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ABSTRACT

We study the international diffusion of carbon pricing policies and quantify its global benefits. We first empirically examine
to what extent the adoption of carbon pricing in one country can explain the subsequent adoption of carbon pricing in other
countries. We find robust and statistically significant evidence for policy diffusion. For two neighbouring countries, policy
adoption in one country increases the probability of subsequent adoption in the other country on average by several percentage
points. We then use Monte Carlo simulations to translate our empirical estimates into global emission reductions from diffusion.
The results suggest that for many countries, emission reductions from policy diffusion can be larger than domestic emission
reductions. Overall, our results provide additional support for the adoption of stringent climate policies, especially in countries
where climate change mitigation might have been considered as being of relatively little importance because of relatively small
domestic emissions.

Despite the need for more stringent climate policies to achieve the Paris climate targets (IPCC 2021), many countries appear
reluctant to ratchet up their mitigation efforts. This may partly be because the costs of mitigation are incurred domestically
and immediately while most of its benefits will be reaped globally and in the future, but more ambitious climate action is also
hindered by possible concerns about the limited effectiveness of domestic abatement efforts if other countries do not similarly
reduce their greenhouse gas (GHG) emissions. This consideration is especially pertinent in relatively small countries. Indeed,
in 2021 the smallest 90% of emitters contributed only about 20% of global GHG emissions. This narrow perspective neglects,
however, that international leadership in climate change mitigation can yield substantial benefits beyond domestic emission
reductions1, 2. For example, stringent climate policies at home can support international diffusion of technological innovations
that reduce mitigation costs in other countries3, 4. Furthermore, domestic climate policies can demonstrate political feasibility
and certain benefits of carbon pricing5, and they can create incentives related to trade6 and diplomacy7 that can nudge other
countries to adopt the same or similar policies. This latter process whereby adoption of a policy in one country increases the
probability of adoption in other countries is usually referred to as policy diffusion8.

Results from qualitative studies provide ample evidence for climate policy diffusion. For example, evidence has been
described for strong mutual influences among the world’s first adopters of carbon pricing policies in Scandinavia in the 1980s9.
According to10, the subsequent adoption of carbon pricing by other countries can at least partially be explained with emulation
of earlier policies and learning from prior experiences. International diffusion has also been actively promoted by early
adopters themselves and through multilateral initiatives such as the World Bank’s Partnership for Market Readiness (PMR)11.
Furthermore, several case studies of carbon pricing policies report empirical evidence for international diffusion for example for
California12, Kazakhstan13, and China14, and the influence of multilateral initiatives has been acknowledged for carbon pricing
policies in Latin America15. Earlier work also examined the diffusion of support for carbon pricing at the subnational level and
between firms/organisations16, 17. Also several quantitative studies report evidence in support of an international diffusion of
climate policies6, 18–22.

In this study we empirically examine the international diffusion of climate policies from 1988 to 2021 and for the first time
quantify its global benefits. The analysis focuses on carbon pricing policies, which can be considered the most salient and
possibly most stringent policies for climate change mitigation. We first construct a global dataset on carbon pricing policies,
countries’ characteristics, and linkages between countries related to geography, trade, and international organisations. We
then estimate Cox proportional hazard models that include spatial lags of policy adoption (Methods). The spatial lags are
constructed using alternative metrics of the proximity of countries. Possible concerns about causality are addressed with a
series of robustness tests and a placebo test. In the last part, we use our empirical estimates to calculate the expected emission



reductions due to policy diffusion using Monte Carlo simulations. We consider these indirect emission reductions as a proxy
for the international leverage of a country’s domestic climate policy and examine its variation across countries. We use these
simulations also to quantify the global coverage of carbon pricing policies that can be expected because of policy diffusion.

Results
We first examine our dataset on carbon pricing policies from 1988 to 2021 to identify possible patterns of policy diffusion.
Visual inspection of the relative timing of policy adoption shows that carbon pricing was often introduced successively by
geographically close countries (Figure 1a). In Europe, for example, the earliest carbon pricing policy in Finland was followed
by similar policies in Scandinavian countries, the Baltics, and other parts of Europe. Qualitative work on the role of diffusion
in this context highlighted the importance of the pioneering adoption in Finland, which was soon "emulated by its Nordic
neigbors" (p. 515)9. Similarly, in the Americas, relatively early carbon pricing policies in Canada and Mexico were followed
by other pricing policies in the same region. For Latin America, the role of international organisations has been emphasised15.
In Asia, early carbon pricing policies in Japan were followed by pricing policies in China and South Korea.

Motivated by these findings, we next conduct an econometric analysis to more systematically identify whether the adoption
of carbon pricing in one country affected the probability of its subsequent adoption elsewhere. To do so, we estimate a Cox
proportional hazard model (Methods, Equation 1) with several country characteristics as explanatory variables. We use Lasso
regressions and a detailed examination of multicollinearity for the selection of variables (Methods; SI Tables S5-S7). Based on
a statistical test using Schoenfeld residuals23 we cannot reject the null hypothesis of proportional hazards for models with the
preferred five or more control variables. To model international diffusion, we also include a spatial lag of prior carbon pricing
adoption in other countries. For this variable, we use several alternative metrics of the proximity of countries (Methods). We
find the best model fits for a metric that combines the GDP of countries with the geographic distances between them in the spirit
of gravity models of international trade, and for a metric based on joint membership in international organisations (SI Table S8).
We then multiply these two metrics to create a new hybrid metric for the empirical analysis and simulations. Furthermore, in
our main specification we focus on the first policy in every country and we consider all members of the EU ETS without a prior
carbon tax together as one country that adopted its first carbon pricing policy in 2005 (Methods; SI Figure S2).

Our empirical analysis yields robust statistical evidence for an international diffusion of carbon pricing policies (Table 1
Column 1). The magnitude of the estimated coefficient of policy diffusion is substantial. For example, according to our main
estimates (Table 1, Column 1), prior adoption of carbon pricing by Canada increases the probability of adoption in the USA by
a factor of about 1.78, or by 78% (95% CI of 35% to 134%). In Germany, prior adoption by France increases the probability by
20% (10% to 31%), while in China prior adoption by Japan increases it by 25% (12% to 39%). For comparison, in the USA
prior adoption by China increases the probability of adoption by 8.5% and in Germany prior adoption by Japan by about 1.9%.

In our main specification we consider carbon taxes and ETS as two alternative designs of the same policy. This is informed
by earlier findings that there are no systematic differences between countries that chose either of the two designs24. Furthermore,
we consider it likely that in many cases the decision to adopt carbon pricing was made before the choice of instrument design,
as in the case of the EU ETS9. Consistent with this idea, we find stronger evidence for policy diffusion if we consider ETS and
taxes as the same policy then if we distinguish between them (Table 1). In additional analysis, we find suggestive evidence that
carbon pricing policies with higher stringency (higher economy-wide average carbon prices, taking into account sectoral prices
and emissions) exert stronger influence on subsequent adoption elsewhere (SI Table S9 Column 5).

We conduct several robustness checks (Methods). This includes three ways of treating members of the EU ETS (SI Figure
S2, SI Table S9 Columns 1-3), dropping subnational policies (SI Table S9 Column 4), adding control variables (SI Table S10
Columns 1-2), changing the imputation method (SI Table S10 Columns 3), and stratifying the model (SI Table S10 Column 4).
We find that our results are overall very robust. An additional placebo test does not show evidence of spurious diffusion25.
Furthermore, we find the best model fit for a lag time of 1-2 years (SI Table S12). Additional evidence suggests that the
marginal effect of a new policy decreased with the total number of existing policies (SI Table S11, SI Figure S5a). We use this
insight on "saturation" as motivation to estimate a non-linear model that we then use for all simulations (SI Figure S5b).

Overall, the results of the empirical analysis suggest that between 1988 and 2021, carbon pricing policies diffused
internationally. We next examine how much this diffusion can contribute to reductions of greenhouse gas emissions globally.
Specifically, we use our estimated model to quantify the emission reductions that can be attributed to the adoption of carbon
pricing in a given country distinguishing between direct (domestic) emissions reduction and indirect (foreign) emission
reductions due to diffusion. All results are based on the empirical estimates from the econometric analysis but we assume
a constant baseline hazard, which means that all differences in the probability of policy adoption between countries can be
attributed to the spatial lag and country characteristics. Given the probabilistic nature of our model, we conduct Monte Carlo
simulations. All simulations start in 2022 from the carbon pricing policies adopted by the end of 2021. For every country
without a carbon price, we conduct 30,000 simulations in which this country adopts carbon pricing in 2022. We then compare
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Figure 1. Adoption of carbon pricing policies over time and around the world. a. Map shows the adoption of the first
carbon pricing policy for every country. Hashes indicate countries where the first policy was a subnational policy. See SI Figure
S2 for a more detailed map of Europe. b. Adoption of carbon taxes and emission trading systems (ETS) over time. c. Proximity
of countries based on physical distance, GDP, and joint membership in international organisations. Arrows indicate three
strongest influences on every country; position in chart approximates average distances. See SI Figure S3 for the complete
version of c.
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Table 1. Results of empirical analysis of policy adoption 1988-2021 with Cox proportional hazard models. Column 1
shows main specification. Columns 2 and 3 show results for only carbon taxes and only emission trading systems (ETS),
respectively. Results are based on the gravity-IO proximity metric. Results for other metrics are shown in SI Table S8. Results
excluding subnational policies and for different ways of dealing with Europe are shown in SI Table S9. See also additional
robustness tests in SI Tables S10 and S11. Standard errors clustered by country in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗

p < 0.01.

Policy: Carbon price Tax ETS

Column: 1 2 3

Spatial lag of carbon pricing 0.9152∗∗∗ 0.3423 0.8619∗∗∗

(0.2251) (0.2885) (0.1816)
Log real GDP per capita PPP 0.4782 0.5221 -0.4602

(0.4226) (0.3880) (1.0017)
Government effectiveness -0.2327 -0.0758 0.5461

(0.4439) (0.3869) (1.1770)
Regulatory quality 1.4777∗∗∗ 0.6952∗ 1.7684∗∗

(0.4559) (0.3969) (0.8692)
Reserves of oil 0.0093 0.0192 -0.0492

(0.1408) (0.1917) (0.3266)
Government expenditure 0.3199 0.0399 0.0140

(0.2221) (0.4410) (0.5959)
Gov. expendit. welfare 0.1914 0.4893 0.9689∗∗

(0.2184) (0.3730) (0.4885)
Democracy index 0.6016 0.7486 -0.3912

(0.5236) (0.6450) (0.8534)
Emission intensity 0.3478∗∗ 0.3392∗∗∗ 0.1653

(0.1393) (0.1189) (0.2152)
Growth rate of debt to GDP ratio 0.2975∗ 0.4281∗∗∗ 0.3717∗

(0.1785) (0.1558) (0.2175)

AIC 173.4 219.3 81.8
log-likelihood -76.7 -99.7 -30.9
N 5322 6061 5295
Time at risk 5322 6061 5295
Countries 167 188 159
Policies 25 26 11

the results with results from counterfactual simulations in which this country does not adopt carbon pricing in 2022. This
comparison allows us to attribute policy adoption in other countries to the diffusion of one specific policy.

We find that indirect emission reductions are as large as or even larger than direct emission reductions in the majority
of countries. Specifically, from 2022-2050 about 70 % of countries (97 of 138) have larger indirect than direct cumulative
emission reductions (Figure 2a). Furthermore, we find that indirect emission reductions are far more equally distributed across
countries than direct emission reductions (Figure 2b). This result also suggests that the total emission reductions from policy
adoption and diffusion are more equally distributed than only direct domestic emission reductions.

For simplicity, we assume that carbon pricing policies reduce greenhouse gas emissions by the same rate r = 1% per year
in all countries relative to a situation without a carbon pricing policy. This rate is conservative compared to known emission
reductions in existing ETS and estimated reductions for carbon taxes (Methods). In a sensitivity analysis, we vary the value
of this parameter between 0.1% and 10% and find that this changes the number of countries with larger indirect than direct
emission reductions only by few percentage points (SI Figure S7). We do not find evidence that later adopters tended to adopt
systematically more or less stringent polices than earlier adopters (SI Figure S6). Furthermore, we find similar results for
alternative proximity metrics (SI Figure S8).

We find that indirect emission reductions are largest throughout the Middle East and in South Asia and South-East Asia
(Figure 2a,c). The proximity metrics suggest that countries with large indirect emission reductions tend to be relatively centrally
located, members in similar international organisations as large emitters, and also physically close to countries with relatively
large emissions and no carbon pricing policies as of the end of 2021. To further explore these determinants of indirect emission
reductions, we calculate for every country its “network centrality” based on the proximities and GHG emissions of all countries
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(Methods Equations 9-11). We find that network centrality can explain about 13 percent percent of the variation in indirect
emission reductions across countries, which increases to 43 percent if we take into account the emissions of other countries,
and to 58 percent if we better account for the "cascading nature" of policy diffusion (Methods Equation 11).
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Figure 2. Direct and indirect emission reductions from carbon pricing policies based on Monte Carlo simulations of
future policy adoption. All figures show cumulative emission reductions from simulated policy adoption 2022-2050. a.
Scatter plot of direct and indirect emission reductions. Dashed black line indicates where indirect emission reductions are
larger than direct emission reductions. G20 economies are shown in blue. Countries with a carbon price by the end of 2021 are
omitted. b. Histogram of direct and indirect emission reductions c. Map of indirect emission reductions; countries with a
carbon pricing policy by end of 2021 are shown in dark grey.

In the last part of the analysis, we examine how diffusion affects the future geographical coverage of carbon pricing policies.
To this aim, we conduct similar Monte Carlo simulations starting in 2022 until 2100. Both scenarios start from existing policies.
In the first scenario we use our empirically estimated relationship between the spatial lag of carbon pricing and the probability
of policy adoption. In the second scenario, we set international policy diffusion to zero. All other parameter values are chosen
as in the previous exercise.

We find that policy diffusion substantially increases the geographical coverage of carbon pricing over the time period
2022-2050 (Figure 3). In our simulations, by 2050 carbon pricing policies will be in place in about 50 percent of countries, 21
percentage points more than without diffusion. By 2100, the difference increases to more than 30 percentage points (Figure
3a). In a sensitivity analysis we multiply the baseline hazard and the diffusion term in the model with factors between 0.5 and
2. Both parameters have a positive effect on the number of countries with a carbon price (Figure 3b). Similarly, the effect of
diffusion increases with either of the two parameters. For example, as the factor of the baseline hazard is increased from 1 to 2,
the additional global coverage of carbon pricing due to diffusion by 2050 increases from 21 to 32 percentage points.
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These results add an important detail to the global benefits of international policy diffusion. From an individual country’s
perspective, policy diffusion can add substantial global emission reductions to domestic emission reductions. From a global
perspective, however, a high baseline probability of policy adoption and/or a strength of mutual influences (both in historical
perspective) are required to reach, for example, 80 percent coverage by 2050. Because most of the countries that adopt carbon
pricing late in our simulations have relatively small domestic emissions, the projected global coverage of pricing policies is
generally higher in terms of global greenhouse gas emissions than in terms of countries, and the results are less sensitive to the
two parameters (SI Figure S11).
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Figure 3. Future global coverage of carbon pricing policies based on Monte Carlo simulations of future policy adoption.
All figures show future number of countries with carbon pricing policies as share of all countries for simulations starting in
2022 from existing policies by end of 2021. a. Timeseries of future policy adoption for parameter values set to empirical
estimates, for simulations with and without diffusion. b. Share of countries with carbon pricing policies by 2050 for different
parameter values of the baseline hazard and the diffusion coefficient. Red square indicates empirical estimates. See SI Figure
S11 for results in global GHG emissions.

Discussion
The main contribution of this paper is the quantification of greenhouse gas emission reductions that can be attributed to the
international diffusion of carbon pricing policies. These indirect emission reductions can be interpreted as a quantitative
measure of the international leverage of a country in terms of global greenhouse gas emission reductions due to future diffusion
of its policy. Overall, our results suggest that the magnitude of indirect emission reductions can be substantial. With our
empirically estimated parameters, future indirect emission reductions will be larger than domestic emission reductions in 63%
of countries that did not have a carbon pricing policy in place by the end of 2021. This evidence for large positive spillovers
of domestic climate policy adoption provides additional support for the adoption of stringent climate policies, especially in
countries where climate policies might so far have been considered as being of relatively little importance because of a relatively
small domestic economy.

Our results speak to a long-standing debate about free-riding in global environmental policy26. According to this theory,
unilateral climate policy weakens the incentives of other countries to implement climate policy themselves. In this paper, we
show that free-riding is not the only possible reaction of countries to unilateral climate policy in the case of carbon pricing
policies. Instead, we find that these policies diffuse internationally. We consider this as evidence consistent with the idea
that leadership in climate policy can send a credible signal about the willingness to cooperate to other countries, supporting
the formation of global climate coalitions that have been proposed27, 28. Similarly, ex-ante modeling studies have repeatedly
predicted carbon leakage29 as a consequence of leadership. Empirical studies, however, find that leakage is a very minor or
no concern30–32. Similar to other studies that examine the evidence for free-riding in climate policy33, our results provide a
possible (partial) explanation for this lack of leakage.
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We find large indirect emission reductions especially for countries in close proximity to large emitters without a carbon
pricing policy. This includes several countries on the Arabian peninsula and in South and South-East Asia. Our analysis of
network centrality as determinant of countries’ international leverage suggests that the "cascading" nature of policy diffusion
is important to explain some of these results. Importantly, we find that countries have become more similar over the last 30
years in terms of their international leverage, suggesting that the benefits from policy diffusion have also become globally more
equally distributed (SI Figure S8).

The results on emission reductions from the simulations for a specific country should however not be considered as precise
estimates because of some necessarily neglected heterogeneity. Specifically, some of the empirically estimated parameters are
likely to differ between countries with large uncertainty, including the effectiveness of future carbon pricing policies. To assess
the robustness of our results, we conduct a sensitivity analysis in which we change this and other parameters. Furthermore, due
to the construction of the scenarios indirect emission reductions simulated for a specific pioneering country are not additive
with those simulated for another pioneering country. This means that our estimates for individual countries can in some sense
be considered as upper bounds.

Theories of policy diffusion propose several mechanisms through which the adoption of a policy in one jurisdiction
can influence the adoption of the same or a similar policy elsewhere. These mechanisms are often referred to as learning,
competition, emulation, and coercion25, 34–39. Prior literature on climate policies has especially focused on emulation and
learning10, 11. Somewhat consistent with this, we do not find evidence that shared export markets have been important for
international diffusion, suggesting a limited role for international competition. Furthermore, our results suggest that international
organisations contributed to policy diffusion, possibly due to international coordination and exchanges of information consistent
with an important role of emulation and learning, and possibly compliance with international norms10. We consider this to be
an encouraging finding for present and future attempts to increase the geographical coverage of carbon pricing policies through
international relations.

Prior qualitative research suggests that also certain design attributes of carbon pricing policies have diffused due to
emulation13, 40. Future research might examine the overall relevance of the diffusion of policy design using similar quantitative
methods. For example, we consider it plausible that international diffusion also matters for ratcheting up the stringency of
existing climate policies, for example increases in carbon prices.

Methods (online only)
Empirical analysis of policy diffusion
We use econometric models to identify policy diffusion in the data on past policy adoption. To do so, we estimate a model that relates
adoption of a policy in a country i at time t to the adoption of the same policy in other countries j = 1, ...,Nc, j ̸= i prior to time t (with Nc
being the number of countries in the sample). This is a common empirical strategy to identify policy diffusion and has been used in the
literature on climate policy7, 20, 21, 41. Technically, the model accounts for the mutual influences between countries with spatial lags, which are
calculated as a weighted average of prior policy adoption in all other countries. We use alternative weighting schemes based on geographic
proximity, trade, and international institutional linkages, which we consider as representing some of the alternative diffusion mechanisms
cited in the main text.

The choice of our model is informed by two characteristics of our dependent variable. The first characteristic is that any possible future
policy adoption is unobserved, which means that our dependent variable is right-censored. Specifically, at the time of analysis policy adoption
is only recorded in the World Bank Carbon Pricing Dashboard up until April 2022, which means that 2021 is the most recent year in our
sample. The second characteristic is that our dependent variable is binary taking on only values 0 or 1. Both these characteristics are common
in survival analysis, which is also referred to as event history analysis, and can be addressed with proportional hazard models.

We thus follow previous work on policy diffusion and model policy diffusion with semi-parametric Cox proportional hazard mod-
els20, 21, 38, 41. As compared to parametric proportional hazard models, the Cox model does not require an assumption about a specific
functional form of the survival function and the results can therefore be considered more robust to model missspecification42. Formally, we
estimate models of the general form

h(t,Xi,t ,Wi,t) = h0(t)exp
(
Xi,t−1βX

)
exp
(
Wi,t−1βW

)
= h0(t)exp

(
Xi,t−1βX +Wi,t−1βW

)
(1)

The hazard function h(.) of a country i in year t represents the probability that the policy is adopted by that country in that year conditional
on it not yet being implemented at time t −1. This hazard rate is composed of a baseline hazard rate h0(t) and a second partial hazard term
that includes the time-dependent matrices Xi,t−1 and Wi,t−1. In the Cox model, the functional form of the baseline hazard is not prescribed
a-priori and not necessarily smooth, but estimated based on the patterns of policy adoption in the data. For robustness, we also estimate a
stratified version of the model with different baseline hazards h0,k(t) whereby the six continents are indexed by k.

For both the left-hand side and the right-hand side of Equation 1 we model policy adoption Yi,t as a binary variable that takes on the value
1 for all years t, t +1, ...,T if a policy has been adopted prior to or in year t. To account for autocorrelation, we cluster standard errors at the
level of individual countries.
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The model is estimated from panel data on countries’ adoption of climate policies by maximising a likelihood function. Unbiasedness of
the estimated coefficients relies on the proportional hazard assumption. This assumption is satisfied if conditional on all explanatory variables
the hazard ratio of two countries is constant over time. We address possible violations of this assumption with our set of control variables and
with stratification and conduct statistical tests of Schoenfeld residuals23. The control variables are discussed further below.

The matrix Xi,t−1 accounts for possible domestic influences in country i in year t −1. All explanatory variables are lagged by one year to
address concerns about reverse causality.

The matrix Wi,t−1 is a weighted average of policies Y j,t−1 ∈ {0,1} adopted in other countries j = 1, ...,Nc, i ̸= j at time t−1, also referred
to as a spatial lag. Other countries are weighted based on a certain metric of proximity between countries. In mathematical terms, we calculate

Wi,t =
∑

Nc
j=1, j ̸=i wi, j,tY j,t

∑
Nc
j=1, j ̸=i wi, j,t

(2)

where the weight wi, j,t quantifies how much country j influences country i in year t based on a specific metric.
These weights wi, j,t are constructed from several alternative data sources. For trade, we use data on annual bilateral trade flows from the

IMF and calculate the export share xi, j,t and import share mi, j,t for every pair of countries in the data (i, j) and every year t. We then use these
shares as weights, i.e. wi, j,t = xi, j,t and wi, j,t = mi, j,t for exports and imports respectively. Note that the weights are generally not symmetric
for a pair of countries, i.e. wi, j,t ̸= w j,i,t .

For indirect trade links, we compare the vectors of export shares of every pair of countries (i, j) for every time step t, xi,k,t and x j,k,t , and
calculate the L1 norm of the difference between the two vectors:

wi, j,t =
∑k/∈{i, j} |xi,k,t − x j,k,t |

Nc −2
(3)

For geographical proximity we calculate the distance between centroids of countries and use the inverse distance di, j as weight:

wi, j =
1

di, j
. (4)

Furthermore, we construct an additional metric that is based on geographic proximity but also takes the size of countries into account.
This is motivated by the hypothesis that policies in larger economies have a stronger effect on policy adoption elsewhere. The size of countries
is expressed by the GDP of a country. In mathematical terms, we define another set of weights

wi, j,t =
logGDPj,t

di, j
(5)

where di, j is again the distance between countries. A country is therefore considered more influential for domestic policy adoption the
closer it is in space and the larger its economy is. This metric is closely related to gravity models of international trade that make similar
assumptions about the factors that determine trade between countries43.

We also consider shared membership in international organisations as important for policy diffusion. For this metric, we use data on
membership of individual countries in international organisations from the Correlates of War database. For the sample of countries and years
of our data, the dataset includes 431 international organisations with at least one member. For the weights w we calculate for every pair of
countries how many memberships in international organisations are shared. That is, we divide the number of international organisations in
which both countries are members by the number of organisations in which any of the two or both countries are members:

wi, j,t =
∑k{i ∈ Ok,t ∧ j ∈ Ok,t}
∑k{i ∈ Ok,t ∨ j ∈ Ok,t}

(6)

with the sets of member countries of the international organisation k in year t denoted as Ok,t .
The datasets on trade and memberships in international organisations do not cover all years for all countries. Specifically, the dataset on

trade tends to cover only the more recent years, whereas the dataset on international organisations covers only the years up to 2014. To keep a
consistent sample throughout the empirical analysis without making assumptions about time trends or relationships between variables, we fill
missing values by keeping values constant at the beginning and at the end of our sample period. The datasets overlap for 188 countries, which
is our main sample of countries in the analysis. The largest countries not included in the sample are Venezuela and North Korea. A map of
countries can be found in SI Figure S1.

For domestic control variables we consider a large number of possible variables. Informed by the prior literature (e.g.6, 21, 22, 44–49), they
include GDP per capita, the growth rate of GDP per capita, government debt as a share of GDP, emissions of CO2 per GDP, the service and
the industry shares of GDP, the import and export shares of GDP, reserves of fossil fuels, a variety of governance indicators from the World
Bank such as government effectiveness, control of corruption, and regulatory quality, air quality, government expenditure for welfare as share
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of GDP, public belief in climate change, and indices of democracy. In total, we collect data from 9 different sources (SI Table S1) for 21
variables (SI Table S3).

Many of these variables have missing values, for earlier years and for certain countries (SI Table S2). This results in a dilemma. On the
one hand, we want to consider as many domestic influces as possible to avoid omitted variable biases. On the other hand, for the analysis of
diffusion it is important to have a relatively complete set of countries due to the geographic dimension of the phenomenon. As a way out of
this dilemma, we use iterative multiple imputation to fill the missing values. To limit the extent of extrapolation across countries, we first use
multiple imputation to fill missing values for countries for which at least one observation of that variable exists. We also include the year
as possible predictor to model country-specific time trends. In the second step, we fill missing values of all other variables and countries.
Our only criterion to consider a country for our analysis is thus the availability of at least one observation of real GDP provided from the
World Bank, which is the case for 211 countries including all 188 countries for which we also have data for our spatial lags (SI Figure S1).
As a robustness test, we also construct a dataset in which we only keep values constant for every country and variable, without any other
imputation. We find that with this method we can construct a set of 145 countries for which data on 17 variables is available. Reassuringly,
we find that our main results are robust to this alternative method (SI Table S10 Column 3).

The choice of which of the domestic control variables to include in our model represents a trade-off. We do not want to exclude important
variables to avoid omitted variable biases, but including too many variables, many of which are highly correlated, leads to multicollinearity.
To find a good trade-off, we use a two-step procedure. In the first set, we use Lasso regression in combination with 10-fold crossvalidation,
the latter of which addresses concerns of over-fitting, to identify a set of important predictors. This yields a set of six most important variables
(SI Table S5). In addition, to gain additional insights into the relative importance of these variables, we also estimate Lasso model with higher
penalty parameters α .

In the second step, we examine multicollinearity for these six variables using the Variance Inflation Factor (VIF). We find that for a
model with all six variables the typical upper limit for VIF of 10 is exceeded by one variable (SI Table S6). We hence stepwise drop variables
from the model until the upper limit is satisfied. At every step, we focus on the variable with the highest VIF and examine its correlation
with all other variables. We then drop the variable itself or the most strongly correlated variable depending on which of the two variables is
considered as more important by the additional Lasso regressions in SI Table S5. We thus step-wise drop the industry share of GDP.

This yields our preferred model specification with nine control variables for domestic influences on climate policy: GDP per capita,
government effectiveness, regulatory quality, reserves of oil, government expenditure, government expenditure for welfare (health, education,
and social protection), a democracy index, emission intensity of the economy, and the growth rate of the debt to GDP ratio. The influence of
all the remaining variables is examined in robustness tests. The results of these robustness tests are reassuring, as our main estimates for the
spatial lag of carbon pricing are barely affected by any of the domestic influences (SI Table S10).

Modelling the effect of policy diffusion on GHG emissions
In the second step of the analysis, we use our empirical estimates to calculate the expected CO2 emission reductions that can be causally
attributed to policy diffusion. For this purpose, we use the estimated coefficients of all control variables and the spatial lag and feed them into
Monte Carlo simulations of policy adoption and policy diffusion using the model in Equation 1.

We construct counterfactual scenarios that allow us to quantify the emission reductions that can be attributed to diffusion. For every
country i, we compare a scenario A in which country i adopts carbon pricing in year t with a scenario B in which country i does not do so.
For each of the two scenarios, we calculate the hazard rate of policy adoption at time t +1 for all other countries j ̸= i based on Equation 1.
The difference between the hazard rates of the two scenarios A and B can then be considered the additional hazard of policy adoption in
country j that can be attributed to policy diffusion from country i.

The Monte Carlo simulations are based on Equation 1. We assume the actually implemented carbon pricing policies for the year t = 2021
and let the simulations run from 2022 onward. That is, we simulate adoption and diffusion of climate policies from 2022 to 2050. To do so, at
every time step 2022 ≤ t ≤ 2050 we update the spatial lag W j,t of every country, calculate its hazard of policy adoption, and use this hazard to
draw from a probability distribution to determine whether the country adopts or does not adopt the policy at this time step.

We conduct 30,000 simulations for every country for scenario B and 100,000 simulations for scenario A, which is the counterfactual
of scenario B for all countries. The simulations of scenario B result for every country i in one matrix of probabilities of policy adoption
of country j in year t, PB

i, j,t with ∑
2050
t=2022 PB

i, j,t = 1 ∀i, j. The simulations of scenario A result in another matrix PA
j,t that again satisfies

∑
2050
t=2022 PA

j,t = 1 ∀ j. Because there is no difference between the counterfactuals, this matrix PA
j,t is the same for all countries i.

Based on these probabilities, for every country i we subsequently calculate the expected direct emission reductions and the expected
indirect emission reductions due to policy diffusion. To map the probabilities of policy adoption onto greenhouse gas emissions, we assume
that a carbon pricing policy reduces emissions by the same percentage r = 1% per year in all countries. A similar assumption, namely that
climate policies and carbon pricing policies are similarly effective across countries, has been made in the literature prior to our study50, 51.
The assumed value of 1 percent per year is slightly conservative relative to estimated emission reductions from carbon pricing policies
2003-2016 of about 3 percent per year51. Existing ETS with gradually tighter caps on emission permits also allow for a comparison of this
number. For example, in the EU ETS, between 2013 and 2020 the number of permits was reduced by 1.74 % per year. In California, over the
same period the cap was decreased by between 2 and 3.3 percent per year.

Because we use the same value for the parameter r for direct and indirect emission reductions from policy adoption, our results on their
relative sizes are relatively robust to changes in the parameter. We confirm this with a sensitivity analysis in which we vary the rate between
0.5 and 10 percent per year, showing that this rate does not substantially affect our comparison of indirect and direct emission reductions (SI
Figure S7). Reassuringly, we do not find clear time trends in the data on economy-wide average carbon price among past policies, which
suggests that there has not been a systematic difference in stringency between followers and leaders (SI Figure S6).
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Formally, for every country i we calculate the direct emission reductions from 2022 - 2050 of implementing the policy in year 2022 as

R̂direct
i,2050 =

2050

∑
t=2022

[
Ei,t −Ei,2022

t

∏
l=2022

(1+gi,l − r)

]
(7)

where we assume for simplicity g j,t is the expected growth rate of CO2 emissions of country j in year t and r is the effectiveness of
carbon pricing as in the Section above. For simplicity, we assume g j,t = 0. For indirect emission reductions that can be attributed to policy
diffusion from country i to other countries, we use the probabilities of policy adoption PA

j,t and PB
i, j,t of the scenarios A and B respectively. In

mathematical terms, we take the difference between the expected emission reductions between the two scenarios:

R̂indirect
i,2050 =∑

j ̸=i

[
2050

∑
ξ=2022

[(
PB

i, j,ξ −PA
j,ξ

)
[

ξ

∑
t=2022

E j,t +E j,ξ

2050

∏
l=ξ

(1+g j,l − r)

]]]
(8)

The indirect emission reductions are influenced by a country’s proximity to other countries and the emissions and existing carbon pricing
policies of those other countries. To understand the importance of these different influences, we use common metrics to quantify the centrality
of a node in a network and adjust them for our purposes. Our first measure of centrality is the closeness centrality for directed graphs:

Centrality Ai =
Nc

∑
j=1, j ̸=i

w j,i (9)

Our second measure additionally takes the emissions of other countries into account:

Centrality Bi =
Nc

∑
j=1, j ̸=i

w j,ie j (10)

Our third measure takes the emissions of other countries into account on which a country has an indirect influence (through a third
country). For this third metric we calculate

Centrality Ci =
Nc

∑
j=1, j ̸=i

w j,i

(
Nc

∑
k=1,k/∈{i, j}

wk, jek

)
(11)

Data
We use data on carbon pricing from the Carbon Pricing Dashboard of the World Bank. The dataset includes pricing policies at the national
and subnational level (SI Table 2). We assign subnational pricing schemes to the corresponding countries and focus on the first carbon pricing
policy in every country. For a robustness test, we ignore subnational pricing policies. Furthermore, for another two robustness tests we
keep only either carbon tax or ETS policies in the sample. For the analysis of price levels, we combine this dataset with the World Carbon
Pricing Database52. For the explanatory variables we use 9 different sources (SI Table S2) for 21 raw variables (SI Table S3). We use iterative
multiple imputation to fill missing values (see Methods). Descriptive statistics of all covariates are shown in the SI Table S4. Our main
sample covers 188 countries from 1988-2021 (SI Figure S1).
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Data availability statement: All data is publicly available at no cost.

• Data on carbon pricing policies:

– Carbon Pricing Dashboard of the World Bank https://carbonpricingdashboard.worldbank.org/

– World Carbon Pricing Database: https://github.com/g-dolphin/WorldCarbonPricingDatabase

• Data on country characteristics:

– World Development Indicators of the World Bank (WDI): https://databank.worldbank.org/source/world-development-indicators

– World Governance Indicators (WGI): https://info.worldbank.org/governance/wgi/

– Greenhouse gas emissions (Minx et al. 202153): https://doi.org/10.5281/zenodo.5566761

– Reserves of fossil fuels from the Energy Intelligence Agency (EIA): https://www.eia.gov/

– Global Debt Database (GDD): https://www.imf.org/external/datamapper/datasets/GDD

– Government Finance Statistics (GFS): https://data.imf.org/?sk=a0867067-d23c-4ebc-ad23-d3b015045405

– Expenditure by Function of Government (COFOG): https://data.imf.org/?sk=5804c5e1-0502-4672-bdcd-671bcdc565a9

– Democracy Index (Polity 5): https://www.systemicpeace.org/polityproject.html

– Public belief in climate change (Gallup): https://news.gallup.com/poll/117772/awareness-opinions-global-warming-vary-worldwide.
aspx
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