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Abstract. We present approximation algorithms for several network design
problems in the model of Flexible Graph Connectivity (Adjiashvili, Hommelsheim
and Mühlenthaler, “Flexible Graph Connectivity”, Math. Program. pp. 1–33
(2021), IPCO 2020: pp. 13–26).

Let k ≥ 1, p ≥ 1 and q ≥ 0 be integers. In an instance of the (p, q)-Flexible
Graph Connectivity problem, denoted (p, q)-FGC, we have an undirected con-
nected graph G = (V,E), a partition of E into a set of safe edges S and a set
of unsafe edges U, and nonnegative costs c : E → R≥0 on the edges. A subset
F ⊆ E of edges is feasible for the (p, q)-FGC problem if for any set F ′ ⊆ U

with |F ′| ≤ q, the subgraph (V, F \ F ′) is p-edge connected. The algorith-
mic goal is to find a feasible solution F that minimizes c(F ) =

∑
e∈F ce. We

present a simple 2-approximation algorithm for the (1, 1)-FGC problem via a
reduction to the minimum-cost rooted 2-arborescence problem. This improves
on the 2.527-approximation algorithm of Adjiashvili et al. Our 2-approximation
algorithm for the (1, 1)-FGC problem extends to a (k + 1)-approximation al-
gorithm for the (1, k)-FGC problem. We present a 4-approximation algorithm
for the (k, 1)-FGC problem, and an O(q log |V |)-approximation algorithm for the
(p, q)-FGC problem. Finally, we improve on the result of Adjiashvili et al. for the
unweighted (1, 1)-FGC problem by presenting a 16/11-approximation algorithm.

The (p, q)-FGC problem is related to the well-known Capacitated k-Connected
Subgraph problem (denoted Cap-k-ECSS) that arises in the area of Capaci-
tated Network Design. We give a min(k, 2umax)-approximation algorithm for the
Cap-k-ECSS problem, where umax denotes the maximum capacity of an edge.
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1. Introduction

Network design and graph connectivity are core topics in Theoretical Computer
Science and Operations Research. A basic problem in network design is to find
a minimum-cost sub-network H of a given network G such that H satisfies some
specified connectivity requirements. Most of these problems are NP-hard. Several
important algorithmic paradigms were developed in the context of these topics,
ranging from exact algorithms for the shortest s, t-path problem and the mini-
mum spanning tree (MST) problem to linear programming-based approximation
algorithms for the survivable network design problem and the generalized Steiner
network problem. Network design problems are often motivated by practical con-
siderations such as the design of fault-tolerant supply chains, congestion control for
urban road traffic, and the modeling of epidemics (see [15, 17, 20]).

Recently, Adjiashvili, Hommelsheim and Mühlenthaler [1, 2] introduced a new
model called Flexible Graph Connectivity (FGC), that is motivated by research in
robust optimization. (In this paper, the notation FGC may be used as an abbrevi-
ation for “the FGC problem”; we use similar abbreviations for the names of other
related problems.) In an instance of FGC, we have an undirected connected graph
G = (V,E), a partition of E into a set of safe edges S and a set of unsafe edges U,
and nonnegative costs c : E → R≥0 on the edges. The graph G may have multiedges,
but no self-loops. We use n to denote the number of vertices of G. The cost of an
edge-set F ⊆ E is denoted by c(F ) =

∑
e∈F ce. A subset F ⊆ E of edges is feasible

for FGC if for any unsafe edge e ∈ F ∩ U, the subgraph (V, F \ {e}) is connected.
The problem is to find a feasible edge-set F of minimum cost. The motivation
for studying FGC is two-fold. First, FGC generalizes many well-studied survivable
network design problems. Notably, the problem of finding a minimum-cost 2-edge
connected spanning subgraph (abbreviated as 2-ECSS) corresponds to the special
case of FGC where all edges are unsafe, and the MST problem corresponds to the
special case of FGC where all edges are safe. Second, FGC captures a non-uniform
model of survivable network design problems where a specified subset of edges never
fail, whereas each edge can fail in the classical model of survivable network design
problems. Since FGC generalizes the minimum-cost 2-ECSS problem, it is APX-
hard (see [8]); thus, a polynomial-time approximation scheme for FGC is ruled out
unless P=NP.

The notion of (p, q)-FGC is an extension of the basic FGC model where we have
two additional integer parameters p and q satisfying p ≥ 1 and q ≥ 0. For a subgraph
H = (V, F ) of G and a vertex-set S ⊆ V , we use δH(S) to denote the set of edges
in H with exactly one end-vertex in S. A subset F ⊆ E of edges is feasible for
(p, q)-FGC if the spanning subgraph H = (V, F ) is p-edge connected, and moreover,
the deletion of any set of at most q unsafe edges of F preserves p-edge connectivity.
In other words, each cut δH(S), ∅ 6= S ( V , of H either contains p safe edges or
contains p + q (safe or unsafe) edges. The algorithmic goal is to find a feasible
edge-set F of minimum cost. The (p, q)-FGC problem is a natural and fundamental
question in robust network design. See the appendix, Section 7, for an example of
(2, 2)-FGC. Note that the FGC problem is the same as the (1, 1)-FGC problem.
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Observe that the problem of finding a minimum-cost p-edge connected spanning
subgraph (abbreviated as p-ECSS) corresponds to the special case of (p, q)-FGC
where all edges are safe, and the problem of finding a minimum-cost (p+ q)-ECSS
corresponds to the special case of (p, q)-FGC where all edges are unsafe. Informally
speaking, the model of (p, q)-FGC interpolates between p-edge connectivity (when
all edges are safe) and (p+ q)-edge connectivity (when all edges are unsafe).

For each of the problems considered in this paper, any solution (i.e., output) must
be a subgraph of the graph G of the instance; that is, the (multi) set of edges F of
a solution must be a subset of the (multi) set E(G); in other words, the number of
copies of an edge e = vw in F cannot exceed the number of copies of e in E(G); see
the discussion in [18, Chapter 3.1].

The (p, q)-FGC model is related to the model of Capacitated Network Design.
There are several results pertaining to approximation algorithms for various prob-
lems in Capacitated Network Design; for example, see Goemans et al. [9] and
Chakrabarty et al. [3]. Let k be a positive integer. The Capacitated k-Connected
Subgraph problem, see [3], is a well studied problem in this area. We denote this
problem by Cap-k-ECSS. In an instance of this problem, we have an undirected
connected graph G = (V,E), nonnegative integer edge-capacities u : E → Z≥0,
nonnegative edge-costs c : E → R≥0, and a positive integer k. The goal is to find
an edge-set F ⊆ E such that for any nonempty R ( V we have

∑
e∈δG(R)∩F ue ≥ k,

and c(F ) is minimized. Let n and m denote the number of vertices and edges of
G, respectively. See the appendix, Section 7, for an example of Cap-4-ECSS. For
this problem, Goemans et al. [9] give a min(2k,m)-approximation algorithm, and
Chakrabarty et al. [3] give a randomized O(log n)-approximation algorithm. We
mention that for some particular values of p and q, such as p = 1 (and arbitrary
q) or q ≤ 1 (and arbitrary p), (p, q)-FGC can be cast as a special case of the
Cap-k-ECSS problem. The FGC problem corresponds to the Cap-2-ECSS problem
where safe edges have capacity two and unsafe edges have capacity one. Moreover,
(1, k)-FGC corresponds to the Cap-(k + 1)-ECSS problem where safe edges have
capacity k + 1 and unsafe edges have capacity one; (k, 1)-FGC corresponds to the
Cap-(k(k+1))-ECSS problem where safe edges have capacity k+1 and unsafe edges
have capacity k. We mention that there exist values of p and q (e.g., p = 2, q = 2)
such that the (p, q)-FGC problem differs from the Cap-(p(p + q))-ECSS problem
where safe edges have capacity p+ q and unsafe edges have capacity p.

Our contributions: We list our main contributions and give a brief overview of
our results and techniques.

Our first result is based on a simple reduction from FGC to the well-known
minimum-cost rooted 2-arborescence problem that achieves an approximation fac-
tor of two for FGC. This result matches the current best approximation fac-
tor known for the minimum-cost 2-ECSS problem, and improves on the 2.527-
approximation algorithm of [2]. At a high level, our result is based on an extension
of the 2-approximation algorithm of Khuller and Vishkin [14] for the minimum-
cost 2-ECSS problem. (In fact, Khuller and Vishkin [14] give a reduction from
the minimum-cost k-ECSS problem to the problem of computing a minimum-cost
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rooted k-arborescence in a digraph, and they prove an approximation factor of two
for the former problem.)

Theorem 1.1. There is a 2-approximation algorithm for FGC.

The following result generalizes Theorem 1.1 to the (1, k)-FGC problem. Our
proof of the generalization of Theorem 1.1 is based on a reduction from (1, k)-FGC
to the minimum-cost rooted (k + 1)-arborescence problem (see Definition 2.2 and
Proposition 2.3). We lose a factor of k + 1 in this reduction.

Theorem 1.2. There is a (k + 1)-approximation algorithm for (1, k)-FGC.

In Section 3, we consider the Capacitated k-Connected Subgraph problem that we
denote by Cap-k-ECSS. For notational convenience, let umax := max{ue : e ∈ E}
denote the maximum capacity of an edge in the given instance of Cap-k-ECSS; sim-
ilarly, let umin := min{ue : e ∈ E}. Our main result in Section 3 is a min(k, 2umax)-
approximation algorithm for the Cap-k-ECSS problem, stated in Theorem 1.3. Sim-
ilar to Theorems 1.1 and 1.2, our proof of Theorem 1.3 is based on a reduction from
the Cap-k-ECSS problem to the minimum-cost rooted k-arborescence problem. The
factor m in the min(2k,m) approximation factor of Goemans et al. comes from the
fact that a simple greedy strategy yields an m-approximation for the Cap-k-ECSS
problem. Thus, we may assume that k ≤ m holds. Furthermore, if 2umax ≤ m, our
result is better, and, in fact, for the standard case of umin = 1, umax = k � m, no
previous result achieves an approximation factor of k (to the best of our knowledge).
Our result above is incomparable to the result in [3]; our approximation factor is in-
dependent of the graph size, whereas their result is independent of k. The algorithm
in [3] is probabilistic and its analysis is based on Chernoff tail bounds.

Theorem 1.3. There is an α-approximation algorithm for the Cap-k-ECSS prob-
lem, where α := min(k, 2umax).

In Section 4, we present a 4-approximation algorithm for the (k, 1)-FGC problem,
see Theorem 1.4. Our algorithm in Theorem 1.4 runs in two stages. In the first stage
we pretend that all edges are safe. Under this assumption, (k, 1)-FGC simplifies to
the minimum-cost k-ECSS problem, for which several 2-approximation algorithms
are known, see [14], [12]. We apply one of these algorithms. Let H = (V, F ) be
the k-ECSS found in Stage 1. In the second stage, our goal is to preserve k-edge
connectivity against the failure of any one unsafe edge. In the graph H, consider
a cut δH(S), ∅ 6= S ( V , that has (exactly) k edges and that contains at least
one unsafe edge. Such a cut, that we call deficient, certifies that F is not feasi-
ble for (k, 1)-FGC, so it needs to be augmented. The residual problem is that of
finding a cheapest augmentation of all deficient cuts w.r.t. (with respect to) F . It
turns out that this augmentation problem can be formulated as the minimum-cost
f -connectivity problem for an uncrossable function f (to be defined in Section 4).
Williamson, Goemans, Mihail and Vazirani [22] present a 2-approximation algo-
rithm for the latter problem.

Theorem 1.4. There is a 4-approximation algorithm for (k, 1)-FGC.
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In Section 5, we present an O(q log n)-approximation algorithm for (p, q)-FGC.
As above, our approximation algorithm for (p, q)-FGC runs in two stages. In the first
stage, we construct an instance of the Cap-k-ECSS problem (that partially models
the given (p, q)-FGC instance), and then we apply our approximation algorithm for
the Cap-k-ECSS problem (see Theorem 1.3) to compute a cheap edge-set F that
is nearly feasible for the (p, q)-FGC instance. We call a cut δG(S), ∅ 6= S ( V ,
deficient (w.r.t. F ) if |F ∩ δG(S) ∩ S| < p and |F ∩ δG(S)| < p+ q; thus, a deficient
cut is one that certifies the infeasibility of F . The second stage of our algorithm
applies several iterations. In the first iteration, we find all the deficient cuts of our
current subgraph H = (V, F ), and then we apply the greedy algorithm for the well-
known hitting-set problem to cover all the deficient cuts. We repeat such iterations
until we attain feasibility in the given (p, q)-FGC instance (i.e., there are no deficient
cuts).

Theorem 1.5. There is an O(q log n)-approximation algorithm for (p, q)-FGC.

In Section 6, we consider the unweighted version of FGC, where each edge has
unit cost. We design an improved approximation algorithm for this special case.
We give two algorithms for obtaining two candidate solutions to an instance of un-
weighted FGC; the simpler of these algorithms is discussed by Adjiashvili et al.
[1, 2]. Assuming that we have access to an α-approximation algorithm for the
minimum-size (i.e., unweighted) 2-ECSS problem, we argue that the cheaper of
the two candidate solutions is a 4α

2α+1 -approximate solution to the instance of un-

weighted FGC. We can take α = 4/3 by using the result of Sebö and Vygen [19] or
Hunkenschröder, Vempala and Vetta [11].

Theorem 1.6. There is a 16
11 -approximation algorithm for unweighted FGC.

Section 2 focuses on (1, k)-FGC and gives our (k + 1)-approximation for this
problem (Theorem 1.2); the 2-approximation for FGC (Theorem 1.1) follows as
a special case. Section 3 focuses on the Cap-k-ECSS problem, and gives our
min(k, 2umax)-approximation algorithm for this problem (Theorem 1.3). Section 4
focuses on (k, 1)-FGC, and gives our 4-approximation algorithm for this prob-
lem (Theorem 1.4). Section 5 focuses on (p, q)-FGC, and gives our O(q log n)-
approximation algorithm for this problem (Theorem 1.5). Section 6 focuses on the
unweighted version of FGC, and gives our 16

11 -approximation algorithm for this prob-
lem (Theorem 1.6). This section also has an improved approximation factor for the
unweighted version of (k, 1)-FGC. The appendix, Section 7, presents an example of
(2, 2)-FGC and an example of Cap-4-ECSS.

2. A (k + 1)-Approximation Algorithm for (1, k)-FGC

We give a (k + 1)-approximation for (1, k)-FGC, where k is a positive integer.
The 2-approximation for FGC (Theorem 1.1) follows as a special case. Recall that
in an instance of (1, k)-FGC we have an undirected graph G = (V,E) (with no self
loops), a partition of E into safe and unsafe edges, E = S ∪̇U, and nonnegative
edge-costs c : E → R≥0. Our objective is to find a minimum-cost edge-set F ⊆ E
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such that the subgraph (V, F ) remains connected against the failure of any set of k
unsafe edges.

For a subgraph H of G and a vertex-set S ⊆ V , we use δH(S) or δE(H)(S) to
denote the set of edges in H with exactly one end-vertex in S, i.e., δH(S) := {e =
uv ∈ E(H) : |{u, v} ∩S| = 1}. We drop the subscript when the underlying graph is
clear from the context.

The following characterization of feasible solutions of (1, k)-FGC is straightfor-
ward.

Proposition 2.1. An edge-set F ⊆ E is feasible for (1, k)-FGC if and only if for all
nonempty S ( V , the edge-set F ∩ δ(S) contains a safe edge or k + 1 unsafe edges.
Furthermore, in time polynomial in n, we can test if F is feasible for (1, k)-FGC.

We check the feasibility of F for (1, k)-FGC by creating an auxiliary capacitated
graph that has a capacity of k+ 1 for each safe edge and a capacity of one for each
unsafe edge; then, we test whether or not the minimum capacity of a cut of the
auxiliary graph is at least k + 1. For the rest of this section, we assume that the
given instance of (1, k)-FGC is feasible.

As mentioned before, our algorithm for (1, k)-FGC is based on a reduction to
the minimum-cost rooted (k + 1)-arborescence problem. We state a few standard
results on arborescences. Let D = (W,A) be a digraph and let c′ : A → R≥0 be
nonnegative costs on the arcs. We remark that D may have parallel arcs but it
has no self-loops. Let r ∈ W be a designated root vertex. For a subgraph H of
D and a nonempty vertex-set S ( W , we use δinH(S) to denote the set of arcs in
H such that the head of the arc is in S and the tail of the arc is in W \ S, i.e.,
δinH(S) := {a = (u, v) ∈ A(H) : u /∈ S, v ∈ S}.

Definition 2.1 (r-rooted arborescence). An r-rooted arborescence (W,T ) is a sub-
graph of D satisfying: (i) the undirected version of T is acyclic; and (ii) for every
v ∈W \ {r}, there is a directed path from r to v in the subgraph (W,T ).

In other words, an r-rooted arborescence is a directed spanning tree such that
vertex r has no incoming arcs and every other vertex has one incoming arc. An
r-rooted k-arborescence is a union of k arc-disjoint r-rooted arborescences.

Definition 2.2 (r-rooted k-arborescence). For a positive integer k, a subgraph
(W,T ) is an r-rooted k-arborescence if T can be partitioned into k arc-disjoint r-
rooted arborescences.

The following results on rooted arborescences and the corresponding optimization
problem are useful for us.

Proposition 2.2 ([18], Chapter 53.8). Let D = (W,A) be a digraph, let r ∈W be a
vertex, and let k be a positive integer. Then, D contains an r-rooted k-arborescence
if and only if |δinD(S)| ≥ k for any nonempty vertex-set S ⊆ V \ {r}.

Proposition 2.3 ([18], Theorem 53.10). In strongly polynomial time, we can obtain
an optimal solution to the minimum-cost r-rooted k-arborescence problem on (D, c′),
or conclude that there is no r-rooted k-arborescence in D.
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Claim 2.4. Let (W,T ) be an r-rooted k-arborescence for an integer k ≥ 1. Let
u, v ∈ W be two distinct vertices. Then, the number of arcs in T that have one
end-vertex at u and the other end-vertex at v (counting multiplicities) is at most k.

Proof. Since an r-rooted k-arborescence is a union of k arc-disjoint r-rooted 1-
arborescences, it suffices to prove the result for k = 1. The claim holds for k = 1
because the undirected version of T is acyclic, by definition. �

Informally speaking, our proofs map undirected graphs to their directed counter-
parts by bidirecting edges. We formalize this notion.

Definition 2.3 (Bidirected pair). For an undirected edge e = uv, we call the arc-set
{(u, v), (v, u)} a bidirected pair arising from e.

The following lemma shows how a solution F to (1, k)-FGC can be used to obtain
a rooted (k + 1)-arborescence (in an appropriate digraph) of cost at most (k + 1)
times c(F ).

Lemma 2.5. Let F be a (1, k)-FGC solution. Consider the digraph D = (V,A)
where the arc-set A is defined as follows: for each unsafe edge e ∈ F ∩U, we include
a bidirected pair of arcs arising from e, and for each safe edge e ∈ F ∩S, we include
k + 1 bidirected pairs arising from e. Consider the natural extension of the cost
vector c to D where the cost of an arc (u, v) ∈ A is equal to the cost of the edge in
G that gives rise to it. Then, there is an r-rooted (k + 1)-arborescence in D with
cost at most (k + 1)c(F ).

Proof. Let (V, T ) be a minimum-cost r-rooted (k + 1)-arborescence in D. First,
we argue that T is well-defined. By Proposition 2.2, it suffices to show that for
any nonempty S ⊆ V \ {r}, we have |δinD(S)| ≥ k + 1. Fix some nonempty S ⊆
V \ {r}. By feasibility of F , F ∩ δ(S) contains a safe edge or k+ 1 unsafe edges (see
Proposition 2.1). If F ∩ δ(S) contains a safe edge e = uv with v ∈ S, then by our
choice of A, δinD(S) contains k + 1 (u, v)-arcs. Otherwise, F ∩ δ(S) contains k + 1
unsafe edges, and for each such unsafe edge uv with v ∈ S, δinD(S) contains the arc
(u, v). In both cases we have |δinD(S)| ≥ k + 1, so T is well-defined.

We use Claim 2.4 to show that T satisfies the required bound on the cost. For each
unsafe edge e ∈ F , T contains at most 2 arcs from the bidirected pair arising from e,
and for each safe edge e ∈ F , T contains at most k+1 arcs from the (disjoint) union
of k+1 bidirected pairs arising from e. Thus, c(T ) ≤ 2 c(F ∩U)+(k+1) c(F ∩S) ≤
(k + 1) c(F ). �

Lemma 2.5 naturally suggests a reduction from (1, k)-FGC to the minimum-cost
r-rooted (k+ 1)-arborescence problem. We prove the main theorem of this section.

Proof of Theorem 1.2. Fix some vertex r ∈ V as the root vertex. Consider the
digraph D = (V,A) obtained from G as follows: for each unsafe edge e ∈ U, we
include a bidirected pair arising from e, and for each safe edge e ∈ S, we include
k + 1 bidirected pairs arising from e. For each edge e ∈ E, let R(e) denote the
multi-set of all arcs in D that arise from e ∈ E. For any edge e ∈ E (that could be
one of the copies of a multiedge) and each of the corresponding arcs ~e ∈ R(e), we
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define c~e := ce. Let (V, T ) denote a minimum-cost r-rooted (k + 1)-arborescence in
(D, c); note that the size of D is polynomial in the size of G since we assume that
k ≤ |E|, see the paragraph preceding Theorem 1.3 in Section 1. By Lemma 2.5,
c(T ) ≤ (k+ 1)c(F ∗), where F ∗ denotes an optimal solution to the given instance of
(1, k)-FGC.

We finish the proof by arguing that T induces a (1, k)-FGC solution F with cost
at most c(T ). Let F := {e ∈ E : R(e) ∩ T 6= ∅}. By definition of F and our choice
of arc-costs in D, we have c(F ) ≤ c(T ). It remains to show that F is feasible for
(1, k)-FGC. Consider a nonempty set S ⊆ V \ {r}. Since T is an r-rooted (k + 1)-
arborescence, by Proposition 2.2 we have |δinT (S)| ≥ k + 1. If δinT (S) contains a safe
arc (i.e., an arc that arises from a safe edge), then that safe edge belongs to F ∩δ(S).
Otherwise, δinT (S) contains some k + 1 unsafe arcs (that arise from unsafe edges).
Since the two orientations of an edge cannot appear simultaneously in δinD(S), we
have |F ∩ U ∩ δ(S)| ≥ k + 1. By Proposition 2.1, F is a feasible solution for the
given instance of (1, k)-FGC with c(F ) ≤ (k + 1) ·OPT, where OPT denotes the
optimal value of the instance. �

3. The Capacitated k-Connected Subgraph Problem

In this section we consider the Cap-k-ECSS problem. We are given a graph
G = (V,E), nonnegative integer edge-capacities u : E → Z≥0, nonnegative edge-
costs c : E → R≥0, and a positive integer k. Our goal is to find a spanning subgraph
H = (V, F ) such that for all nonempty sets R ( V we have u(δF (R)) ≥ k, and the
cost c(F ) is minimized.

Given an instance of the Cap-k-ECSS problem, we may assume without loss of
generality that ue ∈ {1, . . . , k} for all e ∈ E (we can drop edges with zero capacity
and replace edge-capacities ≥ k + 1 by k). We also assume that the Cap-k-ECSS in-
stance is feasible. This can be verified in polynomial time by using a min-cut al-
gorithm: the instance is infeasible if and only if G has a cut δ(S), ∅ 6= S ( V ,
with capacity u(δ(S)) strictly less than k. Let umax = maxe∈E ue denote the maxi-
mum capacity of an edge in G. Our main result in this section is a min(k, 2umax)-
approximation algorithm for the Cap-k-ECSS problem (Theorem 1.3); our algorithm
is based on a reduction to the minimum-cost rooted k-arborescence problem.

Description of our algorithm for the Cap-k-ECSS problem: Let D = (V,A)
be the directed graph obtained from G by replacing every edge xy ∈ E by uxy
pairs of bidirected arcs (x, y), (y, x), each with the same cost as the edge xy; thus,
each edge e in G has 2ue corresponding arcs in D, each of cost ce. Designate an
arbitrary vertex r ∈ V as the root. By feasibility of the Cap-k-ECSS instance, we
know that D contains an r-rooted k-arborescence (see Proposition 2.2). We use
Proposition 2.3 on (D, c) to obtain a minimum-cost r-rooted k-arborescence (V, T ′)
in polynomial time. Let F ′ be the set of all edges e ∈ E such that at least one of
the 2ue corresponding arcs in D appears in T ′.

Lemma 3.1. The edge-set F ′ obtained by the above algorithm is feasible for the
given Cap-k-ECSS instance and it has cost at most c(T ′).



APPROXIMATION ALGORITHMS FOR FLEXIBLE GRAPH CONNECTIVITY 9

Proof. Let R ( V \ {r} be a nonempty vertex-set that excludes the root vertex
r. Since (V, T ′) contains k arc-disjoint r-rooted arborescences, |δinT ′(R)| ≥ k (by
Proposition 2.2). For each edge e ∈ E, at most ue of the corresponding arcs in
D can occur in the arc-set δinT ′(R), by the construction of D; hence, for any edge
e ∈ δ(R) ∩ F ′, ue is an upper bound on the number of corresponding arcs of e in
δinT ′(R). Therefore,

∑
e∈δ(R)∩F ′ ue ≥ |δinT ′(R)| ≥ k, and F ′ is a feasible solution for

the Cap-k-ECSS instance, as required. For any edge e ∈ E, we only include a single
copy of e in F ′ whenever any of the 2ue corresponding arcs appear in T ′, so we have
c(F ′) ≤ c(T ′). �

We now prove Theorem 1.3 by showing that the edge-set F ′ found by the above
algorithm has cost at most min(k, 2umax) ·OPT, where OPT denotes the optimal
value of the instance.

Proof of Theorem 1.3. Let (G(V,E), {ce}e∈E , {ue}e∈E , k) denote a feasible instance
of the Cap-k-ECSS problem. Let r ∈ V be the root vertex fixed by the above algo-
rithm. Let D = (V,A) be the digraph and let (V, T ′) be the r-rooted k-arborescence
constructed by the algorithm.

Let F ∗ be an optimal solution to the Cap-k-ECSS instance, and let D∗ = (V,A∗)
be the digraph obtained from (V, F ∗) by replacing every edge xy ∈ F ∗ by uxy pairs
of bidirected arcs (x, y), (y, x) each with the same cost as edge xy. By feasibility of
F ∗ (for the Cap-k-ECSS instance), D∗ contains a k-arborescence rooted at r. Let
(V, T ∗) denote an optimal r-rooted k-arborescence in D∗.

Since D∗ is a subgraph of D and (V, T ′) is an optimal r-rooted k-arborescence in
D, we have c(T ′) ≤ c(T ∗). By Lemma 3.1, we can prove the theorem by arguing
that c(T ∗) ≤ min(k, 2umax)c(F ∗). We prove this inequality by examining two cases.

Case 1: Observe that for any edge e ∈ F ∗ there are at most 2ue correspond-
ing arcs in A∗ by construction of D∗. Hence, we have c(T ∗) ≤ c(A∗) ≤
2umaxc(F

∗).
Case 2: Next, observe that T ∗ can be partitioned into k (arc-disjoint) r-rooted

arborescences, each of which can use at most one of the 2ue correspond-
ing arcs of an edge e of G; see Claim 2.4. It follows that for each edge
e ∈ F ∗ at most k of the 2ue corresponding arcs can appear in T ∗. Hence,
c(T ∗) ≤ k c(F ∗).

This completes the proof. �

4. A 4-Approximation Algorithm for (k, 1)-FGC

Our main result in this section is a 4-approximation algorithm for (k, 1)-FGC
(Theorem 1.4). Recall that in an instance of (k, 1)-FGC, we have a graph G =
(V,E), with a partition of the edge-set into safe and unsafe edges, E = S ∪ U,
nonnegative edge-costs c : E → R≥0, and a positive integer k. The objective is to
find a minimum-cost subgraph that remains k-edge connected against the failure
of any one unsafe edge. We remark that for the k = 1 case, Theorem 1.1 yields a
better approximation factor than Theorem 1.4. Let F ∗ denote an optimal solution
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to the (k, 1)-FGC instance. The following result pertains to feasible solutions of
(k, 1)-FGC.

Proposition 4.1. An edge-set F ⊆ E is feasible for (k, 1)-FGC if and only if for
all nonempty S ( V , the edge-set F ∩ δ(S) contains k safe edges or k + 1 edges.
Furthermore, in time polynomial in n, we can test if F is feasible for (k, 1)-FGC.

Proof. The characterization of feasible solutions of (k, 1)-FGC follows from the def-
initions.

We check the feasibility of F for (k, 1)-FGC by creating an auxiliary capacitated
graph that has a capacity of k + 1 for each safe edge and a capacity of k for each
unsafe edge; then, we test whether or not the minimum capacity of a cut of the
auxiliary graph is at least k(k + 1). �

For the rest of this section, we assume that the given instance of (k, 1)-FGC is
feasible.

Proposition 4.1 suggests a two-stage strategy for finding an approximately op-
timal solution to (k, 1)-FGC. In the first stage, we do not distinguish between
safe edges and unsafe edges, and we compute a cheap k-ECSS of G = (V,E) that
we denote by H1 = (V, F1). Clearly, for every nonempty set S ( V , we have
|δH1(S)| ≥ k; if equality holds, then we call δH1(S) a k-edge-cut. If F1 is feasible
for (k, 1)-FGC, then we are done. Otherwise, by Proposition 4.1, the infeasibility
of F1 for (k, 1)-FGC is due to k-edge-cuts of H1 that contain at least one unsafe
edge. We call such cuts deficient. In the second stage, we address the remaining
augmentation problem for the deficient cuts, by casting it as a special case of the
minimum-cost f -connectivity problem (defined below).

An instance of the minimum-cost f -connectivity problem consists of an undi-
rected graph G′ = (V ′, E′), nonnegative edge-costs c′ : E′ → R≥0, and a require-

ment function f : 2V
′ → {0, 1} satisfying f(∅) = f(V ) = 0. We assume access to

f via a value oracle that takes as input a vertex-set S ⊆ V and outputs f(S). An
edge-set F ⊆ E′ is feasible if |F ∩ δG′(S)| ≥ f(S) for every S ⊆ V ′. In other words,
F is feasible if and only if for every vertex-set S with f(S) = 1 there is at least one
F -edge in the cut δ(S). The objective is to find a feasible F ⊆ E′ that minimizes
c′(F ). The minimum-cost f -connectivity problem can be formulated as an integer
program whose linear relaxation (P) is stated below. For each edge e ∈ E′, the LP
(linear program) has a nonnegative variable xe; informally speaking, xe quantifies
the “usage” of the edge e in a feasible solution to the LP.

min
∑
e∈E′

c′exe(P)

subject to x(δG′(S)) ≥ f(S) ∀S ⊆ V ′

xe ≥ 0 ∀ e ∈ E′.
The minimum-cost f -connectivity problem has received attention since it cap-

tures many well-known problems in network design. In particular, it captures the
generalized Steiner network problem. Williamson et al. [22] gave a primal-dual
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framework to obtain approximation algorithms for the minimum-cost f -connectivity
problem when f is a proper function, and more generally, when f is an uncrossable
function (also see the book chapter by Goemans and Williamson [10]).

Definition 4.1 (Uncrossable function). A function f : 2V
′ → {0, 1} is called un-

crossable if f(V ′) = 0 and f satisfies the following two conditions:

(i) f is symmetric, i.e., f(S) = f(V ′ \ S) for all S ⊆ V ′;
(ii) for any two sets A,B ⊆ V ′ with f(A) = f(B) = 1, either f(A ∩ B) = f(A ∪

B) = 1 or f(A \B) = f(B \A) = 1 holds.

Under the assumption that minimal violated sets can be computed efficiently
throughout, the primal-dual algorithm of [22] gives a 2-approximation for the minimum-
cost f -connectivity problem with an uncrossable function f . There is no explicit
result in [22] that can be quoted verbatim and applied for our purposes, so we state
the most relevant result from [22].

Definition 4.2 (Minimal violated sets). Let f : 2V
′ → {0, 1} be a requirement

function and F ⊆ E′ be an edge-set. A vertex-set S ⊆ V ′ is said to be violated,
w.r.t. f and F , if f(S) = 1 and F ∩ δG′(S) = ∅. We say that S is a minimal
violated set if none of the proper subsets of S is violated.

Proposition 4.2 ([22], Lemma 2.1). Let (G′, c′, f) be an instance of the minimum-

cost f -connectivity problem, where f : 2V
′ → {0, 1} is an uncrossable function that

is given via a value oracle. Suppose that for any F ⊆ E′ we can compute all minimal
violated sets (w.r.t. f and F ) in polynomial time. Then, in polynomial time, we
can compute a feasible solution F ⊆ E′ such that c′(F ) ≤ 2 z∗, where z∗ denotes the
optimal value of the LP relaxation (P).

We now describe a two-stage algorithm that produces a 4-approximate (k, 1)-FGC
solution in polynomial time, thereby proving Theorem 1.4.

Description of our 4-approximation algorithm for (k, 1)-FGC: Our algorithm
runs in two stages. In the first stage, we construct an instance of the minimum-
cost k-ECSS problem from the instance of (k, 1)-FGC, by ignoring the distinction
between the safe edges and the unsafe edges of G; the resulting instance is feasible
because (V, F ∗) is k-edge connected. Then, we compute a k-ECSS H1 = (V, F1) of
G by applying a 2-approximation algorithm to the instance of the minimum-cost
k-ECSS problem; either the algorithm of Khuller & Vishkin [14] or the algorithm
of Jain [12] could be used. Clearly, c(F1) ≤ 2 c(F ∗). Next, we define the collection
C := {S ⊆ V : |δ(S) ∩ F1| = k} of all vertex-sets that correspond to k-edge-cuts of
H1. Consider the requirement function f : 2V → {0, 1} where

(4:1) f(S) = 1 if and only if S ∈ C and F1 ∩ δ(S) ∩ U 6= ∅.
Consider an instance of the minimum-cost f -connectivity problem for the graph
G′ := G− F1 with nonnegative edge-costs c : (E \ F1)→ R≥0; note that F ∗ \ F1 is
feasible for this instance. In the second stage, we use Proposition 4.2 to compute a
feasible solution F2 ⊆ E \ F1 for this instance such that c(F2) ≤ 2 c(F ∗ \ F1). We
return the solution F = F1 ∪̇F2.
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We prove Theorem 1.4 via a sequence of lemmas and claims. Lemma 4.3 be-
low shows that f is uncrossable, and Claim 4.4 below shows that we can compute
minimal violated sets (w.r.t. f and any F ′ ⊆ E \ F1) in polynomial time. These
two results together with Proposition 4.2 imply that our algorithm runs in poly-
nomial time. Lemma 4.5 shows the correctness of our algorithm, and proves the
approximation factor of four.

Lemma 4.3. f is uncrossable.

Proof. We check that the two properties (i), (ii) of an uncrossable function hold for
f (recall Definition 4.1). The symmetry of f follows from the symmetry of cuts
in undirected graphs. To check the second property, consider nonempty A,B ( V
satisfying f(A) = f(B) = 1. By definition of f , see (4:1), in the subgraph H1 =
(V, F1), both δF1(A) and δF1(B) are (minimum) k-edge-cuts, and there is at least
one unsafe edge in each of these cuts. Let e1 be an unsafe edge in δH1(A) and let
e2 be an unsafe edge in δH1(B). Let r ∈ V be an arbitrary vertex. By symmetry
of the cut function, we may assume without loss of generality that r /∈ A ∪ B. If
A ∩ B = ∅, then f(A \ B) = f(B \ A) = 1, so we are done. If A ⊆ B or A ⊇ B,
then f(A ∩ B) = f(A ∪ B) = 1, so we are done. Thus, we may assume that
A∩B, V \ (A∪B), A \B,B \A are all nonempty. For S, T ⊆ V , let E(S, T ) denote
the set of edges of G with exactly one end-vertex in S and exactly one end-vertex
in T . By submodularity of the function d(S) := |δH1(S)|, see [18], we have:

(4:2) |δH1(A ∩B)| = |δH1(A ∪B)| = |δH1(A \B)| = |δH1(B \A)| = k.

Furthermore, we also have:

(4:3) F1 ∩ E(A \B,B \A) = ∅ and F1 ∩ E(A ∩B, V \ (A ∪B)) = ∅.
We finish the proof by a case analysis on e1 and e2. By (4:3), exactly one of the
following cases occurs: (i) e1 ∈ E(A \B, V \ (A∪B)); or (ii) e1 ∈ E(A∩B,B \A).
If (i) occurs, then f(A \B) = f(A∪B) = 1. Otherwise, (ii) occurs and f(A∩B) =
f(B \ A) = 1. We apply a similar analysis for e2. Exactly one of the following
occurs: (a) e2 ∈ E(B \A, V \ (A ∪B)); or (b) e2 ∈ E(A ∩B,A \B). If (a) occurs,
then f(B \A) = f(A∪B) = 1. Otherwise, (b) occurs and f(A∩B) = f(A\B) = 1.
It is easy to verify that for each of the four combinations, we either have f(A∩B) =
f(A ∪B) = 1 or we have f(A \B) = f(B \A) = 1. �

Claim 4.4. For any F ′ ⊆ E \ F1, we can compute all minimal violated sets w.r.t.
f and F ′ in polynomial time.

Proof. The number of minimum-cuts in a connected graph on n vertices is O(n2)
(see [13]). Hence, we have |C| = O(|V |2). Using results on network flow algorithms,
we can compute C in polynomial time, see [4], [16]. Since we have explicit access to
C, we have a value oracle for f .

Let F ′ ⊆ E \ F1 be a given edge-set. By Definition 4.2, any violated set S w.r.t.
F ′ is in C and has f(S) = 1. We can exhaustively check each of the sets in C and
find each of the minimal violated sets. �

Lemma 4.5. The edge-set F = F1 ∪̇F2 is feasible for (k, 1)-FGC and satisfies
c(F ) ≤ 4c(F ∗).
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Proof. We first argue that F is feasible. Since F1 and F2 are edge-disjoint, we have
F ⊆ E. We use the characterization of feasible solutions given by Proposition 4.1.
Consider an arbitrary nonempty vertex-set S ( V . Since H1 = (V, F1) is a k-
edge connected subgraph of G, we have |F1 ∩ δ(S)| ≥ k. If |F1 ∩ δ(S)| ≥ k + 1,
then |F ∩ δ(S)| ≥ k + 1. Otherwise, δ(S) is a k-edge-cut of H1, i.e., S ∈ C. If
F1 ∩ δ(S) contains only safe edges, then F ∩ δ(S) contains k safe edges. Otherwise,
by definition of f , see (4:1), f(S) = 1. Next, by feasibility of F2 for the minimum-
cost f -connectivity problem, we have F2 ∩ δ(S) 6= ∅. Thus, |F ∩ δ(S)| = |F1 ∩
δ(S)| + |F2 ∩ δ(S)| ≥ k + 1. We show that c(F ) ≤ 4 c(F ∗) by arguing that each of
c(F1) and c(F2) is ≤ 2 c(F ∗). The bound on c(F1) is immediate from the fact that
F ∗ is feasible for the instance of the minimum-cost k-ECSS problem considered in
Stage 1, and by the 2-approximation algorithm used in Stage 1. Next, by feasibility
of F ∗ \ F1 for the instance of the minimum-cost f -connectivity problem, we have
c(F2) ≤ 2c(F ∗ \ F1) ≤ 2c(F ∗). The lemma follows. �

Remarks: The function f is not a proper function (see [22]), and it is not weakly-
supermodular (see [12]). Any proper function g : 2V → {0, 1} must satisfy the
maximality property, that is, g(A ∪ B) ≤ max{g(A), g(B)} must hold for any two
disjoint sets A,B ⊆ V . Suppose that k = 2. Consider the graph H1 = (V, F1) with
V = {v1, v2, v3} and with four unsafe edges, namely, two copies of v1v2, one copy of
v1v3, and one copy of v2v3. Let f be defined by (4:1). Then we have f({v1}) = 0,
f({v2}) = 0, and f({v1, v2}) = 1. Clearly, maximality is violated by the sets
A = {v1}, B = {v2}. Any weakly-supermodular function g : 2V → Z must satisfy
the property that the inequality g(A) + g(B) ≤ max(g(A− B) + g(B − A), g(A ∩
B) + g(A ∪ B)) holds for any two sets A,B ⊆ V . Suppose that k = 2. Consider
the graph H1 = (V, F1) with V = {v1, v2, v3, v4} and with one unsafe edge, namely,
v2v3, and five safe edges, namely, two copies of v1v2, two copies of v3v4, and one
copy of v4v1. Let f be defined by (4:1). Let A = {v1, v2} and let B = {v2, v3}. Then
we have f(A) = 1, f(B) = 0, f(A − B) = f({v1}) = 0, f(B − A) = f({v3}) = 0,
f(A ∩B) = f({v2}) = 0, and f(A ∪B) = f({v1, v2, v3}) = 0. Clearly, the required
inequality fails to hold for the sets A,B.

5. An O(q log n)-Approximation Algorithm for (p, q)-FGC

In this section, we present an O(q log n)-approximation algorithm for (p, q)-FGC.
Recall that an instance of (p, q)-FGC consists of an undirected graph G = (V,E),
a partition of E into safe and unsafe edges, E = S ∪̇U, nonnegative edge-costs
c : E → R≥0, and two integer parameters p ≥ 1 and q ≥ 0. The objective is
to find a minimum-cost edge-set F ⊆ E such that the subgraph (V, F ) remains
p-edge connected against the failure of any set of at most q unsafe edges, that is,
for any F ′ ⊆ U with |F ′| ≤ q, the subgraph (V, F \ F ′) is p-edge connected. We
assume that q ≥ 2, since otherwise our results from Section 4 give a 4-approximation
algorithm. The following result pertains to feasible solutions of (p, q)-FGC.

Proposition 5.1. Consider an instance of (p, q)-FGC. An edge-set F ⊆ E is
feasible if and only if for all nonempty S ( V , the edge-set F ∩ δ(S) contains p
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safe edges or p + q edges. Furthermore, in time polynomial in n, we can test if F
is feasible for (p, q)-FGC.

Proof. The characterization of feasible solutions of (p, q)-FGC follows from the def-
initions.

We check the feasibility of F for (p, q)-FGC by creating an auxiliary capacitated
graph that has G = (V, F ) as the underlying graph, and that has a capacity of p+ q
for each safe edge and a capacity of p for each unsafe edge. Then, we compute
a minimum-capacity cut of the auxiliary graph, call it δF (S∗); note that S∗ is
nonempty and S∗ ( V . Let µ denote the capacity of δF (S∗); thus, µ = (p +
q) |δF (S∗)∩ S|+ p |δF (S∗)∩U|. If µ < p(p+ q), then F is infeasible. Otherwise, we

compute the set Ĉ of all cuts of the auxiliary graph that have capacity between µ
and 2µ, by applying the polynomial-time algorithm of Nagamochi, Nishimura and
Ibaraki [16] that enumerates over all 2-approximate minimum-cuts of a capacitated

graph. We exhaustively check whether or not each of the cuts in Ĉ has either (p+q)

edges or has p safe edges. Clearly, F is infeasible if Ĉ contains a cut that violates
this condition. Otherwise, F is feasible because any cut δF (S), ∅ 6= S ( V , of

the auxiliary graph that is not in Ĉ has capacity ≥ 2µ ≥ 2 p(p + q), and so either
(p+ q) |δF (S) ∩ S| ≥ p(p+ q), that is, δF (S) has ≥ p safe edges, or p |δF (S) ∩ U| ≥
p(p+ q), that is, δF (S) has ≥ p+ q (unsafe) edges. �

For the rest of this section, we assume that the given instance of (p, q)-FGC is
feasible. Let F ∗ denote an optimal solution for the (p, q)-FGC instance, and let
OPT = c(F ∗) denote the optimal value.

Given an edge-set F (i.e., a candidate solution), we call a cut δ(S), ∅ 6= S ( V ,
deficient if |F ∩ δ(S) ∩ S| < p and |F ∩ δ(S)| < p + q; thus, a deficient cut is one
that certifies the infeasibility of F .

First, we give an overview of ourO(q log n)-approximation algorithm for (p, q)-FGC.
Our algorithm runs in two stages. In the first stage, we construct an instance of
the Cap-k-ECSS problem (that partially models the given (p, q)-FGC instance),
and then we apply our approximation algorithm for the Cap-k-ECSS problem (see
Theorem 1.3) to compute an edge-set F of cost O(q · OPT) that is “nearly feasi-
ble” for the (p, q)-FGC instance. In more detail, the set of cuts that are deficient
w.r.t. F has size polynomial in n, and the set is computable in time polynomial in
n. The second stage of our algorithm applies several iterations. In each iteration
` = 1, 2, . . . , we find all the deficient cuts of our current subgraph H = (V, F ) and
then we apply the greedy algorithm for the (well-known) hitting-set problem to
find an edge-set F` that covers all the deficient cuts (i.e., each of the deficient cuts
contains at least one edge of F`). Then, we update F to F ∪̇F`, i.e., we augment
F by the edge-set computed by the greedy algorithm, and then we re-compute the
set of deficient cuts w.r.t. the updated subgraph H = (V, F ). We stop iterating
when there are no deficient cuts w.r.t. H = (V, F ); thus, at the termination of the
second stage, F is feasible for the (p, q)-FGC instance. The greedy algorithm (for
the hitting-set instances that arise) achieves an approximation factor of O(log n).
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We discuss the hitting-set problem and state the approximation factor of the
greedy algorithm for this problem.

Definition 5.1 (Hitting-Set Problem). Given a ground set E = {e1, . . . , en̂} of
elements, a family R ⊆ 2E of subsets of E, and nonnegative costs c : E → R≥0 on
the elements of E, find a minimum-cost subset F ⊆ E such that for every R ∈ R,
we have F ∩R 6= ∅.

It is well-known that there is an O(log |R|)-approximation algorithm for the
hitting-set problem based on the greedy strategy, see [21].

Proposition 5.2 ([21]). There is an O(log |R|)-approximation algorithm for the
hitting-set problem that runs in time polynomial in |E| and |R|.

Constructing an instance of Cap-k-ECSS: Given an instance of (p, q)-FGC,
we construct an instance of the Cap-k-ECSS problem on the underlying graph
G = (V,E) with the same edge costs c : E → R≥0.

Recall that our plan is to apply the min(k, 2umax)-approximation algorithm for
Cap-k-ECSS (Theorem 1.3) to compute a cheap edge-set F that is “nearly feasible”
for the (p, q)-FGC instance. We consider two cases, one for p > q, and the other
for p ≤ q, and we use different values of the edge capacities for the two cases. In
the first case, we use unit edge capacities, and in the second case, we use the edge
capacities given in the proof of Proposition 5.1. Formally:

Case 1 p > q: k := p, and all edges have unit capacity, i.e., ue := 1 for all
e ∈ E.

Case 2 p ≤ q: k := p(p + q), each safe edge has capacity (p + q), and each
unsafe edge has capacity p, that is, ue = p+ q if e ∈ S, and ue = p if e ∈ U.

Let umax = maxe∈E ue be the maximum edge capacity.
First, we argue that the instance of Cap-k-ECSS is feasible. Recall that F ∗

denotes an optimal solution for the given (feasible) (p, q)-FGC instance. By Propo-
sition 5.1, for any nonempty set S ( V , we either have |δ(S) ∩ F ∗ ∩ S| ≥ p or
|δ(S)∩ F ∗| ≥ p+ q. The feasibility of the Cap-k-ECSS instance follows from show-
ing that for all nonempty sets S ( V , we have u(δ(S)) ≥ k. To this end, fix such
an S and recall the choice of edge capacities that depends on the relative values of
p and q. If p > q, then

(5:1) u(δ(S)) = |δ(S)| ≥ |δ(S) ∩ F ∗| ≥ p = k.

On the other hand, if p ≤ q, then we have:
(5:2)
u(δ(S)) ≥ u(δ(S)∩F ∗) ≥ max((p+q) · |δ(S)∩F ∗∩S|, p · |δ(S)∩F ∗|) ≥ p(p+q) = k.

Let F ⊆ E be a feasible solution to the Cap-k-ECSS instance; thus, every
nonempty S ( V has u(δ(S) ∩ F ) ≥ k. Let

C := {S ( V : S 6= ∅, u(δ(S) ∩ F ) ≤ 2k, |δ(S) ∩ F | < p+ q, |δ(S) ∩ F ∩ S| < p}.
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Informally speaking, in the capacitated graph H = (V, F, u) that corresponds to the
edge-set F , C is the collection of all vertex-sets that correspond to 2-approximate
minimum-cuts that violate the feasibility requirement stated in Proposition 5.1.

Description of our two-stage algorithm for (p, q)-FGC: In the first stage of
the algorithm, we use Theorem 1.3 to obtain a feasible solution F for the above
Cap-k-ECSS instance such that the cost c(F ) is ≤ min(k, 2umax) ·OPT. The second
stage of the algorithm consists of several iterations that augment edges to F until all
the deficient cuts w.r.t. F have been fixed. The `th iteration (for some ` = 1, 2, . . . )
consists of solving an instance of the hitting-set problem: we want to hit all sets in
the collection {δ(S)∩ (E \F ) : S ∈ C} by using edge-elements e ∈ E \F , where the
cost of e is ce (in the hitting-set instance). Let F ′` denote a hitting-set computed
by the greedy algorithm for the above hitting-set instance. We update F to F ∪̇F ′`,
and recompute C using the new F . As long as C is not empty, we repeat the above
iteration. When C becomes empty, we return the current F as a feasible solution of
the given (p, q)-FGC instance. Assuming that the number of iterations in the second
stage is O(q), the cost of F is O(q ·OPT +O(q log n) ·OPT) = O(q log n) ·OPT.

Observe that each of the hitting-set instances constructed by the algorithm is
feasible, because for any deficient cut δ(S) w.r.t. the current solution F , we have
(F ∗ \ F ) ∩ δ(S) 6= ∅, that is, F ∗ \ F is a feasible hitting-set.

The next result shows that the algorithm finds a feasible solution.

Lemma 5.3. The edge-set F returned by the algorithm is feasible for the given
(p, q)-FGC instance.

Proof. By the design of the second stage of the algorithm, the solution F is repeat-
edly augmented as long as C is nonempty, so it suffices to argue that every deficient
cut (w.r.t. the current F ) belongs to C. Let δ(S), ∅ 6= S ( V , be an arbitrary
deficient cut w.r.t. F . By definition, |δ(S) ∩ F ∩ S| < p and |δ(S) ∩ F | < p+ q. To
show that S belongs to C, we need to show that u(δ(S) ∩ F ) ≤ 2k holds. If p > q,
then

(5:3) u(δ(S) ∩ F ) = |δ(S) ∩ F | < p+ q < 2p = 2k.

On the other hand, if p ≤ q, then

(5:4) u(δ(S)∩F ) = p · |δ(S)∩F |+q · |δ(S)∩F ∩S| < p(p+q)+pq < 2p(p+q) = 2k.

Thus, in either case, deficient cuts are 2-approximate minimum-cuts in the capaci-
tated graph H = (V, F, u), and they belong to C. �

We complete the proof of Theorem 1.5 by arguing that the above algorithm finds
a feasible solution of the (p, q)-FGC instance of cost O(q log n) ·OPT in polynomial
time.

Lemma 5.4. The above two-stage algorithm runs in time polynomial in n and
returns a feasible solution F ⊆ E for (p, q)-FGC such that c(F ) ≤ O(q log n) ·OPT.

Proof. We argue that the output of the algorithm has cost at most O(q log n)·OPT.
It is easy to see that the cost of the first-stage solution is O(q) · OPT because of
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the approximation factor from Theorem 1.3; as mentioned before, F ∗ is feasible for
the Cap-k-ECSS instance, and min(k, umax) ≤ 2q, for all relevant values of p and q.
We bound the cost incurred in the second stage by arguing that: (i) each iteration
leads to an additional cost of at most O(log n) ·OPT; and (ii) there are at most q
iterations.

In the capacitated graphH(V, F, u), all deficient cuts are 2-approximate minimum-
cuts, i.e., the capacity of each deficient cut is at most two times the capacity of a
minimum-cut. Karger’s bound [13] on the number of 2-approximate minimum-cuts
implies that |C| = O(n4). By using the algorithm of Nagamochi et al. [16] we can
explicitly compute the collection C in (deterministic) polynomial time. Since F ∗ \F
is a feasible solution to each of the hitting-set instances constructed in the second
stage, Proposition 5.2 implies that the cost of the augmenting edge-set found in
each iteration is O(log |C|) · c(F ∗ \ F ) = O(log n) ·OPT, thereby showing (i).

Next, we bound the number of iterations via a case analysis. First, suppose that
p > q. Then each iteration increases the capacity of a deficient cut by at least one.
By (5:1), every deficient cut has capacity at least p at the end of the first stage, and
due to (5:3), a cut is no longer deficient once its capacity is at least p + q. Next,
suppose that p ≤ q. We use a similar argument for this case. Now, each iteration
increases the capacity of a deficient cut by at least p. By (5:2), every deficient
cut has capacity at least p(p + q) at the end of the first stage, and due to (5:4), a
cut is longer deficient once its capacity is at least p(p + q) + pq. Overall, we have
c(F ) ≤ (2q + q ·O(log n)) ·OPT = O(q log n) ·OPT, as desired.

Lastly, we argue that the entire algorithm runs in polynomial time. The first
stage runs in (deterministic) polynomial time, by Theorem 1.3. The second stage
also runs in (deterministic) polynomial time because the number of iterations is at
most q (≤ n), and in each iteration we solve a polynomial-sized hitting-set instance.
This completes the proof of the lemma. �

6. Unweighted problems: (1, 1)-FGC and (k, 1)-FGC

Consider the unweighted version of FGC where each edge has unit cost, i.e.,
ce = 1 for all e ∈ E. We present a 16

11 -approximation algorithm (see Theorem 1.6).
To the best of our knowledge, this is the first result that improves on the ap-
proximation factor of 3

2 for unweighted FGC. In fact, we give two algorithms for
obtaining two candidate solutions to an instance of unweighted FGC; the simpler
of these algorithms is discussed by Adjiashvili et al. [1, 2]. Assuming that we have
access to an α-approximation algorithm for the minimum-size (i.e., unweighted)
2-ECSS problem, we argue that the cheaper of the two candidate solutions is a
4α

2α+1 -approximate solution to the instance of unweighted FGC. Adjiashvili et al.

[2] gave an
(
α
2 + 1

)
-approximation algorithm for unweighted FGC, assuming the

existence of an α-approximation algorithm for the minimum-size (i.e., unweighted)
2-ECSS problem; this implies a 5

3 -approximation algorithm for unweighted FGC by
using the results of [19, 11]. The algorithm in [2] starts with a maximal forest of
safe edges in the graph. At the end of this section, we give an example showing
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that the (asymptotic) approximation factor achievable by such an algorithm is at
least 3

2 . Our main result in this section is the following.

Theorem 6.1. Suppose that there is an α-approximation algorithm for the minimum-
size (i.e., unweighted) 2-ECSS problem. Then, there is a 4α

2α+1 -approximation algo-
rithm for unweighted FGC.

Theorem 1.6 follows from the above theorem by using the 4
3 -approximation al-

gorithm of [19, 11] for the minimum-size 2-ECSS problem. Before delving into the
proof of Theorem 6.1, we introduce some basic results on W -joins, which will be
useful in our algorithm and its analysis. Let G′ = (V ′, E′) be an undirected graph
with no self-loops and let c′ : E′ → R≥0 be nonnegative costs on the edges.

Definition 6.1 (W -join). Let W ⊆ V ′ be a subset of vertices with |W | even. A
subset J ⊆ E′ of edges is called a W -join if W is equal to the set of vertices of odd
degree in the subgraph (V ′, J).

The following classical result on finding a minimum-cost W -join is due to Ed-
monds.

Proposition 6.2 ([18], Theorem 29.1). Given (G′, c′), we can either obtain a
minimum-cost W -join, or conclude that there is no W -join, in strongly polynomial
time.

The W -join polytope is the convex hull of the incidence vectors of W -joins. Ed-
monds & Johnson showed that the dominant of the W -join polytope has a simple
linear description.

Proposition 6.3 ([18], Corollary 29.2b). The dominant of the W -join polytope is

given by {x ∈ RE′≥0 : x(δG′(S)) ≥ 1 ∀S ( V ′ s.t. |S ∩W | odd}.

Consider an instance of unweighted FGC consisting of a graph G = (V,E) with a
specified partition of E into a set of safe edges and a set of unsafe edges, E = S ∪̇U.
We will assume that G is connected and has no unsafe bridges (i.e., cut-edges), since
otherwise the instance is infeasible. Let F ∗ denote an optimal solution.

Join-based algorithm for unweighted FGC: Let T be a spanning tree in G that
maximizes the number of safe edges. Clearly, for each safe edge e = uv in E(G)−T ,
the (unique) u, v-path in T consists of safe edges; hence, the graph obtained from
G by contracting all the safe edges of T has no safe edges. If |T ∩ S| = |V | − 1, then
T is an optimal FGC solution for the given instance, and we are done. Otherwise,
let T ′ := T ∩ U be the (nonempty) set of unsafe edges in T . Let G′ = (V ′, E′)
denote the graph obtained from G by contracting all the (safe) edges in T \ T ′.
(We remove all self-loops from G′, but retain parallel edges that arise due to edge
contractions.) Note that all edges in E′ are unsafe (by the discussion above), and T ′

is a spanning tree of G′. Let W ′ denote the (nonempty) set of odd degree vertices
in the subgraph (V ′, T ′). Using Proposition 6.2, in polynomial time, we compute a
minimum-cardinality W ′-join in G′, and denote it by J ′ ⊆ E′. By our choice, the
subgraph (V ′, T ′ ∪̇ J ′) is connected and Eulerian, so it is 2-edge connected in G′.
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Consider the multiset F1 = T ∪̇ J ′ consisting of edges in E; if an edge e appears in
both T ′ and J ′, then we include two copies of e in F1.
If F1 contains at most one copy of each edge in E, then F1 is FGC-feasible. Oth-
erwise, we modify F1 to get rid of all duplicates without increasing |F1|. Consider
an unsafe edge e ∈ E′ that appears twice in F1, i.e., e belongs to both T ′ and J ′.
We remove a copy of e from F1. If this does not violate FGC-feasibility, then we
take no further action. Otherwise, the second copy of e in F1 is an unsafe bridge in
(V, F1) that induces a cut δ(S), ∅ 6= S ( V , in G. By our assumption that G has
no unsafe bridges, there is another edge e′ ∈ E that is in δ(S) but not in F1. We
include e′ in F1. This finishes the description of our first algorithm.

At the end of the de-duplication step, F1 is FGC-feasible and it contains at most
one copy of any edge e ∈ E. It is also clear that |F1| ≤ |T | + |J ′|. We claim that
|J ′| ≤ 1

2 |F
∗ ∩ U|. In fact, this follows from a result of Frank [5] (also, see [19,

Proposition 6]); Frank’s result states that the minimum size of a W -join (for any
set of vertices W with |W | even) is at most half the minimum size of a 2-ECSS;
observe that J ′ is a W ′-join of the graph G′ and F ∗ ∩ U is a 2-ECSS of G′, hence,
the inequality follows from Frank’s result. We give another proof of the inequality,
for the sake of completeness.

Claim 6.4. We have |J ′| ≤ 1
2 |F

∗ ∩ U|. Hence, |F1| ≤ |F ∗ ∩ S|+ 3
2 |F

∗ ∩ U|.

Proof. We prove the claim by constructing a fractional W ′-join of small size. Recall
that we chose T such that |T ∩ S| is maximum, and we obtained G′ by contracting
connected components in (V, T \T ′). G′ consists of only unsafe edges, and moreover,
G′ is 2-edge connected because G has no unsafe bridges (by our assumption). Let
B := F ∗ ∩ E′ denote the set of unsafe edges in the optimal solution F ∗ that also
belong to G′. Consider the vector z := 1

2χ
B where χB ∈ [0, 1]E

′
is the incidence

vector of B in G′. Let δ(S′), ∅ 6= S′ ( V (G′), be an arbitrary cut in G′ and
let δ(S) be the unique cut in G that gives rise to δ(S′) when we contract (safe)
edges in T \ T ′. Since F ∗ is FGC-feasible and there are no safe edges in δG(S), we
must have |B ∩ δG′(S′)| ≥ 2. Consequently, z(δG′(S

′)) = 1
2 |B ∩ δG′(S

′)| ≥ 1. By
Proposition 6.3, z lies in the dominant of the W ′-join polytope, i.e., z dominates a
fractional W ′-join. Since J ′ is a min-cardinality W ′-join, |J ′| ≤ 1T z ≤ 1

2 |F
∗ ∩ U|.

We bound the size of F1 by using the trivial bound |T | ≤ |F ∗|:

|F1| ≤ |F ∗|+ |J ′| ≤ |F ∗ ∩ S|+ 3

2
|F ∗ ∩ U|. �

Our second algorithm uses the α-approximation for the minimum-size 2-ECSS prob-
lem as a subroutine. Informally speaking, the solution returned by this algorithm
has the property that its size complements that of F1.

2-ECSS-based algorithm for unweighted FGC: Consider the graphG′′ obtained
from G by duplicating every safe edge in E. Similarly, let F ′′ be the multiedge-
set obtained from F ∗ by duplicating every safe edge in F ∗. Clearly, (V, F ′′) is a
2-edge connected subgraph of G′′ consisting of 2|F ∗ ∩ S| + |F ∗ ∩ U| edges. Let
F2 be the output of running the α-approximation algorithm for the minimum-size
2-ECSS problem on G′′. Since F2 is 2-edge connected and only safe edges can appear
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more than once in F2 (because G′′ only has duplicates of safe edges), we can drop
the extra copy of all safe edges while maintaining FGC-feasibility in G. This finishes
the description of our second algorithm.

The following claim is immediate.

Claim 6.5. We have |F2| ≤ 2α|F ∗ ∩ S|+ α|F ∗ ∩ U|.

We end this section with the proof of our main result on unweighted FGC.

Proof of Theorem 6.1. Given an instance of unweighted FGC, we compute two
candidate solutions F1 and F2 as given by the two algorithms described above.
The solution F1 can be computed using algorithms for the MST problem and the
minimum-weight W ′-join problem, followed by basic graph operations. The solution
F2 can be computed using the given α-approximation algorithm for the minimum-
size 2-ECSS problem. We show that the smaller of F1 and F2 is a 4α

2α+1 -approximate
solution for the instance of unweighted FGC. By Claims 6.4 and 6.5:

min(|F1|, |F2|) ≤
2α

2α+ 1
|F1|+

1

2α+ 1
|F2| =

4α

2α+ 1
|F ∗| �

As mentioned earlier, we have an example (see Figure 1 below) such that any
algorithm for unweighted FGC that starts with a maximal forest on safe edges
achieves an (asymptotic) approximation factor of 3

2 or more.

. . .
v1 v2 v3 v4 v5 v2n−1

v2n

Figure 1. In this instance we have a graph on 2n vertices. The set
of unsafe edges, shown using dashed red lines, forms a Hamiltonian
cycle. For each i = 1, . . . , n − 1, there is a safe edge, shown using
a solid green line, between v2i and v2n. The solution consisting of
all unsafe edges is feasible, and any feasible solution must contain
all unsafe edges, so the value of an optimal integral solution is 2n.
Any feasible solution that contains a maximal forest on safe edges
has size at least 3n− 1.
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Improved approximation factor for unweighted (k, 1)-FGC: Finally, we focus
on unweighted (k, 1)-FGC where each edge has unit cost. We can improve on
the approximation factor of four of Theorem 1.4, by using the same method (see
Section 4), except that in the first stage we apply the best approximation algorithm
known for the minimum-size (unweighted) k-ECSS problem. Let αk denote the
best approximation factor known for the latter problem. Note that α2 = 4/3 (see
[19, 11]), α3 = 1.5 (see Gabow [6]), and, in general, αk < 1 + 1.91

k (see Gabow &
Gallagher [7]).

Proposition 6.6. There is a (2 + αk)-approximation algorithm for un-
weighted (k, 1)-FGC. Thus, the approximation factor is 10

3 for k = 2, 7
2 for k = 3,

and it is less than (3 + 1.91
k ) for all integers k ≥ 4.
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7. Appendix: Examples of (2, 2)-FGC and Cap-4-ECSS

In this section, we illustrate the notions of (p, q)-FGC and Cap-k-ECSS through
an explicit example. Consider the graph G given in Figure 2.

1

2

3

4

5

6

Figure 2. The graph G = ({1, 2, 3, 4, 5, 6}, E) shown above
is a union of three subgraphs L,R,B. The subgraphs L =
({1, 2, 3}, {12, 23, 31}) and R = ({4, 5, 6}, {45, 56, 64}) are complete
graphs whose edges are all safe (depicted using solid green edges)
and have both cost and capacity equal to two. The subgraph B is a
complete bipartite graph on the bipartition {1, 2, 3}t{4, 5, 6} whose
edges are all unsafe (depicted using dashed red edges) and have both
cost and capacity equal to one.

We first consider a (p, q)-FGC instance on the graph G with p = q = 2. It
is easy to see that the spanning subgraph H1 comprising of all (safe) edges from
E(L)∪E(R) and any four unsafe edges from B is feasible for the (2, 2)-FGC problem
(see Proposition 5.1). Note that the cost of H1 is 6 · 2 + 4 · 1 = 16. In Claim 7.1
(see below), we show that H1 is an optimal solution.

We next consider a Cap-k-ECSS instance on the graph G with k = 4. Con-
sider the spanning subgraph H2 comprising of capacity-2 edges {12, 23, 45, 56} and
unit-capacity edges {14, 42, 26, 63, 35, 51}. We claim that H2 is feasible for the
Cap-4-ECSS instance. To see this, observe that the set of unit-capacity edges in H2

forms a Hamiltonian cycle C, so the capacity of every cut δC(S), ∅ ( S ( V , is a
positive even number. Furthermore, u(δC(S)) = 2 if and only if S consists of con-
secutive vertices from the cycle (1, 4, 2, 6, 3, 5, 1). Since {12, 23} and {45, 56} form
spanning trees in L and R, respectively, δH2(S) contains at least one capacity-2 edge.
Thus, u(δH2(S)) ≥ 4 for all ∅ ( S ( V . Clearly, the cost of H2 is 4 · 2 + 6 · 1 = 14.

By our choice of edge-capacities and k, it is easy to see that any feasible sub-
graph for the (2, 2)-FGC instance is also feasible for the Cap-4-ECSS instance. The
following claim shows that the optimal value of the former instance is strictly larger
than the optimal value of the latter instance.

Claim 7.1. Any feasible solution to the above (2, 2)-FGC instance has cost ≥ 16.
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Proof. Fix some feasible solution F ⊆ E. First, observe that |F ∩ E(B)| ≥ 4, i.e.,
F contains at least four unsafe edges; this holds because the cut δF ({1, 2, 3}) has
≥ p+ q = 4 edges, see Proposition 5.1. Clearly, if F contains all six safe edges, then
c(F ) ≥ 16 follows immediately. Now, we assume that F has ≤ 5 safe edges.

Next, we argue that both inequalities |F ∩ E(L)| ≥ 2 and |F ∩ E(R)| ≥ 2 hold.
By symmetry, it suffices to prove one of these inequalities. Suppose, for the sake of
contradiction, that |F ∩E(L)| ≤ 1 holds. Again, by symmetry, we may assume that
either F ∩ E(L) = ∅ or F ∩ E(L) = {12}. Note that F has ≤ 3 edges incident to
vertex 3 and all edges of δF ({3}) are unsafe, so deleting two of these edges results
in a graph that has ≤ 1 edge incident to vertex 3; clearly, such a graph is not 2-edge
connected. Hence, F has ≥ 2 safe edges from each of E(L) and E(R).

By symmetry, suppose that |F ∩ E(L)| = 2 ≤ |F ∩ E(R)|. Then, there are two
vertices s, t ∈ {1, 2, 3} that are each incident to exactly one safe edge. Each of these
vertices must be incident to 3 unsafe edges, otherwise, by deleting all of the unsafe
edges incident to either s or t, we obtain a graph that has a vertex of degree one, i.e.,
deleting two unsafe edges from F results in a graph that is not 2-edge connected.
It follows that either F has 5 safe edges and ≥ 6 unsafe edges, or else F has 4 safe
edges and ≥ 8 unsafe edges. In either case, we have c(F ) ≥ 16. �
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[11] C. Hunkenschröder, S. Vempala, and A. Vetta. A 4/3-Approximation Algorithm for the Min-
imum 2-Edge Connected Subgraph Problem. ACM Transactions on Algorithms, 15(4):1–28,
2019.

[12] K. Jain. A Factor 2 Approximation Algorithm for the Generalized Steiner Network Problem.
Combinatorica, 21(1):39–60, 2001.

[13] D. R. Karger. Global Min-Cuts in RNC, and Other Ramifications of a Simple Min-Cut Algo-
rithm. In Proceedings of the 4th Symposium on Discrete Algorithms, pages 21–30, 1993.

[14] S. Khuller and U. Vishkin. Biconnectivity Approximations and Graph Carvings. Journal of
the ACM, 41(2):214–235, 1994.

[15] T. L. Magnanti and R. T. Wong. Network Design and Transportation Planning: Models and
Algorithms. Transportation Science, 18(1):1–55, 1984.

[16] H. Nagamochi, K. Nishimura, and T. Ibaraki. Computing All Small Cuts in an Undirected
Network. SIAM Journal on Discrete Mathematics, 10(3):469–481, 1997.

[17] P. Rozenshtein, A. Gionis, B. A. Prakash, and J. Vreeken. Reconstructing an Epidemic Over
Time. In Proceedings of the 22nd International Conference on Knowledge Discovery and Data
Mining, pages 1835–1844, 2016.

[18] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 24 of Algorithms
and Combinatorics. Springer-Verlag Berlin Heidelberg, 2003.
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