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ABSTRACT
Covariance function estimation is a fundamental task in multivariate functional data analysis and arises in
many applications. In this article, we consider estimating sparse covariance functions for high-dimensional
functional data, where the number of random functions p is comparable to, or even larger than the sample
size n. Aided by the Hilbert–Schmidt norm of functions, we introduce a new class of functional thresholding
operators that combine functional versions of thresholding and shrinkage, and propose the adaptive
functional thresholding estimator by incorporating the variance effects of individual entries of the sample
covariance function into functional thresholding. To handle the practical scenario where curves are partially
observed with errors, we also develop a nonparametric smoothing approach to obtain the smoothed
adaptive functional thresholding estimator and its binned implementation to accelerate the computation.
We investigate the theoretical properties of our proposals when p grows exponentially with n under
both fully and partially observed functional scenarios. Finally, we demonstrate that the proposed adaptive
functional thresholding estimators significantly outperform the competitors through extensive simulations
and the functional connectivity analysis of two neuroimaging datasets. Supplementary materials for this
article are available online.
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1. Introduction

The covariance function estimation plays an important role in
functional data analysis, while existing methods are restricted
to data with a single or small number of random functions.
Recent advances in technology have made multivariate or even
high-dimensional functional datasets increasingly common in
various applications: for example, time-course gene expression
data in genomics (Storey et al. 2005), air pollution data in envi-
ronmental studies (Kong et al. 2016) and different types of brain
imaging data in neuroscience (Li and Solea 2018; Qiao, Guo, and
James 2019). Under such scenarios, suppose we observe n inde-
pendent samples Xi(·) = {Xi1(·), . . . , Xip(·)}T for i = 1, . . . , n
defined on a compact interval U with covariance function

�(u, v) = {�jk(u, v)}p×p = cov{Xi(u), Xi(v)}, u, v ∈ U .

From a heuristic interpretation, we can simply treat each curve
Xij(·) as an infinitely long vector and replace the (j, k)th entry of
� by �jk(·, ·) = cov{Xij(·), Xik(·)}, the cross-covariance matrix
of two infinitely long vectors. Then � can be understood as
a block matrix with infinite sizes and its (j, k)th block being
�jk(·, ·). Besides being of interest in itself, an estimator of � is
useful for many applications including, for example, multivariate
functional principal components analysis (FPCA) (Happ and
Greven 2018), multivariate functional linear regression (Chiou,
Yang, and Chen 2016), functional factor model (Guo, Qiao, and
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Wang 2022) and functional classification (Park, Ahn, and Jeon
2021). See Section 2.3 for details.

Our article focuses on estimating � under high-dimensional
scaling, where p can be comparable to, or even larger than n. In
this setting, the sample covariance function

�̂(u, v) = {�̂jk(u, v)}p×p

= 1
n − 1

n∑
i=1

{Xi(u) − X̄(u)}{Xi(v)−X̄(v)}T, u, v ∈ U ,

where X̄(·) = n−1 ∑n
i=1 Xi(·), performs poorly, and some

lower-dimensional structural assumptions need to be imposed
to estimate � consistently. In contrast to extensive work on
estimating high-dimensional sparse covariance matrices (Bickel
and Levina 2008; Rothman, Levina, and Zhu 2009; Cai and Liu
2011; Chen and Leng 2016; Avella-Medina et al. 2018; Wang
et al. 2021), research on sparse covariance function estimation in
high dimensions remains largely unaddressed in the literature.

In this article, we consider estimating sparse covariance func-
tions via adaptive functional thresholding in the sense of shrink-
ing some blocks �̂jk(·, ·)’s in an adaptive way. To achieve this,
we introduce a new class of functional thresholding operators
that combine functional versions of thresholding and shrinkage
based on the Hilbert-Schmidt norm of functions, and develop
an adaptive functional thresholding procedure on �̂(·, ·) using
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entry-dependent functional thresholds that automatically adapt
to the variability of blocks �̂jk(·, ·)’s. To provide theoretical
guarantees of our method under high-dimensional scaling, it
is essential to develop standardized concentration results taking
into account the variability adjustment. Compared with adaptive
thresholding for nonfunctional data (Cai and Liu 2011), the
intrinsic infinite-dimensionality of each Xij(·) leads to a sub-
stantial rise in the complexity of sparsity modeling and theoret-
ical analysis, as one needs to rely on some functional norm of
standardized �̂jk’s, for example, the Hilbert–Schmidt norm, to
enforce the functional sparsity in �̂ and tackle more technical
challenges for standardized processes within an abstract Hilbert
space. To handle the practical scenario where functions are par-
tially observed with errors, it is desirable to apply nonparametric
smoothers in conjunction with adaptive functional threshold-
ing. This poses a computationally intensive task especially when
p is large, thus calling for the development of fast implementa-
tion strategy.

There are many applications of the proposed sparse covari-
ance function estimation method in neuroimaging analysis,
where brain signals are measured over time at a large number
of regions of interest (ROIs) for individuals. Examples include
the brain-computer interface classification (Lotte et al. 2018)
and the brain functional connectivity identification (Rogers
et al. 2007). Traditional neuroimaging analysis models brain
signals for each subject as multivariate random variables, where
each ROI is represented by a random variable, and hence
the covariance/correlation matrices of interest are estimated
by treating the time-course data of each ROI as repeated
observations. However, due to the nonstationary and dynamic
features of signals (Chang and Glover 2010), the strategy of
averaging over time fails to characterize the time-varying
structure leading to the loss of information in the original space.
To overcome these drawbacks, we follow recent proposals to
model signals directly as multivariate random functions with
each ROI represented by a random function (Li and Solea 2018;
Qiao, Guo, and James 2019; Zapata, Oh, and Petersen 2022; Lee
et al. in press). The identified functional sparsity pattern in our
estimate of � can be used to recover the functional connectivity
network among different ROIs, which is illustrated using
examples of functional magnetic resonance imaging (fMRI)
datasets in Section 6 and Section E.3 of the supplementary
material.

Our article makes useful contributions at multiple fronts. On
the method side, it generalizes the thresholding/sparsity concept
in multivariate statistics to the functional setting and offers
a novel adaptive functional thresholding proposal to handle
the heteroscedastic problem of the sparse covariance function
estimation motivated from neuroimaging analysis and many
statistical applications, for example, those in Section 2.3 and Sec-
tion C.2 of the supplementary material. It also provides an alter-
native way of identifying correlation-based functional connec-
tivity with no need to specify the correlation function, the esti-
mation of which poses challenges as the inverses of �jj(u, v)’s are
unbounded. In practice when functions are observed with errors
at either a dense grid of points or a small subset of points, we
also develop a unified local linear smoothing approach to obtain
the smoothed adaptive functional thresholding estimator and its
fast implementation via binning (Fan and Marron 1994) to speed

up the computation without sacrificing the estimation accuracy.
On the theory side, we show that the proposed estimators enjoy
the convergence and support recovery properties under both
fully and partially observed functional scenarios when p grows
exponentially fast relative to n. The proof relies on tools from
empirical process theory due to the infinite-dimensional nature
of functional data and some novel standardized concentration
bounds in the Hilbert–Schmidt norm to deal with issues of high-
dimensionality and variance adjustment. Our theoretical results
and adopted techniques are general, and can be applied to other
settings in high-dimensional functional data analysis.

The remainder of this article is organized as follows. Section 2
introduces a class of functional thresholding operators, based
on which we propose the adaptive functional thresholding of
the sample covariance function. We then discuss a couple of
applications of the sparse covariance function estimation. Sec-
tion 3 presents convergence and support recovery analysis of our
proposed estimator. In Section 4, we develop a nonparametric
smoothing approach and its binned implementation to deal
with partially observed functional data, and then investigate
its theoretical properties. In Sections 5 and 6, we demonstrate
the uniform superiority of the adaptive functional thresholding
estimators over the universal counterparts through an extensive
set of simulation studies and the functional connectivity analysis
of a neuroimaging dataset, respectively. All technical proofs are
relegated to the supplementary material. We also provide the
codes to reproduce the results for simulations and real data
analysis in supplementary materials.

2. Methodology

2.1. Functional Thresholding

We begin by introducing some notation. Let L2(U) denotes a
Hilbert space of square integrable functions defined on U and
S = L2(U) ⊗ L2(U), where ⊗ is the Kronecker product. For
any Q ∈ S, we denote its Hilbert–Schmidt norm by ‖Q‖S =
{∫ ∫

Q(u, v)2dudv}1/2. With the aid of Hilbert–Schmidt norm,
for any regularization parameter λ ≥ 0, we first define a class of
functional thresholding operators sλ : S → S that satisfy the
following conditions:

1. ‖sλ(Z)‖S ≤ c‖Y‖S for all Z and Y ∈ S that satisfy ‖Z −
Y‖S ≤ λ and some c > 0;

2. ‖sλ(Z)‖S = 0 for ‖Z‖S ≤ λ;
3. ‖sλ(Z) − Z‖S ≤ λ for all Z ∈ S.

Our proposed functional thresholding operators can be viewed
as the functional generalization of thresholding operators (Cai
and Liu 2011). Instead of a simple pointwise extension of such
thresholding operators under functional domain, we advocate a
global thresholding rule based on the Hilbert–Schmidt norm of
functions that encourages the functional sparsity, in the sense
that sλ(Z)(u, v) = 0, for all u, v ∈ U , if ‖Z‖S ≤ λ under
condition (ii). Condition (iii) limits the amount of (global) func-
tional shrinkage in the Hilbert–Schmidt norm to be no more
than λ.

Conditions (i)–(iii) are satisfied by functional versions of
some commonly adopted thresholding rules, which are intro-
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duced as solutions to the following penalized quadratic loss
problem with various penalties:

sλ(Z) = arg min
θ∈S

{
1
2
‖θ − Z‖2

S + pλ(θ)

}
(1)

with pλ(θ) = p̃λ(‖θ‖S) being a penalty function of ‖θ‖S to
enforce the functional sparsity.

The soft functional thresholding rule results from solving (1)
with an �1/�2 type of penalty, pλ(θ) = λ‖θ‖S , and takes the
form of sS

λ(Z) = Z(1 − λ/‖Z‖S)+, where (x)+ = max(x, 0) for
x ∈ R. This rule can be viewed as a functional generalization
of the group lasso solution under the multivariate setting (Yuan
and Lin 2006). To solve (1) with an �0/�2 type of penalty,
pλ(θ) = 2−1λ2I(‖θ‖S �= 0), we obtain hard functional
threhsolding rule as ZI(‖Z‖S ≥ λ), where I(·) is an indi-
cator function. As a comparison, soft functional thresholding
corresponds to the maximum amount of functional shrinkage
allowed by condition (iii), whereas no shrinkage results from
hard functional thresholding. Taking the compromise between
soft and hard functional thresholding, we next propose func-
tional versions of SCAD (Fan and Li 2001) and adaptive lasso
(Zou 2006) thresholding rules. With a SCAD penalty (Fan and
Li 2001) operating on ‖ · ‖S instead of | · | for the univariate
scalar case, SCAD functional thresholding sSC

λ (Z) is the same as
soft functional thresholding if ‖Z‖S < 2λ, and equals Z{(a −
1)−aλ/‖Z‖S}/(a−2) for ‖Z‖S ∈ [2λ, aλ] and Z if ‖Z‖S > aλ,
where a > 2. Analogously, adaptive lasso functional threshold-
ing rule is sAL

λ (Z) = Z(1 − λη+1/‖Z‖η+1
S )+ with η ≥ 0.

Our proposed functional generalizations of soft, SCAD and
adaptive lasso thresholding rules can be checked to satisfy con-
ditions (i)–(iii), see Section B.1 of the supplementary material
for details. To present a unified theoretical analysis, we focus
on functional thresholding operators sλ(Z) satisfying condi-
tions (i)–(iii). Note that, although the hard functional thresh-
olding does not satisfy condition (i), theoretical results in Sec-
tion 3 still hold for hard functional thresholding estimators
under similar conditions with corresponding proofs differing
slightly. For examples of functional data with some local spikes,
one may possibly suggest supremum-norm-based class of func-
tional thresholding operators. See the detailed discussion in
Section C.1 of the supplementary material.

2.2. Estimation

We now discuss our estimation procedure based on sλ(Z).
Note the variance of �̂jk(u, v) depends on the distribution
of {Xij(u), Xik(v)} through higher-order moments, which is
intrinsically a heteroscedastic problem. Hence, it is more
desirable to use entry-dependent functional thresholds that
automatically takes into account the variability of blocks
�̂jk(·, ·)’s to shrink some blocks to zero adaptively. To achieve
this, define the variance factors �jk(u, v) = var

([Xij(u) −
E{Xij(u)}][Xik(v) − E{Xik(v)}]) with corresponding estimators

�̂jk(u, v) = 1
n

n∑
i=1

[{
Xij(u)−X̄j(u)

}{
Xik(v)−X̄k(v)

}−�̂jk(u, v)
]2

,

j, k = 1, . . . , p.

Then the adaptive functional thresholding estimator �̂A =
{�̂A

jk(·, ·)}p×p is defined by

�̂A
jk = �̂

1/2
jk × sλ

⎛⎝ �̂jk

�̂
1/2
jk

⎞⎠ , (2)

which uses a single threshold level to functionally threshold
standardized entries, �̂jk/�̂

1/2
jk for all j, k, resulting in entry-

dependent functional thresholds for �̂jk’s. The selection of the
optimal regularization parameter λ̂ is discussed in Section 5.

An alternative approach to estimate � is the universal func-
tional thresholding estimator

�̂U = {�̂U
jk(·, ·)}p×p with �̂U

jk = sλ
(
�̂jk

)
,

where a universal threshold level is used for all entries. In a simi-
lar spirit to Rothman, Levina, and Zhu (2009), the consistency of
�̂U requires the assumption that marginal-covariance functions
are uniformly bounded in nuclear norm, that is, maxj ‖�jj‖N ≤
M, where ‖�jj‖N = ∫

U �jj(u, u)du. However, intuitively, such
universal method does not perform well when nuclear norms
vary over a wide range, or even fails when the uniform bounded-
ness assumption is violated. Section 5 provides some empirical
evidence to support this intuition.

2.3. Applications

Many statistical problems involving multivariate functional data
{Xi(·)}n

i=1 require estimating the covariance function �. Under
a high-dimensional regime, the functional sparsity assumption
can be imposed on � to facilitate its consistent sparse estimates.
Here we outline three applications of our proposals for the sparse
covariance function estimation.

Our first application is multivariate FPCA serving as a
natural dimension reduction approach for Xi(·). With the aid
of Karhunen-Loève expansion for multivariate functional data
(Happ and Greven 2018), Xi(·) admits the following expansion

Xi(·) = E{Xi(·)} +
∞∑

l=1
ξilφl(·), i = 1, . . . , n, (3)

where the principal component scores ξil = ∑p
j=1

∫ [Xij(u) −
E{Xij(u)}]φlj(u)du and eigenfunctions φl(·) = {φl1(·), . . . ,
φlp(·)}T are attainable by the eigenanalysis of �. Under a large
p scenario, we can adopt the proposed functional thresholding
technique to obtain the sparse estimation of �, which guarantees
the consistencies of estimated eigenvalues/eigenfunctions pairs.
In Section E.1 of the supplementary material, we follow the
proposal of a normalized version of multivariate FPCA in Happ
and Greven (2018) and use a simulated example to illustrate
the superior sample performance of our functional thresholding
approaches.

Our second application, multivariate functional linear regres-
sion (Chiou, Yang, and Chen 2016), takes the form of

Yi = β0 +
∫
U

Xi(u)Tβ(u)du + εi, i = 1, . . . , n, (4)

where β(·) = {β1(·), . . . , βp(·)}T is p-vector of functional
coefficients to be estimated. The standard three-step procedure
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involves performing (normalized) multivariate FPCA on Xi(·)’s
based on �̂, then estimating the basis coefficients vector of
β(·) and finally recovering the estimated functional coefficients,
where details are presented in Section E.1 of the supplementary
material and Chiou, Yang, and Chen (2016). When p is large, we
can implement our functional thresholding proposals to obtain
consistent estimators of � and hence β . In Section E.1 of the sup-
plementary material, we demonstrate via a simulated example
the superiority of our adaptive-functional-thresholding-based
estimator over its competitors.

Our third application considers another dimension reduction
framework via functional factor model (Guo, Qiao, and Wang
2022) in the form of Xi(·) = Afi(·) + εi(·), where the
common components are driven by r functional factors fi(·) =
{fi1(·), . . . , fir(·)}T, the idiosyncratic components are εi(·) and
A ∈ R

p×r is the factor loading matrix. Denote the covariance
functions of Xi(·), fi(·) and εi(·) by �X , �f and �ε , respectively.
Under the orthogonality of A,

∫ ∫
�X(u, v)�X(u, v)Tdudv can

be decomposed as the sum of A
∫ ∫

�f (u, v)�f (u, v)TdudvAT

and the remaining smaller order terms. Intuitively, with certain
identifiable conditions, A can be recovered by carrying out
an eigenanalysis of

∫ ∫
�X(u, v)�X(u, v)Tdudv. To provide

a parsimonious model and enhance interpretability for near-
zero loadings, we can impose subspace sparsity conditions
(Vu and Lei 2013) on A that results in a functional sparse
�X and hence our functional thresholding estimators become
applicable. See an application of our functional thresholding
technique to improve the estimation quality when fitting sparse
functional factor model in Guo, Qiao, and Wang (2022).
See also Section C.2 of the supplementary material for other
applications including functional graphical model estimation
(Qiao, Guo, and James 2019) and multivariate functional
classification.

3. Theoretical Properties

We begin with some notation. For a random variable W, define
‖W‖ψ = inf

{
c > 0 : E[ψ(|W|/c)] ≤ 1

}
, where ψ :

[0, ∞) → [0, ∞) is a nondecreasing, nonzero convex func-
tion with ψ(0) = 0 and the norm takes the value ∞ if no
finite c exists for which E[ψ(|W|/c)] ≤ 1. Denote ψk(x) =
exp(xk) − 1 for k ≥ 1. Let the packing number D(ε, d) be
the maximal number of points that can fit in the compact
interval U while maintaining a distance greater than ε between
all points with respect to the semimetric d. We refer to Chapter
8 of Kosorok (2008) for further explanations. For {Xij(u) :
u ∈ U , i = 1, . . . , n, j = 1, . . . , p}, define the standardized
processes by Yij(u) = [Xij(u) − E{Xij(u)}]/σj(u)1/2, where
σj(u) = �jj(u, u).

To present the main theorems, we need the following regu-
larity conditions.

Condition 1. (i) For each i and j, Yij(·) is a separable stochastic
process with the semimetric dj(u, v) = ‖Y1j(u) − Y1j(v)‖ψ2
for u, v ∈ U ; (ii) For some u0 ∈ U , max1≤j≤p ‖Y1j(u0)‖ψ2 is
bounded.

Condition 2. The packing numbers D(ε, dj)’s satisfy max1≤j≤p
D(ε, dj) ≤ Cε−r for some constants C, r > 0 and ε ∈ (0, 1].

Condition 3. There exists some constant τ > 0 such that
minj,k infu,v∈U var

{
Y1j(u)Y1k(v)

} ≥ τ .

Condition 4. The pair (n, p) satisfies log p/n1/4 → 0 as n and
p → ∞.

Conditions 1 and 2 are standard to characterize the modulus
of continuity of sub-Gaussian processes Yij(·)’s, see Chapter 8
of Kosorok (2008). These conditions also imply that there exist
some positive constants C0 and η such that E[exp(t‖Y1j‖2)] ≤
C0 for all |t| ≤ η and j with ‖Y1j‖ = {∫U Y1j(u)2du}1/2,
which plays a crucial role in our proof when applying concen-
tration inequalities within Hilbert space. Condition 3 restricts
the variances of Yij(u)Yik(v)’s to be uniformly bounded away
from zero so that they can be well estimated. It also facilitates
the development of some standardized concentration results.
This condition precludes the case of a Brownian motion Xij(·)
starting at 0 for some j. However, replacing Xij(·) with a con-
taminated process Xij(·)+ξij, where ξij’s are independent from a
normal distribution with zero mean and a small variance and
are independent of Xij(·)’s, Condition 3 is fulfilled while the
cross-covariance structure in � remains the same in the sense
of cov{Xij(u) + ξij, Xik(v)} = cov{Xij(u), Xik(v)} for k �= j and
u, v ∈ U . Condition 4 allows the high-dimensional case, where
p can diverge at some exponential rate as n increases.

We next establish the convergence rate of the adaptive func-
tional thresholding estimator �̂A over a large class of “approxi-
mately sparse” covariance functions defined by

C(q, s0(p), ε0;U) =
{
�:� 
 0, max

1≤j≤p

p∑
k=1

‖σj‖(1−q)/2
∞ ‖σk‖(1−q)/2

∞

‖�jk‖q
S ≤ s0(p), max

j
‖σ−1

j ‖∞‖σj‖∞

≤ ε−1
0 < ∞

}
for some 0 ≤ q < 1, where ‖σj‖∞ = supu∈U σj(u) and � 

0 means that � = {�jk(·, ·)}p×p is positive semidefinite, that
is,

∑
j,k

∫ ∫
�jk(u, v)aj(u)ak(v)dudv ≥ 0 for any aj(·) ∈ L2(U)

and j = 1, . . . , p. See Cai and Liu (2011) for a similar class of
covariance matrices for nonfunctional data. Compared with the
class

C∗(q, s0(p), M;U) = {
� : � 
 0, max

j
‖σj‖N

≤ M, max
j

p∑
k=1

‖�jk‖q
S

≤ s0(p)
}

,

over which the universal functional thresholding estimator �̂U

can be shown to be consistent, the columns of a covariance
function in C(q, s0(p), ε0;U) are required to be within a
weighted �q/�2 ball instead of a standard �q/�2 ball, where the
weights are determined by ‖σj‖∞’s. Unlike C∗(q, s0(p), M;U),
C(q, s0(p), ε0;U) no longer requires the uniform boundedness
assumption on ‖σj‖N ’s and allows maxj ‖σj‖N → ∞. In the
special case q = 0, C(q, s0(p), ε0;U) corresponds to a class of
truly sparse covariance functions. Notably, s0(p) can depend
on p and be regarded implicitly as the restriction on functional
sparsity.
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Theorem 1. Suppose that Conditions 1–4 hold. Then there exists
some constant δ > 0 such that, uniformly on C(q, s0(p), ε0;U),
if λ = δ(log p/n)1/2,

‖�̂A−�‖1 = max
1≤k≤p

p∑
j=1

‖�̂A
jk−�jk‖S = OP

{
s0(p)

( log p
n

) 1−q
2 }

.

(5)

Theorem 1 presents the convergence result in the functional
version of matrix �1 norm. The rate in (5) is consistent to those
of sparse covariance matrix estimates in Rothman, Levina, and
Zhu (2009) and Cai and Liu (2011).

We finally turn to investigate the support recovery consis-
tency of �̂A over the parameter space of truly sparse covariance
functions defined by

C0(s0(p);U) =
{
� : � 
 0, max

1≤j≤p

p∑
k=1

I(‖�jk‖S �= 0) ≤ s0(p)
}

,

which assumes that (�jk)p×p has at most s0(p) nonzero func-
tional entries on each row. The following theorem shows that,
with the choice of λ = δ(log p/n)1/2 for some constant δ > 0,
�̂A exactly recovers the support of �, supp(�) = {(j, k) :
‖�jk‖S �= 0}, with probability approaching one.

Theorem 2. Suppose that Conditions 1–4 hold and
∥∥�jk/�

1/2
jk

∥∥
S

> (2δ+γ )(log p/n)1/2 for all (j, k) ∈ supp(�) and some γ > 0,
where δ is stated in Theorem 1. Then we have that

inf
�∈C0

P
{

supp(�̂A) = supp(�)
} → 1 as n → ∞.

Theorem 2 ensures that �̂A achieves the exact recovery
of functional sparsity structure in �, that is, the graph
support in functional connectivity analysis, with probability
tending to 1. This theorem holds under the condition that
the Hilbert-Schmidt norms of nonzero standardized functional
entries exceed a certain threshold, which ensures that nonzero
components are correctly retained. See an analogous minimum
signal strength condition for sparse covariance matrices in Cai
and Liu (2011).

4. Partially Observed Functional Data

In this section we consider a practical scenario where each
Xij(·) is partially observed, with errors, at random measurement
locations Uij1, . . . , UijLij ∈ U . Let Zijl be the observed value of
Xij(Uijl). Then

Zijl = Xij(Uijl) + εijl, l = 1, . . . , Lij, (6)

where εijl’s are iid errors with E(εijl) = 0 and var(εijl) = σ 2,
independent of Xij(·). For dense measurement designs all Lij’s
are larger than some order of n, while for sparse designs all Lij’s
are bounded (Zhang and Wang 2016; Qiao et al. 2020).

4.1. Estimation Procedure

Based on the observed data, {(Uijl, Zijl)}1≤i≤n,1≤j≤p,1≤l≤Lij , we
next present a unified estimation procedure that handles both
densely and sparsely sampled functional data.

We first develop a nonparametric smoothing approach to
estimate �jk(u, v)’s. Without loss of generality, we assume that
Xi(·) has been centered to have mean zero. Denote Kh(·) =
h−1K(·/h) for a univariate kernel function K with a bandwidth
h > 0. A Local Linear Surface smoother (LLS) is employed
to estimate cross-covariance functions �jk(u, v) (j �= k) by
minimizing

n∑
i=1

Lij∑
l=1

Lik∑
m=1

{
ZijlZikm − α0 − α1(Uijl − u) − α2(Uikm − v)

}2

KhC(Uijl − u)KhC(Uikm − v), (7)

with respect to (α0, α1, α2). Let the minimizer of (7) be
(α̂0, α̂1, α̂2) and the resulting estimator is �̃jk(u, v) = α̂0. To
estimate marginal-covariance functions �jj(u, v)’s, we observe
that cov(Zijl, Zijm) = �jj(Uijl, Uijm) + σ 2I(l = m), and
hence apply a LLS to the off-diagonals of the raw covariances
(ZijlZijm)1≤l≤m≤Lij . We consider minimizing

n∑
i=1

∑
1≤l �=m≤Lij

{
ZijlZijm − β0 − β1(Uijl − u) − β2(Uikm − v)

}2

KhM (Uijl − u)KhM (Uikm − v)

with respect to (β0, β1, β2), thus obtaining the estimate
�̃jj(u, v) = β̂0. Note that we drop subscripts j, k of hC,jk and
j of hM,j to simplify our notation in this section. However, we
select different bandwidths hC,jk and hM,j across j, k = 1, . . . , p
in our empirical studies.

To construct the corresponding adaptive functional thresh-
olding estimator, a standard approach is to incorporate the
variance effect of each �̃jk(u, v) into functional thresholding.
However, the estimation of var{�̃jk(u, v)}’s involves estimating
multiple complicated fourth moment terms (Zhang and Wang
2016), which results in high computational burden especially for
large p. Since our focus is on characterizing the main variability
of �̃jk(u, v) rather than estimating its variance precisely, we
next develop a computationally simple yet effective approach to
estimate the main terms in the asymptotic variance of �̃jk(u, v).
For a, b = 0, 1, 2, let

Tab,ijk(u, v) =
Lij∑

l=1

Lik∑
m=1

gab{hC, (u, v), (Uijl, Uikm)}ZijlZikm, (8)

where gab
{

h, (u, v), (Uijl, Uikm)
} = Kh(Uijl − u)Kh(Uikm − v)

(Uijl − u)a(Uikm − v)b. According to Section D.1 of the supple-
mentary material, minimizing (7) yields the resulting estimator

�̃jk =
n∑

i=1

(
W1,jkT00,ijk + W2,jkT10,ijk + W3,jkT01,ijk

)
, (9)

where W1,jk, W2,jk, W3,jk can be represented via (S.12) in terms
of

Sab,jk(u, v) =
n∑

i=1

Lij∑
l=1

Lik∑
m=1

gab
{

hC, (u, v), (Uijl, Uikm)
}

,

a, b = 0, 1, 2. (10)

It is notable that the estimator �̃jk in (9) is expressed as the
sum of n independent terms. Ignoring the cross-covariances
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among observations within the subject that are dominated by
the corresponding variances, we propose a surrogate estimator
for the asymptotic variance of �̃jk by

�̃jk = Ijk

n∑
i=1

(
W1,jkV00,ijk + W2,jkV10,ijk + W3,jkV01,ijk

)2, (11)

where

Ijk =
( n∑

i=1
LijLik

)2{ n∑
i=1

(
LijLikh−2

C + L2
ijLikh−1

C

+ LijL2
ikh−1

C + L2
ijL

2
ik
)}−1

, (12)

Vab,ijk(u, v) =
Lij∑

l=1

Lik∑
m=1

gab
{

hC, (u, v), (Uijl, Uikm)
}

{
ZijlZikm − �̃jk(u, v)

}
. (13)

The rationale of multiplying the rate Ijk in (11) is to ensure
that �̃jk(u, v) converges to some finite function when n → ∞
and hC → 0 as justified in Section D.4 of the supplemen-
tary material. In particular, the rate Ijk can be simplified to∑n

i=1 LijLikh2
C for the sparse or moderately dense case and to

(
∑n

i=1 LijLik)
2(

∑n
i=1 L2

ijL
2
ik)

−1 for the very dense case. Note that
Ijk is imposed in (11) mainly for the theoretical purpose and
hence will not place a practical constraint on our method.

In a similar procedure as above, the estimated variance
factor �̃jj of �̃jj for each j can be obtained by operating on
{ZijlZijm}1≤i≤n,1≤l �=m≤Lij instead of {ZijlZikm}1≤i≤n,1≤l≤Lij,1≤m≤Lik

for j �= k. Substituting �̂jk in (2) by �̃jk, we obtain the smoothed
adaptive functional thresholding estimator

�̃A = (�̃A
jk)p×p with �̃A

jk = �̃
1/2
jk × sλ

⎛⎝ �̃jk

�̃
1/2
jk

⎞⎠ . (14)

For comparison, we also define the smoothed universal func-
tional thresholding estimator as �̃U = (�̃U

jk)p×p with �̃U
jk =

sλ
(
�̃jk

)
.

A natural alternative to the proposed LLS-based smoothing
procedure considers pre-smoothing each individual data. For
densely sampled functional data, the observations Zij1, . . . , ZijLij
for each i and j can be pre-smoothed through the local linear
smoother to eliminate the contaminated noise, thus, producing
reconstructed random curves X̂ij(·)’s before subsequent analysis
(Zhang and Chen 2007). See detailed implementation of pre-
smoothing in Section D.2 of the supplementary material. For
sparsely sampled functional data, such pre-smoothing step
is not viable, while our smoothing proposal builds strength
across functions by incorporating information from all the
observations, and hence is still applicable. See also Section 5.3
for the numerical comparison between pre-smoothing and our
smoothing approach under different measurement designs.

4.2. Theoretical Properties

In this section, we investigate the theoretical properties of �̃A

for partially observed functional data. We begin by introducing
some notation. For two positive sequences {an} and {bn}, we

write an � bn if there exits a positive constant c0 such that
an/bn ≤ c0. We write an � bn if and only if an � bn and
bn � an hold simultaneously. Before presenting the theory, we
impose the following regularity conditions.

Condition 5. (i) Let
{

Uijl : i = 1, . . . , n, j ∈ 1, . . . , p, l =
1, . . . , Lij

}
be iid copies of a random variable U with density fU(·)

defined on the compact set U , with the Lij’s fixed. There exist
some constants mf and Mf such that 0 < mf ≤ infU fU(u) ≤
supU fU(u) ≤ Mf < ∞; (ii) Xij, εijl and Uijl are independent for
each i, j, l.

Condition 6. (i) Under the sparse measurement design, Lij ≤
L0 < ∞ for all i, j and, under the dense design, Lij = L →
∞ as n → ∞ with Uijl’s independent of i; (ii) The bandwidth
parameters hC � hM � h → 0 as n → ∞.

Condition 5 is standard in functional data analysis literature
(Zhang and Wang 2016). Condition 6 (i) treats the number
of measurement locations Lij as bounded and diverging under
sparse and dense measurement designs, respectively. To simplify
notation, we assume that Lij = L for the dense case and hC is of
the same order as hM in Condition 6 (ii).

Condition 7. There exists some constant γ1 ∈ (0, 1/2] such that

max
1≤j,k≤p

∥∥∥�̃jk − �jk

∥∥∥
S
�

√
log p
n2γ1

+h2 with probability approaching one. (15)

Condition 8. There exist some positive constants c1, γ2 ∈
(0, 1/2] and some deterministic functions �jk(u, v)’s with
minj,k infu,v∈U �jk(u, v) ≥ c1 such that

max
1≤j,k≤p

sup
u,v∈U

∣∣∣�̃jk(u, v) − �jk(u, v)
∣∣∣

�
√

log p
n2γ2

+ h2 with probability approaching one. (16)

Condition 9. The pair (n, p) satisfies log p/nmin(γ1,γ2) → 0 and
log p ≥ c2n2γ1 h4 for some positive constant c2 as n and p → ∞.

We follow Qiao et al. (2020) to impose Condition 7, in which
the parameter γ1 depends on h and possibly L under the dense
design. This condition is satisfied if there exist some positive
constants c3, c4, c5 such that for each j, k = 1, . . . , p and t ∈
(0, 1],

P
(‖�̃jk − �jk‖S ≥ t + c5h2) ≤ c4 exp(−c3n2γ1 t2). (17)

The presence of h2 comes from the standard results for bias
terms under the boundedness condition for the second-order
partial derivatives of �jk(u, v) over U2 (Yao, Müller, and Wang
2005; Zhang and Wang 2016). This concentration result is
fulfilled under different measurement schedules ranging from
sparse to dense designs as γ1 increases. For sparsely sampled
functional data, Lemma 4 of Qiao et al. (2020) established L2
concentration inequality for �̃jk for j = k, which not only results
in the same L2 rate as that in the sparse case (Zhang and Wang
2016) but also ensures (17) with the choice of γ1 = 1/2 − a
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and h � n−a for some positive constant a < 1/2. Following
the same proof procedure, the same concentration inequality
also applies for j �= k and hence Condition 7 is satisfied. This
condition is also satisfied by densely sampled functional data,
since it follows from Lemma 5 of Qiao et al. (2020) that (17)
holds for j = k and, with more efforts, also for j �= k by
choosing γ1 = min(1/2, 1/3 + b/6 − ε′/2 − 2a/3) for some
small constant ε′ > 0 when h � n−a and L � nb for some
constants a, b > 0. As L grows sufficiently large, γ1 = 1/2, thus
leading to the same rate as that in the ultra-dense case (Zhang
and Wang 2016). Condition 8 gives the uniform convergence
rate for �̃jk(u, v) in the same form as (15) but with different
parameter γ2. A denser measurement design corresponds to
a larger value of γ2 and a faster rate in (16). See the heuristic
verification of Condition 8 in Section D.4 of the supplementary
material. Condition 9 indicates that p can grow exponentially
fast relative to n.

We next present the convergence rate of the smoothed
adaptive functional thresholding estimator �̃A over a class of
“approximate sparse” covariance functions defined by

C̃(q, s̃0(p), ε0;U) =
{
� : � 
 0, max

1≤j≤p

p∑
k=1

‖�jk‖(1−q)/2
∞

∥∥�jk
∥∥q
S

≤ s̃0(p), max
j,k

‖�−1
jk ‖∞‖�jk‖∞≤ε−1

0 < ∞
}

,

for some 0 ≤ q < 1.

Theorem 3. Suppose that Conditions 5–9 hold. Then there exists
some constants δ̃ > 0 such that, uniformly on C̃(q, s̃0(p), ε0;U),
if λ = δ̃(log p/n2γ1)1/2,

‖�̃A−�‖1= max
1≤k≤p

p∑
j=1

‖�̃A
jk−�jk‖S = OP

{
s̃0(p)

( log p
n2γ1

) 1−q
2

}
.

(18)

The convergence rate of �̃A in (18) is governed by internal
parameters (γ1, q) and other dimensionality parameters. Larger
values of γ1 correspond to a more frequent measurement sched-
ule with larger L and result in a faster rate. The convergence
result implicitly reveals interesting phase transition phenomena
depending on the relative order of L to n. As L grows fast enough,
γ1 = 1/2 and the rate is consistent to that for fully observed
functional data in (5), presenting that the theory for very densely
sampled functional data falls in the parametric paradigm. As
L grows moderately fast, γ1 < 1/2 and the rate is faster than
that for sparsely sampled functional data but slower than the
parametric rate.

We finally present Theorem 4 that guarantees the support
recovery consistency of �̃A.

Theorem 4. Suppose that Conditions 5–9 hold and
∥∥�jk/�

1/2
jk

∥∥
S

> (2δ̃ + γ̃ )(log p/n2γ1)1/2 for all (j, k) ∈ supp(�) and some
γ̃ > 0, where δ̃ is stated in Theorem 3, then

inf
�∈C0

P
{

supp(�̃A) = supp(�)
} → 1 as n → ∞.

4.3. Fast Computation

Consider a common situation in practice, where, for each i =
1, . . . , n, we observe the noisy versions of Xi1(·), . . . , Xip(·) at the
same set of points, Ui1, . . . , UiLi ∈ U , across j = 1, . . . , p. Then
the original model in (6) is simplified to

Zijl = Xij(Uil) + εijl, l = 1, . . . , Li, (19)

under which the proposed estimation procedure in Sec-
tion 4.1 can still be applied. Suppose that the estimated
covariance function is evaluated at a grid of R × R locations,
{(ur1 , ur2) ∈ U2 : r1, r2 = 1, . . . , R}. To serve the estimation
of p(p + 1)/2 marginal- and cross-covariance functions and
the corresponding variance factors, LLSs under the simplified
model in (19) reduce the number of kernel evaluations
from O(

∑n
i=1

∑p
j=1 LijR) to O(

∑n
i=1 LiR), which substantially

accelerate the computation under a high-dimensional regime.
Apparently, such nonparametric smoothing approach is con-

ceptually simple but suffers from high computational cost in
kernel evaluations. To further reduce the computational burden,
we consider fast implementations of LLSs by adopting a simple
approximation technique, known as linear binning (Fan and
Marron 1994), to the covariance function estimation. The key
idea of the binning method is to greatly reduce the number of
kernel evaluations through the fact that many of these evalua-
tions are nearly the same. We start by dividing U into an equally
spaced grid of R points, u1 < · · · < uR ∈ U , with binwidth
� = u2−u1. Denote by wr(Uil) = max(1−�−1|Uil−ur|, 0) the
linear weight that Uil assigns to the grid point ur for r = 1, . . . , R.
For the ith subject, we define its “binned weighted counts” and
“binned weighted averages” as

�r,i =
Li∑

l=1
wr(Uil) and Dr,ij =

Li∑
l=1

wr(Uil)Zijl,

respectively. The binned implementation of smoothed adaptive
functional thresholding can then be done using this modified
dataset {(�r,i,Dr,ij)}1≤i≤n,1≤j≤p,1≤r≤R and related kernel func-
tions gab{h, (u, v), (ur1 , ur2)} for r1, r2 = 1, . . . , R. It is notable
that, with the help of such binned implementation, the number
of kernel evaluations required in the covariance function estima-
tion is further reduced from O(

∑n
i=1 LiR) to O(R), while only

O(
∑n

i=1 Li) additional operations are involved for each j in the
binning step (Fan and Marron 1994).

We next illustrate the binned implementation of LLS, denoted
as BinLLS, using the example of smoothed estimates �̃jk for j �=
k in (9). Under Model (19), we drop subscripts j, k in W1,jk, W2,jk,
W3,jk, and Sab,jk due to the same set of points {Ui1, . . . , UiLi}
across j, k. Denote the binned approximations of Tab,ijk and Sab
by Ťab,ijk and Šab, respectively. It follows from (8) and (10) that

Ťab,ijk(u, v) =
R∑

r1=1

R∑
r2=1

gab{hC, (u, v), (ur1 , ur2)}Dr1,ijDr2,ik,

Šab(u, v) =
n∑

i=1

R∑
r1=1

R∑
r2=1

gab{hC, (u, v), (ur1 , ur2)}�r1,i�r2,i,
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Table 1. The computational complexity analysis of LLS, BinLLS under Models (6), (19) when evaluating the corresponding smoothed covariance function estimates at a
grid of R × R points.

Method Model Number of kernel evaluations Number of operations (additions and multiplications)

LLS (6) O(
∑n

i=1
∑p

j=1 LijR) O(R2 ∑n
i=1

∑p
j,k=1 LijLik)

LLS (19) O(
∑n

i=1 LiR) O(p2R2 ∑n
i=1 L2

i )

BinLLS (19) O(R) O(np2R2 + p2R4 + p
∑n

i=1 Li)

both of which together with (9) yield the binned approximation
of �̃jk as

�̌jk =
n∑

i=1

(
W̌1Ť00,ijk + W̌2Ť10,ijk + W̌3Ť01,ijk

)
,

where W̌1, W̌2, and W̌3 are the binned approximations of
W1, W2, and W3, computed by replacing the related Sab’s
in (S.12) of the supplementary material with the Šab’s. It is
worth noting that, for each pair (j, k), the above binned imple-
mentation reduces the number of operations (i.e., additions
and multiplications) from O(R2 ∑n

i=1 L2
i ) to O(nR2 + R4),

since the kernel evaluations in gab{hC, (u, v), (ur1 , ur2)} no
longer depend on individual observations. Table 1 presents the
computational complexity analysis of LLS and BinLLS under
Models (6) and (19). It reveals that the binned implementation
dramatically improves the computational speed for both densely
and sparsely sampled functional data, which is also supported
by the empirical evidence in Section 5.3.

To aid the binned implementation of the smoothed adaptive
functional thresholding estimator, we then derive the binned
approximation of the variance factor �̃jk, denoted by �̌jk. It
follows from (13) that Vab,ijk can be approximated by

V̌ab,ijk(u, v) =
R∑

r1=1

R∑
r2=1

gab
(
hC, (u, v), (ur1 , ur2)

)
{
Dr1,ijDr2,ik − �̌jk(u, v)�r1,i�r2,i

}
.

Substituting each term in (11) with its binned approximation,
we obtain that

�̌jk = Ijk

n∑
i=1

(
W̌1V̌00,ijk + W̌2V̌10,ijk + W̌3V̌01,ijk

)2.

It is worth mentioning that, when j = k, the binned approx-
imations of �̃jj and �̃jj can be computed in a similar fashion
except that the terms corresponding to r1 = r2 should be
excluded from all double summations over {1, . . . , R}2. Finally,
we obtain the binned adaptive functional thresholding estimator
�̌A = (�̌A

jk)p×p with �̌A
jk = �̌

1/2
jk × sλ

(
�̌jk/�̌

1/2
jk

)
and the

corresponding universal thresholding estimator �̌U = (�̌U
jk)p×p

with �̌U
jk = sλ

(
�̌jk

)
.

5. Simulations

5.1. Setup

We conduct a number of simulations to compare adaptive func-
tional thresholding estimators to universal functional threshold-
ing estimators. Sections 5.2 and 5.3 consider scenarios where
random functions are fully and partially observed, respectively.

In each scenario, to mimic the infinite-dimensionality of
random curves, we generate functional variables by Xij(u) =
s(u)Tθ ij for i = 1, . . . , n, j = 1, . . . , p and u ∈ U = [0, 1],
where s(u) is a 50-dimensional Fourier basis function and θ i =
(θT

i1, . . . , θT
ip)

T ∈ R
50p is generated from a mean zero mul-

tivariate Gaussian distribution with block covariance matrix
� ∈ R

50p×50p, whose (j, k)th block is �jk ∈ R
50×50 for j, k =

1, . . . , p. The functional sparsity pattern in � = {�jk(·, ·)}p×p
with its (j, k)th entry �jk(u, v) = s(u)T�jks(v) can be char-
acterized by the block sparsity structure in �. Define �jk =
ωjkD with D = diag(1−2, . . . , 50−2) and hence cov(θijk, θijk′) ∼
k−2I(k = k′) for k, k′ = 1, . . . , 50. Then we generate � with
different block sparsity patterns as follows.

• Model 1 (block banded). For j, k = 1, . . . , p/2, ωjk = (1 −
|j − k|/10)+. For j, k = p/2 + 1, . . . , p, ωjk = 4I(j = k).

• Model 2 (block sparse without any special structure). For
j, k = p/2 + 1, . . . , p, ωjk = 4I(j = k). For j, k =
1, . . . , p/2, we generate ω = (ωjk)p/2×p/2 = B + δ′Ip/2,
where elements of B are sampled independently from
Uniform[0.3, 0.8] with probability 0.2 or 0 with probability
0.8, and δ′ = max{−λmin(B), 0} + 0.01 to guarantee the
positive definiteness of �.

We implement a cross-validation approach (Bickel and Lev-
ina 2008) for choosing the optimal thresholding parameter λ̂

in �̂A. Specifically, we randomly divide the sample {Xi : i =
1, . . . , n} into two subsamples of size n1 and n2, where n1 =
n(1 − 1/ log n) and n2 = n/ log n and repeat this N times.
Let �̂

(ν)

A,1(λ) and �̂
(ν)

S,2 be the adaptive functional thresholding
estimator as a function of λ and the sample covariance function
based on n1 and n2 observations, respectively, from the νth split.
We select the optimal λ̂ by minimizing

êrr(λ) = N−1
N∑

ν=1
‖�̂(ν)

A,1(λ) − �̂
(ν)

S,2 ‖2
F,

where ‖ · ‖F denotes the functional version of Frobenius norm,
that is, for any Q = {Qjk(·, ·)}p×p with each Qjk ∈ S, ‖Q‖F =
(
∑

j,k ‖Qjk‖2
S)1/2. The optimal thresholding parameters in �̂U,

�̃A, �̃U, �̌A, �̌U can be selected in a similar fashion.

5.2. Fully Observed Functional Data

We compare the adaptive functional thresholding estimator �̂A

to the universal functional thresholding estimator �̂U under
hard, soft, SCAD (with a = 3.7) and adaptive lasso (with η =
3) functional thresholding rules, where the corresponding λ̂’s
are selected by the cross-validation with N = 5. We generate
n = 100 observations for p = 50, 100, 150 and replicate
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Table 2. The average (standard error) functional matrix losses over 100 simulation runs.

p = 50 p = 100 p = 150

Model Method �̂A �̂U �̂A �̂U �̂A �̂U

Functional Frobenius norm
Hard 5.67(0.03) 9.39(0.02) 9.48(0.04) 15.79(0.01) 14.00(0.05) 22.26(0.01)

Soft 6.14(0.03) 8.55(0.04) 10.28(0.05) 15.00(0.05) 14.8(0.05) 21.89(0.04)

SCAD 5.94(0.03) 8.59(0.04) 9.96(0.05) 15.02(0.05) 14.49(0.06) 21.91(0.04)

Adap. lasso 5.44(0.03) 9.10(0.04) 8.99(0.04) 15.73(0.02) 13.02(0.05) 22.25(0.01)

Sample 21.80(0.04) 43.51(0.06) 65.22(0.07)
2

Functional matrix �1 norm
Hard 2.85(0.03) 4.74(0.01) 4.77(0.05) 7.11(0.01) 7.65(0.07) 10.31(0.01)

Soft 3.31(0.03) 4.51(0.04) 5.37(0.04) 6.90(0.02) 8.21(0.05) 10.21(0.01)

SCAD 3.22(0.03) 4.48(0.03) 5.29(0.04) 6.91(0.02) 8.14(0.05) 10.21(0.01)

Adap. lasso 2.75(0.03) 4.66(0.02) 4.62(0.05) 7.08(0.01) 7.35(0.07) 10.30(0.01)

Sample 28.06(0.12) 56.01(0.19) 84.13(0.23)

Table 3. The average TPRs/ FPRs over 100 simulation runs.

p = 50 p = 100 p = 150

Model Method �̂A �̂U �̂A �̂U �̂A �̂U

2 Hard 0.77/0.00 0.00/0.00 0.68/0.00 0.00/0.00 0.63/0.00 0.00/0.00
Soft 0.99/0.06 0.50/0.07 0.97/0.04 0.30/0.04 0.96/0.04 0.11/0.02

SCAD 0.99/0.06 0.47/0.06 0.98/0.05 0.29/0.04 0.97/0.05 0.10/0.01
Adap. lasso 0.91/0.00 0.10/0.01 0.86/0.00 0.01/0.00 0.83/0.00 0.00/0.00

Table 4. The average (standard error) functional matrix losses and average CPU time for p = 6 over 100 simulation runs.

Li Method Functional Functional Elapsed time Method Functional Functional Elapsed time
Frobenius norm matrix �1 norm (sec) Frobenius norm matrix �1 norm (sec)

11 BinLLS 1.57(0.02) 1.72(0.03) 2.06 BinLLS-P 4.14(0.03) 4.36(0.04) 0.18
LLS 1.62(0.02) 1.76(0.03) 50.52 LLS-P 4.23(0.04) 4.47(0.05) 0.22

21 BinLLS 1.28(0.02) 1.42(0.03) 2.07 BinLLS-P 2.66(0.02) 2.80(0.02) 0.19
LLS 1.28(0.02) 1.42(0.03) 136.88 LLS-P 2.67(0.02) 2.82(0.03) 0.29

51 BinLLS 1.06(0.02) 1.20(0.03) 2.21 BinLLS-P 1.12(0.03) 1.26(0.03) 0.20
LLS 1.04(0.02) 1.18(0.03) 967.75 LLS-P 1.12(0.03) 1.26(0.03) 0.39

101 BinLLS 1.00(0.02) 1.14(0.03) 2.23 BinLLS-P 0.99(0.02) 1.13(0.03) 0.21
LLS - - - LLS-P 0.97(0.02) 1.11(0.03) 0.64

�̂S Functional Frobenius norm Functional matrix �1 norm Elapsed time (sec)
1.04(0.03) 1.20(0.03) 0.11

each simulation 100 times. We examine the performance of
all competing approaches by estimation and support recovery
accuracies. In terms of the estimation accuracy, Table 2 reports
numerical summaries of losses measured by functional ver-
sions of Frobenius and matrix �1 norms. To assess the support
recovery consistency, we present in Table 3 the average of true
positive rates (TPRs) and false positive rates (FPRs), defined as
TPR = #{(j, k) : ‖�̂jk‖S �= 0 and ‖�jk‖S �= 0}/#{(j, k) :
‖�jk‖S �= 0} and FPR = #{(j, k) : ‖�̂jk‖S �= 0 and ‖�jk‖S =
0}/#{(j, k) : ‖�jk‖S = 0}. Since the results under Models 1
and 2 have similar trends, we only present the numerical results
under Model 2 here to save space. See Tables 9 and 10 of the
supplementary material for results under Model 1.

Several conclusions can be drawn from Tables 2–3 and 9–
10 of the supplementary material. First, in all scenarios, �̂A

provides substantially improved accuracy over �̂U regardless
of the thresholding rule or the loss used. We also obtain the
sample covariance function �̂S, the results of which deteriorate
severely compared with �̂A and �̂U. Second, for support recov-
ery, again �̂A uniformly outperforms �̂U, which fails to recover
the functional sparsity pattern especially when p is large. Third,

the adaptive functional thresholding approach using the hard
and the adaptive lasso functional thresholding rules tends to
have lower losses and lower TPRs/FPRs than that using the soft
and the SCAD functional thresholding rules.

5.3. Partially Observed Functional Data

In this section, we assess the finite-sample performance
of LLS and BinLLS methods to handle partially observed
functional data. We first generate random functions Xij(·)
for i = 1, . . . , n, j = 1, . . . , p by the same procedure as in
Section 5.1 with either nonsparse or sparse � depending on
p. We then generate the observed values Zijl from (19), where
the measurement locations Uil and errors εijl are sampled
independently from Uniform[0,1] and N (0, 0.52), respectively.
We consider settings of n = 100 and Li = 11, 21, 51, 101,
changing from sparse to moderately dense to very dense
measurement schedules. We use the Gaussian kernel with the
optimal bandwidths proportional to n−1/6, (nL2

i )
−1/6 and n−1/4,

respectively, as suggested in Zhang and Wang (2016), so for the
empirical work in this article we choose the proportionality
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Table 5. The average (standard error) functional matrix losses for partially observed functional scenarios and p = 50 over 100 simulation runs.

Li = 11 Li = 21 Li = 51 Li = 101

Model Method �̌A �̌U �̌A �̌U �̌A �̌U �̌A �̌U

Functional Frobenius norm
Hard 8.12(0.03) 10.41(0.02) 6.85(0.04) 9.89(0.01) 6.06(0.04) 9.60(0.02) 5.75(0.04) 9.51(0.02)

Soft 8.35(0.03) 10.37(0.01) 7.35(0.03) 9.60(0.03) 6.72(0.03) 8.86(0.04) 6.48(0.03) 8.56(0.04)

SCAD 8.32(0.03) 10.37(0.01) 7.23(0.04) 9.60(0.03) 6.50(0.04) 8.89(0.04) 6.23(0.04) 8.61(0.04)

Adap. lasso 7.83(0.03) 10.39(0.01) 6.69(0.04) 9.84(0.02) 5.97(0.04) 9.40(0.04) 5.71(0.04) 9.16(0.04)
2

Functional matrix �1 norm
Hard 3.82(0.04) 4.91(0.01) 3.36(0.04) 4.82(0.01) 3.00(0.05) 4.78(0.01) 2.85(0.05) 4.77(0.01)

Soft 3.96(0.02) 4.88(0.01) 3.71(0.03) 4.72(0.02) 3.50(0.03) 4.55(0.03) 3.44(0.03) 4.47(0.03)

SCAD 3.96(0.02) 4.88(0.01) 3.67(0.03) 4.72(0.02) 3.41(0.03) 4.55(0.02) 3.32(0.03) 4.48(0.02)

Adap. lasso 3.65(0.04) 4.90(0.01) 3.28(0.04) 4.80(0.01) 2.96(0.04) 4.73(0.01) 2.88(0.04) 4.69(0.02)

Table 6. The average TPRs/ FPRs for partially observed functional scenarios and p = 50 over 100 simulation runs.

Li = 11 Li = 21 Li = 51 Li = 101

Model Method �̌A �̌U �̌A �̌U �̌A �̌U �̌A �̌U

2 Hard 0.58/0.00 0.00/0.00 0.69/0.00 0.00/0.00 0.75/0.00 0.01/0.00 0.79/0.00 0.01/0.00
Soft 0.95/0.04 0.03/0.01 0.97/0.05 0.22/0.03 0.99/0.06 0.48/0.06 0.99/0.06 0.58/0.07

SCAD 0.95/0.04 0.03/0.01 0.97/0.06 0.22/0.03 0.99/0.07 0.46/0.06 0.99/0.07 0.54/0.06
Adap. lasso 0.80/0.00 0.00/0.00 0.86/0.00 0.02/0.00 0.90/0.00 0.08/0.00 0.91/0.00 0.15/0.01

constants in the range (0, 1], which gives good results in all
settings we consider.

To compare BinLLS with LLS in terms of the computational
speed and estimation accuracy, we first consider a low-
dimensional example p = 6 with nonsparse � generated
by modifying Model 1 with ωjk = (1 − |j − k|/10)+ for
j, k = 1, . . . , 6. In addition to our proposed smoothing methods,
we also implement local-linear-smoother-based pre-smoothing
and its binned implementation, denoted as LLS-P and BinLLS-P,
respectively. Table 4 reports numerical summaries of estimation
errors evaluated at R = 21 equally spaced points in [0, 1]
and the corresponding CPU time on the processor Intel(R)
Xeon(R) CPU E5-2690 v3 @ 2.60GHz. The results for the sample
covariance function �̂S based on fully observed X1(·), . . . , Xn(·)
are also provided as the baseline for comparison. Note that, LLS
is too slow to implement for the case Li = 101, so we do not
report its result here.

A few trends are observable from Table 4. First, the binned
implementations (BinLLS and BinLLS-P) attain similar or even
lower estimation errors compared with their direct implemen-
tations (LLS and LLS-P) under all scenarios, while resulting in
considerably faster computational speeds especially under dense
designs. For example, BinLLS runs over 400 times faster than
LLS when Li = 51. Second, all methods provide higher estima-
tion accuracies as Li increases, and enjoy similar performance
when functions are very densely observed, for example, Li =
51 and 101, compared with the fully observed functional case.
However, the performance of LLS-P and BinLLS-P deteriorates
severely under sparse designs, for example, Li = 11 and 21,
since limited information is available from a small number of
observations per subject. Among all competitors, we conclude
that BinLLS is overall a unified approach that can handle both
sparsely and densely sampled functional data well with increased
computational efficiency and guaranteed estimation accuracy.

We next examine the performance of BinLLS-based adaptive
and universal functional thresholding estimators in terms of

estimation accuracy and support recovery consistency using the
same performance measures as in Tables 2–3. Tables 5–6 and
Tables 11–14 of the supplementary material report numerical
results for settings of p = 50 and 100 satisfying Models 1 and
2 under different measurement schedules. We observe a few
apparent patterns from Tables 5–6 and 11–14. First, �̌A substan-
tially outperforms �̌U with significantly lower estimation errors
in all settings. Second, �̌A works consistently well in recovering
the functional sparsity structures especially under the soft and
SCAD functional thresholding rules, while �̌U fails to identify
such patterns. Third, the estimation and support recovery con-
sistencies of �̌A and �̌U are improved as Li increases. When
curves are very densely observed, for example, Li = 101, we
observe that both estimators enjoy similar performance with �̂A

and �̂U in Tables 2–3 and 9–10 of the supplementary material.
Such observation provides empirical evidence to support our
remark for Theorem 3 about the same convergence rate between
very densely observed and fully observed functional scenarios.

6. Real Data

In this section, we aim to investigate the association between
the brain functional connectivity and fluid intelligence (gF), the
capacity to solve problems independently of acquired knowl-
edge (Cattell 1987). The dataset contains subjects of resting-
state fMRI scans and the corresponding gF scores, measured
by the 24-item Raven’s Progressive Matrices, from the Human
Connectome Project (HCP). We follow many recent proposals
based on HCP by modeling signals as multivariate random
functions with each region of interest (ROI) representing one
random function (Lee et al. in press; Miao, Zhang, and Wong
in press; Zapata, Oh, and Petersen 2022). We focus our analysis
on nlow = 73 subjects with intelligence scores gF ≤ 8 and
nhigh = 85 subjects with gF ≥ 23, and consider p = 83
ROIs of three generally acknowledged modules in neuroscience
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Figure 1. Estimated sparsity structures in �̂A using soft functional thresholding rule at fluid intelligence gF ≤ 8 and gF ≥ 23: (a)–(b) with the corresponding λ̂ selected
by 5-fold cross-validation; (c)–(f ) with the estimated functional sparsity levels set at 70% and 85%.

Figure 2. The connectivity strengths in Figure 1(e)–(f ) at fluid intelligence gF ≤ 8 and gF ≥ 23. Salmon, orange and yellow nodes represent the ROIs in the medial frontal,
frontoparietal and default mode modules, respectively. The edge color from cyan to blue corresponds to the value of ‖�̂A

jk‖S/(‖�̂A
jj ‖S‖�̂A

kk‖S )1/2 from small to large.
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study (Finn et al. 2015): the medial frontal (29 ROIs), fron-
toparietal (34 ROIs) and default mode modules (20 ROIs). For
each subject, the BOLD signals at each ROI are collected every
0.72 sec for a total of L = 1200 measurement locations (14.4
min). We first implement the ICA-FIX preprocessed pipeline
(Glasser et al. 2013) and a standard band-pass filter at [0.01, 0.08]
Hz to exclude frequency bands not implicated in resting state
functional connectivity (Biswal et al. 1995). Figure 12 of the
supplementary material displays examplified trajectories of pre-
smoothed data. The adaptive functional thresholding method
is then adopted to estimate the sparse covariance function and
therefore the brain networks.

The sparsity structures in �̂A for both groups are displayed
in Figure 1. With λ̂ selected by the cross-validation, the network
associated with �̂A for subjects with gF ≥ 23 is more densely
connected than that with gF ≤ 8, as evident from Figure 1(a)–
(b). We further set the sparsity level to 70% and 85%, and
present the corresponding sparsity patterns in Figure 1(c)–(f).
The results clearly indicate the existence of three diagonal blocks
under all sparsity levels, complying with the identification of
the medial frontal, frontoparietal and default mode modules in
Finn et al. (2015). We also implement the universal functional
thresholding method. However, compared with �̂A, the results
of �̂U suffer from the heteroscedasticity, as demonstrated in
Section 5 and Section E.3 of the supplementary material, and
fail to detect any noticeable block structure, hence, we choose
not to report them here. To explore the impact of gF on the
functional connectivity, we compute the connectivity strength
using the standardized form ‖�̂A

jk‖S/(‖�̂A
jj‖S‖�̂A

kk‖S)1/2 for
j, k = 1 . . . , p. Interestingly, we observe from Figure 2 that
subjects with gF ≥ 23 tend to have enhanced brain connectivity
in the medial frontal and frontoparietal modules, while the
connectivity strength in the default mode module declines. This
agrees with existing neuroscience literature reporting a strong
positive association between intelligence score and the medial
frontal/frontoparietal functional connectivity in the resting state
(Van Den Heuvel et al. 2009; Finn et al. 2015), and lends support
to the conclusion that lower default mode module activity is
associated with better cognitive performance (Anticevic et al.
2012). See also Section E.3 of the supplementary material, in
which we illustrate our adaptive functional thresholding estima-
tion using another ADHD dataset.

Supplementary Materials

The supplementary materials contain all the technical proofs, further
methodological derivations and additional discussion and empirical
results. We also provide the codes and datasets in Sections 5 and 6 in the
supplementary materials.
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