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ABSTRACT
We propose Narrowest Significance Pursuit (NSP), a general and flexible methodology for automatically
detecting localized regions in data sequences which each must contain a change-point (understood as an
abrupt change in the parameters of an underlying linear model), at a prescribed global significance level. NSP
works with a wide range of distributional assumptions on the errors, and guarantees important stochastic
bounds which directly yield exact desired coverage probabilities, regardless of the form or number of the
regressors. In contrast to the widely studied “post-selection inference” approach, NSP paves the way for the
concept of “post-inference selection.” An implementation is available in the R package nsp. Supplementary
materials for this article are available online.
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1. Introduction

We propose a new generic methodology for determining, for
a given data sequence and at a given global significance level,
localized regions of the data that each must contain a change-
point. We define a change-point in Yt on an interval [s, e] as an
abrupt departure, on that interval, from a linear model for Yt
with respect to pre-specified regressors. We now give examples
of scenarios covered by the proposed methodology.

Scenario 1. Piecewise-constant signal plus noise model.

Yt = ft + Zt , t = 1, . . . , T, (1)

where ft is a piecewise-constant vector with an unknown
number N and locations 0 = η0 < η1 < · · · < ηN <

ηN+1 = T of change-points, and Zt is zero-centered noise.
The location ηj is a change-point if fηj−1 = fηj but fηj �= fηj+1.

Scenario 2. Piecewise-polynomial (e.g., piecewise-constant or
piecewise-linear) signal plus noise model. In (1), ft is a
piecewise-polynomial vector, in which the polynomial pieces
have a fixed degree q ≥ 0, assumed known to the analyst.
The location ηj is a change-point if ft can be described as a
polynomial vector of degree q on [ηj − q − 1, ηj], but not on
[ηj − q, ηj + 1].

Scenario 3. Linear regression with piecewise-constant parame-
ters. For a given design matrix X = (Xt,i), t = 1, . . . , T,
i = 1, . . . , p, the response Yt follows the model

Yt = Xt,·β(j)+Zt for t = ηj+1, . . . , ηj+1, j = 0, . . . , N,
(2)

where the parameter vectors β(j) = (β
(j)
1 , . . . , β(j)

p )′ are such
that β(j) �= β(j+1).

Each of these scenarios is a generalization of the preceding one.
We permit a broad range of distributional assumptions for Zt ,
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from iid Gaussianity to autocorrelation, heavy tails and hetero-
geneity. We now review the existing literature on uncertainty
in multiple change-point problems which seeks to make con-
fidence statements about the existence or locations of change-
points in particular regions of the data, or significance state-
ments about their importance.

In the iid Gaussian piecewise-constant model, SMUCE
(Frick, Munk, and Sieling 2014) estimates the number N of
change-points as the minimum among those candidate fits f̂t
for which the empirical residuals pass a certain test at level α.
An issue for SMUCE, discussed for example in Chen, Shah, and
Samworth (2014), is that the smaller the significance level α, the
more lenient the test on the empirical residuals, and therefore the
higher the risk of underestimating N. This leads to the counter-
intuitive behavior of the coverage properties of SMUCE illus-
trated in Chen, Shah, and Samworth (2014). SMUCE2 (Chen,
Shah, and Samworth 2014) remedies this issue, but still requires
that the number of estimated change-points agrees with the
truth for successful coverage, which puts it at risk of being unable
to cover the truth with a high nominal probability requested by
the user. In the approach taken in this article, this issue does not
arise as we shift the inferential focus away from N. SMUCE is
extended to heterogeneous Gaussian noise in Pein, Sieling, and
Munk (2017) and to dependent data in Dette, Eckle, and Vetter
(2020).

Some authors approach uncertainty quantification for mul-
tiple change-point problems from the point of view of post-
selection inference (PSI, a.k.a. selective inference); these include
Hyun, G’Sell, and Tibshirani (2018), Hyun et al. (2021), Jewell,
Fearnhead, and Witten (2022), and Duy et al. (2020). To ensure
valid inference, PSI conditions on many aspects of the estima-
tion process, which tends to produce p-values with somewhat
complex definitions. PSI also does not permit the selection of
the tuning parameters of the inference procedure from the same
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data. Useful as they are in assessing the significance of previously
estimated change-points, these PSI approaches share the follow-
ing features: (a) they do not consider uncertainties in estimating
change-point locations, (b) they do not provide regions of glob-
ally significant change in the data, (c) they define significance
for each change-point separately, as opposed to globally, (d) they
rely on a particular base change-point detection method with its
potential strengths or weaknesses. Our approach contrasts with
these features; in particular, in contrast to PSI, it can be described
as enabling “post-inference selection,” as we argue later on.

Some authors provide simultaneous asymptotic distribu-
tional results for the distance between the estimated change-
point locations and the truth. In the linear regression context,
this is done in Bai and Perron (1998); Bai and Perron (2003), and
in the piecewise-constant signal plus noise model—in Eichinger
and Kirch (2018). These approaches are asymptotic, conditional
on the estimated change-point locations, and involve unknown
quantities. In contrast, our methodology has a finite-sample
nature, makes no assumptions on the signal, is unconditional
and automatic. A further discussion of the differences between
our approach and that of Bai and Perron (1998); Bai and Perron
(2003) can be found in Section 1 of the supplement.

Inference for multiple change-points is also sometimes posed
as control of the False Discovery Rate (FDR), see for example, Li
and Munk (2016), Hao, Niu, and Zhang (2013), and Cheng, He,
and Schwartzman (2020), but that approach is focused on the
number of change-points rather than on their locations.

The objective of our methodology, called “Narrowest Signifi-
cance Pursuit” (NSP), is to automatically detect localized regions
of the data Yt , each of which must contain at least one change-
point (in a suitable sense determined by the given scenario), at
a prescribed global significance level. NSP performs uncondi-
tional inference without change-point location estimation, and
proceeds as follows. A number M of intervals are drawn from
the index domain [1, . . . , T], with start- and end-points chosen
over an equispaced deterministic grid. On each interval drawn,
Yt is then checked to see whether or not it locally conforms to the
prescribed linear model, with any set of parameters. This check
is performed through estimating the parameters of the given
linear model locally by minimizing a particular multiresolution
sup-norm loss, and testing the residuals from this fit via the
same norm; self-normalization is involved if necessary. In the
first greedy stage, the shortest interval (if one exists) is chosen on
which the test is violated at a certain global significance level α.
In the second greedy stage, the selected interval is searched for its
shortest sub-interval on which a similar test is violated. This sub-
interval is then chosen as the first region of global significance,
in the sense that it must (at a global level α) contain a change-
point, or otherwise the local test would not have rejected the
linear model. The procedure then recursively draws M intervals
to the left and to the right of the chosen region (with or without
overlap), and stops when there are no further local regions of
global significance.

Fang, Li, and Siegmund (2020), in the piecewise-constant
signal plus iid Gaussian noise model, approximate the tail proba-
bility of the maximum CUSUM statistic over all sub-intervals of
the data. They then propose an algorithm, in a few variants, for
identifying short, nonoverlapping segments of the data on which
the local CUSUM exceeds the derived tail bound, and hence, the

segments identified must contain at least a change-point each,
at a given significance level. Fang and Siegmund (2020) present
results of similar nature for a Gaussian model with lag-one
autocorrelation, linear trend, and features that are linear com-
binations of continuous, piecewise differentiable shapes. The
most important high-level differences between NSP and these
two approaches are that (a) NSP is ready for use with any user-
provided design matrix X, and this requires no new calculations
or coding, and yields correct coverage probabilities in finite
samples of any length; (b) NSP searches for any deviations from
local model linearity with respect to the regressors provided; (c)
NSP is able to handle regression with autoregression practically
in the same way as without, in a stable manner and on arbitrarily
short intervals, and does not need accurate estimation of the
unknown (nuisance) AR coefficients. We expand on these points
in Section 1 of the supplement.

NSP has other distinctive features in comparison with the
existing literature. It is specifically constructed to target the
shortest possible significant intervals at every stage of the pro-
cedure, and to explore as many intervals as possible while
remaining computationally efficient. NSP furnishes exact cov-
erage statements, at a prescribed global significance level, for
any finite sample sizes, and works in the same way regardless
of the scenario and for any given regressors X. Also, thanks to
the fact that the multiresolution sup-norm used in NSP can be
interpreted as Hölder-like norms on certain function spaces,
NSP naturally extends to the cases of unknown or heterogeneous
distributions of Zt via self-normalization. Finally, if simulation
needs to be used to determine critical values for NSP, then this
can be done in a computationally efficient manner.

Section 2 introduces the NSP methodology and provides the
relevant finite-sample coverage theory. Section 3 extends this to
NSP under self-normalization and in the additional presence of
autoregression. Section 4 provides finite-sample and traditional
large-sample detection consistency and rate optimality results
for NSP in Scenarios 1 and 2. Section 5 provides comparative
simulations and extensive numerical examples under a variety
of settings. Section 6 describes two real-data case studies. Com-
plete R code implementing NSP is available in the R package
nsp. There is a supplement, whose contents are mentioned at
appropriate places in the article. Proofs of our theoretical results
are in the supplement.

2. The NSP Inference framework

Throughout the section, we use the language of Scenario 3,
which includes Scenarios 1 and 2 as special cases. In Scenario
1, the matrix X in (2) is of dimensions T × 1 and has all entries
equal to 1. In Scenario 2, the matrix X is of dimensions T×(q+1)

and its ith column is given by (t/T)i−1, t = 1, . . . , T. Scenario
4 (for NSP in the additional presence of autoregression), which
generalizes Scenario 3, is handled with in Section 3.2.

2.1. Generic NSP Algorithm

We start with a pseudocode definition of the NSP algorithm, in
the form of a recursively defined function NSP. In its arguments,
[s, e] is the current interval under consideration and at the start

https://CRAN.R-project.org/package=nsp
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of the procedure, we have [s, e] = [1, T]; Y (of length T) and
X (of dimensions T × p) are as in the model formula (2); M is
the number of sub-intervals of [s, e] drawn; λα is the threshold
corresponding to the global significance level α (typical values
for α would be 0.05 or 0.1) and τL (respectively τR) is a func-
tional parameter used to specify the degree of overlap of the
left (respectively right) child interval of [s, e] with respect to
the region of significance identified within [s, e], if any. The no-
overlap case would correspond to τL = τR ≡ 0. In each recursive
call on a generic interval [s, e], NSP adds to the setS any globally
significant local regions (intervals) of the data identified within
[s, e] on which Y is deemed to depart significantly (at global level
α) from linearity with respect to X. We provide more details
underneath the pseudocode below.

1: function NSP(s, e, Y , X, M, λα , τL, τR)
2: if e − s < 1 then
3: RETURN
4: end if
5: if M ≥ 1

2 (e − s + 1)(e − s) then
6: M := 1

2 (e − s + 1)(e − s)
7: draw all intervals [sm, em] ⊆ [s, s + 1, . . . , e], m =

1, . . . , M, s.t. em − sm ≥ 1
8: else
9: draw a representative (see description below) sample

of intervals [sm, em] ⊆ [s, s + 1, . . . , e], m = 1, . . . , M, s.t.
em − sm ≥ 1

10: end if
11: for m ← 1, . . . , M do
12: D[sm,em] := DeviationFromLinear-

ity(sm, em, Y , X)

13: end for
14: M0 := arg minm{em−sm : m = 1, . . . , M; D[sm,em] >

λα}
15: if |M0| = 0 then
16: RETURN
17: end if
18: m0 :=AnyOf(arg maxm{D[sm,em] : m ∈ M0})
19: [s̃, ẽ] :=ShortestSignificantSubinterval(sm0 , em0 ,

Y , X, M, λα)

20: add [s̃, ẽ] to the set S of significant intervals
21: NSP(s, s̃ + τL(s̃, ẽ, Y , X), Y , X, M, λα , τL, τR)

22: NSP(ẽ − τR(s̃, ẽ, Y , X), e, Y , X, M, λα , τL, τR)

23: end function

The NSP algorithm is launched by the pair of calls: S :=
∅; NSP(1, T, Y , X, M, λα , τL, τR). On completion, the output of
NSP is in the variable S . We now comment on the NSP function
line by line. In lines 2–4, execution is terminated for intervals
that are too short. In lines 5–10, a check is performed to see if
M is at least as large as the number of all sub-intervals of [s, e].
If so, then M is adjusted accordingly, and all sub-intervals are
stored in {[sm, em]}M

m=1. Otherwise, a sample of M sub-intervals
[sm, em] ⊆ [s, e] is drawn in which sm and em are all possible
pairs from an (approximately) equispaced grid on [s, e] which
permits at least M such sub-intervals (a random alternative, in
which sm and em are obtained uniformly with replacement from
[s, e], is possible).

In lines 11–13, each sub-interval [sm, em] is checked to see
to what extent the response on this sub-interval (denoted by
Ysm:em ) conforms to the linear model (2) with respect to the set
of covariates on the same sub-interval (denoted by Xsm:em,·). This
core step of the NSP algorithm is described in more detail in
Section 2.2.

In line 14, the measures of deviation obtained in line 12
are tested against threshold λα , chosen to guarantee global
significance level α. How to choose λα depends (only) on the
distribution of Zt; this question is addressed in Section 2.3 and in
Sections 4 and 8 of the supplement. The shortest sub-interval(s)
[sm, em] for which the test rejects the local hypothesis of linearity
of Y versus X at global level α are collected in set M0. In lines
15–17, ifM0 is empty, then the procedure decides that it has not
found regions of significant deviations from linearity on [s, e],
and stops on this interval as a consequence. Otherwise, in line
18, the procedure continues by choosing the sub-interval, from
among the shortest significant ones, on which the deviation from
linearity has been the largest. The chosen interval is denoted by
[sm0 , em0 ].

In line 19, [sm0 , em0 ] is searched for its shortest significant
sub-interval, that is, the shortest sub-interval on which the
hypothesis of linearity is rejected locally at a global level α. Such a
sub-interval certainly exists, as [sm0 , em0 ] itself has this property.
The structure of this search again follows the workflow of the
NSP procedure; more specifically, it proceeds by executing lines
2–18 of NSP, but with sm0 , em0 in place of s, e. The chosen interval
is denoted by [s̃, ẽ]. This two-stage search (identification of
[sm0 , em0 ] in the first stage and of [s̃, ẽ] ⊆ [sm0 , em0 ] in the second
stage) is crucial in NSP’s pursuit to force the identified intervals
of significance to be as short as possible, without unacceptably
increasing the computational cost. The importance of this two-
stage solution is illustrated in Section 5 of the supplement. In
line 20, the selected interval [s̃, ẽ] is added to the output set S .

In lines 21–22, NSP is executed recursively to the left and to
the right of the detected interval [s̃, ẽ]. However, we optionally
allow for some overlap with [s̃, ẽ]. The overlap, if present, is
a function of [s̃, ẽ] and, if it involves detection of the location
of a change-point within [s̃, ẽ], then it is also a function of
Y , X. Executing NSP without an overlap, that is, with τL =
τR = 0, means that the procedure runs, in each recursive step,
wholly on data sections between (and only including the end-
points of) the previously detected intervals of significance. This
ensures that the intervals of significance returned by NSP are
nonoverlapping; however, this also reduces the amount of data
that the procedure is able to use at each recursive stage, which
shows the importance of optionally allowing nonzero overlaps
τL and τR in NSP. One possibility is for example the following.

τL(s̃, ẽ) = 
(s̃ + ẽ)/2�− s̃; τR(s̃, ẽ) = 
(s̃ + ẽ)/2�+ 1 − ẽ. (3)

This setting means that upon detecting a generic interval of
significance [s̃, ẽ] within [s, e], the NSP algorithm continues on
the left interval [s, 
(s̃ + ẽ)/2�] and the right interval [
(s̃ +
ẽ)/2� + 1, e] (recall that the no-overlap case results uses the left
interval [s, s̃] and the right interval [ẽ, e]). See Section 5.1 for
more on the overlap parameters.

In NSP, having p = p(T) growing with T is possible, but we
must have p(T) + 1 ≤ T or otherwise no regions of significance
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will be found. Section 2 of the supplement comments on a few
other generic aspects of the NSP algorithm.

2.2. Measuring Deviation from Linearity in NSP

This section completes the definition of NSP (in the version
without self-normalization) by describing the DeviationFrom-
Linearity function (NSP algorithm, line 12). Its basic building
block is a scaled partial sum statistic, defined for an arbitrary
input sequence {yt}T

t=1 by Us,e(y) = (e − s + 1)−1/2 ∑e
t=s yt . We

define the scan statistic of an input vector y (of length T) with
respect to the interval set I as

‖y‖I = max
[s,e]∈I

|Us,e(y)|. (4)

The set I used in NSP contains intervals at a range of scales
and locations. For computational efficacy, instead of the set Ia

of all subintervals of [1, T], we use the set Id of all intervals of
dyadic lengths and arbitrary locations, that is Id = {[s, e] ⊆
[1, T] : e−s = 2j−1, j = 0, . . . , 
log2 T�}. A simple pyramid
algorithm of complexity O(T log T) is available for the compu-
tation of all Us,e(y) for [s, e] ∈ Id. We also define restrictions
of Ia and Id to arbitrary intervals [s, e] as Id[s,e] = {[u, v] ⊆
[s, e] : [u, v] ∈ Id}, and analogously for Ia[s,e]. We refer to
‖·‖Id , ‖·‖Ia and their restrictions as multiresolution sup-norms
(see Nemirovski 1986; Li 2016) or, alternatively, multiscale scan
statistics if they are used as operations on data. If the context
requires this, the qualifier “dyadic” will be added to these terms
when referring to the Id versions. The facts that, for any interval
[s, e] and any input vector y (of length T), we have

‖ys:e‖Id[s,e]
≤ ‖ys:e‖Ia[s,e] ≤ ‖y‖Ia and

‖ys:e‖Id[s,e]
≤ ‖y‖Id ≤ ‖y‖Ia (5)

are trivial consequences of the facts that Id[s,e] ⊆ Ia[s,e] ⊆ Ia and
Id[s,e] ⊆ Id ⊆ Ia. With this notation in place, DeviationFrom-
Linearity(sm, em, Y , X) is defined as follows.

Step 1. Find β0 = arg minβ ‖Ysm:em − Xsm:em,·β‖Id[sm ,em]
. This

fits the postulated linear model between X and Y restricted
to the interval [sm, em]. However, we use the multiresolution
sup-norm ‖ · ‖Id[sm ,em]

as the loss function, rather than the
more usual L2 loss. This has important consequences for the
exactness of our significance statements, which we explain
later below.

Step 2. Compute the same multiresolution sup-norm of the
empirical residuals from the above fit, D[sm,em] := ‖Ysm:em −
Xsm:em,·β0‖Id[sm ,em]

.
Step 3. Return D[sm,em].

Steps 1 and 2 can be carried out in a single step as D[sm,em] =
minβ ‖Ysm:em − Xsm:em,·β‖Id[sm ,em]

, however, for comparison with
other approaches, it will be convenient for us to use the two-
stage process in steps 1 and 2 for the computation of D[sm,em].
Computationally, the linear model fit in step 1 can be carried out
via simple linear programming; we use the R packagelpSolve.
The following important property lies at the heart of NSP.

Proposition 2.1. Let the interval [s, e] be such that ∀ j =
1, . . . , N [ηj, ηj + 1] �⊆ [s, e]. We have D[s,e] ≤ ‖Zs:e‖Id[s,e]

.

This is a simple but valuable result, which can be read as
follows: “under the local null hypothesis of no signal on [s, e],
the test statistic D[s,e], defined as the multiresolution sup-norm
of the empirical residuals from the same multiresolution sup-
norm fit of the postulated linear model on [s, e], is bounded by
the multiresolution sup-norm of the true residual process Zt .”
This bound is achieved because the same norm is used in the
linear model fit and in the residual check, and it is important
to note that the corresponding bound would not be available
if the postulated linear model were fitted with a different loss
function, for example, via OLS. Having such a bound allows us
to transfer our statistical significance calculations to the domain
of the unobserved true residuals Zt , which is much easier than
working with the corresponding empirical residuals. It is also
critical to obtaining global coverage guarantees for NSP, as we
now show.

Theorem 2.1. Let S = {S1, . . . , SR} be a set of intervals
returned by the NSP algorithm. We have P

(∃ i = 1, . . . , R
∀ j = 1, . . . , N [ηj, ηj + 1] �⊆ Si

) ≤ P(‖Z‖Id > λα) ≤
P(‖Z‖Ia > λα).

Theorem 2.1 should be read as follows. Let α = P(‖Z‖Ia >

λα). For a set of intervals returned by NSP, we are guaranteed,
with probability of at least 1−α, that there is at least one change-
point in each of these intervals. Therefore, S = {S1, . . . , SR}
can be interpreted as an automatically chosen set of regions
(intervals) of significance in the data. In the no-change-point
case (N = 0), the correct reading of Theorem 2.1 is that the
probability of obtaining one of more intervals of significance
(R ≥ 1) is bounded from above by P(‖Z‖Ia > λα).

NSP uses a multiresolution sup-norm fit to be checked via
the same multiresolution sup-norm. This leads to exact coverage
guarantees for NSP with very simple mathematics. In contrast to
the confidence intervals in for example, Bai and Perron (1998),
the NSP regions of significance are not conditional on any par-
ticular estimator of N or of the change-point locations, and are in
addition of a finite-sample nature. Still, they have a “confidence
interval” interpretation in the sense that each must contain at
least one change, with a certain prescribed global probability.

For Si = [s, e], we define S−
i = [s, e − 1]. A simple corollary

of Theorem 2.1 is that forS = {S1, . . . , SR}, if the corresponding
sets S−

i are mutually disjoint (as is the case for example, if τL =
τR ≡ 0), then we must have N ≥ R with probability at least 1−α.
It would be impossible to obtain a similar upper bound on N
without order-of-magnitude assumptions on spacings between
change-points and magnitudes of parameter changes; we defer
this to Section 4. The result in Theorem 2.1 does not rely on
asymptotics and has a finite-sample character. β0 in Step 1 above
does not have to be an accurate estimator of the true local β for
the bound in Proposition 2.1 to hold; it holds unconditionally
and for arbitrary short intervals [s, e].

NSP is not automatically equipped with pointwise estimators
of change-point locations. This is an important feature, because
thanks to this, it can be so general and work in the same
way for any X. If it were to come with meaningful pointwise
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change-point location estimators, they would have to be
designed for each X separately, for example, using the maximum
likelihood principle. (However, NSP can be paired up with such
pointwise estimators; see immediately below for details.) We
now introduce a few new concepts, to contrast this feature of
NSP with the existing concept of post-selection inference.

“Post-inference selection” and “inference without selection.” If it
can be assumed that an interval Si = [si, ei] ∈ S only contains
a single change-point, its location can be estimated for exam-
ple, via MLE performed locally on the data subsample living
on [si, ei]. Naturally, the MLE should be constructed with the
specific design matrix X in mind, see Baranowski, Chen, and
Fryzlewicz (2019) for examples in Scenarios 1 and 2. In this
construction, “inference,” that is, the execution of NSP, occurs
before “selection,” that is, the estimation of the change-point
locations, hence, the label of “post-inference selection.” This
avoids the complicated machinery of post-selection inference,
as we automatically know that the p-value associated with the
estimated change-point must be less than α. Similarly, “inference
without selection” refers to the use of NSP unaccompanied by a
change-point location estimator.

“Simultaneous inference and selection” or “in-inference selection.”
In this construction, change-point location estimation on an
interval [s̃, ẽ] occurs directly after adding it to S . The difference
with “post-inference selection” is that this then naturally enables
appropriate nonzero overlaps τL and τR in the execution of
NSP. More specifically, denoting the estimated location within
[s̃, ẽ] by η̃, we can set, for example, τL(s̃, ẽ, Y , X) = η̃ − s̃ and
τR(s̃, ẽ, Y , X) = ẽ − η̃ − 1, so that lines 21–22 of the NSP algo-
rithm become, respectively, NSP(s, η̃, Y , X, M, λα , τL, τR) and
NSP(η̃ + 1, e, Y , X, M, λα , τL, τR).

By Theorem 2.1, the only piece of knowledge required to
obtain coverage guarantees in NSP is the distribution of ‖Z‖Ia

(or ‖Z‖Id ), regardless of the form of X. Much is known about
this distribution for various underlying distributions of Z; see
Section 2.3 and Section 4 of the supplement for Z Gaussian
and following other light-tailed distributions, respectively. Any
future further distributional results of this type would only
further enhance the applicability of NSP. However, if the distri-
bution of ‖Z‖Ia (‖Z‖Id ) is unknown, then an approximation
can also be obtained by simulation, which is particularly com-
putationally efficient for ‖Z‖Id . See Section 8 of the supplement
for more details on simulation-based threshold selection.

2.3. Gaussian Zt

We now recall distributional results for ‖Z‖Ia , in the case Zt ∼
iid N(0, σ 2) with σ 2 assumed known, which will permit us to
choose λα = λα(T) so that P{‖Z‖Ia > λα(T)} → α as
T → ∞. The resulting λα(T) can then be used in Theorem 2.1.
As the result of Theorem 2.1 is otherwise of a finite-sample
nature, some users may be uncomfortable resorting to large-
sample asymptotics to approximate the distribution of ‖Z‖Ia .
However, (a) the asymptotic results outlined below approximate
the behavior of ‖Z‖Ia well even for small samples, and (b) users
not wishing to resort to asymptotics have the option of approxi-
mating the distribution of ‖Z‖Ia by simulation (see Section 8 of
the supplement), which is computationally fast. The assumption

of a known σ 2 is common in the change-point inference lit-
erature, see for example Hyun, G’Sell, and Tibshirani (2018),
Fang and Siegmund (2020), and Jewell, Fearnhead, and Witten
(2022). Section 4 of the supplement covers the unknown σ 2

case. Results on the distribution of ‖Z‖Ia are given in Siegmund
and Venkatraman (1995) and Kabluchko (2007). We recall the
formulation from Kabluchko (2007) as it is slightly more explicit.

Theorem 2.2 (Theorem 1.3 in Kabluchko (2007)). Let
{Zt}T

t=1 be iid N(0, 1). For every γ ∈ R, we have
limT→∞ P

(
max1≤s≤e≤T Us,e(Z) ≤ aT + bT γ

) = exp(−e−γ ),
where

aT = √
2 log T +

1
2 log log T + log H

2
√

π√
2 log T

; bT = 1√
2 log T

;

H =
∫ ∞

0
exp

(
−4

∞∑
k=1

1
k



(
−

√
k

2y

))
dy,

and 
() is the standard normal cdf.

We use the approximate value H = 0.82 in our numerical
work. Using the asymptotic independence of the maximum and
the minimum (Kabluchko and Wang 2014), and the symmetry
of Z, we get the following simple corollary.

P
(

max
1≤s≤e≤T

|Us,e(Z)| > aT + bT γ

)

= 1 − P
(

max
1≤s≤e≤T

|Us,e(Z)| ≤ aT + bT γ

)

= 1 − P
(

max
1≤s≤e≤T

Us,e(Z) ≤ aT + bT γ ∧

min
1≤s≤e≤T

Us,e(Z) ≥ −(aT + bT γ )
)

→ 1 − exp(−2e−γ ) (6)

as T → ∞. In light of (6), we obtain λα for use in Theorem 2.1
as follows: (a) equate α = 1 − exp(−2e−γ ) and obtain γ , (b)
form λα = σ(aT + bT γ ).

We now extend NSP to positively dependent Gaussian inno-
vations. Let {Z̃t}T

t=1 be a stationary, zero-mean, nonnegatively
autocorrelated process with long-run standard deviation σLR.
Let σs,e = var1/2{Us,e(Z̃)}, and note σs,e ≤ σLR. In the notation
of Theorem 2.2,

P
{

max
1≤s≤e≤T

Us,e(Z̃) ≥ σLR(aT + bTγ )

}

≤ P

{
max

1≤s≤e≤T

Us,e(Z̃)

σs,e
≥ aT + bTγ

}

[Slepian’s lemma]

≤ P
{

max
1≤s≤e≤T

Us,e(Z) ≥ aT + bTγ

}
.

This demonstrates that valid coverage guarantees are obtained
for a system with innovations Z̃ by applying the NSP threshold
equal to the threshold suitable for iid N(0, 1) innovations times
the long-run standard deviation of Z̃. Long-run standard devi-
ation estimation, especially in the presence of change-points, is
a difficult problem, but several solutions have been proposed,
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including one in Dette, Eckle, and Vetter (2020) (in our Scenario
1). See also Section 10 of the supplement for a related discussion
of NSP with autocorrelated innovations.

2.4. Tightening the Bounds: X-dependent Thresholds

We now show how to obtain thresholds lower than those in
Theorem 2.1 if the analyst is willing to allow their dependence
on the design matrix X. This calls for the reexamination of
Proposition 2.1. Consider the following alternative version.

Proposition 2.2. Let the interval [s, e] be such that ∀ j =
1, . . . , N [ηj, ηj + 1] �⊆ [s, e]. We have D[s,e] = minβ ‖Zs:e −
Xs:e,·β‖Id[s,e]

≤ minβ ‖Z − Xβ‖Id .

This leads to a tighter version of Theorem 2.1.

Theorem 2.3. Let S = {S1, . . . , SR} be a set of intervals
returned by the NSP algorithm. We have P

(∃ i = 1, . . . , R
∀ j = 1, . . . , N [ηj, ηj+1] �⊆ Si

) ≤ P(minβ ‖Z−Xβ‖Id > λα).

In Theorem 2.3, the probability P
(∃ i = 1, . . . , R

∀ j = 1, . . . , N [ηj, ηj + 1] �⊆ Si
)

is bounded from above
by P(minβ ‖Z − Xβ‖Id > λα). As minβ ‖Z − Xβ‖Id ≤
‖Z − X0‖Id = ‖Z‖Id ≤ ‖Z‖Id , the threshold λα obtained by
solving

P(min
β

‖Z − Xβ‖Id > λα) = α (7)

will be lower than that obtained by solving P(‖Z‖Id > λα) =
α (which was done in Theorem 2.1). In addition, unlike the
solution to P(‖Z‖Id > λα) = α, the solution to (7) accounts
for the number and form of the covariates X. To solve (7), the
distribution of minβ ‖Z−Xβ‖Id can be obtained by simulation,
separately for each set of covariates X and sample size T; see
Section 8 of the supplement for details. The better localization
properties of the thus-obtained tighter bounds are illustrated, for
Scenario 1, in Section 5.1.

3. NSP with Self-Normalization and with
Autoregression

3.1. Self-Normalized NSP for Possibly Heavy-Tailed,
Heteroscedastic Zt

Kabluchko and Wang (2014) point out that the square-root
normalization used in Us,e(y) is not natural for distributions
with tails heavier than Gaussian. We are interested in obtaining
a universal normalization in Us,e(y) which would work across a
wide range of possibly heavy-tailed distributions without requir-
ing their explicit knowledge, including under heterogeneity. One
such solution is offered by the self-normalization framework
developed in Rac̆kauskas and Suquet (2003) and related papers.
We now recall the basics and discuss the necessary adaptations to
our context; the less mathematically inclined reader is welcome
to skip this description and proceed directly to formula (9),
which gives the oracle self-normalized statistic computed on the
true residuals Zt .

We first discuss the relevant distributional results for the true
residuals Zt . We only cover the case of symmetric distributions

of Zt . For the nonsymmetric case, which requires a slightly
different normalization, see Rac̆kauskas and Suquet (2003). In
the latter work, the following result is proved. Let ρθ ,ν,c(δ) =
δθ logν(c/δ), 0 < θ < 1, ν ∈ R, where c ≥ exp(ν/θ)

if ν > 0 and c > exp(−ν/(1 − θ)) if ν < 0. Further,
suppose limj→∞ 2jρθ ,ν,c2(2−j)/j = ∞. This last condition, in
particular, is satisfied if θ = 1/2 and ν > 1/2. The function
ρθ ,ν,c will play the role of a modulus of continuity. Let Z1, Z2, . . .
be independent and symmetrically distributed with E(Zt) =
0; note they do not need to be identically distributed. Define
St = Z1 + · · · + Zt and V2

t = Z2
1 + · · · + Z2

t . Assume further
V−2

T max1≤t≤T Z2
t → 0 in probability as T → ∞. Egorov (1997)

shows that this last condition is equivalent to Zt being within the
domain of attraction of the normal law. Therefore, the material
of this section applies to a much wider class of distributions than
the heterogeneous extension of SMUCE in Pein, Sieling, and
Munk (2017), which only applies to normally distributed Zt .

Let the random polygonal partial sums process ζT be defined
on [0, 1] as linear interpolation between the knots (V2

t /V2
T , St),

t = 0, . . . , T, where S0 = V0 = 0, and let ζ se
T = ζT/VT . Denote

by Hρθ ,ν,c [0, 1] the set of continuous functions x : [0, 1] → R

such that ωρθ ,ν,c(x, 1) < ∞, where ωρθ ,ν,c(x, δ) =
supu,v∈[0,1], 0<|v−u|<δ |x(v)−x(u)|/ρθ ,ν,c(|v−u|). Hρθ ,ν,c [0, 1] is a
Banach space in its natural norm ‖x‖ρθ ,ν,c = |x(0)|+ωρθ ,ν,c(x, 1).
Define H0

ρθ ,ν,c [0, 1], a closed subspace of Hρθ ,ν,c [0, 1], by
H0

ρθ ,ν,c [0, 1] = {x ∈ Hρθ ,ν,c [0, 1] : limδ→0 ωρθ ,ν,c(x, δ) = 0}.
H0

ρθ ,ν,c [0, 1] is a separable Banach space. Under the assumptions
above, we have the following convergence in distribution as
T → ∞:

ζ se
T → W (8)

in H0
ρθ ,ν,c [0, 1], where W(u), u ∈ [0, 1] is a standard Wiener

process. Define Iρθ ,ν,c(x, u, v) = |x(v) − x(u)|/ρθ ,ν,c(|v − u|)
and, with ε > 0 and c = exp(1 + 2ε), consider the statistic

sup
0≤i<j≤T

Iρ1/2,1/2+ε,c(ζ
se
T , V2

i /V2
T , V2

j /V2
T)

= sup
0≤i<j≤T

|ζ se
T (V2

j /V2
T) − ζ se

T (V2
i /V2

T)|
ρ1/2,1/2+ε,c(V2

j /V2
T − V2

i /V2
T)

= sup
0≤i<j≤T

|Sj − Si|√
V2

j − V2
i log1/2+ε{c/(V2

j /V2
T − V2

i /V2
T)}

= sup
0≤i<j≤T

|Zi+1 + . . . + Zj|√
Z2

i+1 + · · · + Z2
j log1/2+ε{cV2

T/(Z2
i+1 + . . . + Z2

j )}
.

(9)

In the notation and under the conditions listed above, it is a
direct consequence of the distributional convergence (8) in the
space H0

ρθ ,ν,c [0, 1] that for any level γ , we have

P

(
sup

0≤i<j≤T
Iρ1/2,1/2+ε,c(ζ

se
T , V2

i /V2
T , V2

j /V2
T) ≥ γ

)

≤ P

(
sup

u,v∈[0,1]
Iρ1/2,1/2+ε,c(ζ

se
T , u, v) ≥ γ

)

→ P

(
sup

u,v∈[0,1]
Iρ1/2,1/2+ε,c(W, u, v) ≥ γ

)
(10)
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as T → ∞, and the quantiles of the distribution of
supu,v∈[0,1] Iρ1/2,1/2+ε,c(W, u, v), which does not depend on the
sample size T, can be computed (once) by simulation.

Following the narrative of Sections 2.2 and 2.3, to make these
results operational in a new function DeviationFromLinear-
ity.SN (where “SN” stands for self-normalization) for use in line
12 of the NSP algorithm, we need the following development.
Assume initially that the global residual sum of squares V2

T is
known. For a generic interval [s, e] containing no change-points,
we need to be able to obtain empirical residuals Ẑ(k)

i+1, . . . , Ẑ(k)
j for

k = 1, 2 and Ẑ(k)
s , . . . , Ẑ(k)

e for k = 3 for which we can guarantee
that

sup
s−1≤i<j≤e

|Ẑ(3)
i+1 + · · · + Ẑ(3)

j |√
(Ẑ(2)

i+1)
2 + · · · + (Ẑ(2)

j )2 log1/2+ε

{cV2
T/((Ẑ(1)

i+1)
2 + · · · + (Ẑ(1)

j )2)}

≤ sup
s−1≤i<j≤e

|Zi+1 + · · · + Zj|√
Z2

i+1 + · · · + Z2
j log1/2+ε{cV2

T/(Z2
i+1 + · · · + Z2

j )}
.

(11)

This provides a self-normalized equivalent of Proposition 2.1
and requires that the deviation from linearity computed on an
interval containing no change-points (left-hand side of (11))
does not exceed the analogous oracle quantity computed on the
true residuals (right-hand side of 11). Section 6 of the supple-
ment describes the construction of Ẑ(k) for k = 1, 2, 3 so that
(11) is guaranteed, and introduces a suitable estimator of V2

T for
use in (11).

3.2. NSP with Autoregression

To accommodate autoregression while retaining the serial inde-
pendence of Zt , we introduce the following additional scenario.

Scenario 4. Linear regression with autoregression, with piecewise-
constant parameters.
For a given design matrix X = (Xt,i), t = 1, . . . , T, i =
1, . . . , p, the response Yt follows the model

Yt = Xt,·β(j) +
r∑

k=1
a(j)

k Yt−k + Zt for t = ηj + 1, . . . , ηj+1,

(12)
for j = 0, . . . , N, where the regression parameter vectors
β(j) = (β

(j)
1 , . . . , β(j)

p )′ and the autoregression parameters a(j)
k

are such that either β(j) �= β(j+1) or a(j)
k �= a(j+1)

k for some k
(or both types of changes occur).

In this work, we treat the autoregressive order r as fixed
and known to the analyst. Fang and Siegmund (2020) consider
r = 1 and treat the autoregressive parameter as known, but
acknowledge that in practice it is estimated from the data;
however, they add that “[it] would also be possible to estimate
[the autoregressive parameter] from the currently studied subset
of the data, but this estimator appears to be unstable.” NSP
circumvents this instability issue, as explained below. NSP for
Scenario 4 proceeds as follows.

1. Supplement the design matrix X with the lagged versions
of the variable Y , or in other words substitute X :=

[
X Y·−1 · · · Y·−r

]
, where Y·−k denotes the respective

backshift operation. Omit the first r rows of the thus-modified
X, and the first r elements of Y .

2. Run the NSP algorithm of Section 2.1 with the new X and
Y (with a suitable modification to line 12 if using the self-
normalized version), with the following single difference.
In lines 21 and 22, recursively call the NSP routine on the
intervals [s, s̃+τL(s̃, ẽ, Y , X)− r] and [ẽ−τR(s̃, ẽ, Y , X)+ r, e],
respectively. As each local regression is now supplemented
with autoregression of order r, we insert the extra “buffer” of
size r between the detected interval [s̃, ẽ] and the next children
intervals to ensure that we do not process information about
the same change-point in both the parent call and one of the
children calls, which prevents double detection.

The result of Theorem 2.1 applies to the output of NSP for
Scenario 4 too. The NSP algorithm offers a new point of view
on change-point analysis in the presence of autocorrelation.
Unlike Fang and Siegmund (2020), who require accurate esti-
mation of the autoregressive parameters for successful change-
point detection, NSP circumvents the issue by using the same
multiresolution norm in the local regression fits on each [s, e],
and in the subsequent tests of the local residuals. In this way,
the autoregression parameters do not have to be estimated accu-
rately for the relevant stochastic bound in Proposition 2.1 to
hold; it holds unconditionally and for arbitrary short intervals
[s, e]. Therefore, NSP is able to deal with autoregression, stably,
on arbitrarily short intervals. We illustrate the performance of
this version of NSP in Section 7 of the supplement.

4. Detection Consistency and Lengths of NSP
Intervals

We now study the consistency of NSP in detecting change-
points, and the rates at which the lengths of the NSP intervals
contract, as the sample size increases. We consider a version
of the NSP algorithm that considers all sub-intervals of [1, T],
and we provide results in Scenario 1 as well as in Scenario 2
with continuous piecewise-linearity (this parallels the scenarios
for which consistency is shown in Baranowski, Chen, and Fry-
zlewicz 2019).

So far in the article, we avoided introducing any assumptions
on the signal: our coverage guarantees in Theorem 2.1 held
under no conditions on the number of change-points, their
spacing, or the sizes of the breaks. This was unsurprising as
they amounted to statistical size control. By contrast, the results
of this section relate to detection consistency (and therefore
“power” rather than size) and as such, require minimum signal
strength assumptions.

4.1. Scenario 1 – Piecewise Constancy

In this section, ft falls under Scenario 1. We start with assump-
tions on the strength of the change-points. For each change-
point ηj, j = 1, . . . , N, define

d̄j =
⌈

16λ2
α

|fηj+1 − fηj |2
⌉

+ 1. (13)
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Recalling that η0 = 0 and ηN+1 = T, we require the following
assumption.

Assumption 4.1. ηj+1 − ηj ≥ 2d̄j+1 + 2d̄j − 2 (j = 1, . . . , N −
1); η1 − η0 ≥ 2d̄1 − 1; ηN+1 − ηN ≥ 2d̄N − 1.

We have the following theorem.

Theorem 4.1. Let Assumption 4.1 hold, with d̄j defined in (13).
On the set ‖Z‖Ia ≤ λα , a version of the NSP algorithm
that considers all sub-intervals, executed with no overlaps and
with threshold λα , returns exactly N intervals of significance
[s1, e1] < · · · < [sN , eN] such that ηj ∈ [sj, ej − 1] and
ej − sj + 1 ≤ 2d̄j, for j = 1, . . . , N.

Theorem 4.1 leads to the following corollary.

Corollary 4.1. Let the assumptions of Theorem 4.1 hold, and in
addition let Zt ∼ N(0, σ 2). Let λα = σ(1 +�)

√
2 log T for any

� > 0. Let S denote the set of intervals of significance [s1, e1] <

[s2, e2] < · · · returned by a version of the NSP algorithm that
considers all sub-intervals, executed with no overlaps and with
threshold λα . Let A = {|S| = N ∧ ∀j = 1, . . . , N ηj ∈
[sj, ej −1] ∧ ej − sj +1 ≤ 2d̄j}. We have P(A) → 1 as T → ∞.

Corollary 4.1 is a traditional, large-sample consistency result
for NSP. Consider first Assumption 4.1, under which it oper-
ates. With λα as in Corollary 4.1, Assumption 4.1 permits
minj{|ηj+1 −ηj|1/2 min(|fηj+1 − fηj |, |fηj+1+1 − fηj+1 |)}, a quantity
that characterizes the difficulty of the multiple change-point
detection problem, to be of order O(log1/2 T), which is the same
as in Baranowski, Chen, and Fryzlewicz (2019) and minimax-
optimal as argued in Chan and Walther (2013). Further, the
statement of Corollary 4.1 implies statistical consistency of
NSP in the sense that with probability tending to one with T,
NSP estimates the correct number of change-points and each
NSP interval contains exactly one true change-point. More-
over, the length of the NSP interval around each ηj is of order
O(log T/|fηj+1 − fηj |2), which is near-optimal and the same as
in Baranowski, Chen, and Fryzlewicz (2019). Finally, this also
implies that this consistency rate is inherited by any pointwise
estimator of ηj that takes its value in the jth NSP interval of
significance; this applies even to naive estimators constructed
for example, as the middle points of their corresponding NSP
intervals [sj, ej], that is, η̂j = 
(sj + ej)/2�. More refined estima-
tors, for example, one based on CUSUM maximization within
each NSP interval, can also be used and will also automatically
inherit the consistency and rate.

4.2. Scenario 2—Continuous Piecewise Linearity

In this section, ft falls under Scenario 2 and is piecewise lin-
ear and continuous. Naturally, the definition of change-point
strength has to be different from that in Section 4.1. For each
change-point ηj, j = 1, . . . , N, let

d̄j =
⌈

C2λ
2/3
α ξ

−2/3
j

⌉
, (14)

where ξj = |ξj,1 − ξj,2|/2 and ξj,1, ξj,2 are, respectively, the slopes
of ft immediately to the left and to the right of ηj, and C2 is a

certain universal constant (i.e., valid for all ft), suitably large. The
following theorem holds.

Theorem 4.2. Let Assumption 4.1 hold, with d̄j defined in (14).
On the set ‖Z‖Ia ≤ λα , a version of the NSP algorithm
that considers all sub-intervals, executed with no overlaps and
with threshold λα , returns exactly N intervals of significance
[s1, e1] < · · · < [sN , eN] such that ηj ∈ [sj, ej − 1] and
ej − sj + 1 ≤ 2d̄j, for j = 1, . . . , N.

We note that Assumption 4.1 is model-independent: we
require it as much in the piecewise-constant Scenario 1 as in the
piecewise-linear Scenario 2 (and in any other scenario), but with
d̄j defined separately for each scenario. Theorem 4.2 leads to the
following corollary.

Corollary 4.2. Let the assumptions of Theorem 4.2 hold, and in
addition let Zt ∼ N(0, σ 2). Let λα = σ(1 +�)

√
2 log T for any

� > 0. Let S denote the set of intervals of significance [s1, e1] <

[s2, e2] < · · · returned by a version of the NSP algorithm that
considers all sub-intervals, executed with no overlaps and with
threshold λα . Let A = {|S| = N ∧ ∀j = 1, . . . , N ηj ∈
[sj, ej −1] ∧ ej − sj +1 ≤ 2d̄j}. We have P(A) → 1 as T → ∞.

Corollary 4.2 implies that with λα as defined therein, and if
ξj ∼ T−1 (a case in which ft is bounded; see Baranowski, Chen,
and Fryzlewicz 2019), we have that the accuracy of change-point
localization via NSP (measured by ej − sj) is O(T2/3 log1/3 T),
the same as in Baranowski, Chen, and Fryzlewicz (2019) and
within a logarithmic factor of Raimondo (1998). Our comment
(made in Section 4.1) regarding this rate being inherited by any
pointwise estimator of ηj, as long as it falls within [sj, ej], applies
equally in this case.

5. Numerical Illustrations

5.1. Scenario 1—Piecewise Constancy

In this section, we demonstrate numerically that the guarantee
offered by Theorem 2.1 holds for NSP in practice over a variety
of Gaussian models with and without change-points in Scenario
1. We start by describing the competing methods. “NSP” is
the NSP method executed with a deterministic grid using
M = 1000 intervals, with the threshold chosen as in Section 2.3
and no interval overlaps, that is, τL = τR = 0; σ is estimated
via MAD. “NSP-SIM” is like “NSP” but uses the simulation-
based thresholds of Section 2.4. “NSP-O” is like “NSP” but
uses the overlap functions defined in (3). “NSP-SIM-O” is like
“NSP-SIM” but uses the overlap functions as in “NSP-O.” “BP”
is the method of Bai and Perron (2003) as implemented in
the routine breakpoints of R package strucchange
(version 1.5-3) with the minimum segment size set to 2; the
number of change-points is chosen by BIC, and confidence
intervals are then formed conditionally on the estimated
model by using the confint.breakpointsfull
routine, with the significance level Bonferroni-corrected
for the estimated number of change-points. “BP-LIM” is
like “BP” but with the number of change-points limited
from above by the number of intervals returned by NSP (or
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Table 1. Models for the comparative simulation study in Section 5.1; “no. of cpts” means “number of change-points.”

Model name No. of cpts Sample path execution in R

Noise 100 0 rnorm(100)
Noise 300 0 rnorm(300)
Single 100 1 c(rep(0, 50), rep(1, 50)) + rnorm(100)
Single 300 1 c(rep(0, 150), rep(1, 150)) + rnorm(300)

Wave 3 rep(rep(c(0, 100), each = 100), 2) + 100 * rnorm(400)
Wide Teeth 9 rep(rep(c(0, 1), each = 30), 5) + rnorm(300)

Teeth 10 13 rep(rep(c(0, 1), each = 10), 7) + 0.4 * rnorm(140)
Blocks 11 signal defined in Fryzlewicz (2014); noise 10 * rnorm(2048)

Table 2. Numbers of times, out of 100 simulated sample paths of each null model,
that the respective method indicated no intervals of significance.

Model NSP NSP-SIM NSP-O NSP-SIM-O BP BP-LIM SMUCE

Noise 100 96 86 96 86 96 97 97
Noise 300 99 89 99 89 99 99 98

NOTE: Throughout the article, all batches of 100 sample paths are simulated with
the random seed initially set to 1.

one if NSP returns no intervals). “SMUCE” is the method
of Frick, Munk, and Sieling (2014), for which the execution is
stepR::stepFit(data, alpha, confband=TRUE);
we use version 2.1-3 of stepR.

We begin with null models, by which we mean models (1) for
which ft is constant throughout, that is, N = 0. For null models,
Theorem 2.1 promises that NSP at level α returns no intervals
of significance with probability at least 1 − α. In this section, we
use α = 0.1. There are similar parameters in BP, BP-LIM and
SMUCE, and they are also set to 0.1. All models used are listed
in Table 1.

Table 2 shows the null model results. All methods tested
keep the nominal size well for both null signals; note that the
empirical binomial proportion of 0.86, observed in NSP-SIM
and NSP-SIM-O, is only insignificantly (in the sense of the
binomial Z-test) different from the nominal value of 0.9, with
the sample size used (100 simulated sample paths).

We now discuss performance for signals with change-points
(N > 0). For each model and method tested, we evaluate
the following aspects: the empirical coverage (i.e., whether at
least (1 − α)100% of the simulated sample paths are such that
any intervals of significance returned contain at least one true
change-point each); if any intervals are returned, the proportion
of those that are genuine (i.e., the proportion of those intervals
returned that contain at least one true change-point); the num-
ber of genuine intervals; the number of all intervals; and the
average length of genuine intervals. Table 3 shows the results;
note that the Wide Teeth model is challenging from the point
of view of detection for all methods tested, but this should not
surprise on visual inspection of its sample paths.

The BP method suffers from under-coverage in all models
tested with the exception of Single 300; this is the most pro-
nounced for Teeth 10, for which the empirical coverage is only
50 (to the nominal 90). BP-LIM (a method designed not to over-
detect the true number of change-points) does not suffer from
the same problem (with the exception of Single 100, for which it
under-covers slightly); however, the price to pay for the mostly
satisfactory coverage performance of BP-LIM is the fact that it
only detects a small proportion of the true change-points: for

example, on average 1.75 out of 3 for Wave, and 1.92 out of
13 for Teeth 10. The message is that in the presence of under-
detection (as in BP-LIM), conditional confidence intervals can
be capable of offering correct unconditional coverage; but this
advantage disappears if more realistic change-point models are
chosen and post-equipped with conditional confidence intervals
(as in BP). SMUCE suffers from under-coverage in most of the
models tested, most notably in Teeth 10 (coverage 24) and Blocks
(52).

All of the NSP-* methods offer correct coverage for all the
signals tested (empirical coverage of ≥ 90 to the nominal 90). As
expected, the coverage of the -SIM versions does not exceed that
of their theoretical threshold counterparts. Being based on lower
thresholds, the -SIM versions also return more genuine intervals
on average, which are in addition on average shorter. Also as
expected, the -O versions return more intervals on average than
the corresponding non-O versions.

We further test the NSP-* in the presence of noise autocor-
relation as follows. We modify the Noise 300 and Single 300
signals of Table 1 so that the innovations used are simulated
from an AR(1) process with the marginal variance set to 1 and
the autocorrelation coefficient spanning the set 0.1, 0.3, 0.5, and
0.7. Instead of estimating σ via MAD (which would lead to
incorrect behavior for autocorrelated noise), we set it to the true
long-run standard deviation of the relevant noise process, as
per the discussion of Section 2.3. Tables 4 and 5 confirm the
correct coverage behavior of all NSP-* methods in these settings.
Note, in Table 5, the increasing detection challenge in the Single
300 (a) model as a increases to 0.7. Satisfactory estimation of
the long-run standard deviation, especially in the presence of
change-points, is a difficult problem but several solutions exist;
we refer the reader in particular to Dette, Eckle, and Vetter
(2020).

We now illustrate NSP and NSP-SIM-O on the Blocks model
(simulated with random seed set to 1). This represents a difficult
setting for change-point detection, with practically all state of the
art multiple change-point detection methods failing to estimate
all 11 change-points with high probability (Anastasiou and Fry-
zlewicz 2022). A high degree of uncertainty with regards to the
existence and locations of change-points can be expected.

NSP returns 7 intervals of significance, shown in the left-hand
plot of Figure 1. We recall that at a fixed significance level, it is
not the aim of the NSP procedure to detect all change-points.
The correct interpretation of the result is that we can be at least
100(1−α)% = 90% certain that each of the intervals returned by
NSP covers at least one true change-point. This coverage holds
for this particular sample path, with exactly one true change-
point being located within each interval of significance.
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Table 3. Results for each model+method combination: “coverage” is the number of times, out of 100 simulated sample paths, that the respective model+method
combination did not return a spurious interval of significance; “prop. gen. int.” is the average (over 100 simulated sample paths) proportion of genuine intervals out of
all intervals returned, if any (if none are returned, the corresponding 0/0 ratio is ignored in the average); “no. gen. int.” is the average (over 100 sample paths) number of
genuine intervals returned; “no. all int.” is the average (over 100 sample paths) number of all intervals returned; “av. gen. int. len.” is the average (over 100 sample paths)
length of a genuine interval returned in the respective model+method combination.

Model attribute NSP NSP-SIM NSP-O NSP-SIM-O BP BP-LIM SMUCE

coverage 96 90 95 90 78 84 98
Single 100 prop. gen. int. 0.95 0.91 0.94 0.92 0.8 0.84 0.98

no. gen. int. 0.48 0.74 0.48 0.77 0.82 0.83 0.8
no. all int. 0.54 0.92 0.55 0.97 1.15 0.99 0.82

av. gen. int. len. 48.17 44.64 48.17 43.93 15.91 15.66 48.71

coverage 99 92 99 92 89 91 100
Single 300 prop. gen. int. 0.99 0.94 0.99 0.95 0.89 0.91 1

no. gen. int. 0.99 0.97 1.02 1.16 0.9 0.91 1
no. all int. 1.01 1.13 1.05 1.34 1.02 1 1

av. gen. int. len. 118.95 81.7 119.17 82.6 15.68 15.81 55.7

coverage 100 96 100 96 84 86 75
Wave prop. gen. int. 1 0.99 1 0.99 0.94 0.93 0.81

no. gen. int. 1.87 2.49 2.57 3.03 2.87 1.75 2.27
no. all int. 1.87 2.53 2.57 3.07 3.05 1.89 2.65

av. gen. int. len. 104.78 86.01 113.07 90.09 26.3 40.02 75.71

coverage 100 100 100 100 77 95 75
Wide Teeth prop. gen. int. 1 1 1 1 0.87 0.92 0.62

no. gen. int. 0.77 1.78 1 2.49 2.88 0.65 0.53
no. all int. 0.77 1.78 1 2.49 3.23 0.7 0.79

av. gen. int. len. 84.61 59.67 93.65 65.48 24.77 29.95 82.7

coverage 100 100 100 100 50 88 24
Teeth 10 prop. gen. int. 1 1 1 1 0.94 0.95 0.46

no. gen. int. 3.34 6.76 5.08 9.18 11.44 1.92 1.66
no. all int. 3.34 6.76 5.08 9.18 12.24 2.1 3

av. gen. int. len. 20.74 12.41 23.01 13.62 6.94 8.19 21.24

coverage 100 100 100 100 – – 52
Blocks prop. gen. int. 1 1 1 1 – – 0.89

no. gen. int. 7.25 8.24 9.42 10.41 – – 7.56
no. all int. 7.25 8.24 9.42 10.41 – – 8.42

av. gen. int. len. 79.5 69.74 92.64 80.7 – – 76.46

Note 1: for the Teeth 10 signal only, the corresponding averages are over 50 simulated sample paths as the BP method crashed for sample path indexed 52. Note 2: the BP
methods were too slow to execute for the Blocks model.

Table 4. Numbers of times, out of 100 simulated sample paths of each null model,
that the respective method indicated no intervals of significance.

Model NSP NSP-SIM NSP-O NSP-SIM-O

Noise 300 (0.1) 100 97 100 97
Noise 300 (0.3) 100 99 100 99
Noise 300 (0.5) 100 100 100 100
Noise 300 (0.7) 100 100 100 100

NOTE: Here, the process Zt is autocorrelated and the σ is set to its true long-run
standard deviation, rather than being estimated via MAD. “Noise 300 (a)” means
a sample path of length 300 with marginal variance 1 and AR(1) autocorrelation
structure with AR coefficient equal to a.

NSP enables the following definition of a change-point hier-
archy. A hypothesized change-point contained in the detected
interval of significance [s̃1, ẽ1] is considered more prominent
than one contained in [s̃2, ẽ2] if [s̃1, ẽ1] is shorter than [s̃2, ẽ2].
The right-hand plot of Figure 1 shows a “prominence plot” for
this output of the NSP procedure.

The output of NSP-SIM-O is in the middle plot of Figure 1.
This version of the procedure returns 10 intervals of significance,
such that (a) each interval covers at least one true change-point,
and (b) they collectively cover 9 of the signal’s N = 11 change-
points, the only exceptions being η3 = 307 and η7 = 901.

Finally, we mention computation times for this particular
example, on a standard 2015 iMac: 14 sec (NSP, M = 1000),
24 sec (NSP-O, M = 1000), 1.6 sec (NSP, M = 100), and 2.6 sec
(NSP-O, M = 100).

Table 5. Results for each model+method combination under auto-correlation: the
process Zt is autocorrelated and the σ is set to its true long-run standard deviation,
rather than being estimated via MAD.

Model Attribute NSP NSP-SIM NSP-O NSP-SIM-O

coverage 100 97 100 97
Single 300 (0.1) prop. gen. int. 1 0.98 1 0.98

no. gen. int. 0.96 1 0.97 1.05
no. all int. 0.96 1.03 0.97 1.08

av. gen. int. len. 128.91 94.25 128.89 95.11

coverage 100 100 100 100
Single 300 (0.3) prop. gen. int. 1 1 1 1

no. gen. int. 0.82 0.96 0.83 0.98
no. all int. 0.82 0.96 0.83 0.98

av. gen. int. len. 192.72 142.61 192.76 142.86

coverage 100 100 100 100
Single 300 (0.5) prop. gen. int. 1 1 1 1

no. gen. int. 0.42 0.74 0.42 0.74
no. all int. 0.42 0.74 0.42 0.74

av. gen. int. len. 228.43 194.41 228.43 194.41

coverage 100 100 100 100
Single 300 (0.7) prop. gen. int. 1 1 1 1

no. gen. int. 0.04 0.12 0.04 0.12
no. all int. 0.04 0.12 0.04 0.12

av. gen. int. len. 263.25 227.25 263.25 227.25

NOTE: “Single 300 (a)”means the Single 300 signal plus a sample path of length 300
with marginal variance 1 and AR(1) autocorrelation structure with AR coefficient
equal to a.
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Figure 1. Left: realization Yt of noisyblockswith σ = 10 (light grey), true change-point locations (blue), NSP intervals of significance (α = 0.1, shaded red). Middle: the
same for NSP-SIM-O. Right: “prominence plot” – bar plot of ẽi − s̃i , i = 1, . . . , 7, plotted in increasing order, where [s̃i , ẽi] are the NSP significance intervals; the labels are
“s̃i–ẽi”. See Section 5.1 for more details.

Figure 2. Noisy (light grey) and true (black)wave2sect signal, with NSPq significance intervals for q = 0 (left, misspecified model), q = 1 (middle, well-specified model),
q = 2 (right, over-specified model). See Section 5.2 for more details.

5.2. Scenario 2—Piecewise Linearity

We consider the continuous, piecewise-linear wave2sect sig-
nal, defined as the first 450 elements of the wave2 signal from
Baranowski, Chen, and Fryzlewicz (2019), contaminated with
iid Gaussian noise with σ = 0.5. The signal and a sample path
are shown in Figure 2. In this model, we run the NSP procedure,
with no overlaps and with the other parameters set as in Sec-
tion 5.1, (wrongly or correctly) assuming the following, where q
denotes the postulated degree of the underlying piecewise poly-
nomial: (a) q = 0, which wrongly assumes that the true signal is
piecewise constant; (b) q = 1, which assumes the correct degree
of the polynomial pieces making up the signal; (c) q = 2, which
over-specifies the degree. We denote the resulting versions of
the NSP procedure by NSPq for q = 0, 1, 2. The intervals of
significance returned by all three NSPq methods are shown in
Figure 2. Theorem 2.1 guarantees that the NSP1 intervals each
cover a true change-point with probability of at least 1−α = 0.9
and this behavior occurs in this particular realization. The same
guarantee holds for the over-specified situation in NSP2, but
there is no performance guarantee for NSP0.

5.3. Self-Normalized NSP

We briefly illustrate the performance of the self-normalized
NSP. We define the piecewise-constant squarewave signal
as taking the values of 0, 10, 0, 10, each over a stretch of 200
time points. With the random seed set to 1, we contaminate it
with a sequence of independent t-distributed random variables

with 4 degrees of freedom, with the standard deviation changing
linearly from σ1 = 2

√
2 to σ800 = 8

√
2. The simulated dataset,

showing the “spiky” nature of the noise, is in the left plot of
Figure 3.

We run the self-normalized version of NSP with the following
parameters: a deterministic equispaced interval sampling grid,
M = 1000, α = 0.1, ε = 0.03, no overlap; the outcome is
in the left plot of Figure 3. Each true change-point is correctly
contained within a (separate) NSP interval of significance, and
we note that no spurious intervals get detected despite the heavy-
tailed and heterogeneous character of the noise.

In addition, we run the self-normalized NSP, with the param-
eters as above, on heavy-tailed versions of the Noise 300 and
Single 300 models from Table 1, in which the Gaussian innova-
tions have been replaced with t3-distributed innovations scaled
to have marginal variance 1. For the thus-modified Noise 300
model, self-normalized NSP correctly identifies no intervals of
significance in 100 out of 100 simulated sample paths. For the
modified Single 300 model, self-normalized NSP correctly iden-
tifies one interval of significance in 100/100 simulated sample
paths, with the average interval length of 124.54.

6. Data Examples

6.1. The US Ex-post Real Interest Rate

We re-analyze the time series of U.S. ex-post real interest rate
(the 3-month treasury bill rate deflated by the CPI inflation rate)
considered in Garcia and Perron (1996) and Bai and Perron
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Figure 3. Left: squarewave signal with heterogeneous t4 noise (black), self-normalized NSP intervals of significance (shaded red), true change-points (blue); see
Section 5.3 for details. Right: time series Qt for t = 1, . . . , 131. Red: the center of the (single) NSP interval of significance. See Section 6.2 for details.

Figure 4. Left plot: time series Yt ; right plot: time series Ỹt ; both with piecewise-constant fits (red) and intervals of significance returned by NSP (shaded grey). See Section 6.1
for a detailed description.

(2003). The dataset is available at http://qed.econ.queensu.ca/
jae/datasets/bai001/. The dataset Yt , shown in the left plot
of Figure 4, is quarterly and the range is 1961:1–1986:3, so
t = 1, . . . , T = 103. The arguments outlined in Section
11 of the supplement justify the applicability of NSP in this
context.

We first perform a naive analysis in which we assume our
Scenario 1 (piecewise-constant mean) plus iid N(0, σ 2) innova-
tions. This is only so we can obtain a rough segmentation which
we can then use to adjust for possible heteroscedasticity of the
innovations in the next stage. We estimate σ 2 via σ̂ 2

MAD and run
the NSP algorithm with the following parameters: M = 1000,
α = 0.1, τL = τR = 0. This returns the set S0 of two significant
intervals: S0 = {[24, 55], [76, 83]}. We estimate the locations of
the change-points within these two intervals via CUSUM fits
on Y24:55 and Y76:83; this returns η̂1 = 47 and η̂2 = 82. The
corresponding fit is in the left plot of Figure 4. We then produce
an adjusted dataset, in which we divide Y1:47, Y48:82, Y83:103 by
the respective estimated standard deviations of these sections of

the data. The adjusted dataset Ỹt is shown in the right plot of
Figure 4 and has a visually homoscedastic appearance. NSP run
on the adjusted dataset with the same parameters produces the
significant interval set S̃0 = {[23, 54], [76, 84]}. CUSUM fits on
the corresponding data sections Ỹ23:54, Ỹ76:84 produce identical
estimated change-point locations η̃1 = 47, η̃2 = 82. The fit is in
the right plot of Figure 4.

We could stop here and agree with Garcia and Perron (1996),
who also conclude that there are two change-points in this
dataset, with locations within our detected intervals of sig-
nificance. However, we note that the first interval, [23, 54], is
relatively long, so one question is whether it could be covering
another change-point to the left of η̃1 = 47. To investigate
this, we rerun NSP with the same parameters on Ỹ1:47 but find
no intervals of significance (not even with the lower thresholds
induced by the shorter sample size T1 = 47 rather than the
original T = 103). Our lack of evidence for a third change-point
contrasts with Bai and Perron’s (2003) preference for a model
with three change-points.

http://qed.econ.queensu.ca/jae/datasets/bai001/
http://qed.econ.queensu.ca/jae/datasets/bai001/
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Figure 5. Left plot: Yt with the quadratic+constant fit; right plot: Ỹt with the linear+constant fit. See Section 6.1 for a detailed description.

However, the fact that the first interval of significance
[23, 54] is relatively long could also be pointing to model mis-
specification. If the change of level over the first portion of
the data were gradual rather than abrupt, we could naturally
expect longer intervals of significance under the misspecified
piecewise-constant model. To investigate this further, we now
run NSP on Ỹt but in Scenario 2, initially in the piecewise-linear
model (q = 1), which leads to one interval of significance:
S1 = {[57, 84]}.

This raises the prospect of modeling the mean of Ỹ1:57 as
linear. We produce such a fit, in which in addition the mean
of Ỹ58:103 is modeled as piecewise-constant, with the change-
point location η̃2 = 79 found via a CUSUM fit on Ỹ58:103.
We also produce an alternative fit in which the mean of Ỹ1:79
(up to the change-point) is modeled as linear, and the mean of
Ỹ80:103 (post-change-point) as constant. This is in the right plot
of Figure 5 and has a lower BIC value (9.52) than the piecewise-
constant fit from the right plot of Figure 4 (10.57). This is
because the linear+constant fit uses four parameters, whereas
the piecewise-constant fit uses five.

The viability of the linear+constant model for the scaled data
Ỹt is encouraging because it raises the possibility of a model for
the original data Yt in which the mean of Yt evolves smoothly
in the initial part of the data. We construct a simple example of
such a model by fitting the best quadratic on Y1:79 (resulting in
a strictly decreasing, slightly concave fit), followed by a constant
on Y80:103. The change-point location, 79, is the same as in the
linear+constant fit for Ỹt . The fit is in the left plot of Figure 5.
It is interesting to see that the quadratic+constant model for Yt
leads to a slightly lower residual variance than the piecewise-
constant model (4.9–4.94). Both models use five parameters.
We conclude that more general piecewise-polynomial modeling
of this dataset can be a viable alternative to the piecewise-
constant modeling used in Garcia and Perron (1996) and Bai
and Perron (2003). This example shows how NSP, beyond its
usual role as an automatic detector of regions of significance,
can also serve as a useful tool in achieving improved model
selection.

Table 6. Parameter estimates (standard error in brackets) in the autoregressive
model of Section 6.2.

Parameter January 2010–December 2014 January 2015–November 2020

b −0.35 (0.2) 0.66 (0.23)
a 1.03 (0.02) 0.95 (0.02)

6.2. House Prices in London Borough of Newham

We consider the average monthly property price Pt in the Lon-
don Borough of Newham, for all property types, recorded from
January 2010 to November 2020 (T = 131) and accessed on
1st February 2021. The data is available on https://landregistry.
data.gov.uk/. We use the logarithmic scale Qt = log Pt and
are interested in the stability of the autoregressive model Qt =
b + aQt−1 + Zt . Again, the arguments of Section 11 of the
supplement justify the applicability of NSP here.

NSP, run on a deterministic equispaced interval sampling
grid, with M = 1000 and α = 0.1, with the σ̂ 2

MOLS estimator
of the residual variance (see Section 4 of the supplement) and
both with no overlap and with an overlap as defined in formula
(3), returns a single interval of significance [24, 96], which cor-
responds to a likely change-point location between December
2011 and December 2017. Assuming a possible change-point in
the middle of this interval, that is, in December 2014, we run
two autoregressions (up to December 2014 and from January
2015 onwards) and compare the coefficients. Table 6 shows the
estimated regression coefficients (with their standard errors)
over the two sections.

It appears that both the intercept and the autoregressive
parameter change significantly at the change-point. In particu-
lar, the change in the autoregressive parameter from 1.03 (stan-
dard error 0.02) to 0.95 (0.02) suggest a shift from a unit-root
process to a stationary one. This agrees with a visual assessment
of the character of the process in the right plot of Figure 3, where
it appears that the process is more “trending” before the change-
point than it is after, where it exhibits a conceivably stationary
behavior, particularly from the middle of 2016 or so. Indeed,
the average monthly change in Qt over the time period January

https://landregistry.data.gov.uk/
https://landregistry.data.gov.uk/
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2010–December 2014 is 0.0061, larger than the corresponding
average change of 0.0052 over January 2015–November 2020.

Supplementary Materials

Supplement to the paper in a pdf format; R script to accompany the paper;
associated RData file.
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