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ABSTRACT
Outliers can have a major effect on the estimated transformation of the response in linear regression
models, as they can on the estimates of the coefficients of the fitted model. The effect is more extreme
in the Generalized Additive Models (GAMs) that are the subject of this article, as the forms of terms in
the model can also be affected. We develop, describe and illustrate robust methods for the nonparametric
transformation of the response and estimation of the terms in the model. Numerical integration is used to
calculate the estimated variance stabilizing transformation. Robust regression provides outlier free input to
the polynomial smoothers used in the calculation of the response transformation and in the backfitting
algorithm for estimation of the functions of the GAM. Our starting point was the AVAS (Additivity and
VAriance Stabilization) algorithm of Tibshirani. Even if robustness is not required, we have made four further
general optional improvements to AVAS which greatly improve the performance of Tibshirani’s original
Fortran program.
We provide a publicly available and fully documented interactive program for our procedure which is a
robust form of Tibshirani’s AVAS that allows many forms of robust regression. We illustrate the efficacy of
our procedure through data analyses. A refinement of the backfitting algorithm has interesting implications
for robust model selection. Supplementary materials for this article are available online.
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1. Introduction

The nonlinear transformation of response variables is a common
practice in regression problems. Two customary goals are the
stabilization of error variance and the approximate normaliza-
tion of the error distribution (Box and Cox 1964). The more
comprehensive goals of our article are to find, via smoothing and
robustness, those transformations that produce the best-fitting
additive model. Hopefully, such knowledge may lead to parsi-
monious parametric models capable of a physical interpretation.

Generalized Additive Models (GAMs) are a widely employed
extension of linear regression models which we use to replace the
explanatory variables by nonparametrically estimated functions
of the variables (Hastie and Tibshirani 1990). Tibshirani (1988)
extended the GAM to include response transformation using
an empirical version of the variance stabilizing transformation.
His algorithm AVAS (additivity and variance stabilization) pro-
vides nonparametric alternatives to the Box-Cox parametric
transformation of the response and the Box-Tidwell family of
power transformations of explanatory variables (Box and Tid-
well 1962). Unfortunately, like these parametric methods, his
procedure is not robust; the transformations of both the explana-
tory variables and the response can be highly distorted by out-
lying observations (Atkinson, Riani, and Corbellini 2021). The
same problem holds for the related ACE algorithm of Breiman
and Friedman (1985) and is one topic in the discussion of that
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article (Fowlkes and Kettenring 1985; Buja and Kass 1985). It is
our purpose to provide a robust version of AVAS, robust both for
transformations of the response and the explanatory variables.
For obvious reasons we call our procedure RAVAS.

Both ACE and AVAS are appreciably cited and applied and
both are available in the R package acepack (Spector et al.
2016). Although Breiman and Friedman (1985) present ACE
as a method for transformations in multiple regression and
correlation, it has some anomalous properties for estimation
of response transformations, as noted by Tibshirani (1988). A
discussion of the relationship of ACE and AVAS and of both to
the Box-Cox transformation is in Hastie and Tibshirani (1990,
Cap.7). Buja and Kass (1985) suggest a method for the robus-
tification of ACE, but comment that “it is far easier to make
this glib remark than to formulate the problem in such a way
that progress [can] be made while retaining such advantages of
the current ACE algorithm as the low computational cost.” The
same remark applies to AVAS. What is surprising is the paucity
of references for improving the procedure. Foi (2008) com-
ments that AVAS is non-asymptotic. Both he and Wang, Lyu,
and Yu (2021) use function minimization for numerical vari-
ance stabilization in an image-enhancement problem in which
the errors have a Poisson-Normal distribution. Neither author,
nor indeed Tibshirani, mentions robustness. However, Boente,
Martínez, and Salibián-Barrera (2017) do provide a numerical
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procedure for robust backfitting in the GAM. We believe our
paper provides a robustification of AVAS in the spirit suggested
by Buja and Kass (1985). The application of our methods to
robustifying ACE would follow directly from the work presented
here.

Alternatives to AVAS include Ramsay (1988) who uses a
monotone spline to estimate the response transformation, with
the regression parameters estimated by least squares. An advan-
tage is that the Jacobian of the response transformation is found
by straightforward differentiation of the spline. Ramsey also uses
monotone splines for transformation of the explanatory vari-
ables. Breiman (1988) queries the restriction to monotonicity for
the transformation of the explanatory variables, but commends
the use of splines. Subroutine transace of the R-package Hmisc
(Harrell Jr 2019) replaces the supersmoother in ACE and AVAS
with restricted cubic smoothing splines, with a controllable
number of knots.

The desirable property of AVAS, and of our robust version,
is that they provide the flexibility of nonparametric models for
both the response and the explanatory variables. Most of the
large literature on generalized linear models (GLMs) and GAMs
uses smoothing or spline methods on either the response or
the explanatory variables, but not both. An exception is Spiegel,
Kneib1, and Otto-Sobotka (2019) who use spline smoothing
both for the link function in a GLM and for the transfor-
mation of the explanatory variables in the GAM. Robustness
is introduced to fitting the GAM by Alimadad and Salibian-
Barrera (2011) who use a soft-trimming method, combined
with spline smoothing. Their results extend those of Cantoni
and Ronchetti (2001) for the robust fitting of GLMs. Boente,
Martínez, and Salibián-Barrera (2017) formulate the numerical
procedure for robust backfitting in the GAM using polynomial
smoothers.

In this article we present a robust and improved version
of Tibshirani’s algorithm. Our starting point was the original
version of his algorithm, written in “classical” Fortran, that
is with few comments and uninformative variable names. We
first converted this nonrobust algorithm into Matlab. Our
extension of AVAS is fully documented and freely available
on GitHub. Details are given in the supplementary material.
It is programmed to allow the use of a variety of methods
of robust regression. These include S-estimation (Rousseeuw
and Yohai 1984) and MM-estimation (Yohai and Zamar
1988), in which outliers are downweighted, and the hard
trimming methods least Trimmed Squares (LTS) and the
Forward Search (see Section 4.1.3) in which outliers have
weight zero. In our numerical examples we use the Forward
Search (Atkinson, Riani, and Cerioli 2010) to provide a subset
of the observations believed to be outlier free. Because of the
potential for an appreciable number of outliers which also need
to be transformed for further calculations, we develop a new
procedure for the necessary interpolation and extrapolation for
these observations. Since the whole procedure involves iteration
between response and explanatory variable transformation,
the subset of observations treated as outlying may change
from iteration to iteration. The backfitting and smoothing
procedures for transforming the explanatory variables are
estimated using this subset. Likewise, the numerical procedure
for the variance stabilizing transformation of the response is

only estimated from this subset, although it is applied to all
observations.

In summary, the main purposes of our article, in order of
increasing generality, are:

1. To clarify the details of Tibshirani’s algorithm;

2. To provide a version with improved numerical estima-
tion of variance used in constructing the transformation.
Other improvements, introduced in Section 4, are also
available as options;

3. To present a flexible robust version of response and
explanatory variable transformations, with graphical
interpretation which can be interactive;

4. Finally, to make these procedures freely available on
GitHub.

In addition to robustness we have made four improvements
to the performance of AVAS. These, like robustness, are available
as options and so can be employed whether or not a robust
option is chosen. The program has been written to be highly
flexible and can, for example, be run solely for nonparametric
response transformation in regression using least squares.

In the next section we provide some background to the AVAS
algorithm described in Section 3. Our robust algorithm, RAVAS,
is presented in Section 4. Robust regression is introduced in
Section 4.1.3, followed by details of the variance stabilizing
transformation.

The remainder of the article illustrates the use of RAVAS. In
Section 5 we demonstrate the program’s ability to detect outliers
and illustrate the effect of our improvements in the algorithm
on a nonrobust analysis. Section 6 introduces a novel graphical
display (the augmented star plot) to illustrate the effectiveness
of our five options on data analyses. It can also be brushed to
link to the plot for particular analyses. These properties are
illustrated on simulated data. In Section 7 we analyze data on the
effectiveness of advertisements using social media. We conclude
in Section 8 with brief details of a simulation study comparing
RAVAS with traditional nonrobust AVAS, for samples of up to
10,000 observations. Unlike AVAS, RAVAS provided parameter
estimates with mean squared error that was virtually constant
and tests for outliers, the power of which tended to one as the
outliers became more remote. Except for small sample sizes
and moderate outliers, RAVAS converged in three iterations,
whereas convergence of AVAS required increasingly many iter-
ations as the outliers became more remote.

2. Background

2.1. Introduction

The generalized additive model (GAM) has the form

g(Yi) = β0 +
p∑

j=1
fj(Xij) + ε. (1)

The functions fj are unknown and are, in general, found by
the use of smoothing techniques. A monotonicity constraint
can be applied. If the response transformation or link function
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g is unknown, it is restricted to be monotonic, but scaled to
satisfy the technically necessary constraint that var{g(Y)} = 1
(otherwise, the zero transformation would be trivially perfect).
In the fitting algorithm the transformed responses are scaled to
have mean zero; the constant β0 can therefore be ignored. The
observational errors ε are assumed to be independent and addi-
tive with constant variance. The performance of fitted models
is compared by use of the coefficient of determination R2. Since
the fj are estimated from the data, the traditional assumption of
linearity in the explanatory variables is avoided. However, the
GAM retains the assumption that explanatory variable effects
are additive. Buja, Hastie, and Tibshirani (1989) describe the
background and early development of this model.

In the next section we assume that the response transforma-
tion g(y) is known and describe the backfitting algorithm for
estimating the functions fj.

2.2. Backfitting

2.2.1. Definition
The backfitting algorithm, described in Hastie and Tibshirani
(1990, p. 91), is used to fit a GAM. The algorithm proceeds
iteratively using residuals when one explanatory variable in turn
is dropped from the model. A discussion of convergence of
iterative versions is in Schimek and Turlach (2006).

With g(y) the n × 1 vector of transformed responses, let e(j)
be the vector of residuals when fj(xj) is removed from the model
without any refitting. Then

e(j) = g(y) −
p∑

k�=j=1
fk(xk). (2)

The new value of fj(.) depends on ordered values of e(j) and xj.
Let the ordered values of xj be xs,j. The residuals e(j) are sorted in
the same way to give the new order es,(j). Within each iteration
each explanatory variable is dropped in turn; j = 1, . . . , p. The
iterations continue until the change in the value of R2 is less than
a specified tolerance.

For iteration l the vector of sorted residuals for xj is el
(j). The

new estimate of f (l+1)
j is

f (l+1)
s,j = S

{
el

s,(j), xs,j
}

. (3)

The required estimates of f (l+1)
j follow by restoring the elements

of f (l+1)
s,j to the appropriate values of unordered Xj.
The function S depends on the constraint imposed on the

transformation of variable j.

• If the transformation can be non-monotonic, S denotes a
smoothing procedure. In order to compare our procedure
with that of Tibshirani (1988) we follow him in using the
supersmoother (Friedman and Stuetzle 1982), a nonparamet-
ric estimator based on local linear regression with adaptive
bandwidths.

• If the transformation is monotonic, the f (l+1)
j come from

isotonic regression (Barlow et al. 1972).
• If the transformation is linear f (l+1)

j = a + bXj, where a and
b are the least squares coefficients.

2.2.2. Properties
For a linear regression model with errors that obey second-order
assumptions, the least squares estimates of the parameters satisfy
the normal equations. The backfitting algorithm is the Gauss-
Seidel algorithm for solving this set of equations. Buja, Hastie,
and Tibshirani (1989) extend this result for least squares to the
backfitting algorithm for linear smoothers; a smoother is linear
if ŷ = Sy and S does not depend on y. This result assumes that, if
necessary, the response has been transformed so that the second-
order conditions are satisfied. Unfortunately, the supersmoother
that is used for transformation of explanatory variables is not
linear, so that convergence of the procedure is not automatically
guaranteed.

The backfitting algorithm is not invariant to the permutation
of order of the variables inside matrix X, with high collinearity
between the explanatory variables causing slow convergence of
the algorithm: the residual sum of squares can change very little
between iterations (Breiman and Friedman 1985; Hastie and
Tibshirani 1988). Our option orderR2, Section 4.1.4, attempts
a solution to this problem by reordering the variables in order of
importance.

3. Introduction to AVAS

In this section we first present the structure of the AVAS algo-
rithm of Tibshirani (1988) and then outline the variance stabi-
lizing transformation used to estimate the response transforma-
tion. Our RAVAS algorithm has a similar structure, made more
elaborate by the requirements of robustness and the presence of
options.

3.1. The AVAS Algorithm

In this description of the algorithm ty and tX are transformed
values of y and X. In both algorithms the inner loop fits the GAM
for a given g(y) leading to new values of tX and residuals e. The
main (outer) loop uses these to calculate a new transformation
g(y).

1. Initialize Data. Standardize response y so that ty = 0 and
var(ty) = 1 , where var is maximum likelihood biased
estimator of variance. Center each column of the X matrix
so that tXj = 0, j = 1, . . . , p).

2. Initial call to “Inner Loop” to find initial GAM using ty
and tX; calculates initial value of R2. Set convergence
conditions on number of iterations and value of R2.

3. Main (Outer) Loop. Given values of ty and tX at each
iteration, the outer loop provides updated values of the
transformed response. Given the newly transformed
response, updated transformed explanatory variables are
found through the call to the backfitting algorithm (inner
loop). In our version iterations continue until a stopping
condition on R2 is verified or until a maximum number
of iterations has been reached.

3.2. The Numerical Variance Stabilizing Transformation

We first consider the case of a random variable Y with known
distribution for which E(Y) = μ and var(Y) = V(μ). We seek
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a transformation ty = h(y) for which the variance is, at least
approximately, independent of the mean. Then Taylor series
expansion of h(y) leads to var(Y) ≈ V(μ){h′(μ)}2. For a general
distribution h(y) is then a solution of the differential equation
dg/dμ = C/

√
V(μ). For random variables standardized, as are

the values ty, to have unit variance, C = 1 and the variance
stabilizing transformation is

h(t) =
∫ t

1/
√

V(u)du. (4)

In the AVAS algorithm for data, 1/
√

V(u) is estimated by the
vector of the reciprocals of the absolute values of the smoothed
residuals sorted using the ordering based on fitted values of the
model. There are n integrals, one for each observation. The range
of integration goes from the smallest fitted value, to t̂yi, i =
, . . . , n. The computation of the n integrals uses the trapezoidal
rule. The logged residuals in the estimation of the variance func-
tion are smoothed using the running line smoother of Hastie
and Tibshirani (1986). Full details of our implementation of the
algorithm are in Atkinson et al. (2023, chap. 7).

4. RAVAS: Five Extensions to AVAS

Our RAVAS procedure introduces five improvements to AVAS,
programmed as options. These do not have a hierarchical struc-
ture, so that there are 25 possible choices of the options. The
augmented star plot of Section 6 provides a method for assessing
these choices. We discuss the motivation and implementation
for each in the order in which they are applied to the data when
all are employed.

4.1. Initial Calculations

The structure of our algorithm is an elaboration of that of AVAS
outlined in Section 3.1. Four of the five options can be invoked
before the start of the outer loop. They are described here.
A detailed flow scheme is in Section 2 of the supplementary
material.

4.1.1. Initialization of Data: Option tyinitial
Our numerical experience is that it is often beneficial to start
from a parametric transformation of the response. This is
optionally found using the automatic robust procedure for
power transformations described by Riani, Atkinson, and
Corbellini (2023). For min(y) > 0 we use the Box-Cox
transformation. For min(y) ≤ 0 the extended Yeo-Johnson
transformation is used (Atkinson, Riani, and Corbellini 2020).
This family of transformations has separate Box and Cox
transformations for positive and negative observations. In both
cases the initial parametric transformations are only useful
approximations, found by searching over a coarse grid of
parameter values. The final nonparametric transformations
sometimes suggest a generalization of the parametric ones.

4.1.2. Ordering Explanatory Variables in Backfitting: Option
scail

In a comparison of monotone regression spline estimation with
ACE, Ramsay (1988) observed that the fitted model obtained

with ACE depends on the order of the explanatory variables
(see Section 2.2). One approach is to use an initial regression
to remove the effect of the order of the variables through scaling
(Breiman 1988). With bj the coefficient of fj(x) in the multiple
regression of g(y) on all fj(x) the option scail provides new
transformed values for the explanatory variables: t̂Xj = bjfj(x),
j = 1, . . . , p. Option scail is used only in the initialization of the
data.

4.1.3. Robust Regression and Robust Outlier Detection:
Option rob

1. Robust Regression.
We robustify our transformation method through the use of

robust regression to replace least squares. There are three main
approaches to robust parametric regression.

1. Hard (0,1) Trimming. In Least Trimmed Squares, Hampel
(1975), Rousseeuw (1984) the amount of trimming is
determined by the choice of the trimming parameter h,
[n/2] + [(p + 1)/2] ≤ h ≤ n, which is specified in
advance. The LTS estimate is intended to minimize the
sum of squares of the residuals of h observations. For least
squares (LS), h = n.

2. Adaptive Hard Trimming. In the Forward Search (FS),
the observations are again hard trimmed, but the value
of h is determined by the data, being found adaptively by
the search. Atkinson, Riani, and Cerioli (2010) provide a
general survey of the FS, with discussion.

3. Soft trimming (downweighting). M estimation and
derived methods. The intention is that observations
near the center of the distribution retain their value.
Increasingly remote observations are downweighted by
a ρ function to give a weight that decreases with distance
from the fitted model. We include S and MM estimation.
A popular ρ function is Tukey’s biweight (Beaton and
Tukey 1974).

All three methods provide weights for the observations. Our
RAVAS algorithm has been programmed to use any of the three
robust methods. However, we prefer the Forward Search for
outlier detection, since it depends upon the data to determine
the number and identity of the outliers, rather than analyzing the
data with the pre-determined value for h of LTS. All examples in
this article have been computed using the FS. Comparisons of
outlier detection using hard and soft-trimming in regression are
in Riani, Atkinson, and Perrotta (2014).

2. Robust Outlier Detection
Our algorithm works with k observations treated as outliers,

providing the subset of m = n − k observations used in model
fitting and parameter estimation. This section describes our
outlier detection methods.

The default setting of the forward search uses the multivari-
ate procedure of Riani, Atkinson, and Cerioli (2009) adapted
for regression (Torti, Corbellini, and Atkinson 2021) to detect
outliers at a simultaneous level of approximately 1% for samples
of size up to around 1000. Optionally, a different level can be
selected.
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In the other two methods of robust regression we again
calculate scaled residuals for all n observations and use a Bon-
ferroni inequality to give a simultaneous test for outliers with
significance level for detection of individual outliers of α/n. The
m observations for which the test is not significant then form the
subset Sm.

We use the subset Sm in the backfitting algorithm to calculate
the transformations f (X) at each iteration, the k outliers being
ignored as they are in the calculation of the numerical vari-
ance stabilizing transformation in Section 4.2.1. Since different
response transformations can indicate different observations as
outliers, the identification of outliers occurs repeatedly during
our robust algorithm, once per iteration of the outer loop. Exam-
ples of the dependence of outliers on the parameter of the Box-
Cox transformation are in Atkinson and Riani (2000, chap. 4).
Here there is also a relationship between the transformations
f (x) and the declaration of outliers.

4.1.4. Ordering Predictor Variables: Option orderR2
In order to completely eliminate dependence on the order of the
variables, we include an option that, at each iteration, provides
an ordering which is based on the variable which produces the
highest increment of R2. Let Aj−1 = {i1, . . . , ij−1} be the set
of the j − 1 indexes for the columns of matrix X which have
already been updated, and let ir be the index of a column of X
that has not yet been updated; then ir /∈ Aj−1. Further, let R2(ir)
be the coefficient of determination in a multiple linear regression
which has g as response and as regressors fi1 , . . . , fij−1 , fir . We
select as the next variable is to be estimated in the backfitting
algorithm, that for which

is = arg maxir /∈Aj−1
R2(ir).

With this criterion the most relevant features are immediately
transformed and those that are perhaps irrelevant will be trans-
formed in the final positions. For robust estimation, this pro-
cedure is applied solely to the observations in the subset Sm.
Option orderR2 is available at each call to the backfitting func-
tion. Flowcharts for initialization and iterative use of the outer
loop of RAVAS are in the supplementary material.

This robust procedure, with ordering, offers interesting sug-
gestions for robust model selection for GAMs. We do not here
develop this idea further.

4.2. Main or Outer Loop

The only option remaining to be described is the robust version
of the numerical variance stabilizing transformation of Sec-
tion 4.2.1.

4.2.1. Numerical Variance stabilizing Transformation:
Option Trapezoid

Plots of residuals against fitted values are widely used in
regression analysis to check the assumption of constant variance
(Anscombe and Tukey 1963; Cox and Snell 1981). Here the
observations have been transformed, so the fitted values are t̂yi.
To estimate the variance stabilizing transformation, the fitted
values have to be sorted, giving a vector of ordered values t̂ys.
The residuals are ordered in the same way and, following the

procedure of Section 3.2, provide estimates vi of the integrand
V−0.5(y) in (4). The vi provide estimates at the ordered points
t̂ys. Calculation of the variance transformation (4) is however for
sorted observed responses tys

i , rather than fitted, transformed
responses t̂ys. As did Tibshirani, we use the trapezoidal rule to
approximate the integral. Linear interpolation and extrapolation
are used in calculation of the vi at the tys

i . We provide
an option “trapezoid” for the choice between two methods
for the extrapolation of the variance function estimate, the
interpolation method remaining unchanged. Our approach
leads to trapezoidal summands in the approximation to the
integral for the extrapolated elements, whereas Tibshirani’s leads
to rectangular elements. When we are concerned with robust
inference, there are only m = n − k members of t̂ys whereas
there are n values of tys

i , so that robustness increases the effect
of the difference between the two rules. The option trapezoid =
false uses rectangular elements in extrapolation.

For a transformation that stabilizes variance, there is no
relationship between var(ty) and ty. Thus, the smoothed values
of the residuals will be constant, apart from random fluctuations.

A more detailed discussion of the calculation of the variance
stabilizing transformation, together with the flowchart, are in the
supplementary materials. A figure and clarificatory discussion
are in Atkinson et al. (2023, chap. 7).

5. Simulated Examples

In this section we start with a simple example to compare the
data analyses from RAVAS with the nonrobust AVAS of Tibshi-
rani when there are a few outliers. In Section 5.2 our analysis is
of data without introduced outliers to demonstrate the effect of
our options on the performance of the nonrobust algorithm.

5.1. Example 1—Robustness

There are 151 observations with x equally spaced over 0,(0.1),15.
The linear model is

z = sin(x) + 0.5(U(0, 1) − 0.5).
Outliers of value one replace the values of z in positions
100, 105, 106,…110. That is there are seven outliers at
x = 9.9, 10.4, 10.5, . . . , 10.9. The response y = exp z. Thus,
a logarithmic transformation of the observed responses is
appropriate. We start with a nonrobust analysis excluding our
improvements to the algorithm. That is, there is no initial
transformation of the response (tyinitial = false) and we use
the rectangular extrapolation when calculating the variance
stabilizing transformation (trapezoid = false).

The top left-hand panel of Figure 1 shows the transformation
of y, which is roughly logarithmic, but with a slight decrease in
gradient near the centre of the plot. The top right-hand panel
shows the transformed values of y against fitted values. Two
horizontal linear structures are apparent; a set of six values of
transformed y close to one and several values close to −1.75.
The bottom panel of Figure 1 shows a very clear distortion of
the sinusoid of f (x) in the range of the outliers, that is 9.9–10.9.
This “rug” plot shows the uniform distribution of the values of x.

In our robust analysis we used the initial transformation of y
and set trapezoid = true. The top panels of Figure 2 show plots of
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Figure 1. Example 1 (seven outliers). Standard nonrobust analysis without options. Top left-hand panel, transformed y against y; top right-hand panel, transformed y
against fitted values; lower panel, transformed x against x.

Figure 2. Example 1. Robust analysis. Top left-hand panel, transformed y against y; top right-hand panel, transformed y against fitted values; lower panel, transformed x
against x. The seven outliers are indicated by filed symbols.

the transformed values of y with the seven outliers automatically
detected by the robust procedure. The plot against y shows a
smoother curve than that for the nonrobust analysis. However,

the greater difference is in the plot against fitted values. There
is now a regression line with less scatter than in Figure 1; the
linear structure at the bottom of the plot is now absent and the
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Figure 3. Two-variable model. Nonrobust analysis without options. Left-hand panel, residuals against fitted values; right-hand panel, transformed y against fitted values.

horizontal line formed by the group of six outliers is more clearly
distanced from the fitted regression. The plot also shows the
isolated outlier (corresponding to x = 9.9). The bottom panel
of Figure 2 shows that the robust analysis has removed the
distortion in the estimation of the sinusoidal form of f (x), except
where the outliers have been deleted.

In this and other figures the outliers are indicated by filled
symbols. In the online .pdf version they are colored red.

5.2. Example of Effects from Options in RAVAS

The preceding example shows that the robustness of RAVAS
leads to the identification of the seven outliers and to the virtual
recovery of the model from which the data were simulated. In
this section we use further simulations to explore how our mod-
ifications, not necessarily the robustness itself, lead to improved
analyses of data.

Two-variable model. We use an example without outliers to
illustrate the importance of some options including the initial
transformation of the response. There are 151 observations with
x1 ∼ N(0, 1). The linear model is

z = 10{1 + sin(x1) + exp(x2)} + N (−0.5, 0.5),

where x2 = 0, (0.01), 1.5. The observed responses are y = z3,
so that a 1/3rd transformation is expected. As well as plotting
residuals and fitted values from some of the fitted models, we
also calculate the value of R2 and the significance level of the
Durbin-Watson statistic (Durbin and Watson 1950) for the inde-
pendence of the residuals ordered by the fitted values from the
model.

Figure 3 shows results from using RAVAS on these data with-
out any options. The left-hand panel shows the plot of residuals
against fitted values which has a sinusoidal shape. The plot of
transformed y against fitted values in the right-hand panel is
logistic in shape, rather than linear. These two plots indicate that
the fitted model is not satisfactory, an impression confirmed by
the value of 2.3913 × 10−21 for the significance of the Durbin-
Watson statistic. We do not show the plot of transformed y
against y which is roughly appropriate for a transformation
of 1/3.

We now proceed adding options in an ad hoc manner, start-
ing with scail, that is the rescaling of the explanatory variables,
Section 4.1.2. Figure 4 shows plots of the same properties as

Figure 3. The plot of the residuals now shows a series of rough
diagonal bands with an outline for larger fitted values similar to
that in Figure 3. Although straighter, the plot of transformed
against fitted y is again curved for higher values of y. These
improvements lead to a less significant value of 2.0349 × 10−14

for the significance of the Durbin-Watson statistic. The fit is still
far from satisfactory.

In the modeling producing the third pair of figures (Figure 5)
we have also included the initial transformation of the responses
(tyinitial, Section 4.1.1). It is clear from scatterplots of the data
that the transformation parameter λ should be positive but
small. We used a grid of λ = 0, 0.1, 0.2, 0.3, 0.4, and 0.5.

The plot of residuals against fitted values in the left-hand
panel of the figure is greatly improved from that of Figure 4 but
is still not random, showing some curvature. This is reflected
in the improved, but still significantly small, value of 3.225 ×
10−7 for the significance of the Durbin-Watson test. The plot of
transformed y against fitted values is closer to a straight line than
before.

These three different sets of options show steady improve-
ment in the normality of the residuals. We have examined them
in some detail because we observed plots with structures similar
to those in the left-hand panels of Figures 3 and 4 when we used
AVAS to analyze data for response transformations in Atkinson,
Riani, and Corbellini (2020), although we did not publish such
plots. We have also failed to find any references to such phenom-
ena. We conclude this progression with the analysis using all five
options.

The upper left-hand panel of Figure 6 shows the smooth
curve of the transformed responses and the upper right-hand
panel shows the plot of residuals against fitted values. This
appears to be a random scatter with, surprisingly, two outliers, an
unexpected artifact of the simulation. The significance value for
the Durbin-Watson statistic is 0.77, so that independence of the
residuals has been achieved, once the outliers are deleted. The
bottom left-hand panel shows the linear relationship between
transformed response and fitted values, as is expected for a
GAM, together with the two outliers. The estimated transfor-
mations of the two explanatory variables are in the bottom
right-hand panel of the figure. The first explanatory variable
shows the shape of a scaled and translated sine function, with
the two observations for the largest values of x1 being marked
as outlying. The second explanatory variable has the desired
exponential form. Plots of these nonparametric functions with
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Figure 4. Two-variable model. Nonrobust analysis with option scail. Left-hand panel, residuals against fitted values; right-hand panel, transformed y against fitted values.

Figure 5. Two-variable model. Nonrobust analysis with options scail and tyinitial. Left-hand panel, residuals against fitted values; right-hand panel, transformed y against
fitted values.

Figure 6. Two-variable model. Robust analysis with all options. Upper left-hand panel, transformed y against y; upper right-hand panel, residuals against fitted values;
lower left-hand panel, transformed y against fitted values; lower right-hand panel, transformed explanatory variables. Two outliers are shown by filled symbols
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Figure 7. Example 2. Augmented star plot of options. The best solution has four options and the statistically indistinguishable second-best solution includes the trapezoid
option.

superimpositions of the parametric forms can be used to check
closeness to the parametric models.

6. A Graphical Representation of the Systematic
Evaluation of Options

We have added five options to the original AVAS. There are
therefore 32 combinations of options that could be chosen. It
is not obvious that all will be necessary when analyzing all
sets of data. Our program provides flexibility in the assessment
of these options. One possibility is a list of options ordered
by, for example, the value of R2 or of the significance of the
Durbin-Watson or the normality test. In this section we describe
the augmented star plot, one graphical method for visualizing
interesting combinations of options in a particular data analysis.
An example is Figure 7. Figure 10 introduces a brushable version
of the augmented star plot which links to residual and other plots
from the fitted model.

We remove all analyses for which the residuals fail the
Durbin-Watson and Jarque-Bera normality tests, at the 10%
level (two-sided for Durbin-Watson). The Jarque-Bera (Jarque
and Bera 1987) test uses a combination of estimated skewness
and kurtosis to test the distributional shape of the residuals.
There is an option for independent choice of the levels of these
two tests. We used a threshold of 5% for both. We optionally
enclose them in a polygon.

We order the remaining, admissible, solutions by the Durbin-
Watson significance level multiplied by the value of R2 and by
the number of units not declared as outliers. Other options are
available. The lengths of rays in individual panels of the plot are
of equal length for those features used in an analysis; we enclose
them in a polygon. All rays are in identical places in each panel of
the plot; the lengths of the rays for each analysis are proportional

to pDW, the significance level of the Durbin-Watson test. Each
ray has a different color.

The ordering in which the five options are displayed in the
plot depends on the frequency of their presence in the set of
admissible solutions. For example, if robustness is the one which
has the highest frequency, its ray is shown on the right. The
remaining options are displayed counterclockwise, in order of
frequency.

We list the five options giving an informative text description
followed by the optional input arguments.

1. Initial robust transformation of the response; tyinitial—
Section 4.1.1.

2. Remove effect of order of explanatory variables by regres-
sion; scail—Section 4.1.2.

3. Robustness; rob—Section 4.1.3.

4. Ordering variables in the backfitting algorithm using R2

values; orderR2—Section 4.1.4.

5. Trapezoidal or rectangular rule for numerical integration;
trapezoid—Section 4.2.1.

Example 2. As an initial example we consider an extension of
Example 1 simulated in Section 5.1 in which there are now four
explanatory variables. There are again 151 observations with x1
equally spaced from 0,(0.1),15. The linear model is

z = sin(x1) +
4∑

j=2
(j − 1)xj + 0.5U(−0.5, 0.5),

where xij(j = 2, . . . , 4), are independently N (0, 1). Eight out-
liers of value one replace the values of z at x = 8.9, 9.9, 10.4,
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Figure 8. Example 2. Nonrobust analysis. Upper left-hand panel, transformed y against y; upper right-hand panel, residuals against fitted values; lower left-hand panel,
transformed y against fitted values; lower right-hand panel, transformed explanatory variables.

10.5 . . . 10.9. The response y = exp z. There are thus four
explanatory variables, only one of which requires transforma-
tion, as does the response to logy.

Figure 7 shows the augmented star plots of the two combina-
tions of options for which the residuals pass the tests of indepen-
dence and normality. The first solution uses four options with
the trapezoidal integration rule added for the second solution.
The statistical properties of the two solutions are indistinguish-
able. For both, R2 = 0.998, pDW = 0.32 and pJB is 0.088 and
0.090.

We now compare the analysis without options with that
suggested in Figure 7. Figure 8 shows the nonrobust results from
using AVAS. The value of R2 = 0.884. Although the response has
been adequately transformed the residuals are far from random
(the significance level for the Durbin-Watson test is 1.64×10−8,
the sinusoid for x1 is distorted and x4 has been subjected to
nonlinear transformation.

The fit from RAVAS using all options identifies nine outliers,
the eight generated intentionally and one at unit 53. The upper-
right and lower-left panels of Figure 9 show, after the outliers
have been deleted, that the residuals are structure free when
plotted against fitted values and that there is a linear relationship
between the transformed values of y and the fitted values. The
lower right-hand panel plots the transformed values of x1. The
sinusoid has been recovered. We do not show the plots of the
transformations of the other explanatory variables, which are
straight lines, unlike some of the plots in the lower right-hand
panel of Figure 8.

Example from Wang and Murphy. Wang and Murphy (2005)
used ACEPACK (Spector et al. 2016) to illustrate the use of ACE

and AVAS in the transformation of data. Their illustrations did
not include any robust methods. We now illustrate the use of
RAVAS to analyze one of their examples to which we have intro-
duced some outliers. We also introduce an extended version of
the augmented star plot which has advantages when, as here,
many statistical options provide satisfactory fits to the data. The
extension also allows brushing.

There are 200 observations and four explanatory variables
all independently uniformly distributed on [−1, 1]. The linear
model is

z = 4 + sin(3x1) + abs(x2) + x2
3 + x4 + N(0, 0.1) (5)

and y = log z. There are nine outliers each randomly generated
as 1.9 + 0.01N (9, 1).

Figure 10 shows the six combinations of options which satisfy
the constraints on probabilities. As expected, these are plotted
in a different order from those in Figure 7. Solution 4 uses
only robustness, which is included in all six combinations of
options. The optional bars in the figure, representing the four
properties of the fitted models, have been introduced as being
easier to interpret than the list of numerical values, such as those
in Figure 7, when the figure displays several solutions. Since
the maximum number of outliers is [n/2] we plot (n − 2k)/n.
Brushing the figure reveals plots such as those in Figures 11 and
12, depending on which augmented star plot is brushed. Details
are in section of the supplementary material.

The values of R2 and of pJB do not change as much as those
for pDW. The correlations between the pairs of fitted values for
the various combinations have a minimum value of 0.996. There
is virtually no difference between the fitted models, despite
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Figure 9. Example 2. Robust analysis with all options. Upper left-hand panel, transformed y against y; upper right-hand panel, residuals against fitted values; lower left-hand
panel, transformed y against fitted values; lower right-hand panel, transformed explanatory variable x1. Nine outliers shown by filled symbols.

Figure 10. Example from Wang and Murphy. Extended augmented star plot of six selections of options. Solution 4 employs only robustness, which is included in all options.
The solutions are statistically indistinguishable. The number of outliers detected is k. From left to right the bars give values of R2, (n − 2k)/n, pDW and pJB.

the four selections of options detecting nine outliers and two
detecting 11.

We look at some properties of the best solution from Fig-
ure 10, which uses all options apart from the trapezoidal rule.
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Figure 11. Example from Wang and Murphy. Left-hand panel, transformed y against y; right-hand panel, residuals against fitted values. Nine outliers shown by filled
symbols.

The plot of transformed y against y in the left-hand panel of
Figure 11 shows the exponential relationship which is the inverse
of the logarithmic transformation used to generate the data. The
plot of residuals against fitted values in the right-hand panel
shows the lack of relationship between the residuals and the
fitted values. The nine outliers are clearly identified, although
they are not evident in the scatterplots of the data. The transfor-
mations for the four explanatory variables (Figure 12) recover
the model used in simulation (5). Particularly impressive is the
plot for x2 where the sharpness of the absolute value transfor-
mation is achieved by the smoothing algorithm. Similar results
are obtained by Wang and Murphy (2005) who continue their
analysis to the important step of testing the fit of parametric
versions of these nonparametric forms for fj(xj).

7. Internet Marketing Data

The R package datarium (Kassambara 2019) contains 200
results of an experiment on internet marketing. The explanatory
variables x1 − x3 are the budgets for advertising on YouTube,
Facebook, and newspapers and the response is sales. These data
starkly show the gains in data analysis that come from using
RAVAS with options rather than AVAS.

We start with linear regression on the three explanatory
variables, which gives an F statistic for regression of 504 and a
t statistic for x3 of 0.658. That newspapers advertising has no
effect and that there is a strong effect of advertising in the two
online media is a constant pattern in all our analyses. We gain
more insight into the structure of the data by using AVAS. It
makes sense to assume that increasing advertising expenditures
increase sales, so we include a monotonicity constraint on the
transformations of the explanatory variables.

The resulting regression gives an F-value of 472 (even smaller
than that for linear regression). Figure 13 shows that there is
a strongly nonrandom curved pattern in the plot of residuals
against fitted values, despite the smooth transformation of the
response. Use of RAVAS with all options leads to the deletion of
17 observations giving an F value of 936. Despite the number of
observations deleted, the residuals fail both tests of normality—
with significance levels dw = 2 × 10−7 and jb = 0.0095.

Figure 14 shows the plot of residuals against fitted values in
the RAVAS analysis with all options. This figure shows that the
residuals are not yet free of structure. The deletion of the large
number of outliers has reduced the curved pattern evident in

Figure 13. The deletion of 17 outliers has also produced relatively
smooth curves in the other panels, except for the transformation
of x3 which has a bizarre stepped shape. Since this variable is not
significant, the pattern can be ignored.

The curved pattern that remains in the plot of fitted values
against residuals, ignoring outliers, suggests that a second-order
model might be appropriate. We drop x3 from the model and fit
a full second-order model in x1 and x2, including quadratic and
interaction terms. The augmented star plot, Figure 15, shows
that the preferred model includes the options tyinitial, rob, and
scail. The significance levels of the two tests are dw =0.98 and
jb = 0.033. This fit detects one outlier and produces an F-
statistic for regression of 5579, a more than 10-fold increase
from our first fit using AVAS. The results in Figure 16 show a
smooth transformation of the response and a linear relationship
between the transformed response and fitted values, once the
outlier is ignored. The transformed explanatory variables all
have smoothly changing shapes and all are significant; the least
significant t-statistic is −3.01.

To conclude our analysis we look at the results of fitting
(nonrobust) AVAS with a quadratic model in two variables,
that is, excluding x3. The results, compared with RAVAS, which
led to the deletion of one observation, are amazing. There are,
of course, no deleted outliers. The F-statistic now has a value
of 556, hardly better than regression on the first-order model
without transformation of the response or of the explanatory
variables. The plot (not given here) of tXj against Xj shows that
there are smooth transformations of all five explanatory vari-
ables. However, the plot of the transformed response against y
(left-hand panel of Figure 17) includes an unexpected kink. The
plot of transformed y against fitted values (again not shown) is
not a straight line, but is lumpy for low values. Most surprisingly,
the plot of residuals against fitted values (right-hand panel of
Figure 17), shows the inexplicable diagonal structures that we
noticed in Figures 4 and 8. Such structures were the original
stimulus for our attempts to provide a reliable version of AVAS
that produces interpretable data analyses.

8. Discussion

Our examples in this article illustrate the excellent properties
of our robust procedure. Even if robustness is not of interest,
the results of Section 5.2 show how we improved on the per-
formance of Tibshirani’s algorithm. Harrell Jr (2019) claims that
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Figure 12. Example from Wang and Murphy. Transformations of the four explanatory variables. Nine outliers plotted as filled symbols.

Figure 13. Marketing data. First-order model. Nonrobust analysis without options. Top left-hand panel, transformed y against y; top right-hand panel, residuals against
fitted values; bottom left-hand panel transformed y against fitted values; bottom right-hand panel, transformations of the three explanatory variables.

AVAS is unstable unless the sample size exceeds 350. We used
simulation to explore the properties of our method, comparing
RAVAS with traditional AVAS, that is with no options. We

found no numerical instability in either procedure for sample
sizes from 200 to 10,000 and values of p from 5 to 20 with
10% additive outliers. The mean squared error of parameter
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Figure 14. Marketing data. First-order model. RAVAS analysis with all options. Top left-hand panel, transformed y against y; top right-hand panel, residuals against fitted
values; bottom left-hand panel transformed y against fitted values; bottom right-hand panel, transformations of the three explanatory variables. The 17 outliers shown by
filled symbols.

Figure 15. Marketing data. Quadratic model in x1 and x2. Augmented star plot with five potential options.

estimates from RAVAS remained virtually constant as the out-
liers became more remote, whereas that for AVAS increased
steadily. The test for the detection of outliers using RAVAS
tended to power one as the outliers became more remote. The
average number of iterations for AVAS increased with sample
size, and outlier remoteness, reaching the allowed upper limit
of 20. The average number of iterations for RAVAS only rose

above three for small sample sizes and moderate shift contam-
ination, the situation in which outliers cause significant bias
in parameter estimates, but are hard to detect. We believe we
have provided a robust version of AVAS in the spirit of the
remark by Buja and Kass (1985) quoted in Section 1, that is
a procedure that retains the computational simplicity of the
original AVAS.
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Figure 16. Marketing data, quadratic model. Analysis with options tyinitial, rob and scail. Top left-hand panel, transformed y against y; top right-hand panel, residuals
against fitted values; bottom left-hand panel transformed y against fitted values; bottom right-hand panel, transformations of the five explanatory variables. The outlier is
shown by a filled symbol.

Figure 17. Marketing data, quadratic model. Standard nonrobust analysis without options. Left-hand panel, transformed y against y; right-hand panel, residuals against
fitted values.

Supplementary Materials

The first three sections of the supplementary material provide flow charts
for the program we wrote to implement RAVAS. Section 2 is the initiali-
sation of the fitting procedure including implementation of the four non-
iterative options; Section 3 describes the iterative part of the algorithm
and sets up the environment for the numerical variance stabilizing trans-
formation; Section 4 provides the fitted values and residuals to which the
trapezoidal integration approximation is applied; Section 5 provides links,
inter alia, to the code used for the calculations and the plotting of graphs.
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