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Abstract
In this paper, we propose a new type of univariate and bivariate Integer-valued autoregressive
model of order one (INAR(1)) to approximate univariate and bivariate linear birth and death
process with constant rates. Under a specific parametric setting, the dynamic of transition
probabilities and probability generating function of INAR(1) will converge to that of birth
and death process as the length of subintervals goes to 0. Due to the simplicity of Markov
structure, maximum likelihood estimation is feasible for INAR(1) model, which is not the
case for bivariate and multivariate birth and death process. This means that the statistical
inference of bivariate birth and death process can be achieved via the maximum likelihood
estimation of a bivariate INAR(1) model.

Keywords Bivariate birth and death · Linear birth and death · Integer-valued autoregressive
of order one · Convergence in distribution · Discrete approximation

1 Introduction

The simple linear birth and death process, which was first introduced by Feller (1939), is a
widely used Markov model with applications in population growth, epidemiology, genetics
and so on. The basic idea of this process is that the probabilities of any individual giving
birth to a new individual, or any individual dying, are constant at any moment in time and all
individuals are independent of each other. Many statistical properties, including moments,
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distribution function, extinction probability, or some other cumulative distribution of inter-
ests, are explicitly derived in the literature; see for example, Kendall (1949). The statistical
inference for simple birth and death processes is then developed by Keiding (1975), where
maximum likelihood estimators and other asymptotic results are discussed. Since the distribu-
tion function of simple birth and death processes is explicit, the construction of the likelihood
function is straightforward. However, it is pointed out in the literature that the transition prob-
ability is actually cumbersome and numerically unstable when the size of population is large
over time. At the same time, a variety of alternative estimation methods have been proposed.
For example, quasi- and pseudo - likelihood estimators (Chen and Hyrien 2011; Crawford
et al. 2014) addressed it as a missing data problem and apply an EM algorithm to maximize
it. Tavaré (2018) found those transition probabilities by numerical inversion of the probabil-
ity generating function and then applied Bayesian methods to perform estimation. Davison
et al. (2021) adopted a saddle point approximation method to further improve the accuracy
of transition probabilities.

The bivariate and multivariate birth and death process are developed in Griffiths (1972,
1973). Griffiths (1972) described the transmission of malaria (so called host-vector situation)
as a bivariate birth and death process where there is no direct infection between the same type
of population. Then the author extended themodel tomultivariate case (Griffiths 1973) which
can be regarded as an approximation of general epidemic with several types of infective.
However, due to the intractability of the joint probability generating function, maximum
likelihood estimation for parameters is not implementable. One possible way forward is to
use integer-valued time series to approximate the continuous birth and death process and
maximum likelihood estimation would then be feasible.

In recent years, there has been a growing interest in modelling integer-valued time series
due to the presence of count data from different scientific fields such as social science,
healthcare, insurance, economic and the financial industry. In particular, regarding to the
univariate case, Al-Osh and Alzaid (1987) and McKenzie (1985) were the first to consider
an INAR(1) model based on the so-called binomial thinning operator. The idea here is to
manipulate the operation between coefficients and variables as well as the innovation terms
in a way that the values are always integer. One can apply different discrete random variables
to describe this operation. For more details, the interested reader can refer to Weiß (2018),
Davis et al. (2016), Scotto et al. (2015), Weiß (2008) among many more.

In this paper, we propose an integer-valued autoregressive model of order one (INAR(1))
to approximate continuous birth and death process. In this way, the continuous process is
approximated by a discrete Markov chain so that transition probabilities as well as likelihood
function can be written down explicitly. As the birth and death process in our setting does
not consider any immigrant, the innovation term is dropped in the proposed INAR(1) model.
Similar to Nelson (1990), Kirchner (2016), where they find out the relationship between
discrete models and their continuous counterparts, we also first need to make sure the our
proposed discrete INAR(1) model would converge to birth and death process in weak con-
vergence sense. Then we will explore how our proposed model would help facilitate the
statistical inference. According to the probability generating function of the simple birth and
death process, the death part can be described by binomial random variable while the birth
part corresponds to a negative binomial. Then one can construct a bivariate INAR model
based on these random variables to describe the bivariate birth and death process and even
the multivariate one. As the transition probabilities and likelihood function of bivariate birth
and death process cannot be written down explicitly, the main contribution is that the pro-
posed bivariate INAR(1) model would provide a feasible way to estimate the parameters of
bivariate birth and death process (Maximum likelihood estimation).
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The paper is organized as follows: Sect. 2 reviews some main results of univariate and
bivariate birth and death processes with constant rates. Section3 introduces Integer-valued
autoregressive models as well as some distributional properties. Section4 constructs the
discrete semimartingale using the proposed INAR models and proves the weak convergence
between constructed semimartingale and birth and death processes. A simulation study is
carried out in Sect. 5 to illustrate the estimation method via proposed INAR models an their
corresponding properties of estimators. Some concluding remarks are in Sect. 6.

2 Univariate and bivariate birth and death processes

In this section, we will review the essential elements of simple birth-and-death processes,
including moments and other distributional properties. These are well known and extensively
discussed in the literature. Then, wewill discuss the bivariate case where analytic expressions
of the distribution function are not available.

2.1 Simple univariate birth-and-death process

Suppose that we have a population whose total number is evolved as a simple birth and
death process Zt , with constant birth rate λ ≥ 0, death rate μ ≥ 0 and initial population
Z0 ∈ N. In other words, the probability that any individual gives birth in time � is λ�, and
the probability that any individual dies in time � is μ�. Individuals are independent of each
other. Let Pn(t) = Pr(Zt = n) be the probability that the total population is n at time t .
Then the transition probability of the simple birth and death process is characterized by the
following ordinary differential equation (ODE){

dPn(t)
dt = λ(n − 1)Pn−1(t) + μ(n + 1)Pn+1(t) − (λ + μ)nPn(t), n ≥ 1

PZ0(0) = 1
(1)

Applying a liner transform
∑

n θn on both sides and defining ϕ(t, θ) = ∑
n θn Pn(t), we

can get a partial differential equation whose solution ϕ is the probability generating function
of Z (a)

t .
∂ϕ

∂t
= λθ2

∂ϕ

∂θ
+ μ

∂ϕ

∂θ
− (λ + μ)θ

∂ϕ

∂θ

= (λθ − μ)(θ − 1)
∂ϕ

∂θ

ϕ(0, θ) = θa

(2)

This linear PDE can be solved explicitly

ϕ(t, θ) =
(
1 − α(t) + α(t)

β(t)θ

1 − (1 − β(t))θ

)Z0

α(t) = (λ − μ)e(λ−μ)t

λe(λ−μ)t − μ
, β(t) = λ − μ

λe(λ−μ)t − μ

(3)

This probability generating function clearly gives the construction of Zt given Z0, i.e. the
sum of i.i.d zero-modified geometric random variables

Zt ∼
Z0∑
i=1

Bi (α(t))Gi (β(t)), (4)
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where Bi are i.i.d Bernoulli random variables and Gi are i.i.d Geometric random variables
with mean α(t) and 1

β(t) , respectively. Furthermore, from the definition of transition prob-
ability, the linear birth and death process is a pure-jump semimartingale with following
characteristic triplet:

Ch(Zt ) =

⎧⎪⎨
⎪⎩
Bt = 0

Ct = 0

ν(Zt ; dt, dx) = dtK (Zt , dx) = dt(λZt−δ1(dx) + μZt−δ−1(dx))∫
R

(
x2 ∧ 1

)
K (Zt , dx) = (λ + μ)Zt− < ∞, given that Zt− is finite

(5)

With the help of piece-wise deterministicMarkovprocess theory inDavis (1984), the infinites-
imal generator of the simple birth and death process Zt acting on a function f (t, Z) within
its domain �(A) is given by

A f (t, Z) = ∂ f

∂t
+ λZ( f (t, Z + 1) − f (t, Z)) + μZ( f (t, Z − 1) − f (t, Z)), (6)

where�(A) is the domain for the generatorA such that f (t, Z) is differentiable with respect
to t for all t, Z , and

| f (t, Z + 1) − f (t, Z)| < ∞
| f (t, Z − 1) − f (t, Z)| < ∞.

(7)

The first and second moments can be derived by applying infinitesimal generator to the
functions f (t, z) = Z , Z2 such that

AZ = λZ(Z + 1 − Z) + μZ(Z − 1 − Z)

AZ2 = λZ((Z + 1)2 − Z2) + μZ((Z − 1)2 − Z2),
(8)

which leads to two ODEs,

dE[Zt ]
dt

= (λ − μ)E[Zt ]
dE[Z2

t ]
dt

= 2(λ − μ)E[Z2
t ] + (λ + μ)E[Zt ]

(9)

Then, we can solve them explicitly

E[Zt ] = Z0e
(λ−μ)t

E[Z2
t ] = Z2

0e
2(λ−μ)t + Z0(λ + μ)

(λ − μ)
e(λ−μ)t

(
e(λ−μ)t − 1

)

Var(Zt ) = Z0(λ + μ)

(λ − μ)
e(λ−μ)t

(
e(λ−μ)t − 1

) (10)

According to the analytic expression of the first moment, it is clear that the population is
bound to become extinct if λ < μ.

2.2 Bivariate birth-and-death process

Suppose there are two populations M = (M1, M2)
T with initial population M0 ∈ N

2+. The
rate with which the population M1 increases by one is λ21M2 + λ11M1 while the same for
the population M2 would be λ12M1 + λ22M2. The subscript λi, j means that the rate is
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from population i contributed to population j . The death rate for two populations would
be μ1, μ2 respectively. The two population is not independent as long as the cross birth
rates λi, j �= 0, i �= j . Then denote Pmn(t) = Pr(M1,t = m, M2,t = n). This satisfies the
following ODE

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dPm,n
dt = (λ11(m − 1) + λ21n) Pm−1,n + μ1(m + 1)Pm+1,n

+ (λ12m + λ22(n − 1)) Pm,n−1 + μ2(n + 1)Pm,n+1

− ((λ11 + λ12 + μ1)m + (λ21 + λ22 + μ2)n) Pm,n

PM0(0) = 1, M1,0, M2,0 ∈ N+

(11)

Griffiths (1972) introduced this bivariate birth death process (λ11 = λ22 = 0) to describe
the host-vector epidemic situation where the birth probability of two population depends on
the size the other population only, e.g. transmission of malaria. To get the joint probability
generating function of �(t, θ, φ) = ∑

m
∑

n θmφn Pmn(t), we can apply a linear transform∑
m
∑

n θmφn on both sides of the ODE. The resulting PDE is

∂�

∂t
= λ11θ

2 ∂�

∂θ
+ λ21θφ

∂�

∂φ
+ μ1

∂�

∂θ
+ λ12θφ

∂�

∂θ
+ λ22φ

2 ∂�

∂φ
+ μ2

∂�

∂φ

− θ(λ11 + λ12 + μ1)
∂�

∂θ
− φ(λ21 + λ22 + μ2)

∂�

∂φ

= (λ11θ
2 + λ12θφ + μ1 − θ(λ11 + λ12 + μ1))

∂�

∂θ

+ (λ22φ
2 + λ21θφ + μ2 − φ(λ21 + λ22 + μ2))

∂�

∂φ

�(0, θ, φ) = θM1,0φM2,0

(12)

This is a semi-linear PDE. The subsidiary equations are defined as

d�

0
= dt

1
= −dθ

λ11θ2 + λ12θφ + μ1 − θ(λ11 + λ12 + μ1)

= −dφ

λ22φ2 + λ21θφ + μ2 − φ(λ21 + λ22 + μ2)

(13)

The first fraction does not mean divide d� by 0 and combining with the second fraction dt
1

infers that � = constant, according to chapter 8 of Bailey (1991) . Matching the third and
fourth differentials above, we have

dθ

dφ
= λ11θ

2 + λ12θφ + μ1 − θ(λ11 + λ12 + μ1)

λ22φ2 + λ21θφ + μ2 − φ(λ21 + λ22 + μ2)
(14)

It seems that there is no way to solve this non-linear ODE and therefore no explicit solution
is available for this PDE. However, it can be shown that this PDE gives a unique solution
by Existence-Uniqueness Theorem for Quasilinear First-Order Equations. With regard to its
characteristic, similar to the univariate case, this process is a pure-jump semimartingale with
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following characteristic triplets:

Ch(Mt ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Bt = 0

Ct = 0

ν(Mt ; dt, dx) = dtK (Mt , dx) =
dt(λ̃1δ(1,0)(dx) + λ̃2δ(0,1)(dx) + μ̃1δ(−1,0)(dx) + μ̃2δ(0,−1)(dx))Mt−∫

R

(
x2 ∧ 1

)
K (Mt , dx) = (λ̃1 + λ̃2 + μ̃1 + μ̃2)Mt− < ∞, given thatMt− is finite,

where

λ̃1 = (λ11, λ21), λ̃2 = (λ21, λ22), μ̃1 = (μ1, 0), μ̃2 = (0, μ2)

(15)
The moments of this bivariate process can be derived by applying again infinitesimal gener-
ator.

Proposition 1 The first and second moments of the bivariate birth and death process Mt =
(M1,t , M2,t ) defined in (11) are given by

E[M1,t ] = M1,0

(
λ12c

2λ12c + κ1 − κ2
e(λ12c−κ2)t + λ12c + κ1 − κ2

2λ12c + κ1 − κ2
e−(λ12c+κ1)t

)

+ M2,0
λ21

2λ12c + κ1 − κ2

(
e(λ12c−κ2)t − e−(λ12c+κ1)t

)
E[M2, t] = M1,0

λ12

2λ12c + κ1 − κ2

(
e(λ12c−κ2)t − e−(λ12c+κ1)t

)

+ M2,0

(
λ12c + κ1 − κ2

2λ12c + κ1 − κ2
e(λ12c−κ2)t + λ12c

2λ12c + κ1 − κ2
e−(λ12c+κ1)t

)
,

(16)

where

κ1 = μ1 − λ11, κ2 = μ2 − λ22, c = κ2 − κ1 +√
(κ1 − κ2)2 + 4λ21λ12
2λ12

.

The second moments E[M2
1,t ],E[M2

2,t ] and E[M1,t M2,t ] are determined by the following
system of ODE,

d

dt
E[M2

1,t ] = −2κ1E[M2
1,t ] + 2λ21E[M1,t M2,t ] + λ21E[M2,t ] + μ1E[M1,t ]

d

dt
E[M2

2,t ] = −2κ2E[M2
2,t ] + 2λ12E[M1,t M2,t ] + λ12E[M1,t ] + μ2E[M2,t ]

d

dt
E[M1,t M2,t ] = −(κ1 + κ2)E[M1,t M2,t ] + λ21E[M2

2,t ] + λ12E[M2
1,t ]

(17)

Proof See Appendix A.1. �	
Note that to ensure the bivariate process becomes extinct with probability one, we need the

(necessary and sufficient condition) (μ1 − λ11)(μ2 − λ22) > λ12λ21 according to Griffiths
(1973). Many interesting properties of the process have been investigated by Griffiths (1972,
1973). In general, this bivariate birth and death process is not straightforward to apply in
practice because there are no explicit solutions to the above PDE, and the second moments
have to be evaluated by numerical methods. The discrete integer-value model proposed in
the next section would be a possible solution.
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3 Univariate and bivariate INARmodels

In this section, we will introduce integer-valued autoregressive models which will serve
as discrete approximations for continuous counterparts discussed in the last section. The
derivation of this approximation will demonstrate how to parameterize the bivariate INAR
case.

3.1 Univariate INARmodel

The classical integer-value autoregressive (INAR)model is introduced by defining a so-called
binomial thinning operator ◦ such that α ◦ X is the sum of X i.i.d Bernoulli random variable
with success probability α. i.e.

α ◦ X =
X∑

i=1

bi , bi
i .i .d∼ Bernoulli(α) (18)

A well-known Poisson INAR(1) model Xt is given by

Xt = α ◦ Xt−1 + Rt , (19)

where {Ri }i=1,...,t are i.i.d Poisson variables with parameter ρ. The key idea of the integer-
value model would be the operator ◦. One can choose different discrete random variables to
construct different integer-valued models. Indicated by the transition probability of contin-
uous birth and death process, i.e. the sum of i.i.d zero-modified geometric random variables
shown in Eq. (4), INAR model can be a good approximation by combining ◦ and geometric
operator as defined below.

Definition 1 A birth and death INAR(1) model with survival probability α ∈ [0, 1] and birth
probability p ∈ [0, 1] is defined as

Xt = p ∗1 α ◦ Xt−1, (20)

where

• ◦ is the binomial operator
• ∗1 is a geometric (reproduction) operator such that p ∗1 X = ∑X

i=1 g
(1)
i with g(1)

i
being i.i.d geometric random variable with success probability p whose probability mass
function is given by

P(g(1)
i = k) = p(1 − p)k−1, k = 1, 2, . . . ,

• p ∗1 α ◦ X = ∑α◦X
i=1 g(1)

i

Remark The innovation is dropped as there is no independent immigrant process in the birth
and death process investigated.

Proposition 2 The birth and death INAR(1) model has the following statistical properties

1. The probability generating function of Xt can be iterated backwardly such that

ϕ(I )(t, θ) = E[θ Xt ] = E

[(
1 − α + α pθ

1 − (1 − p)θ

)Xt−1
]

= E

[(
1 − αi + αi piθ

1 − (1 − pi )θ

)Xt−i
]

, i = 1, . . . , t

(21)

123



Statistical Inference for Stochastic Processes

where

pi = pi

di−1
αi = αi

di−1

di = pi

⎛
⎜⎝1 + (1 − p)

α
p −

(
α
p

)i+1

1 − α
p

⎞
⎟⎠

(22)

In order words, the birth and death operator p ∗1 α◦ as a whole is iterable.

Xt = p1 ∗1 α1 ◦ Xt−1 = p2 ∗1 α2 ◦ Xt−2 = · · · = pt ∗1 αt ◦ X0 (23)

2. Then the mean, variance and covariance are given by

E[Xt ] = αi

pi
E[Xt−i ]

Var(Xt ) =
(

αi (1 − pi )

p2i
+ αi (1 − αi )

p2i

)
E[Xt−i ] + α2

i

p2i
V ar(Xt−i )

Cov(Xt , Xt−i ) = αi

pi
V ar(Xt−i )

(24)

Proof See Appendix A.2. �	
Note that if α/p < 1, the process Xt will become extinct eventually. It is obvious that

the continuous birth and death process can be approximated by this discrete INAR(1) model
by directly matching the probability generating function ϕ(I ) to the one ϕ in Eq. (3) as the
p ∗1 α ◦ X is the sum of X i.i.d zero-modified geometric random variables.

3.2 Bivariate INARmodel

Discrete approximation for univariate birth and death process is somehow simple because
the PDE(2) has an explicit solution and hence the distribution is already known. In the case
where the dynamic of two populations are characterized by (11), no explicit solution for its
PDE (12). However, from the birth and death INAR(1) model, it is clear that birth and death
probability are closely related to binomial and negative binomial random variables. Based
on the dynamic (11) and linear form of the first moment (16), a bivariate INAR(1) model is
proposed as follows.

Definition 2 A bivariate birth and death INAR(1) model Yt = (Y1,t , Y2,t )T with survival
probability α1, α2 ∈ [0, 1] and birth probability β11, β12, β21, β22 ∈ [0, 1] is defined as

Y1,t = β11 ∗1 α1 ◦ Y1,t−1 + β21 ∗2 Y2,t−1

Y2,t = β12 ∗2 Y1,t−1 + β22 ∗1 α2 ◦ Y2,t−1,
(25)

where

• ◦ is the binomial operator
• ∗2 is another geometric (reproduction) operator different from ∗1 such that β ∗2 X =∑X

i=1 g
(2)
i with g(2)

i being i.i.d geometric random variable whose success probability is
β. The probability mass function is given by

P(g(2)
i = k) = β(1 − β)k, k = 0, 1, 2, . . . ,
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• Conditional on Yt−1, the random variables β11 ∗1 α1 ◦ Y1,t−1, β21 ∗2 Y2,t−1, β12 ∗2
Y1,t−1 and β22 ∗1 α2 ◦ Y1,t−1 are all independent of each other.

Now it seems that the structure of bivariate INAR(1) matches the the dynamics of (11), i.e.
the birth probability depends on the size of both populations while death probability depends
on the size of its own population. We adopt another geometric random variable g(2) which
is slightly different from g(1) because for example, if we use g(1), Y1,t ≥ Y2,t−1∀t which is
not reasonable when Y1,t−1 < Y2,t−1 for a population.

Proposition 3 The first and second moments of the bivariate INAR(1) defined above are
characterized by the following recursive formulas

E[Y1,t ] = α1

β11
E[Y1,t−1] + 1 − β21

β21
E[Y2,t−1]

E[Y2,t ] = 1 − β12

β12
E[Y1,t−1] + α2

β22
E[Y2,t−1]

Var(Y1,t ) = α2
1

β2
11

Var(Y1,t−1) + α1(2 − β11 − α1)

β2
11

E[Y1,t−1] +
(
1 − β21

β21

)2
Var(Y2,t−1)

+ 1 − β21

β2
21

E[Y2,t−1] + 2
α1(1 − β21)

β11β21
Cov(Y1,t−1, Y2,t−1)

Var(Y2,t ) =
(
1 − β12

β12

)2
Var(Y1,t−1) + 1 − β12

β2
12

E[Y1,t−1] + α2
2

β2
22

Var(Y2,t−1)

+ α2(2 − β22 − α2)

β2
22

E[Y2,t−1] + 2
α2(1 − β12)

β12β22
Cov(Y1,t−1, Y2,t−1)

Cov(Y1,t , Y2,t )

=
(

α1α2

β11β22
+ (1 − β21)(1 − β12)

β12β21

)
Cov(Y1,t−1, Y2,t−1)

+ α1(1 − β12)

β11β12
Var(Y1,t−1) + α2(1 − β21)

β21β22
Var(Y2,t−1)

(26)

Proof Similar to Proposition 2, the moments can be derived by conditional expectation. The
first and second moment for random variable g(2)

i with parameter β are 1−β
β

and 1−β

β2 . Then
the first moment for Xt are

E[Y1,t |Yt−1] = E[β11 ∗1 α1 ◦ Y1,t−1|Y1,t−1] + E[β21 ∗2 Y2,t−1|Y2,t−1]
= α1

β11
Y1,t−1 + 1 − β21

β21
Y2,t−1

The second moments are given by
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Var(Y1,T |Yt ) = Var(β11 ∗1 α1 ◦ Y1,t−1|Y1,t−1) + Var(β21 ∗2 Y2,t−1|Y2,t−1)

= α1(2 − β11 − α1)

β2
11

Y1,t−1 + 1 − β21

β2
21

Y2,t−1

Var(Y1,t ) = Var(E[Y1,t−1|Yt−1]) + E[Var(Y1,t |Yt−1)]
+ 2Cov(E[β11 ∗1 α1 ◦ Y1,t−1|Y1,t−1],E[β21 ∗2 Y2,t−1|Y2,t−1])
+ 2E[Cov(β11 ∗1 α1 ◦ Y1,t−1, β21 ∗2 Y2,t−1|Yt−1)]
= Var(E[Y1,t |Yt−1]) + E[Var(Y1,t |Yt−1)]
+ α1(1 − β21)

β11β21
Cov(Y1,t−1, Y2,t−1)

Cov(Y1,t , Y2,t ) = Cov(β11 ∗1 α1 ◦ Y1,t−1, β12 ∗2 Y1,t−1)

+ Cov(β11 ∗1 α1 ◦ Y1,t−1, β22 ∗1 α2 ◦ Y2,t−1)

+ Cov(β21 ∗2 Y2,t−1, β12 ∗2 Y1,t−1) + Cov(β21 ∗2 Y2,t−1, β22 ∗1 α2 ◦ Y2,t−1)

= α1(1 − β12)

β11β12
Var(Y1,t−1) + α1α2

β11β22
Cov(Y1,t−1, Y2,t−1)

+ (1 − β12)(1 − β21)

β12β21
Cov(Y2,t−1, Y1,t−1) + (1 − β21α2)

β21β22
Var(Y2,t−1)

The first and second moments of Y2,t can be derived in a similar way. �	

Proposition 4 If the eigen-values η1, η2 of the following matrix

A =
[

α1
β11

1−β21
β21

1−β12
β12

α2
β22

]
(27)

lie in the interval [−1, 1], then the bivariate population Xt , Yt will become extinct eventually.

Proof The first moment can be expressed in a matrix form

E[Yt ] = AE[Yt−1] = At
E[Y0] (28)

The t th power of a matrix here is defined as t times matrix multiplication. By eigen-
decomposition, power of a matrix can be expressed as

At = Q diag({ηt1, ηt2})Q−1, (29)

where Q = (ν1, ν2) is eigen vector matrix with ν1, ν2 as eigen vectors for η1, η2. Now, it is
clear that E[Yt ] is decreasing in t when η1, η2 ∈ [−1, 1]. �	

4 Weak convergence to continuous birth and death process

In this section, we will construct two continuous processes from the above proposed INAR
models. These processes, under a certain parametrization, will converge weakly to the afore-
mentioned continuous birth and death processes when the length of sub-interval goes to
0.
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4.1 Construction of continuous processes

Since the continuous birth and death processes are clearly semimartingale defined in non-
negative state spaces, to apply limit theorem of locally bounded semimartingales, we need
to construct ’continuous’ processes on a dense subsets of R+ (will take t ∈ [0, 1] for con-
venience) and compute their characteristic triplets from the discrete INAR models. Finally,
when everything is set up nicely, we can apply weak convergence of semimartingale theorem
to prove the result. The construction mainly follows from Jacod and Shiryaev (2013, Chapter
II, section 3).

Starting with a discrete basis B = (¨, F, (Fn)n∈N, P), assume that he INAR models Xn

and Yn defined above are adapted to this discrete stochastic basis and so as the increment
processes

Uk = Xk − Xk−1, U0 = X0

Vk = Yk − Yk−1, V0 = Y0, k = 0, 1, 2, . . .
(30)

then we can construct ’continuous’ processes via time change.

Definition 3 Given a fixed time interval [0, 1], one can define a equal-length grid with size
n such that each subinterval with length � = 1

n . The following the processes:

Z (n)
t =

σt∑
k=0

Uk, M(n)
t =

σt∑
k=0

Vt , (31)

where σt = tn�, are adapted to the continuous-time basis B̃ = (¨, F,G = (gt )t≥0, P). The
parameters setting for Z (n)

t are

α = (λ − μ)e(λ−μ)�

λe(λ−μ)� − μ
, p = λ − μ

λe(λ−μ)� − μ
. (32)

The parameters setting for M (n)
t are

α1 = (λ11 − μ1)ω1(�)

λ11ω1(�) − μ1
, α2 = (λ22 − μ2)ω2(�)

λ22ω2(�) − μ2

β11 = λ11 − μ1

λ11ω1(�) − μ1
, β22 = λ22 − μ2

λ22ω2(�) − μ2

β21 = (
1 + Cβ1

(
eu1� − eu2�

))−1
, β12 = (

1 + Cβ2

(
eu1� − eu2�

))−1
,

(33)

where

ω1(�) = Cαe
u1� + (1 − Cα)eu2�, ω2(�) = (1 − Cα)eu1� + Cαe

u2�

Cα = λ12c

2λ12c + μ1 − μ2
, Cβ1 = λ21

2λ12c + κ1 − κ2
, Cβ2 = λ12

2λ12c + κ1 − κ2

u1 = λ12c − κ2, u2 = −(λ12c + κ1), κi = μi − λi i , i = 1, 2

c = κ2 − κ1 +√
(κ1 − κ2)2 + 4λ21λ12
2λ12

.

It is straightforward to derive the parameter setting for univariate case since we only need
to match the parameter via probability generating function between Z (n)

t and Zt . However, in
the other case where the closed form probability generating function for Mt is not available,
we need to seek other ways to set up αi and βi, j in terms of λ and μ. The direct approach
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would be to match the first and second order moments to see whether it works. It is clear that
we can match moment equations (26) to (16) and find out the mapping of β12, β21 in terms
of λi, j , μi , i, j ∈ {1, 2}. Unfortunately, only the ratio αi/βi i is known. Nevertheless, the
parameter setting in univariate case shows us the way to distribute the ratio α/p to α and p.
Then αi , βi i can be set up in a similar way.

Proposition 5 With the above parameters setting and any non-negative integer m, the tran-
sition probabilities for Z (n)

t conditional on Z (n)
t−� = k are

Pr(Z (n)
t = k + m|Z (n)

t−� = k) =
(
k + m − 1

k − 1

)
(λ�)m + o(�m)

Pr(Z (n)
t = k − m|Z (n)

t−� = k) =
(

k

k − m

)
(μ�)m + o(�m)

(34)

The above probabilities can be simplified as,

Pr
(
Z (n)
t = k + 1|Z (n)

t−� = k
)

= λk� + o(�)

Pr
(
Z (n)
t = k − 1|Z (n)

t−� = k
)

= μk� + o(�)

Pr
(
|Z (n)

t − k| ≥ 2|Z (n)
t−� = k

)
= o(�)

(35)

On the other hand, the transition probabilities for M(n)
t conditional on M(n)

t−� = k = (k1, k2)
given by

Pr(M (n)
i,t = ki + m|M(n)

t−� = k)

=
ki+m∑
j=ki

(
j − 1

ki − 1

)(
k1 + k2 + m − j − 1

ki ′ − 1

)
(λi i�) j−ki (λi ′,i�)ki+m− j + o(�m)

Pr(M (n)
i,t = ki − m|M(n)

t−� = k) =
(

ki
ki − m

)
(μi�)m + o(�m),

(36)

where i ∈ {1, 2} and i ′ = 3 − i . Due to the conditional independence of bivariate INAR
models, the joint transition probabilities for M(n)

t conditional on M(n)
t−� are

Pr(M (n)
1,t = k1 ± m1, M

(n)
2,t = k2 ± m2|M(n)

t−� = k)

= Pr(M (n)
1,t = k1 ± m1|M(n)

t−� = k)Pr(M (n)
2,t = k2 + m2|M(n)

t−� = k)
(37)

Similarly, the above probabilities can be simplified as

Pr(M (n)
i,t = ki + 1|M(n)

t−� = k) = λi i k1� + λi ′,i k2� + o(�)

Pr(M (n)
i,t = ki − 1|M(n)

t−� = k) = μi ki� + o(�)

Pr
(
|M (n)

i,t − ki | ≥ 2|M(n)
t−� = k

)
= o(�)

(38)

Proof See Appendix A.3. �	
It is obvious that the above transition probabilities have exactly the same form as con-

tinuous counterparts when m = 1. Consequently, the Lévy measures of Z (n)
t and M(n)

t have
similar structure to their continuous counterparts.
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Proposition 6 The continuous processes Z (n)
t and M(n)

t defined above are semimartingales
with following characteristics triplets.

Ch(Z (n)
t ) =

⎧⎪⎨
⎪⎩

Bt = 0

Ct = 0

ν([0, t] × g) = ∑σt
k=1(g(1)λ + g(−1)μ)Xk−1� + O(�)

Ch(M(n)
t ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Bt = 0

Ct = 0

˚([0, t] × g) = ∑σt
k=1

(
g(1, 0)λ̃1 + g(−1, 0)μ̃1

)
Yk−1�

+
(
g(0, 1)λ̃2 + g(0,−1)μ̃2

)
Yk−1�

+O(�),

(39)

where the g is a continuous, non-negative, bounded Borel function vanishing near 0 and
M(n)

t respectively, the truncation function is h = |x |1{|x |<1} and

λ̃1 = (λ11, λ21), λ̃2 = (λ21, λ22), μ̃1 = (μ1, 0), μ̃2 = (0, μ2)

Proof See Appendix A.4. �	
Theorem 7 With the the definition and the parametrization above, and the initial distribution
condition:

Z (n)
0 = Z0, M(n)

0 = M0, (40)

the processes Z (n)
t and M(n)

t converge weakly to the continuous birth and death processes
Zt and Mt .

lim
n→∞Z (n)

t
w→ Zt

lim
n→∞M(n)

t
w→ Mt ,

(41)

when the size of subinterval � goes to 0 or equivalently, n → ∞.

Proof Here we simply apply Theorem 3.39 from Jacod and Shiryaev (2013, chapter IX,
section 3), the limit theorem of semimartingales for the locally bounded case.

i The local strong Majorization Hypothesis: For both cases Zt and Mt , the first two terms
of the characteristic triplets are 0 and stochastic integrals with respect to the function is
clearly finite on [0, 1]

ii Local Conditions on big jumps: For both cases Zt and Mt , there is no jump with absolute
size greater than 1.

iii The local uniqueness: for every choices of initial distributions for Z0 and M0, their Lévy
measures are uniquely characterized by their (joint) probability distribution functions.

iv Continuity Condition, the characteristic triplets Bt (ω),Ct (ω), ν(ω; dt, dx) of Zt andMt

are continuous with respect to ω.
v Weak convergence of initial distribution. This is stated at the beginning of this theorem.
vi Convergence of characteristic triplet of discrete processes to that of their continuous

counterparts. This can be proved by showing the uniform convergence of Lévymeasures.
For every a > 0, define a stopping time for the population process:

Sa(X) = inf {t : |Xt | > a, or |Xt−| > a} (42)
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For the univariate case, the stochastic integral with respect to g ∗ v for any Borel function g
is given by

(g ∗ νt∧Sa ) ◦ Z (n) =g ∗ ν(Z (n); [0, t ∧ Sa(Z
(n))], R)

=
∫ t∧Sa(Z (n))

0

∫
R
g(x)(λδ1(dx) + μδ−1(dx))Z

(n)

s− ds

=
∫ t∧Sa(Z (n))

0
(g(1)λ + g(−1)μ)Z (n)

s− ds

=
σt∧Sa (Z(n))∑

k=1

(g(1)λ + g(−1)μ) Z (n)
k−1�

+ (g(1)λ + g(−1)μ) Z (n)
σt∧Sa (Z(n))

(
t ∧ Sa(Z

(n)) − σt∧Sa(Z (n))�
)
(43)

and the absolute difference of two stochastic integrals is given by,

|g ∗ νnt∧Sa − (g ∗ νt∧Sa ) ◦ Z (n)|
=
∣∣∣O(�) + (g(1)λ + g(−1)μ) Zσt∧Sa (Z(n))

(
t ∧ Sa(Z

(n)) − σt∧Sa(Z (n))�
)∣∣∣

≤ O(�) + |g(1)λ + g(−1)μ|Zσt∧Sa (Z(n))

(
t ∧ Sa(Z

(n)) − σt∧Sa(Z (n))�
) (44)

It is clear that all the quantity inside |..| are finite and for every ξ > 0, and then there exists
a natural number N such that for n > N , we have

|g ∗ νnt∧Sa − (g ∗ νt∧Sa ) ◦ Z (n)| < ξ (45)

and hence we have the uniform convergence for g ∗ νnt∧Sa
to (g ∗ νt∧Sa ) ◦ Z (n). For the

bivariate case, the stochastic integral g ∗ ν, where ν is the Lévy measure of M , for any Borel
function g is given by

(g ∗ νt∧Sa ) ◦ M(n) = g ∗ ν(M(n); [0, t ∧ Sa(M(n))], R)

=
∫ t∧Sa(M(n))

0

∫
R
g(x)(λ̃1δ(1,0)(dx) + λ̃2δ(0,1)(dx)

+ μ̃1δ(0,−1)(dx) + μ̃2δ(0,−1)(dx))M
(n)

s− ds

=
∫ t∧Sa(M(n))

0

(
g(1, 0)λ̃1 + g(0, 1)λ̃2 + g(−1, 0)μ̃1 + g(0,−1)μ̃2

)
M(n)

s− ds

=
t∧Sa(M(n))∑

k=1

(
g(1, 0)λ̃1 + g(0, 1)λ̃2 + g(−1, 0)μ̃1 + g(0,−1)μ̃2

)
M(n)

k−1�

+
(
g(1, 0)λ̃1 + g(0, 1)λ̃2 + g(−1, 0)μ̃1 + g(0,−1)μ̃2

)
× M(n)

σt∧Sa (M(n))

(
t ∧ Sa(M(n)) − σt∧Sa(M(n))

)

(46)

123



Statistical Inference for Stochastic Processes

Then the absolute difference of two stochastic integrals is given by

|g ∗ νt∧Sa(M(n)) − (g ∗ νt∧Sa ) ◦ M(n)|
≤ O(�) +

∣∣∣g(1, 0)λ̃1 + g(0, 1)λ̃2 + g(−1, 0)μ̃1 + g(0,−1)μ̃2

∣∣∣
× M(n)

σt∧Sa (M(n))

(
t ∧ Sa(M(n)) − σt∧Sa(M(n))

) (47)

Hence the uniformconvergence holds using similar argument as in the univariate case. Finally,
the Z (n)

t , M (n)
t converge weakly to Zt and Mt respectively. �	

5 Simulation study

In this section, we outline the simulation algorithm for bivariate birth and death processes.
Then estimation method, properties of estimators are investigated in the simulation study.

5.1 Simulation of bivariate birth and death process

The simulation algorithm of bivariate birth and death process Mt can be derived straightfor-
wardly according to its ODE (11). Given the current population Mt , the waiting time that a
event (birth or death in either population) will happen follows exponential distribution with
rate

ρt = (λ11 + λ12 + μ1)M1,t + (λ21 + λ22 + μ2)M2,t

Then the probability that this event will happen in population M1,t is

p1 = λ21M2,t + (λ11 + μ1)M1,t

ρt
(48)

The probability that this event will happen in population M2,t would simply be p2 = 1 −
p1. Suppose now an event happens in population M1,t , the probability that there is a new
individual would be

pb1 = λ11M1,t + λ21M2,t

λ21M2,t + (λ11 + μ1)M1,t
, (49)

and the probability that an individual dies is pd1 = 1− pb1 . Likewise, if the event happens in
the population M2,t , the birth probability would be

pb2 = λ12M1,t + λ22M2,t

λ12M1,t + (λ22 + μ2)M2,t
(50)

anddeath probability pdn = 1−pbn .Overall, the simulation algorithm is shown in the following
Algorithm 1.

On the other hand, the simulation procedure of bivariate INAR(1)model is straightforward
because the distribution of Yt are indicated by the operator (◦, ∗1, ∗2) given Yt−1.
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Algorithm 1 Simulation of bivariate birth and death process with rates
{λ11, λ12, λ21, λ22, μ1, μ2}, initial population M1,0, M2,0, a vector of cumulative time
tc where tc[1] = 0, a counter i and terminal time T
1. Simulate a waiting time tw ∼ Exp(ρt ) and two independent uniform random variableU1,U2 ∼ U (0, 1)
2. if U1 ≤ p1, and U2 ≤ pb1 , M1,t+tw = M1,t + 1 and M2,t+tw = M2,t

3. if U1 ≤ p1, and U2 > pb1 , M1,t+tw = M1,t − 1 and M2,t+tw = M2,t

4. if U1 > p1, and U2 ≤ pb2 , M2,t+tw = M2,t + 1 and M1,t+tw = M1,t

5. if U1 > p1, and U2 > pb2 , M2,t+tw = M2,t − 1 and M1,t+tw = M1,t
6. Append a new element to tc , tc[i + 1] = tc[i] + tw and update counter i = i + 1
7. Repeat all the steps above until tc[i] > T or M1,tc[i] = M2,tc[i] = 0
8. Set M1,T = M1,tc[i−1] and M2,T = M2,tc[i−1] and return the trajectory M at each element of tc

5.2 Statistical inference of univariate and bivariate birth and death process

5.2.1 Quasi-MLE for bivariate LBD

In the univariate case, parameters estimation and their asymptotic properties are available
in Keiding (1975). Suppose now we have the full information of the sample path, the exact
inter-arrival times for each birth and death events {τi }{i=0,1,2,... } on the sampling interval
[0, T ] where τ0 = 0, the maximum likelihood estimators for Zt are

λ̂ = BT

XT
, μ̂ = DT

XT
, XT =

BT +DT∑
k=1

τk Zτk−1 +
(
T −

n∑
i=1

τi

)
ZT , (51)

where BT , DT are total number of birth and death events respectively. The asymptotic prop-
erties are given by fixed T and large population

lim
Z0→∞

(
Z0(e(λ−μ)T − 1)

λ − μ

) 1
2 (

λ̂ − λ

μ̂ − μ

)
D→ N

((
0

0

)
,

(
λ 0
0 μ

))
(52)

In practice, one may not have exact information of inter-arrival time of the events.
Instead, we have records for populations sampling over a fixed-length interval � such
that Z0, Z�, Z2� . . . Zn� are available. Then to estimate the parameters λ,μ, one can
numerically maximize the Quasi log-likelihood function from the proposed INAR(1) model
Xk = Zk�, k = 0, 1, . . . , n. The log likelihood function is given by,

�(α, p) =
n∑

k=1

log Pr(Xk−1, Xk)

Pr(Xk−1, Xk)

=

⎧⎪⎨
⎪⎩
1, Xk−1 = Xk = 0

(1 − α)Xt−1 , Xk = 0∑min{Xk−1,Xk }
j=1 fb( j; Xk−1, α) fnb(Xk − j; j, p), Xk−1 > 0 & Xk > 0,

(53)

where fb and fnb are probability mass function of binomial and negative binomial random
variables

fb(x; n, α) =
(
n

x

)
αx (1 − α)n−x fnb(x; n, β) =

(
n + x − 1

n − 1

)
βn(1 − β)x
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Table 1 Parameter setting for
univariate case

Parameters λ μ Z0 T

Values 1.2 1 100 1

Table 2 Properties of different maximum likelihood estimators

Bias λ MSE λ Bias μ MSE μ Time (s)

Theoretical 0 0.000126 0 0.000116 –

MLE −0.000701 0.000124 0.015898 0.000396 0.09

� = 0.1 − 0.133845 0.075696 − 0.116943 0.072754 49

� = 0.05 − 0.086435 0.023935 − 0.069513 0.021836 98.6

� = 0.025 − 0.051234 0.007711 − 0.034323 0.006557 201.4

� = 0.01 − 0.014178 0.001378 0.002721 0.001159 522.2

The time column is the total time of estimating 1000 sample paths

The simulation is conducted as follow: we generate 1000 sample paths of Zt using the
parameters settings in Table 1. Since Zt are continuous sample paths, we set up an equal-
distance grid with sampling interval�. Then the equal-distance observations Xt are obtained
by counting the total number of population up to each discrete time (0,�, 2�, . . . , n�)

where n = T
�
. The log likelihood function is then maximized by ’optim’ function with

method = ’BFGS’ in R programming. Finally, we can recover the rate estimates by inverting
the parametrization in equation (32) such that

λ̃ =
1− p̂
p̂ log α̂

p̂

α̂
p̂ − 1

, μ̃ = λ̃ − 1

�
log

α̂

p̂
(54)

In the following, we will first explore how the size of � would affect properties esti-
mators, i.e. bias and mean square error (MSE), and how much more computational time
we need compared to true MLE method. Four different size of sampling intervals � =
{0.1, 0.05, 0.025, 0.01} is chosen and the results are presented in Table 2. The theoretical
row shows the biased and MSE computed through equation (52). There is no surprise that
the True MLE method from Eq. (51) performs the best, with lowest MSE and computational
time. The Quasi-MLE method by constructing INAR model, on the other hand, becomes
better as we decreasing the size of sampling interval � but it still performs no better than the
true MLE method and require much more computational time. The empirical distribution of
these estimators are illustrated in Fig. 1 and since the general shape of distribution of λ̃ and
μ̃ has little difference, we will only show the distribution of λ̃. It is clear that only the case
� = 0.01 has satisfactory normal shape compared to all other cases.

To achieve asymptotic normality for Quasi-MLE method from INAR model, one need
not only large initial population, but also a small sampling interval �. In the following
simulation, we would fix the sampling interval � = 0.01 and investigate how the size of
initial populationwould affect the asymptotic distribution of estimators and the computational
time for estimation procedure. To explore the effect of Z0 for asymptotic distribution, we
choose Z0 ∈ {5, 10, 30, 50} and it seems from Fig. 2 that to ensure asymptotic normality for
both estimators, one need at least Z0 = 30, which is a large sample size in statistical sense.
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Fig. 1 The empirical distribution of estimated parameters. The top panel is the MLE from 51 and the rest of
plots are MLE from INAR model. The solid lines are the true values of the parameters listed in Table 1 and
the dash lines stand for empirical means

The computational time with respect to Z0 ∈ {10, 50, 100, 150, . . . , 500} clearly shows
a linear trend in Fig. 3. This is reasonable as the number of summation involved in Eq. (53)
increases linearly with respect to Z0

In summary, the Quasi-MLE method constructed from INAR model can reach moderate
level of estimation accuracy and asymptotic normality with large initial population Z0 ≥ 30
and small sampling interval � ≤ 0.01. However, it would require much more computational
time than the true MLE method. This method should only be used in the case where we have
no information on inter-arrival time of birth and death events.
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Fig. 2 Asymptotic distribution of λ̃, μ̃ with different Z0

5.2.2 Quasi-MLE for bivariate LBD

Since the bivariate INAR(1) model is a bivariate Markov Chain, the log likelihood func-
tion can be written as the sum of logarithm of transition probabilities. Denote � =
{α1, α2, β11, β12, β21, β22} as the parameter space of bivariate INAR(1) model, then the
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Fig. 3 The computational time for INAR models of 1000 sample paths

likelihood function can be written as

�(�) =
n∑

t=1

log Pr(Xt , Yt |Xt−1, Yt−1)

=
n∑

t=1

(log Pr(Xt |Xt−1, Yt−1) + log Pr(Yt |Xt−1, Yt−1))

= �x (�x ) + �y(�y),

(55)

where �x = {α1, β11, β21} and �y = {α2, β12, β22}. Because Xt and Yt are independent of
each other given the last state (Xt−1, Yt−t ), the likelihood function can be separated into two
parts, �x and �y respectively. Then transition probability for Xt is given by

Pr(Xt = z1|Xt−1 = x, Yt−1 = y)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 z1 = x = y = 0

(1 − α1)
xβ

y
21 z1 = 0

fnb(z1; y, β21) x = 0 & y > 0∑min{x,z1}
i=1 fb(i; x, α1) fnb(z1 − i; i, β11) x > 0 & y = 0∑z1
j=1

∑min{x, j}
i=1 fb(i; x, α1) fnb(z1 − i; i, β11) fnb(z1 − j; y, β21)

+(1 − α1)
x fnb(z1; y, β21) x > 0 & y > 0

The one for Yt is
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Table 3 Parameter setting for
simulation

Parameters λ11 λ12 λ21 λ22 μ1 μ2 T M0

Values 0.3 1.2 1.3 0.4 1.1 1.2 1 (40, 50)

Pr(Yt = z2|Xt−1 = x, Yt−1 = y)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 z2 = x = y = 0

(1 − α2)
yβx

12 z2 = 0

fnb(z2; x, β12) x > 0 & y = 0∑min{y,z2}
i=1 fb(i; y, α2) fnb(z2 − i; i, β22) x = 0 & y > 0∑z2
j=1

∑min{y, j}
i=1 fb(i; y, α2) fnb(z2 − i; i, β22) fnb(z2 − j; y, β12)

+(1 − α2)
y fnb(z2; x, β12) x > 0 & y > 0

One can then numerically maximize the log likelihood function �x , �y given the random
samples {(X0, Y0), (X1, Y1), . . . , (Xn, Yn)}. From the estimated parameters �̂, we can solve
the following system of equations to get the estimates �bd = {λ11, λ12, λ21, λ22, μ1, μ2}
for bivariate birth and death process.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1(�bd ,�) − α̂1 = 0

α2(�bd ,�) − α̂2 = 0

β11(�bd ,�) − β̂11 = 0

β12(�bd ,�) − β̂12 = 0

β21(�bd ,�) − β̂21 = 0

β22(�bd ,�) − β̂22 = 0,

(56)

where the parametrization function .(�bd ,�) are given in equation 33 and� is chosen based
on the interpretation of birth and death rates. For example, when the random samples are
collected on daily basis over a year t = 1, one can define � = t/365. Then these parameters
�bd are interpreted on an annual scale.

In the following, we will simulate the r2 = 1000 sample paths of Mt based on the pre-
specific parameters in Table 3. Then equal-distance gird with sampling interval � is set up
and random samples (Y0, Y1, . . . , Yn) are obtained, like the waymentioned in the univariate
case. Then the likelihood functions �x , �y are maximized by ’optim’ in R with method being
specified as ’BFGS’ and the maximum likelihood estimators �̂ are obtained. Finally, we
can obtain the estimators �̂bd by numerically solving the system of equations (56) via a
root-finding algorithm (e.g. Newton–Raphson method). Referring to the estimation results
in univariate case, we focus on the choices of � ∈ {0.02, 0.01, 0.005} as well as large initial
population (40, 50), and hopefully we can obtain asymptotic normality for each estimator.
The empirical distribution of these estimators�bd are illustrated in Fig. 4 and their properties
are summarized in Table 4.

The bias and MSE of most estimators are decreasing with respect to � as expected.
However, theMSE of birth rates are much larger than the estimators of death rates. Except the
estimators for death rates, all other estimators for birth rate are skewed to different directions
and clearly non-normal distributed. This may caused by some of non-normal estimators for
proposed INAR model illustrated in Fig. 5. In the classical setting where the innovation term
is included, one need stationary condition to ensure asymptotic normality for all estimators
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Fig. 4 Empirical distribution estimators from bivariate INAR model. The solid lines are the true values of the
parameters listed in Table 3 and the dash lines stand for empirical means
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Fig. 5 Empirical distribution estimators from bivariate INAR model

of parameters, see Bu et al. (2008). And in our case, INAR model itself is not stationary and
hence some of the estimate can be skewed.

Notice that the pair of birth rates that contributed to the same population, (λ11, λ21) and
(λ12, λ22) are skewed in opposite directions. It is then worthwhile to see whether the sum of
these pair estimators has desired asymptotic properties and the results in Fig. 6 confirms our
conjecture. Combining the simulation procedure of bivariate birth and death processes,Quasi-
MLE method may not be able to distinguish the pair of birth rates contributed to the same
population. Instead, it would provide good estimators for the scale of total birth rates λ̄1 =
λ̂11rm + λ̂21(1− rm) and λ̄2 = λ̂12rm + λ̂22(1− rm) where rm = E[M1,t ]

E[M1,t+M2,t ] . Furthermore,
according to the proof A.1, the relationship between first moment of two population is given
by

E[M1,t ] = cE[M2,t ] + (M1,0 − cM2,0)e
−(λ12c−κ2)t . (57)

As long as the whole process is not extinct with probability one, i.e. κ1κ2 < λ12λ21, the
exponential power (λ12c− κ2) will always be positive and hence E[M1,t ] ≈ cE[M2,t ] when
t is large. In other words, the ratio
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Fig. 6 Empirical distribution for total birth rates. The solid lines are the true values of the parameters listed in
Table 3 and the dash lines stand for empirical means

Table 5 Properties for total birth
rates estimators

Bias λ̄1 MSEλ̄1 Bias λ̄2 MSE λ̄2

� = 0.02 0.012623 0.024232 −0.015039 0.028914

� = 0.01 0.008386 0.013068 −0.014407 0.017563

� = 0.005 0.009380 0.009286 −0.015613 0.011202

Fig. 7 Empirical distribution for total birth rates. The solid lines are the true values of the parameters listed in
Table 3 and the dash lines stand for empirical means

Table 6 Parameter setting for simulation

Parameters λ11 λ12 λ21 λ22 μ1 μ2 T M0

Values 0.3 0.5 1.3 0.4 1.1 1.2 1 (30, 60)
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Table 7 Properties of different maximum likelihood estimators

λ̂11 λ̂12 λ̂21 λ̂22 μ̂1 μ̂2

Bias

� = 0.02 −0.091964 1.633439 0.064837 −0.891418 0.050226 0.008661

� = 0.01 −0.092042 1.613498 0.056800 −0.863226 0.034508 0.02260

� = 0.005 −0.063956 1.513447 0.036706 −0.818343 0.024054 0.016939

MSE

� = 0.02 0.243023 4.669929 0.108730 1.315634 0.115385 0.120301

� = 0.01 0.225980 4.535412 0.090212 1.259920 0.062935 0.06831

� = 0.005 0.243969 4.186109 0.087121 1.177241 0.042955 0.036328

Table 8 Properties for total birth
rates estimators

Bias λ̄1 MSE λ̄1 Bias λ̄2 MSE λ̄2

� = 0.02 0.013970 0.017193 0.007765 0.062907

� = 0.01 0.008500 0.009268 0.017503 0.038616

� = 0.005 0.004425 0.006884 0.012662 0.023027

rm = E[M1,t ]
E[M1,t + M2,t ] → c

1 + c
, (58)

becomes a constant eventually. For the parameter setting in Table 3, c = 1.040833, rm ≈ 1
2

and hence λ̂11 + λ̂21 serves as an estimator for the total birth rate of M1,t . In practice, the c
is unknown as true parameters need to be estimated. Then we can use the values at the end
of sampling period to approximate rm , i.e.

rm ≈ M1,T

M1,T + M2,T
(59)

The properties of λ̄1, λ̄2 and their empirical distribution are shown in Table 5 and Fig. 7.
These new estimators benefits from nice properties, low bias and MSE and they decreases as
� decreases. Most importantly, they are not skewed anymore and asymptotic normal.

Let us try another parameter setting in Table 6 to verify this conjecture. Same simulation
and estimation process as previous case and the results are shown in Tables 7, 8 and Fig. 8.
This time the constant c is 0.576306 and rm = 0.365605. Similar to the last setting, the
estimators for all birth rates are skewed and some of them have large bias and MSE. The
estimators for total birth rate, on the other hand, are of low bias and MSE and they are again
asymptotic normal.

Let us finally try another parameter setting in Table 9 where the Mt is going to be extinct
eventually. It means that the exponential function in Eq. (57) can no longer be omitted. The
results are illustrated in Table 10 and Fig. 9 and they look similar to the results of the first
case. Nice properties for death rates’ estimators but skewed and non-normal for birth rates’
estimators.
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Fig. 8 Empirical distribution for total birth rates. The solid lines are the true values of the parameters listed in
Table 3 and the dash lines stand for empirical means
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Table 9 Parameter setting for simulation

Parameters λ11 λ12 λ21 λ22 μ1 μ2 T M0

Values 0.3 0.5 0.8 0.3 1.1 1.2 1 (30, 60)

Table 10 Properties of different maximum likelihood estimators

λ̂11 λ̂12 λ̂21 λ̂22 μ̂1 μ̂2

Bias

� = 0.02 0.026802 0.071221 −0.020855 −0.064399 0.015807 0.007330

� = 0.01 0.033741 0.063121 −0.024328 −0.056261 0.019261 0.008451

� = 0.005 0.032433 0.061202 −0.022955 −0.046396 0.016784 0.011859

MSE

� = 0.02 0.245305 0.184363 0.165970 0.091334 0.088017 0.059102

� = 0.01 0.226033 0.167176 0.150903 0.081478 0.052522 0.039980

� = 0.005 0.211617 0.155803 0.139283 0.078867 0.042573 0.035270

6 Concluding remarks

In this paper, we propose an integer-valued autoregressive model INAR(1) to approximate
the continuous birth-and-death process. In univariate case, we propose a birth-death operator
p∗1α◦X which is the sum of zero-modified geometric random variable. The parametrization
of p and α can be determined by matching the first and second moment of continuous
process. Then we propose an bivariate INAR(1) model to approximate bivariate birth and
death process where birth probabilities will also depend on the size of the other population.
The parametrization of this model can be obtained in a similar way. The convergence from
discrete process to continuous process is proved by apply weak convergence theorem of
locally bounded semimartingales. Due to the simple Markov structure of INAR(1) model,
maximum likelihood estimation would be feasible. It is however not the case for bivariate and
multivariate birth and death process. Basically, one can extend the result here to multivariate
case, i.e. we can approximate multivariate birth and death process in Griffiths (1973) by
multivariate INAR(1) model using the these operators ∗1, ∗2, ◦ only as well as adding an
immigrant process. However, the difficulty of expressing the parameters of INAR(1) model
in terms of the parameters of multivariate birth and death process would be increasing and
as we need to find out the first moment of birth and process explicitly.
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Fig. 9 Empirical distribution for individual birth and death rates. The solid lines are the true values of the
parameters listed in Table 9 and the dash lines stand for empirical means
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Appendix A: Proofs

A.1 Proof of proposition 1

Similar to univariate case defined in (6), the infinitesimal generator of the bivariate birth and
death process (M1,t , M2,t ) acting on a function f (t, M1, M2) within its domain �(A) is
given by

A f (t, M1, M2) =∂ f

∂t
+ (λ11M1 + λ21M2)( f (t, M1 + 1, M2) − f (t, M1, M2))

+ μ1M1( f (t, M1 − 1, M2) − f (t, M1, M2))

+ (λ12M1 + λ22M2)( f (t, M1, M2 + 1) − f (t, M1, M2))

+ μ2M2( f (t, M1, M2 − 1) − f (t, M1, M2)),

where �(A) is the domain for the generatorA such that f (t, M1, M2) is differentiable with
respect to t for all t, M1, M2 and

| f (t, M1 + 1, M2) − f (t, M1, M2)| < ∞, | f (t, M1 − 1, M2) − f (t, M1, M2)| < ∞
| f (t, M1, M2 + 1) − f (t, M1, M2)| < ∞, | f (t, M1, M2 − 1) − f (t, M1, M2)| < ∞

Apply infinitesimal generator A to functions f (t, M1, M2) = M1,t , M2,t , M2
1,t , M

2
2,t and

M1,t M2,t respectively, we have

AM = (λ11M1 + λ21M2)(M1 + 1 − M1) + μ1M1(M1 − 1 − M1)

AN = (λ12M1 + λ22M2)(M2 + 1 − M2) + μ2M2(M2 − 1 − M2)

AM2
1 = (λ11M1 + λ21M2)((M1 + 1)2 − M2

1 ) + μ1M1((M1 − 1)2 − M2
1 )

AM2
2 = (λ12M1 + λ22M2)((M2 + 1)2 − M2

2 ) + μ2N ((M2 − 1)2 − M2
2 )

AM1M2 = (λ11M1 + λ21M2)((M1 + 1)N − M1M2)

+ (λ12M1 + λ22M2)(M1(M2 + 1) − M1M2)

+ μ1M1((M1 − 1)M2 − M1M2) + μ2(M1(M2 − 1) − M1M2)
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The first two result in the following system of ODE

d

dt
E[M1,t ] = λ21E[M2,t ] − κ1E[M1,t ]

d

dt
E[M2,t ] = λ12E[M1,t ] − κ2E[M2,t ]

(A1)

The other three equations become (17), which is hard to solve explicitly as we need to
solve an inhomogeneous ordinary differential equation system. To solve the system (A1),
we can first assume a linear relationship between E[M1,t ] and E[M2,t ] such that E[M1,t ] =
cE[M2,t ] + g(t) for some constant c and a real value function g. Applying this substitution,
the first ODE in (A1) becomes

c
d

dt
E[M2,t ] + g′(t) = λ21E[M2,t ] − κ1(cE[M2,t ] + g(t))

Make use of the second the ODE in, the first ODE can be rearranged into a ordinary equation.

c(λ12E[M1,t ] − κ2E[M2,t ]) + g′(t) = λ21E[M2,t ] − κ1E[M1,t ]
(λ12c + κ1)E[M1,t ] − (cκ2 + λ21)E[M2,t ] + g′(t) = 0

(λ12c + κ1)(cE[M2,t ] + g(t)) − (cκ2 + λ21)E[M2,t ] + g′(t) = 0

(λ12c
2 + (κ1 − κ2)c − λ21)E[M2,t ] + g′(t) + (λ12 + κ1)g(t) = 0

Then c is the solution of the quadratic equation

λ12c
2 + (κ1 − κ2)c − λ21 = 0

c = κ2 − κ1 ±√
(κ1 − κ2)2 + 4λ21λ12
2λ12

Both roots would result in the same moments, so just take the positive root. The function g
would be the solution of following ODE

g′(t) + (λ12 + κ1)g(t) = 0

g(t) = g(0)e−(λ12c−κ2)t

g(0) = E[M1,0] − cE[M2,0] = (a − cb)

Then E[M2,t ] is determined by the following ODE

d

dt
E[M2,t ] = λ12E[M1,t ] − κ2E[M2,t ] = (λ12c − κ2)E[M2,t ] + λ12g(t)

and E[M1,t ] = cE[M2,t ] + g(t) �	

A.2 Proof of proposition 2

For the first property, we can verify in the following way.
When i = 1

d0 = p0

⎛
⎝1 + (1 − p)

α
p −

(
α
p

)
1 − α

p

⎞
⎠ = 1

p1 = p, α1 = α
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Suppose equation (22) holds for i = k. Then for i = k + 1, we have

φ(I )(t, θ) = E

[(
1 − αk + αk pkθ

1 − (1 − pk)θ

)Xt−k
]

= E

[(
1 − αk − (1 − αk − pk)θ

1 − (1 − pk)θ

)Xt−k
]

= E

⎡
⎣
(
1 − α − (1 − α − p) 1−αk−(1−αk−pk )θ

1−(1−pk )θ

1 − (1 − p) 1−αk−(1−αk−pk )θ
1−(1−pk )θ

)Xt−k−1
⎤
⎦

= E

⎡
⎢⎣
⎛
⎝ 1−α−(1−α−p)(1−αk )

1−(1−p)(1−αk )
−
(

(1−pk+(1−p)(αk−pk−1))
1−(1−p)(1−αk )

− ααk
1−(1−p)(1−αk )

)
θ

1 − (1−pk+(1−p)(αk−pk−1))
1−(1−p)(1−αk )

θ

⎞
⎠

Xt−k−1
⎤
⎥⎦

It is then clear that

1 − (1 − p)(1 − αk) = dk−1 − (1 − p)(dk−1 − αk)

dk−1
= dk

dk−1

αk+1 = ααk

1 − (1 − p)(1 − αk)
= αk+1

dk

pk+1 = 1 − (1 − pk + (1 − p)(αk − pk − 1))

1 − (1 − p)(1 − αk)

= 1 − 1 − (1 − p)(1 − αk) − ppk
1 − (1 − p)(1 − αk)

= ppk
1 − (1 − p)(1 − αk)

= pk+1

dk

So Eq. (22) holds for all i = 1, 2, . . . . For the second property, the moments can be found
by conditional expectation such that

E[p ∗1 α ◦ X |X ]

= E

⎡
⎣E

⎡
⎣α◦X∑

j=1

g( j)
j |α ◦ X

⎤
⎦ |X

⎤
⎦ = 1

p
E[(α ◦ X)|X ] = 1

p
E

⎡
⎣ X∑

j=1

b j |X
⎤
⎦

= α

p
X

Var(p ∗1 α ◦ X |X)

= E

⎡
⎣Var

⎛
⎝α◦X∑

j=1

g( j)
j |α ◦ X

⎞
⎠ |X

⎤
⎦+ Var

⎛
⎝E

⎡
⎣α◦X∑

j=1

g( j)
j |α ◦ X

⎤
⎦ |X

⎞
⎠

= 1 − p

p2
E[α ◦ X |X ] + 1

p2
Var(α ◦ X |X)

=
(

α(1 − p)

p2
+ α(1 − α)

p2

)
X

Var(p ∗1 α ◦ X) = E[Var(p ∗1 α ◦ X |X)] + Var(E[p ∗1 α ◦ X |X ])
Cov(Xt , Xt−i ) = Cov(pi ∗1 αi ◦ Xt−i , Xt−i )

= Cov (E[pi ∗1 αi ◦ Xt−i |Xt−i ],E[Xt−i |Xt−i ])
+E[Cov(pi ∗1 αi ◦ Xt−i , Xt−i |Xt−i )]
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= αi

pi
Cov(Xt−i , Xt−i ) + 0

�	

A.3 Proof of Proposition 5

The transition probability of giving outm(m > 0) birth of from the process Z (�)
t given Z (�)

t−�

during an infinitesimal time interval � is given by

Pr(Z (�)
t = k + m|Z (�)

t−� = k) = Pr(Xs = k + m|Xs−1 = k)

=
min{k,k+m}∑

j=1

(
k

j

)
α j (1 − α)k− j

(
k + m − 1

j − 1

)
p j (1 − p)k+m− j

=
k∑
j=1

(
k

j

)(
k + m − 1

j − 1

)
e(λ−μ) j�λk+m− jμk− j (e(λ−μ)� − 1)2k−2 j+m(λ − μ)2 j

× (λe(λ−μ)� − μ)−(2k+m)

=
k−1∑
j=1

(
k

j

)(
k + m − 1

j − 1

)
λk− jμk− j (λ − μ)2 j ((λ − μ)� + o(�))2k−2 j+m

× (1 + (λ − μ)� + o(�)) j
(

1

λ − μ
− λ

λ − μ
� + o(�)

)2k+m

,

where all the exponential function are expressed as their corresponding Taylor expansion at
� = 0. To make comparison with the continuous birth and death process, we are interested
in the coefficients in front of �. First we need to check the lowest order of � in above
probability. That is, we would like to minimize the sum

min
1≤ j≤k

2k − 2 j + m = m

So for the transition probability is rearranged in the following way

Pr(Z (�)
t = k + m|Z (�)

t−� = k)

=
(
k

k

)(
k + m − 1

k − 1

)
λm(λ − μ)2k((λ − μ)� + o(�))m(1 + (λ − μ)� + o(�))k

×
(

1

λ − μ
− λ

λ − μ
� + o(�)

)2k+m

+ o(�m)

=
(
k + m − 1

k − 1

)
(λ�)m + o(�m),

Then it is clear that the there is no first order term in the case wherem ≥ 2 and the probability
that giving out exactly one birth is

Pr(Z (�)
t = k + 1|Z (�)

t−� = k) = λk� + o(�)

On the other hand, we can derive the probability that m(1 ≤ m ≤ k) individuals die within
infinitesimal time � in a similar way

123



Statistical Inference for Stochastic Processes

Pr(Z (�)
t = k − m|Z (�)

t−� = k) = Pr(Xs = k − m|Xs−1 = k)

= ∑min{k−m,k}
j=1

(k
j

)
α j (1 − α)k− j

(k−m−1
j−1

)
p j (1 − p)k−m− j

= ∑k−m
j=1

(k
j

)(k−m−1
j−1

)
e(λ−μ) j�λk−m− jμk− j (e(λ−μ)� − 1)2k−2 j−m

×(λ − μ)2 j (λe(λ−μ)� − μ)−(2k−m)

= ∑k−m
j=1

(k
j

)(k−m−1
j−1

)
λk−m− jμk− j (λ − μ)2 j ((λ − μ)� + o(�))2k−2 j−m

×(1 + (λ − μ)� + o(�)) j
(

1
λ−μ

− λ
λ−μ

� + o(�)
)2k−m

The minimum order of � is determined by

min
1≤ j≤k−m

2k − 2 j − m = m (A2)

Then the probability is reduced to

Pr(Z (�)
t = k − m|Z (�)

t−� = k)

=
(

k

k − m

)(
k − m − 1

k − m − 1

)
μm(λ − μ)2(k−m)((λ − μ)� + o(�))m

(1 + (λ − μ)� + o(�))k−m

×
(

1

λ − μ
− λ

λ − μ
� + o(�)

)2k−m

+ o(�m)

=
(

k

k − m

)
(μ�)m + o(�m)

(A3)

The transition probability that only one individual dies is

Pr(Z (�)
t = k − 1|Z (�)

t−� = k) = μk� + o(�) (A4)

the probability that more than one individuals die are o(�) As the birth rate and death (λ, μ)

are time-homogeneous, so as the parameters α, p, the transition probabilities stay the same
for all time t ∈ [t1, t2]. This means that the discrete birth and death INAR(1) model would
result in the the same dynamic (1) of simple birth and death process when� is small enough.

Similar to the univariate case. It is necessary to find out the transition probabilities before
proceeding to the weak convergence. The transition probability of giving out m(m ≥ 1)
births of population M (�)

t given M (�)
t−� = k1, N

(�)
t−� = k2 during an infinitesimal time � is

given by

Pr(M (�)
t = k1 + m|M (�)

t−� = k1, N
(�)
t−� = k2) = Pr(Xs = k1 + m|Xs−1 = k1, Ys−1 = k2)

=
k1+m∑
j=0

Pr(β11 ∗1 α1 ◦ Xs−1 = j |Xs−1 = k1) Pr(β21 ∗2 Ys−1 = k1 + m − j |Ys−1 = k2)

=
k1+m∑
j=1

⎛
⎝min{k1, j}∑

i=1

(
k1
i

)
αi
1(1 − α1)

k1−i
(
j − 1

i − 1

)
β i
11(1 − β11)

j−i

⎞
⎠(k2 + k1 + m − j − 1

k2 − 1

)

× β
k2
21(1 − β21)

k1+m− j + (1 − α1)
k1

(
k2 + k1 + m − 1

k2 − 1

)
β
k2
21(1 − β21)

k1+m
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=
k1+m∑
j=1

min{k1, j}∑
i=1

(
k1
i

)(
j − 1

i − 1

)(
k2 + k1 + m − j − 1

k2 − 1

)(
(λ11 − μ1)ω1(�)

λ11ω1(�) − μ1

)i

×
(

μ1(ω1(�) − 1)

λ11ω1(�) − μ1

)k1−i (
λ11 − μ1

λ11ω1(�) − μ1

)i (
λ11(ω1(�) − 1)

λ11ω1(�) − μ1

) j−i

×
(

1

1 + Cβ1 (e
u1� − eu2�)

)k2 ( Cβ1 (e
u1� − eu2�)

1 + Cβ1 (e
u1� − eu2�)

)k1+m− j

+ o(�2k1+m−1)

=
k1+m∑
j=1

min{k1, j}∑
i=1

(
k1
i

)(
j − 1

i − 1

)(
k2 + k1 + m − j − 1

k2 − 1

)
(λ11 − μ1)

i (1 + (λ11 − μ1)� + o(�))i

× μ
k1−i
1 ((λ11 − μ1)� + o(�))k1−i (λ11 − μ1)

iλ
j−i
11 ((λ11 − μ1)� + o(�)) j−i

×
(

1

λ11 − μ1
− λ11

λ11 − μ1
� + o(�)

)k1+ j

× (1 − Cβ1 (u1 − u2)� + o(�))k2 (Cβ1 (u1 − u2)� + o(�))k1+m− j + o(�2k1+m−1)

=
k1+m∑
j=1

min{k1, j}∑
i=1

(
k1
i

)(
j − 1

i − 1

)(
k2 + k1 + m − j − 1

k2 − 1

)
(λ11 − μ1)

2iλ
j−i
11 μ

k1−i
1

× ((λ11 − μ1)� + o(�))k1+ j−2i (1 + (λ11 − μ1)� + o(�))i

×
(

1

λ11 − μ1
− λ11

λ11 − μ1
� + o(�)

)k1+ j

× (1 − Cβ1 (u1 − u2)� + o(�))k2 (Cβ1 (u1 − u2)� + o(�))k1+m− j + o(�2k1+m−1),

where all the exponential function are expressed in their corresponding Taylor expansion
at � = 0. The lowest order of � is determined by the power of ((λ11 − μ1) + o(�)) and
(Cβ1(u1 − u2)� + o(�)),

min
1≤i≤min{k1, j}

k1 + j − 2i + k1 + m − j = min
1≤i≤min{k1, j}

2k1 − 2i + m = m,

where j =∈ {1, . . . , k1 + m}. This leads to j = k1, i = k1 − 1 and j = k1 − 1, i = k1 − 1,
respectively. Then the transition probability reduces to

Pr(M (�)
t = k1 + m|M (�)

t−� = k1, N
(�)
t−� = k2)

=
k1+m∑
j=k1

(
k1
k1

)(
j − 1

k1 − 1

)(
k2 + k1 + m − j − 1

k2 − 1

)
(λ11 − μ1)

2k1λ
j−k1
11 μ

k1−k1
1

× ((λ11 − μ1)� + o(�))k1+ j−2k1(1 + (λ11 − μ1)� + o(�))k1

×
(

1

λ11 − μ1
− λ11

λ11 − μ1
� + o(�)

)k1+ j

× (1 − Cβ1(u1 − u2)� + o(�))k2(Cβ1(u1 − u2)� + o(�))k1+m− j + o(�2k1+m−1),

=
k1+m∑
j=k1

(
j − 1

k1 − 1

)(
k2 + k1 + m − j − 1

k2 − 1

)
(λ11�) j−k1(Cβ1(u1 − u2)� + o(�))k1+m− j

+ o(�2k1+m−1),

=
k1+m∑
j=k1

(
j − 1

k1 − 1

)(
k2 + k1 + m − j − 1

k2 − 1

)
(λ11�) j−k1(λ21�)k1+m− j + o(�m),
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Then the probability when m = 1 is given by

Pr(M (�)
t = k1 + 1|M (�)

t−� = k1, N
(�)
t−� = k2)

=
k1+1∑
j=k1

(
j − 1

k1 − 1

)(
k2 + k1 − j

k2 − 1

)
(λ11�) j−k1(λ21�)k1+1− j + o(�),

= k2λ21� + k1λ11� + o(�)

(A5)

By symmetry, the birth transition probability for the other population is given by

Pr(N (�)
t = k2 + m|M (�)

t−� = k1, N
(�)
t−� = k2) = P(Ys = k2|Xs−1 = k1, Ys−1 = k2)

=
k2+m∑
j=k2

(
j − 1

k2 − 1

)(
k1 + k2 + m − j − 1

k1 − 1

)
(λ22�) j−k2(λ12�)k1+m− j + o(�m).

On the other hand, the probability thatm individual die in populationM (�)
t given thatM (�)

t−� =
k1, N

(�)
t−� = k2 during an infinitesimal time interval � is

Pr(M (�)
t = k1 − m|M (�)

t−� = k1, N
(�)
t−� = k2) = Pr(Xs = k1 − m|Xs−1 = k1, Ys−1 = k2)

=
k1−m∑
j=1

⎛
⎝min{k1, j}∑

i=1

(
k1
i

)
αi
1(1 − α1)

k1−i
(
j − 1

i − 1

)
β i
11(1 − β11)

j−i

⎞
⎠

×
(
k2 + k1 − m − j − 1

k2 − 1

)
β
k2
21(1 − β21)

k1− j + (1 − α1)
k1

(
k2 + k1 − m − 1

k2 − 1

)
β
k2
21(1 − β21)

k1

=
k1−m∑
j=1

j∑
i=1

(
k1
i

)(
j − 1

i − 1

)(
k2 + k1 − m − j − 1

k2 − 1

)
(λ11 − μ1)

2iλ
j−i
11 μ

k1−i
1

× ((λ11 − μ1)� + o(�))k1+ j−2i

× (1 + (λ11 − μ1)� + o(�))i
(

1

λ11 − μ1
− λ11

λ11 − μ1
� + o(�)

)k1+ j

× (1 − Cβ1 (u1 − u2)� + o(�))k2 (Cβ1 (u1 − u2)� + o(�))k1−m− j + o(�2k1+k2−1)

=
(
k1 + 1

k1

)(
k1 − 1

k1 − 1

)(
k2 − 1

k2 − 1

)
(λ11 − μ1)

2k1μ1((λ11 − μ1)� + o(�))

× (1 + (λ11 − μ1)� + o(�))k1

×
(

1

λ11 − μ1
− λ11

λ11 − μ1
� + o(�)

)2k1+1

(1 − Cβ1 (u1 − u2)� + o(�))k2 + o(�)

= μ1(k1 + 1)� + o(�)

The lowest order of � is determined by the power of ((λ11 − μ1) + o(�)) and (Cβ1(u1 −
u2)� + o(�)),which is

min
1≤i≤ j

k1 + j − 2i + k1 − m − j = min
1≤i≤ j

2k1 − 2i − m = m,
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where j ∈ {1, . . . , k1 − m}. So the above probability reduces to

Pr(M (�)
t = k1 − m|M (�)

t−� = k1, N
(�)
t−� = k2)

=
(

k1
k1 − m

)(
k1 − m − 1

k1 − m − 1

)(
k2 − 1

k2 − 1

)
(λ11 − μ1)

2(k1−m)μm
1

× ((λ11 − μ1)� + o(�))m

× (1 + (λ11 − μ1)� + o(�))k1−m
(

1

λ11 − μ1
− λ11

λ11 − μ1
� + o(�)

)2k1−m

× (1 − Cβ1(u1 − u2)� + o(�))k2 + o(�m)

=
(

k1
k1 − m

)
(μ1�)m + o(�m)

It is not surprise that the transition probability only depends on its own size of population
from the bivariate INAR construction. Then the death transition probability for the other
population is

Pr(N (�)
t = k2 − m|M (�)

t−� = k1, N
(�)
t−� = k2) =

(
k2

k2 − m

)
(μ2�)m + o(�m) (A6)

The it is clear that the probabilities for both population that there is only one death would
have the same form as in the univariate case. By conditional independence of bivariate
INAR model, the joint transition probability would be the product of any of two transition
probabilities shown above. For example, for any two integers m1,m2 ∈ Z,

Pr(M (�)
t = k1 + m1, N

(�)
t = k2 + m2|M (�)

t−� = k1, N
(�)
t−� = k2)

= Pr(M (�)
t = k1 + m1|M (�)

t−� = k1, N
(�)
t−� = k2)Pr(N

(�)
t

= k2 + m2|M (�)
t−� = k1, N

(�)
t−� = k2)

(A7)

Then it is straightforward to show that, to have a first order � term, the only possible
combinations of (m1,m2) are {(1, 0), (0, 1), (−1, 0), (0,−1)}, which under the proposed
parametrization, the joint process only allow one jump during infinitesimal time which coin-
cide with the bivariate continuous birth and death process.

As the birth rates λi, j and death rate are μi time homogeneous, so as the parameters
αi , βi, j , i, j ∈ {1, 2}, the transition probabilities stay the same for all time t ∈ [0, 1]. This
means that this bivariate birth and death INAR(1)model would result in the the same dynamic
(11) when � is small enough. �	

A.4 Proof of Proposition 6

According to Theorem 3.11, Chapter 2 in Jacod and Shiryaev (2013). We need to make sure
the following two sum is finite for any truncation function h before constructing their discrete
Lévy measures.

σt∑
k=1

|E[h(Uk)|Fk−1]| < ∞
σt∑
k=1

E[|U 2
k ∧ 1| |Fk−1] < ∞,

(A8)
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where Uk are increments of any underlying processes. This can be shown straightforwardly
as the there are only finite number of terms for summation σt ≤ n and truncation functions
are bounded. Then by The Theorem 3.11, the Lévy triplets for Z (n)

t is

Ch(Z (n)
t ) =

⎧⎪⎨
⎪⎩

Bt = ∑σt
k=1 E[h(Uk)|Fk−1]

Ct = 0

ν(Z (n)
t ; [0, t] × g) = ∑σt

k=1 E[g(Uk)1{Uk �=0})|Fk−1]
(A9)

We can choose the truncation function h(x) = |x |1{|x |<1} such that Bt is always 0 as there is

no jump with size smaller than 1 in Z (n)
t . Finally for the discrete stochastic integral:

E[g(Uk)1{Uk �=0}|Fk−1]
= E[g(1)1{Uk=1}|Fk−1] + E[g(−1)1{Uk=−1}|Fk−1]

+
∞∑

η=2

E[g(η)1{Uk=η} + g(−η)1{Uk=−η}|Fk−1]

= g(1)λXk−1� + g(−1)μXk−1� + o(�) + o(�2)

1 − �

= g(1)λXk−1� + g(−1)μXk−1� + o(�)

(A10)

Then it is clear that

ν(Z (n)
t ; [0, t] × g) =

σt∑
k=1

(g(1)λ + g(−1)μ)Xk−1� + O(�)

For the bivariate case, the proof is similar, the conditional expectation

E[g(Vk)1{Vk �=(0,0)T }|Fk−1]
= E[g(1, 0)1{Vk=(1,0)T }|Fk−1] + E[g(0, 1)1{Vk=(0,1)T }|Fk−1]
+ E[g(−1, 0)1{Vk=(−1,0)T }|Fk−1] + E[g(0,−1)1{Vk=(0,−1)T }|Fk−1]
+

∑
|i |+| j |>1

E[g(i, j)1{Vk=(i, j)T }|Fk−1] + E[g(i,− j)1{Vk=(i,− j)T }|Fk−1]

+
∑

|i |+| j |>1

E[g(−i, j)1{Vk=(−i, j)T }|Fk−1] + E[g(−i,− j)1{Vk=(−i,− j)T }|Fk−1]

=
(
g(1, 0)λ̃1 + g(−1, 0)μ̃1 + g(0, 1)λ̃2 + g(0,−1)μ̃2

)
Yk−1� + o(�) + o(�2)

(1 − �)2

=
(
g(1, 0)λ̃1 + g(−1, 0)μ̃1 + g(0, 1)λ̃2 + g(0,−1)μ̃2

)
Yk−1� + o(�)

(A11)
Finally the discrete stochastic integral is given by

σt∑
k=1

(
g(1, 0)λ̃1 + g(−1, 0)μ̃1 + g(0, 1)λ̃2 + g(0,−1)μ̃2

)
Yk−1� + O(�) (A12)

�	
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