal density
Suppose now the random vector ε = (ε1, ε2) follows bivariate normal distribution,

with mean vector (−φ2
1
2 ,−φ2

2
2 ) and covariance matrix �

� =
[

φ2
1 ρφ1φ2

ρφ1φ2 φ2
2

]
(3)

Then the random effect vector θ = eε = (eε1 , eε2) has Lognormal distribution
with unit mean. Denote the density function of ε as f N� and f LN� for Lognormal
density. Then they have the following expressions

f N� (ε) = 1

2πσ1σ2
√
1 − ρ2

× exp

⎧⎨
⎩− 1

2(1 − ρ2)

⎡
⎣
(

ε1 + 0.5σ 2
1

σ1

)2

−2ρ

(
ε1 + 0.5σ 2

1

σ1

)(
ε2 + 0.5σ 2

2

σ2

)

123



EM estimation for bivariate mixed poisson INAR(1) claim count...

+
(

ε2 + 0.5σ 2
2

σ2

)2
⎤
⎦
⎫⎬
⎭

fφ(θ) = 1

θ1θ2
f N� (log θ) = f LN� (θ).

The unconditional distribution fPLN (k, t) of Nt is expressed as a double integral

fPLN (k, t) =
∫ ∞

0

∫ ∞

0

λ
k1
1,t

k1!
λ
k2
2,t

k2! e
−λ1,t θ1e−λ2,t θ2θ

k1
1 θ

k2
2 f LN� (θ)dθ1dθ2

=
∫
R

∫
R

λ
k1
1,t

k1!
λ
k2
2,t

k2! exp{−λ1,t e
ε1 − λ2,t e

ε2 + k1ε1 + k2ε2}
f N� (ε)dε1dε2. (4)

All the double integrals with respect to Lognormal density f LN� can be trans-
formed into double integrals with respect to normal density f N� so that they can
be evaluated by Gauss-Hermite quadrature. See details in the Appendix A.2.

(c) Gaussian copula paired with Gamma marginals
Suppose now the random vector θ is distributed as a meta Gaussian copula such
that its marginals are two independent Gamma random variables with parameter
(φ1, φ2) respectively. Define uniform random vector u = (Fφ1(θ1), Fφ2(θ2)). The
distribution function FGC (θ) and density function fGC (θ) can be written as

FGC (θ) = Cρ(u) = Fρ(�−1(u1),�
−1(u2))

fφ(θ) = fGC (θ) = fρ(�−1(u1),�−1(u2))

fsn(�−1(u1)) fsn(�−1(u1))
fφ1(θ1) fφ2(θ2)

:= cρ(u) fφ1(θ1) fφ2(θ2),

(5)

where fρ(., .), Fρ(., .) are the density function and cumulative distribution of
bivariate normal random variable with the following expression

fρ(x1, x2) = 1

2π
√
1 − ρ2

exp

{
−1

2

x21 − 2ρx1x2 + x22
1 − ρ2

}
. (6)

The�(x) is the cdf of standard normal randomvariablewith�−1(x) as its quantile
function and fsn(x) is the density function of the standard normal random variable.
Finally, fφi (x) and Fφi (x) are the pdf and cdf of Gamma density function defined
in 1 for i = 1, 2. Then a bivariate Poisson Gamma random vector is constructed
as N (i)

t ∼ Pois(λi,tθi ), i = 1, 2 with probability mass function fPGC (k, t) such
that
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fPGC (k, t) =λ
k1
1,t

k1!
λ
k2
2,t

k2!
∫ ∞

0

∫ ∞

0
exp{−λ1,tθ1−λ2,tθ2}θk11 θ

k2
2 fGC (θ1, θ2)dθ1dθ2

= λ
k1
1,t

k1!
λ
k2
2,t

k2!
∫ 1

0

∫ 1

0
e−λ1,t F

−1
φ1

(u1)−λ2,t F
−1
φ2

(u2)

F−1
φ1

(u1)
k1F−1

φ2
(u2)

k2cρ(u1, u2)du1du2.

Then the double integral can be evaluated by Gauss-Legendre quadrature. See
details in Appendix A.3.

2.2 The EM algorithm

For statistical inference of above model, the classical maximum likelihood estimation
is not straightforward to apply because the log likelihood function

�() =
n∑

t=1

log

⎛
⎝λ

k1,t
1,t λ

k2,t
2,t

k1,t !k2,t !
∫ ∞

0

∫ ∞

0
θ
k1,t
1 θ

k2,t
2 e−λ1,t θ1−λ2,t θ2 fφ(θ)dθ1dθ2

⎞
⎠ (7)

is not computational tractable and its maximum likelihood estimators are not straight-
forward to achieve. Alternatively, we can apply the EM algorithm to estimate the
parameters  = {β1,β2,φ}. For given random samples (k1, ...kn), suppose now we
observe the random effect (θ1, . . . , θn), then the complete likelihood function �c()

is given by

�c() =
n∑

t=1

[(
2∑

i=1

ki,t log(λi,tθi,t ) − λi,tθi,t − log(ki,t !)
)

+ log fφ(θ t )

]
. (8)

Compared to �(), the complete log likelihood function �c() are simplified in the
sense that there is no integration and mixture likelihood are decomposed into Poisson
likelihood and the likelihood for mixing density.

However, to evaluate �c() we need to find out the conditional (posterior)
distribution of θ given the random samples. Then we define η(θ |λt ,kt ) =
e−λ1,t θ1−λ2,t θ2θ

k1,t
1 θ

k2,t
2 and posterior density

π(θ |( j),kt ) = fφ(θ)
∏2

i=1 fPo(ki,t |λi,tθi )∫∞
0

∫∞
0 fφ(θ)

∏2
i=1 f ( j)

Po (ki,t |λi,tθi )dθ1dθ2

= η(θ |λt ,kt ) fφ(θ)∫∞
0

∫∞
0 η(θ |λt ,kt ) fφ(θ)dθ1dθ2

.

(9)
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Then posterior expectation for any real value function h(θ) is given by

E[h(θ)|( j),kt ] =
∫ ∞

0

∫ ∞

0
h(θ)π(θ |( j),kt )dθ1dθ2

=: E( j)
θ ,t [h(θ)],

(10)

where fPo(k|λ) = e−λλk

k! is the probability mass function of a Poisson random variable
with rateλ and the condition( j) means that the posterior density function is evaluated
with the parameters estimated at j-th iteration. The subscript θ of E( j)

θ ,t means that the
expectation is taken with respect to the θ for t-th observation.

• E-step: Evaluating the Q function Q(;( j)) given the the parameters estimated
at j-th iteration

Q(;( j)) ∝
n∑

t=1

2∑
i=1

ki,t log(λi,t ) − λi,tE[θi |( j),kt ] +
n∑

t=1

E[log fφ (θ)|( j),kt ]

=
n∑

t=1

2∑
i=1

ki,t log(λi,t ) − λi,tE
( j)
θ ,t [θi ] +

n∑
t=1

E
( j)
θ,t [log fφ (θ)].

(11)

• M-step: After finding out the Q function, we update the parameters for the next
iteration, ( j+1), which can be achieved by finding the gradient functions g(.)
and the Hessian matrix H(.) of Q functions and then apply the Newton-Raphson
algorithm to maximize the Q function for the next iteration. The parameters can
be updated separately as Poisson part β1,β2 and random effect part φ.

– For the Poisson part

β
( j+1)
i = β

( j)
i − H−1(β

( j)
i )g(β( j)

i ), i = 1, 2

g(β( j)
i ) = ZT

i V
(g)
i H(β

( j)
i ) = ZT

i D
(H)
i Zi

V(g)
i =

({
ki,t − λ

( j)
i,t E

( j)
θ ,t [θi ]

}
t=1,...,n

)

D(H)
i = diag

({
−λ

( j)
i,t E

( j)
θ ,t [θi ]

}
t=1,...,n

)
(12)

– For the random effect part, we need to derive the first and second order deriva-
tives of log fφ(θ) and then the take posterior expectation to construct its
gradient functions and Hessian matrix. In the following, we derive the deriva-
tives for those three mixing densities defined in the last session. Different
mixing densities will affect the way we calculate the posterior expectation,
and in many cases, we have to rely on numerical evaluation. However, some
posterior expectations can be simplified to reduce computational cost when
implementing the EM algorithm in practice.

(a) Univariate Gamma density
This can be regarded as a special case because the posterior density is known in
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closed form as another univariate Gamma density with different parameters.

θ |( j),kt ∼ Gamma
(
φ( j) + k1,t + k2,t , φ( j) + λ

( j)
1,t + λ

( j)
2,t

)
(13)

Then, the posterior expectation when updating β i can be simplified as

E
( j)
θ,t [θ1] = E

( j)
θ,t [θ2] = φ( j) + k1,t + k2,t

φ( j) + λ
( j)
1,t + λ

( j)
2,t

. (14)

Finally, to update φ

φ( j+1) = φ( j) − g(φ( j))

h(φ( j))
,

g(φ( j)) = n(logφ( j) − �(φ( j)) + 1) +
n∑

t=1

(
E

( j)
θ,t [log θ ] − E

( j)
θ,t [θ ]

)

h(φ( j)) = n((φ( j))−1 − �
′
(φ( j))),

(15)

where�(x) = �′(x)
�(x) and� ′(x) are digamma and trigamma functions respectively.

The posterior expectation E
( j)
θ,t [log θ ] is given by

E
( j)
θ,t [log θ ] = �

(
φ( j) + k1,t + k2,t

)
− log

(
φ( j) + λ

( j)
1,t + λ

( j)
2,t

)
(16)

(b) Bivariate Lognormal density
In this case, there is no analytic expression for the posterior density. However, it
can be transformed in the following way

π(θ |( j),kt ) = η(θ |λt ,kt ) f LN� (θ)∫∞
0

∫∞
0 η(θ |λt ,kt ) f LN� (θ)dθ1dθ2

= η(eε |λt ,kt ) f N� (ε)∫∞
0

∫∞
0 η(eε |λt ,kt ) f N� (ε)dε1dε2

=: π(ε|( j),kt ).

(17)

Then, all posterior expectations with respect to θ can be transformed into
expectations with respect to ε such that E( j)

θ ,t [h(θ)] = E
( j)
ε,t [h(eε)]. Under this

transformation, all the posterior expectations can be evaluated by Gauss-Hermite
quadrature. Furthermore,

E
( j)
θ ,t [log f LN� (θ)] = E

( j)
ε,t [log f N� (ε) − ε1 − ε2] ∝ E

( j)
ε,t [log f N� (ε)].
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To update φ = {φ1, φ2, ρ},

φ( j+1) = φ( j) − H−1(φ( j))g(φ( j))

g(φ( j))r =
n∑

t=1

E
( j)
ε,t

[
∂ log f N� (ε)

∂φr

]

H(φ( j))r ,s =
n∑

t=1

E
( j)
ε,t

[
∂2 log f N� (ε)

∂φr∂φs

]
,

(18)

where the subscript r denotes the r-th element of a vector and r , s denotes r-th row
s-th column entry of a matrix. The first and second order derivatives are given by

∂ log f N� (ε)

∂φi
= − 1

1 − ρ2

(
− 1

φ3
i

ε2i + ρφ3−i

2φ2
i

εi − ρ

2φ3−i
ε3−i + ρ

φ2
i φ3−i

ε1ε2

+φi − ρφ3−i

4

)
− 1

φi

∂ log f N� (ε)

∂ρ
= − ρ

(1 − ρ2)2

(
1

φ2
1

ε21 + 1

φ2
2

ε22 + (1 − ρφ2

φ1
)ε1 + (1 − ρφ1

φ2
)ε2

+φ2
1 + φ2

2

4
− ρφ1φ2

2

)

+ 1

1 − ρ2

(
φ2

2φ1
ε1 + φ1

2φ2
ε2 + 1

φ1φ2
ε1ε2 + φ1φ2

4

)
+ ρ

1 − ρ2

∂2 log f N� (ε)

∂φ2
i

= − 1

1 − ρ2

(
3

φ4
i

ε2i − ρφ3−i

φ3
i

εi − 2ρ

φ3
i φ3−i

ε1ε2 + 1

4

)
+ 1

φ2
i

∂2 log f N� (ε)

∂ρ2 = 1 + 3ρ2

(1 − ρ2)3

(
1

φ2
1

ε21 + 1

φ2
2

ε22 + (1 − ρφ2

φ1
)ε1 + (1 − ρφ1

φ2
)ε2

)

+ 1 + 3ρ2

(1 − ρ2)3

(
− 2ρ

φ1φ2
ε1ε2 + φ2

1 + φ2
2

4
− ρφ1φ2

4

)

+ 4ρ

(1 − ρ2)2

(
φ2

2φ1
ε1 + φ1

φ2
ε2 + 1

φ1φ2
ε1ε2 + φ1φ2

4

)

+ 1 + ρ2

(1 − ρ2)2

∂2 log f N� (ε)

∂φ1∂φ2
= ρ

1 − ρ2

(
− 1

2φ2
1

ε1 − 1

2φ2
2

ε2 + 1

φ2
1φ

2
2

ε1ε2 + 1

4

)

∂2 log f N� (ε)

∂ρ∂φi
= − 2ρ

(1 − ρ2)2

(
− 1

φ3
i

ε2i + ρφ3−i

2σ 2
i

εi − ρ

2φ3−i
ε3−i
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+ ρ

φ2
i φ3−i

ε1ε2 + 1

4
(φi − ρφ3−i )

)

+ 1

1 − ρ2

(
−φ3−i

2φ2
i

εi + 1

2φ3−i
ε3−i − 1

φ2
i φ3−i

ε1ε2 + φ3−i

4

)
.

Notice that all the derivatives are in the linear formof ε21 , ε
2
2 , ε1, ε2, ε1ε2.Hence,we

can evaluate these posterior expectations in each iteration once to avoid repeating
calculations.

(c) Gaussian copula paired with Gamma marginals
In this case, there is no simplification either for the posterior density or for the pos-
terior expectation. To update φ = {φ1, φ2, ρ}, we have almost the same procedure
as for the bivariate Lognormal case.

φ( j+1) = φ( j) − H−1(φ( j))g(φ( j))

g(φ( j))r =
n∑

t=1

E
( j)
θ ,t

[
∂ log fGC (θ)

∂φr

]

H(φ( j))r ,s =
n∑

t=1

E
( j)
θ ,t

[
∂2 log fGC (θ)

∂φr∂φs

]
, (19)

where the first and second order partial derivatives are given by

ui =
∫ θi

0

φ
φi
i

�(φi )
yφi−1e−φi ydy

∂ log fGC (θ)

∂φi
=
(

− ρ2

1 − ρ2

�−1(ui )

fsn(�−1(ui ))
+ ρ

1 − ρ2

�−1(u3−i )

fsn(�−1(ui ))

)
∂ui
∂φi

+1 + log(φ) − �(φ) + log(θ) − θ

∂ log fGC (θ)

∂ρ
= ρ

1 − ρ2 − ρ

(1 − ρ2)2

(
�−1(u1) + �−1(u2)

)

+ 1 + ρ2

(1 − ρ2)2
�−1(u1)�

−1(u2)

∂2 log fGC (θ)

∂φ2
i

=
(

− ρ2

1 − ρ2

1 + �−1(ui )2

fsn(�−1(ui ))2
+ ρ

1 − ρ2

�−1(u1)�−1(u2)

fsn(�−1(ui ))

)

×
(

∂ui
∂φi

)2

+ ∂ log fGC (θ)

∂φi

∂2ui
∂φ2

i

+ 1

φ
− � ′(φi )

∂2 log fGC (θ)

∂ρ2 = 1 + ρ2

(1 − ρ2)2
− 1 + 3ρ2

(1 − ρ2)3

(
�−1(u1) + �−1(u2)

)

+ 2ρ3 + 6ρ

(1 − ρ2)3
�−1(u1)�

−1(u2)
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∂2 log fGC (θ)

∂φ1∂φ2
= ρ

1 − ρ2

∂u1
∂φ1

∂u2
∂φ2

fsn(�−1(u1)) fsn(�−1(u2))

∂2 log fGC (θ)

∂ρ∂φi
=
(

− 2ρ

(1 − ρ2)2

�−1(ui )

fsn(�−1(ui ))
+ 1 + ρ2

(1 − ρ2)2

�−1(u3−i )

fsn(�−1(ui ))

)
∂ui
∂φi

.

3 The bivariate mixed Poisson INAR(1) regressionmodel

3.1 Model specifications

LetX andR be non-negative integer-valued random vectors inR2. Let P be a diagonal
matrix in R

2×2 with elements pi ∈ (0, 1). The bivariate first-order integer-valued
autoregressive model (Bivariate INAR(1)) is defined as

Xt = P ◦ Xt−1 + Rt =
[
p1 0
0 p2

]
◦
[
X1,t−1
X2,t−1

]
+
[
R1,t
R2,t

]
, (20)

where the thinning operator ◦ is the widely used binomial thinning operator such

that pi ◦ Xi,t = ∑Xi,t
k=1Uk and Uk are independent identically distributed Bernoulli

random variables with success probability pi , i.e.P(Uk = 1) = pi . Hence pi ◦ Xi,t is
binomially distributed with size Xi,t and success probability pi . Then the distribution
function f pi (x, Xi,t ) can be easily written down as

f pi (k, Xi,t ) =
(
Xi,t

k

)
pki (1 − pi )

Xi,t−k . (21)

Note that pi ◦ Xi,t and p j ◦ X j,t , i �= j are independent of each other. To adapt
the heteroscedasticity arising from the data, Rt is bivariate mixed Poisson regression
model such that Ri,t ∼ Po(λi,tθi ) defined in the last session. The joint distribution of
the bivariate sequence Xt+1 conditional on the last state Xt is given by

P(Xt+1|Xt ) =
s1,t∑
k1=0

s2,t∑
k2=0

f p1 (k1, X1,t ) f p2 (k2, X2,t ) fR(X1,t+1 − k1, X2,t+1 − k2)

fR(k, t) =
λ
k1
1,t

k1!
λ
k2
2,t

k2!
∫ ∞
0

∫ ∞
0

η(θ |λt , kt ) fφ (θ)dθ1dθ2

si,t = min{Xi,t+1, Xi,t },

(22)

where fR(k, t) is a probability mass function of a bivariate mixed Poisson regression
model with mixing density fφ(θ). Under this construction, the bivariate sequence
Xt is correlated with each other and its correlation structure mainly depends on the
correlation structure of innovation Rt .
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3.2 The EM algorithm

Similarly, the maximum likelihood estimation is not straightforward to apply as the
log likelihood function

�()=
n∑

t=1

log

⎛
⎝

s1,t∑
k1=0

s2,t∑
k2=0

f p1(k1, X1,t ) f p2(k2, X2,t ) fR(X1,t+1−k1, X2,t+1−k2)

⎞
⎠

has discrete convolution and double integrals. Then we can use similar techniques to
decompose the log likelihood function as we did in Sect. 2.

Given the observed bivariate sequence {Xt }t=1,...,n . Let Yi,t = pi ◦ Xi,t−1 and
 = {p1, p2,β1,β2,φ} be the parameter space for this model. Suppose now we
observe the latent variable {Yt }t=1,...n , then the log likelihood function becomes

�(|Y) ∝
n∑

t=1

2∑
i=1

(Yi,t log pi + (Xi,t − Yi,t ) log(1 − pi )) +
n∑

t=1

log fR(Rt , t)

Ri,t = Xi,t − Yi,t .
(23)

Notice that there are still unobserved randomvariables θ in Rt . In some of the examples
we discuss in the last section, fR(k, t) may not have analytic expression and hence
we would like to further break down the likelihood function. Suppose further that we
observe the random effect {θ t }t=1...n , then the complete log likelihood becomes

�(|Y, θ) ∝
n∑

t=1

2∑
i=1

(Yi,t log pi + (Xi,t − Yi,t ) log(1 − pi ))

+
n∑

t=1

2∑
i=1

(Ri,t log(λi,t ) − λi,tθi,t ) +
n∑

t=1

log fφ(θ).

(24)

Define the following posterior density functions

π1( y|( j),Xt ,Xt−1) = fR(Xt−1 − y)
∏2

i=1 f pi (yi , Xi,t−1)

P(Xt |Xt−1)

π2(θ |( j),Rt ) = η(θ |λt ,Rt ) fθ (φ)∫∞
0

∫∞
0 η(θ |λt ,Rt ) fφ(θ)dθ1dθ2

,

(25)

Define the posterior expectations with respect to real-value functions h(., .)

E
( j)
y,t [h( y)] =

s1,t−1∑
y1=0

s2,t−1∑
y2=0

h( y)π1( y|( j),Xt ,Xt−1)

E
( j)
θ ,t [h(θ)|Rt ] =

∫ ∞

0

∫ ∞

0
h(θ)π2(θ |( j),Rt )dθ1dθ2.

(26)
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• E-step: Evaluating the Q function Q(;( j)) given the the parameters estimated
in the j-th iteration,

Q(;( j)) =
n∑

t=1

2∑
i=1

(y( j)
i,t log pi + (Xi,t−1 − y( j)

i,t ) log(1 − pi ))

+
n∑

t=1

2∑
i=1

(r ( j)
i,t log(λi,t ) − λi,t θ̂

( j)
i,t ) +

n∑
t=1

E
( j)
y,t [E( j)

θ ,t [log fφ(θ)|Rt ]]

y( j)
i,t = E

( j)
y,t [Yi ], r ( j)

i,t = Xi,t − y( j)
i,t , θ̂

( j)
i,t = E

( j)
y,t [E( j)

θ ,t [θi |Rt ]].
(27)

After breaking down the log likelihood function, it is obvious that except for the
log likelihood contributed by binomial distribution, the rest of the terms are almost
the same as that of the Q-function of bivariate mixed Poisson regression model
discussed in the last session, which means the updating procedure for β i ,φ will
be exactly the same, but we need to evaluate different posterior expectations in
this case.

• M-step: Similarly, we apply the Newton–Raphson algorithm to update the param-
eters. Based on the structure of Q(;( j)), the parameters can be updated
separately for binomial part p, Poisson part β i and random effect part φ

– The binomial part can be updated simply as the following gradient function
has a unique solution

g(pi ) =
∑n

t=1 y
( j)
i,t

pi
−
∑n

t=1(Xi,t−1 − y( j)
i,t )

1 − pi
= 0

p( j+1)
i =

∑n
t=1 y

( j)
i,t∑n

t=1 Xi,t−1
, i = 1, 2

y( j)
i,t =

⎧⎨
⎩

p( j)
i Xi,t−1P(Xt−1i |Xt−1−1i )

P(Xt |Xt−1)
, Xi,t �= 0 and Xi,t−1 �= 0

0, otherwise

11 = (1, 0)T 12 = (0, 1)T .

(28)

See Appendix A.4 for the derivation of y( j)
i,t .

– For the Poisson part, the updating equations are the same with different pos-
terior expectation

β
( j+1)
i = β

( j)
i − H−1(β

( j)
i )g(β( j)

i ), i = 1, 2

g(β( j)
i ) = ZT

i V
(g)
i H(β

( j)
i ) = ZT

i D
(H)
i Zi

V(g)
i =

({
ki,t − λ

( j)
i,t θ̂

( j)
i,t

}
t=1,...,n

)

D(H)
i = diag

({
−λ

( j)
i,t θ̂

( j)
i,t

}
t=1,...,n

)
.

(29)
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Note that when the mixing density fφ(θ) is univariate Gamma, the posterior
expectation for θ has a simple expression

θ̂
( j)
t = θ̂

( j)
1,t = θ̂

( j)
2,t = φ( j) + r ( j)

1,t + r ( j)
2,t

φ( j) + λ
( j)
1,t + λ

( j)
2,t

.

– Similarly, for the random effect part φ,

(a) Univariate Gamma density

φ( j+1) = φ( j) − g(φ( j))

h(φ( j))
,

g(φ( j)) = n(logφ( j) − �(φ( j)) + 1) +
n∑

t=1

(
E

( j)
y,t [E( j)

θ,t [log θ |Rt ]] − θ̂
( j)
t

)

h(φ( j)) = n((φ( j))−1 − �
′
(φ( j))),

(30)
(b) Bivariate Lognormal

φ( j+1) = φ( j) − H−1(φ( j))g(φ( j))

g(φ( j))r =
n∑

t=1

E
( j)
y,t

[
E

( j)
ε,t

[
∂ log f N� (ε)

∂φr
|Rt

]]

H(φ( j))r ,s =
n∑

t=1

E
( j)
y,t

[
E

( j)
ε,t

[
∂2 log f N� (ε)

∂φr∂φs
|Rt

]]
,

(31)

(c) Gaussian copula paired with Gamma marginals

φ( j+1) = φ( j) − H−1(φ( j))g(φ( j))

g(φ( j))r =
n∑

t=1

E
( j)
y,t

[
E

( j)
θ ,t

[
∂ log fGC (θ)

∂φr
|Rt

]]

H(φ( j))r ,s =
n∑

t=1

E
( j)
y,t

[
E

( j)
θ ,t

[
∂2 log fGC (θ)

∂φr∂φs
|Rt

]]
.

(32)

The partial derivatives inside expectations are derived in the last section.

Remark This model as well as the EM algorithm can be extent to multivariate case
straightforwardly.All the steps and the general formof the formula of theEMalgorithm
in the multivariate case are exactly the same. The only problem is that it would become
cumbersome to evaluate the transition probability P(Xt |Xt−1) as dimension of Xt

increases.
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4 Empirical analysis

4.1 Data description andmodel fitting

The data used in this section come from the Local Government Property Insurance
Fund (LGPIF) from the state of Wisconsin. On previous application on this dataset,
interested reader can refer to Refs. [28–30]. This fund provides property insurance to
different types of government units, which includes villages, cities, counties, towns
and schools. The LGPIF contains three major groups of property insurance coverage,
namely building and contents (BC), contractors’ equipment (IM) and motor vehicles
(PN, PO, CN, CO). For exploratory purposes, we focus on modelling jointly the claim
frequency of IM, denoted as X1, and comprehensive new vehicles collision (CN),
denoted as X2 as they are both related to land transport. The insurance data cover the
period over 2006–2010 with 1234 policyholders in total. Only n1 = 1048 of them
have complete data over the period 2006–2010, which will be the training dataset. The
last year 2011 with n2 = 1025 policyholders, which is the same set of policyholders
as in the training dataset, out of 1098 policyholders will be the test dataset. Denote
the IM type and CN type claim frequency for a particular policyholder as X (h)

1,t , X
(h)
2,t

respectively, where h is the identifier for each policyholder and t is the year. Then the
relationship between Xi,t and X (h)

i,t is simply Xi,t = ∑
h X

(h)
i,t with i = 1, 2.

Some basic statistical analysis is shown in the following Table 1 and Fig. 1. The
proportion of zeros for two types of claims are all over 90% during 2006–2010. Both
types of claim shows overdispersion as the variance are all higher than their mean over
years and the overdispersion for X2,t is even stronger than that of X1,t , which indicate
the need to apply overdispersed distribution model for the data. The correlation tests
over years imply that it is reasonable to introduce correlation structure between X1,t
and X2,t . The proportion of zeros and kurtosis show that the marginal distributions of
X1,t , X2,t are all positively skewed and exhibit a fat-tailed structure which indicates
the appropriateness of adopting a positive skewed and fat-tailed distribution (Log
Normal distribution). Last but not least, the correlation tests illustrated in Table 2 do
support the appropriateness of introduction of time series term in modelling the claim
sequence.

Table 1 Summary statistics of two types of claims over years

2006 2007 2008 2009 2010

Proportion of zeros X1,t 0.9685 0.9542 0.9552 0.9504 0.9590

Proportion of zeros X2,t 0.9342 0.9332 0.9399 0.9370 0.9323

Kurtosis of X1,t 85.7500 86.6479 41.8491 43.0183 126.6879

Kurtosis of X2,t 53.9183 61.7740 111.2810 184.1395 133.9228

P-value of correlation test 0.0000 0.0000 0.0000 0.0000 0.0000

The correlations test is a one-sided test where the alternative hypothesis is “The sample correlation is greater
than 0”
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Fig. 1 Summary statistics
(mean, variance and correlation)
for each type of claims across all
the policyholders over the years
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The description and some summary statistics for all the explanatory variables
(covariates z1,t , z2,t ) that are relevant to X1,t , X2,t are shown in Table 3. Variables
1–5 including ‘TypeVillage’ are categorical variables to indicate the entity types of a
policyholder. Due to the strongly heavy-tailed structure appearing in variables 6 and
9, which can drastically distort the model fitting, those variables are transformed by
means of the ‘rank’ function in R software and then standardized, which can mitigate
the effect of outliers. Variables 6–8 are relevant to IM claim X1,t , while variables 9,10
provide information for CN claims X2,t . The covariate z1,t includes variables 1-8, and
z2,t contains variables 1-5 and variables 9,10. These covariates act as the regression
part for λi,t mentioned in Sect. 2, which may help to explain part of the heterogeneity
within X1,t and X2,t .

Due to the large computational cost for evaluating the partial derivatives of copula
case (large sample size), all themodels except the copula case discussed in Sects. 2 and
3 are applied to model the joint behaviour of X (h)

1,t , X
(h)
2,t across all the policyholders.

Instead, a simulation study in the Appendix A.5 shows that the EM algorithm does
work for copula case.

Table 2 Correlation test for Xi,t
and Xi,t−1

X1 X2

Correlation 0.4062 0.7478

p-value 0.0000 0.0000

The test is a one-sided test where the alternative hypothesis is “The
sample correlation is greater than 0”
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Since we would like to model the whole behaviour rather than the individual one,
the the likelihood function would simply become

�() =
n1∑
h=1

�h() =
n1∑
h=1

4∑
t=1

log Pr(X (h)
1,t+1, X

(h)
2,t+1|X (h)

1,t , X
(h)
2,t ), (33)

where �h() is the log likelihood function for policyholder h. Note that all the pol-
icyholders with the same type of claim Xi, will share the same set of parameters
{p1, p2,β1,β2,φ}. In addition, it is necessary to show the appropriateness of intro-
ducing crosscorrelation and autocorrelation in BINAR(1) model. Then we also fit the
data to following models.

1. The joint distribution of X (h)
1,t and X

(h)
2,t are characterized by two independentmixed

Poisson (TMP)

X (h)
1 ∼ Pois(λ1θ1), X (h)

2 ∼ Pois(λ2θ2), (34)

where θ1 and θ2 are independent random variables, either Gamma or Log Normal.
2. The joint distribution of X (h)

1,t and X (h)
2,t are assumed to be bivariate mixed Poisson

distribution (BMP)with different probabilitymass function according to the choice
of mixing densities, see equations (2) and (4).

3. The joint distribution of X (h)
1,t and X (h)

2,t are characterized by two independent
INAR(1) models (TINAR)

X (h)
1,t = p1 ◦ X (h)

1,t−1 + R1,t

X (h)
2,t = p2 ◦ X (h)

2,t−1 + R2,t ,

where Ri,t ∼ Pois(λi,tθi,t ), i = 1, 2 and random effect θi,t is independent of i
and t .

For comparison purpose, we fit these univariate and bivariate Poisson mixture models
with training dataset starting from 2007 because they do not need to consider the lag
responses. When it comes to the initial values, we use the following. Lag one corre-
lation of each sequence serves as the initial value of pi . We fit a Poisson generalized
linear model for each sequence to obtain the initial values of β i . Finally, we used the
moment estimates of the bivariate Poisson mixture model (without regression) for ini-
tial values of φ = {φ1, φ2, ρ}. All the estimation is performed in R software where we
implement the EM algorithms derived in previous sections. The standard deviations of
the estimators are calculated by inverting the observed information of matrix from the
incomplete log-likelihood function (the log likelihood function without unobserved
latent variables).

Model fitting results are shown in Table 4. Within the same class of models, com-
pared to univariate Gamma as mixing density, the Log Normal case allows more
flexible structures to capture different distributional behaviour within two types of
claims. Hence we can observe the improvement of AIC from univariate Gamma case
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Table 4 Goodness of fit for different models with different choices of mixing densities

Mixing density
Gamma
AIC| BIC

Log Normal
AIC|BIC

TMP Gamma 3073.332 | 3193.810 3067.119 | 3187.596
Log Normal 3072.287 | 3192.765 3066.074 | 3186.551

TINAR Gamma 2999.957 | 3133.117 2999.843 | 3133.003
Log Normal 2998.326 | 3131.485 2998.212 | 3131.371

BMP – 3073.176 | 3191.329 3055.066 | 3181.885
BINAR – 2996.291 | 3123.109 2990.744 | 3130.245
For the class TMP and TINAR, row and column stand for mixing density θ1, θ2, respectively. The bold
cells indicate the best one within the same class of models

to Log Normal case and hence it is no surprise that the Log Normal is always the
best choice within the same class of model. Among different classes of models, it is
clear that the adoption of autocorrelation component significantly improves the model
fitting. Finally, the significant improvement in terms of AIC from TINAR to BINAR,
as well as from TMP to BMP, indicates that it is appropriate to introduce cross cor-
relation between two sequences X1, X2. The estimated parameters via EM algorithm
are shown in Table 5.

4.2 Predictive performance

In insurance claims modelling, it is more useful to check the overall distribution for
all policyholders rather than prediction of the claim frequency for each policyholder,
which can be used for premium calculation, risk management, and so forth. To eval-
uate the predictive performance, we then calculate the predicted claim frequencies
Freq(Xt |Xt−1, ̂), which are the sum of individual probabilities P(X(h)

t |X(h)
t−1, ̂) of

joint events (X (h)
1 , X (h)

2 ) ∈ {(i, j), 0 ≤ i, j ≤ 10} based on the estimated parameters,
and compare these to the observed frequencies from the test sample (X1,2011, X2,2011)

(year 2011). In addition to our proposed BINAR model with Log Normal mixing
density, we also compute predictive performance of the best TMP, TINAR, BMP
models from Table 4 as the benchmark for comparison purposes. Based on the predic-
tive claim frequencies, one can also compute expected number of claims marginally
(E[X1],E[X2]),

E[X1] =
10∑

k1=0

10∑
k2=0

k1Freq(k1, k2|X2010, ̂)

E[X2] =
10∑

k1=0

10∑
k2=0

k3Freq(k1, k2|X2010, ̂)

(35)

and measure the Predictive Sum of Square error:

PSSE = (E[X1] − X1,2011)
2 + (E[X2] − X2,2011)

2. (36)
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Table 6 Predictive and observed joint frequencies for each models

(0,0) (0,1) (0,2) (1,0) (1,1) (1,2) (2,0) (2,1) (2,2)

TMP 901.40 36.53 11.95 38.30 4.03 2.20 5.37 0.97 0.62

TINAR 903.99 37.47 11.70 37.42 4.16 2.30 4.87 0.93 0.61

BMP 904.09 36.87 11.75 36.91 4.09 2.41 4.81 0.81 0.63

BINAR 906.03 37.67 11.55 36.31 4.16 2.45 4.45 0.79 0.61

Observed 940 26 6 20 6 2 4 1 1

Table 7 Predictive marginal claim frequency

TMP TINAR BMP BINAR Observed

E[X1] 79.18 74.17 77.06 72.55 78

E[X2] 158.89 153.28 157.34 152.68 117

PSSE 1756.164 1330.907 1628.199 1302.765 –

TLL −348.3537 −340.4619 −345.9555 −338.4115 –

On the other hand, the log likelihood on test samples (TLL) can also be a measure of
predictive performance for each model.

T LL =
n2∑
h

logP(X(h)
t |X(h)

t−1, ̂). (37)

All the results are summarised in Tables 6 and 7 and it is clear that our proposedmodel,
bivariate INAR(1), has the best predictive performance with the smallest PSSE among
all other models. Furthermore, TLL result shows that the bivariate INAR outperforms
all other models, which is consistent with the model fitting result in Table 4.

4.3 Application to ratemaking

In this subsection, the analysis of best fitted models from Table 4 for ratemaking is
conducted. We select three representative risk profiles under different models, named
Good, Average and Bad, illustrated in Table 8. These three risk profiles are selected
according to the sign and size of the coefficients in Table 5 and those variables are
not mentioned in the following table are taken to be 0. Note that CoverageIM and
CoverageCN are selected according to their empirical distribution on test data.

We then evaluate the mean and variance of X (h)
1,t + X (h)

2,t under each best TMP,
TINAR, BMP and BINAR according to Table 4. The mean and variance for one
policyholder is given by two quantity, i.e. E[X (h)

1 + X (h)
2 |̂,Xt−1,Z1,Z2] and
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Table 8 The risk profiles for two
claim sequences

TypeCounty TypeMisc CoverageIM

Good 0 1 −1.43

Z1 Average 1 0 0

Bad 1 0 1

TypeCounty TypeMisc CoverageCN

Good 0 1 −0.56

Z2 Average 1 0 1.6

Bad 1 0 2.15

Var(X (h)
1 + X (h)

2 |̂,Xt−1,Z1,Z2). They have following explicit formulae

E[R1,t + R2,t |̂,Z1,Z2] = λ̂1 + λ̂2 = eZ1β̂1 + eZ2β̂2

Var(R1,t + R2,t |̂,Z1,Z2) = λ̂21(e
σ̂1 − 1) + λ̂22(e

σ̂2 − 1) + λ̂1 + λ̂2

+ 2λ̂1λ̂2(e
ρ̂σ̂1σ̂2 − 1)

E[X (h)
1 + X (h)

2 |̂,Xt−1,Z1,Z2] = p̂1X
(h)
1,t−1 + p̂2X

(h)
2,t−1

+ E[R1,t + R2,t |̂,Z1,Z2]
Var(X (h)

1 + X (h)
2 |̂,Xt−1,Z1,Z2) = p̂1(1 − p̂1)X

(h)
1,t−1 + p̂2(1 − p̂2)X

(h)
2,t−1

+ Var(R1,t + R2,t |̂,Z1,Z2)

(38)

Tables 9 and 10 summarise the mean and variance under different risk profiles and
different claim history structure (X (h)

1,t−1, X
(h)
2,t−1). As TMP and BMP do not depend

on claim history, their mean and variance are all the samewithin the same risk profiles.
It is interesting to see that the variance of INARmodels are smaller than that of mixed
Poisson models in many cases.

5 Concluding remarks

In this paper, we consider a new family of bivariate mixed Poisson INAR(1) regres-
sion models for modelling multiple time series of different types of claim counts.
The proposed family of models accounts for bivariate overdispersion and, similarly to
copula-based models, allows for interactions of different signs and magnitude among
the two count response variables without using the finite differences of the copula
representation which may result in numerical instability in the ML estimation pro-
cedure. For illustrative purposes, we derived the BINAR(1)-LN and BINAR(1)-GGA
regressionmodels which can be regarded as competitive alternatives to the BINAR(1)-
GA regression model for modelling time series of count data. Furthermore, from a
computational statistics standpoint, the EM type algorithms we developed for ML
estimation of the parameters of all the models were easily implementable and were
shown to perform well when we exemplified our approach on LGPIF data from the
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Table 9 Premium calculations from different models: Means

Profile (X (h)
1,t−1, X

(h)
2,t−1) TMP TINAR BMP BINAR

Good (0,0) 0.0010 0.0009 0.0010 0.0009

(0,1) 0.0010 0.2856 0.0010 0.2771

(1,0) 0.0010 0.1194 0.0010 0.1128

(1,1) 0.0010 0.4040 0.0010 0.3889

Average (0,0) 0.6361 0.4690 0.6877 0.4951

(0,1) 0.6361 0.7537 0.6877 0.7713

(1,0) 0.6361 0.5875 0.6877 0.6070

(1,1) 0.6361 0.8722 0.6877 0.8832

Bad (0,0) 2.4873 1.8631 2.6553 1.9484

(0,1) 2.4873 2.1478 2.6553 2.2246

(1,0) 2.4873 1.9816 2.6553 2.0603

(1,1) 2.4873 2.2663 2.6553 2.3364

Table 10 Premium calculations from different models: Variances

Profile (X (h)
1,t−1, X

(h)
2,t−1) TMP TINAR BMP BINAR

Good (0,0) 0.0010 0.0009 0.0010 0.0009

(0,1) 0.0010 0.2045 0.0010 0.2008

(1,0) 0.0010 0.1053 0.0010 0.1003

(1,1) 0.0010 0.3090 0.0010 0.3001

Average (0,0) 0.8746 0.6869 1.1563 0.8221

(0,1) 0.8746 0.8905 1.1563 1.0220

(1,0) 0.8746 0.7914 1.1563 0.9215

(1,1) 0.8746 0.9950 1.1563 1.1214

Bad (0,0) 6.0635 5.2554 9.6217 6.9969

(0,1) 6.0635 5.4591 9.6217 7.1968

(1,0) 6.0635 5.3599 9.6217 7.0962

(1,1) 6.0635 5.5635 9.6217 7.2961

state of Wisconsin. At this point, it should be noted that we considered the bivariate
case and the Gamma and Lognormal correlated random effects for expository pur-
poses. Moreover, the EM estimation framework we proposed is sufficiently flexible
and can be used for other continuous mixing densities with a unit mean and, unlike
copula-based models, which also allow for both positive and negative correlations,
generalizations to any vector size response variables are straightforward. However, in
the latter case, EM estimation may be chronologically demanding due to algebraic
intractability. Nevertheless, in such cases, due to the structure of the EM algorithm
for multivariate INAR(1) models with correlated random effects, the E- and M-steps
can be executed in parallel across multiple threads to exploit the processing power
available in multicore machines.
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Finally, an interesting topic for further research would be to also take into account
cross autocorrelation, proceeding along similar lines as in Ref. [4].

Data Availability The data that support the findings of this study are available from the corresponding
author, Zezhun Chen, upon reasonable request.
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Appendix A

A.1 Abbreviations

Here is a table for all the abbreviations used in this paper (Table 11).

A.2 The Gauss-Hermite quadrature in the high dimensional setting

In this session, we introduce how to transform an integral with respect to multivari-
ate normal density function into a multi-dimension Gauss-Hermite quadrature rule.
Starting from one dimensional case, the way we calculate the following integral

E[h(X)] =
∫ ∞

−∞
h(x)

1√
2πσ

exp

{
− (x − μ)2

2σ 2

}
dx,

Table 11 The explanation of the Abbreviations used in

Abbreviation Interpretation

BP... Bivariate Mixed Poisson regression model...

BPGA ∼with univarite Gamma as mixing density

BPLN ∼with bivariate log normal as mixing density

BPGGA ∼with bivarite Gaussian Copula paried with univariate Gamma as mixing density

BINAR(1) -... Bivariate Integer-valued autoregssive model ...

BINAR(1) - GA ∼with BPGA as innovations

BINAR(1) - LN ∼with BPLN as innovations

BINAR(1) - GGA ∼with BPGGA as innovations
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where X ∼ N (μ, σ 2), is first to make a linear transformation of integrand and then
apply the quadrature rule directly:

E[h(x)] =
∫ ∞

−∞
h(

√
2σ y + μ)

1√
π
exp

{
−y2

}
dy

≈ 1√
π

n∑
i=1

h(
√

σξi + μ)wi

where ξi are the roots of Hermite polynomial of degree n, with a certain weight wi .
The quadrature rule approximation of integral will be accurate only when the function
h can be well-approximated by a polynomial of degree 2n − 1 or less. Those values
can be found from the R function gauss.quad in the package statmod. The idea to
extend the result to high dimensional setting is straightforward. Specifically, we need
to first transform the density function into the form exp{yT y}, where y ∈ R

k×1, then
the k-dimensional integral reduces to a k-fold Gauss-Hermit integral. Suppose the k
-dimensional random vector X ∼ N (μ,�), where μ ∈ R

k×1 and � ∈ R
k×k . Then a

linear transform for this random vector is through eigen decomposition of � such that

x = √
2Q�

1
2 y + μ,

where Q = (ν1, ..., νk) is the matrix formed by eigen vectors and � is the diagonal
matrix with eigen values (λ1, . . . , λk) such that �νi = λiνi , i = 1, . . . . , k. Then
the exponent of multivariate normal density becomes

1

2
(x − μ)T �−1 (x − μ)

= 1

2

(√
2Q�

1
2 y + μ − μ

)T
�−1

(√
2Q�

1
2 y + μ − μ

)

=
(
Q�

1
2 y
)T (

Q�−1Q−1
) (

Q�
1
2 y
)

= yT�
1
2

(
QTQ

)
�−1

(
Q−1Q

)
�

1
2 y

= yT�
1
2 �−1�

1
2 y

= yT y.

Since � is symmetric, then QT = Q−1. Finally, the k-dimensional integral becomes

E[h(X)]=
∫ ∞

−∞
. . .

∫ ∞

−∞
h(x)

1

(2π)
k
2 |�|

exp

{
−1

2
(x−μ)T �−1 (x−μ)

}
dx1 . . . dxk

=
∫ ∞

−∞
. . .

∫ ∞

−∞
h
(√

2Q�
1
2 y + μ

)
π− k

2 exp
{
−yT y

}
dy1 . . . dyk

≈ π− k
2

n∑
i1=1

· · ·
n∑

ik=1

h
(√

2Q�
1
2 ξ + μ

)
wi1 . . . wik .
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A.3The Gauss-Legendre Quadrature in the high dimensional setting

The extension of the Gauss-Legendre quadrature rule into high dimensional situation
is much more straightforward. The following m-dimensional integral can be approxi-
mated by

∫ b1

a1
. . .

∫ bm

am
h(y1, . . . , yn)dy1 . . . dyn

≈
(

m∏
i=1

bi − ai
2

)
n∑

i1=1

. . .

n∑
im=1

h

(
b1 − a1

2
ξi1 + b1 + a1

2
, . . . ,

bn − an
2

ξim + bn + an
2

)
wi1 . . . wim

where ξ. are roots of Legendre polynomials of degree n and w. are the corresponding
weights. These can also be found easily inRby the ‘gauss.quad’ function in the package
‘statmod’. Similarly, the h function should be well-approximated by a polynomial of
degree 2n − 1 or less to ensure accuracy of the approximation.

A.4 Derivation of conditional expectation

The conditional expectation E( j)
y,t [Yi ] can be derived explicitly as follows. For simplic-

ity, we just write p1, p2 instead of p( j)
1 , p( j)

2

E
( j)
y,t [Y1] = 1

P(X t |X t−1)

s1,t∑
k1=0

s2,t∑
k2=0

k1

(
X1,t−1

k1

)
pk11 (1 − p1)

X1,t−1−k1

× f p2(y2, X2,t−1) fR(X1,t − k1, X2,t − k2)

= p1X1,t−1

P(X t |X t−1)

s1,t∑
k1=1

s2,t∑
k2=0

(
X1,t−1 − 1

k1 − 1

)
pk1−1
1 (1 − p1)

X1,t−1−k1

× f p2(y2, X2,t−1) fR(X1,t − k1, X2,t − k2)

= p1X1,t−1

P(X t |X t−1)

s′1,t∑
k′
1=0

s2,t∑
k2=0

(
X1,t−1 − 1

k′
1

)
p
k′
1

1 (1 − p1)
X1,t−1−1−k′

1

× f p2(y2, X2,t−1) fR(X1,t − 1 − k′
1, X2,t − k2)

= p1X1,t−1
P(X t − 11|X t−1 − 11)

P(X t |X t−1)
.
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Table 12 Parameter setting for simulation

Parameters p β1 β2 φ1, φ2 ρ Z1 Z2

Values 0.4,0.5 -2,0.8,0.5 −1.5,0.5,0.3 2,3 0.5 MVN(μ1,D) MVN(μ2,D)

A.5 Simulation study for Gaussian copula paired with Gammamarginals

This is to verify that the EM algorithms work for both the bivariate Poisson mixture
model and the bivariate INAR model when the random effect is characterized by cop-
ula. Two random samples of size 500 are generated from these two models separately
with pre-specified parameters, which are listed in the Table 12
where μ1 = (1, 0.3, 0.5)T , μ2 = (1, 0.2, 0.4)T , D = diag{0, 1, 1} and MVN stands
for multivariate normal distribution. Then each model is fitted by two methods: max-
imising the incomplete likelihood and EM algorithms. These two methods should
give almost the same results for p,β1,β2 which determine the mean of the model
and hence have a relatively large contribution to likelihood. On the other hand, this
may not be the case for other parameters φ1, φ2, ρ which determine the variation and
correlation of the model, and only contribute relative small part of the likelihood.
The final log likelihood values would normally be larger than the log likelihood value
evaluated at pre-specific parameters. The estimated results are given in Table 13

The difference between estimated parameters φ1, φ2, ρ and their true values seems
larger than others. This is reasonable because these parameters control the variation
of distribution and the log likelihood would be less sensitive to them.
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