
Mathematical Programming
https://doi.org/10.1007/s10107-023-01956-2

FULL LENGTH PAPER

Series A

A scaling-invariant algorithm for linear programming
whose running time depends only on the constraint matrix

Daniel Dadush1 · Sophie Huiberts2 · Bento Natura3 · László A. Végh4

Received: 17 June 2021 / Accepted: 7 March 2023
© The Author(s) 2023

Abstract
Following the breakthrough work of Tardos (Oper Res 34:250–256, 1986) in the
bit-complexity model, Vavasis and Ye (Math Program 74(1):79–120, 1996) gave the
first exact algorithm for linear programming in the real model of computation with
running time depending only on the constraint matrix. For solving a linear program
(LP) max c�x, Ax = b, x ≥ 0, A ∈ R

m×n , Vavasis and Ye developed a primal-dual
interior point method using a ‘layered least squares’ (LLS) step, and showed that
O(n3.5 log(χ̄A + n)) iterations suffice to solve (LP) exactly, where χ̄A is a condition
measure controlling the size of solutions to linear systems related to A. Monteiro
and Tsuchiya (SIAM J Optim 13(4):1054–1079, 2003), noting that the central path
is invariant under rescalings of the columns of A and c, asked whether there exists
an LP algorithm depending instead on the measure χ̄∗

A, defined as the minimum χ̄AD

value achievable by a column rescaling AD of A, and gave strong evidence that
this should be the case. We resolve this open question affirmatively. Our first main
contribution is an O(m2n2 + n3) time algorithm which works on the linear matroid
of A to compute a nearly optimal diagonal rescaling D satisfying χ̄AD ≤ n(χ̄∗

A)3.
This algorithm also allows us to approximate the value of χ̄A up to a factor n(χ̄∗

A)2.
This result is in surprising contrast to that of Tunçel (Math Program 86(1):219–223,
1999),who showedNP-hardness for approximating χ̄A towithin 2poly(rank(A)). The key

This work was done while SH was at Centrum Wiskunde & Informatica, and BN was at the London
School of Economics and Political Science. This project has received funding from the European
Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme:
DD and SH from Grant Agreement No. 805241-QIP, BN and LAV from Grant Agreement No.
757481-ScaleOpt. A preliminary version of this paper has appeared in the proceedings of the 52nd Annual
ACM Symposium on Theory of Computing (STOC) [8].

B László A. Végh
L.Vegh@lse.ac.uk

1 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

2 Columbia University, New York, USA

3 Georgia Institute of Technology, Atlanta, USA

4 London School of Economics and Political Science, London, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-023-01956-2&domain=pdf
http://orcid.org/0000-0001-5577-5012
http://orcid.org/0000-0003-2633-014X
http://orcid.org/0000-0002-8068-3280
http://orcid.org/0000-0003-1152-200X

D. Dadush et al.

insight for our algorithm is to work with ratios gi/g j of circuits of A—i.e., minimal
linear dependencies Ag = 0—which allow us to approximate the value of χ̄∗

A by
a maximum geometric mean cycle computation in what we call the ‘circuit ratio
digraph’ of A. While this resolves Monteiro and Tsuchiya’s question by appropriate
preprocessing, it falls short of providing either a truly scaling invariant algorithm or an
improvement upon the base LLS analysis. In this vein, as our secondmain contribution
we develop a scaling invariant LLS algorithm, which uses and dynamically maintains
improving estimates of the circuit ratio digraph, together with a refined potential
function based analysis for LLS algorithms in general. With this analysis, we derive
an improved O(n2.5 log(n) log(χ̄∗

A + n)) iteration bound for optimally solving (LP)
using our algorithm. The same argument also yields a factor n/ log n improvement on
the iteration complexity bound of the original Vavasis–Ye algorithm.

Keywords Linear programming · Interior point methods · Layered least squares
methods · Circuit imbalances

Mathematics Subject Classification 90C05 (Linear programming) · 90C51 (Interior
point methods)

1 Introduction

The linear programming (LP) problem in primal-dual form is to solve

min c�x

Ax = b

x ≥ 0,

max y�b

A�y + s = c

s ≥ 0,

(LP)

where A ∈ R
m×n , rank(A) = m, b ∈ R

m , c ∈ R
n are given in the input, and x, s ∈ R

n ,
y ∈ R

m are the variables. The program in x will be referred to as the primal problem
and the program in (y, s) as the dual problem.

Khachiyan [23] used the ellipsoid method to give the first polynomial time LP algo-
rithm in the bit-complexity model, that is, polynomial in the bit description length of
(A, b, c). An outstanding open question is the existence of a strongly polynomial algo-
rithm for LP, listed by Smale as one of themost prominentmathematical challenges for
the 21st century [46]. Such an algorithm amounts to solving LP using poly(n, m) basic
arithmetic operations in the real model of computation.1 Known strongly polynomi-
ally solvable LP problems classes include: feasibility for two variable per inequality
systems [33], the minimum-cost circulation problem [50], the maximum generalized
flow problem [41, 61], and discounted Markov decision problems [65, 67].

Towards this goal, the principal line of attack has been to develop LP algorithms
whose running time is bounded in terms of natural condition measures. Such condition
measures attempt to measure the “intrinsic complexity” of LPs. An important line of
work in this area has been to parametrize LPs by the “niceness” of their solutions

1 In the bit-complexity model, a further requirement is that the algorithm must be in PSPACE.

123

A scaling-invariant algorithm for linear programming...

(e.g. the depth of the most interior point), where relevant examples include the Goffin
measure [19] for conic systems andRenegar’s distance to ill-posedness for general LPs
[43, 44], and bounded ratios between the nonzero entries in basic feasible solutions
[6, 24].

Parametrizing by the constraint matrix A second line of research, and the main
focus of this work, focuses on the complexity of the constraint matrix A. The first
breakthrough in this area was given by Tardos [51], who showed that if A has integer
entries and all square submatrices of A have determinant at most � in absolute value,
then (LP) can be solved in poly(n, m, log�) arithmetic operations, independent of the
encoding length of the vectors b and c. This is achieved by finding the exact solutions to
O(nm) rounded LPs derived from the original LP, with the right hand side vector and
cost function being integers of absolute value bounded in terms of n and �. From m
such rounded problem instances, one can infer, via proximity results, that xi = 0 must
hold for every optimal solution for some index i . The process continues by induction
until the optimal primal face is identified.

Path-following methods and the Vavasis–Ye algorithm In a seminal work, Vavasis
and Ye [63] introduced a new type of interior-point method that optimally solves (LP)
within O(n3.5 log(χ̄A + n)) iterations, where the condition number χ̄A controls the
size of solutions to certain linear systems related to the kernel of A (see Sect. 2 for the
formal definition).

Before detailing the Vavasis–Ye (henceforth VY) algorithm, we recall the basics of
path following interior-point methods. If both the primal and dual problems in (LP) are
strictly feasible, the central path for (LP) is the curve ((x(μ), y(μ), s(μ)) : μ > 0)
defined by

x(μ)i s(μ)i = μ, ∀i ∈ [n]
Ax(μ) = b, x(μ) > 0,

A�y(μ) + s(μ) = c, s(μ) > 0,

(CP)

which converges to complementary optimal primal and dual solutions (x∗, y∗, s∗) as
μ → 0, recalling that the duality gap at time μ is exactly x(μ)�s(μ) = nμ. We
thus refer to μ as the normalized duality gap. Methods that “follow the path” generate
iterates that stay in a certain neighborhood around it while trying to achieve rapid
multiplicative progress w.r.t. to μ, where given (x, y, s) ‘close’ to the path, we define
the normalized duality gap as μ(x, y, s) =∑n

i=1 xi si/n. Given a target parameter μ′
and starting point close to the path at parameter μ, standard path following methods
[20] can compute a point at parameter belowμ′ in atmost O(

√
n log(μ/μ′)) iterations,

and hence the quantity log(μ/μ′) can be usefully interpreted as the length of the
corresponding segment of the central path.

Crossover events and layered least squares steps At a very high level, Vavasis and
Ye show that the central path can be decomposed into at most

(n
2

)
short but curved

segments, possibly joined by long (apriori unbounded) but very straight segments.
At the end of each curved segment, they show that a new ordering relation xi (μ) >

x j (μ)—called a ‘crossover event’—is implicitly learned. This inequality did not hold

123

D. Dadush et al.

at the start of the segment, but is guaranteed to hold at every point from the end of the
segment onwards. These

(n
2

)
relations give a combinatorial way to measure progress

along the central path. In contrast to Tardos’s algorithm, where the main progress
is setting variables to zero explicitly, the variables participating in crossover events
cannot be identified; the analysis only shows their existence.

At a technical level, the VY-algorithm is a variant of the Mizuno–Todd–Ye [39]
predictor–corrector method (MTY P-C). In predictor–corrector methods, corrector
steps bring an iterate closer to the path, i.e., improve centrality, and predictor steps
“shoot down” the path, i.e., reduce μ without losing too much centrality. Vavasis
and Ye’s main algorithmic innovation was the introduction of a new predictor step,
called the ‘layered least squares’ (LLS) step, which crucially allowed them to cross
each aforementioned “straight” segment of the central path in a single step, recalling
that these straight segments may be arbitrarily long. To traverse the short and curved
segments of the path, the standard predictor step, known as affine scaling (AS), in fact
suffices.

To compute the LLS direction, the variables are decomposed into ‘layers’ J1∪ J2∪
. . .∪ Jp = [n]. The goal of such a decomposition is to eventually learn a refinement of
the optimal partition of the variables B∗ ∪ N∗ = [n], where B∗ := {i ∈ [n] : x∗

i > 0}
and N∗ := {i ∈ [n] : s∗

i > 0} for the limit optimal solution (x∗, y∗, s∗).
The primal affine scaling direction can be equivalently described by solving a

weighted least squares problem in Ker(A), with respect to a weighting defined accord-
ing to the current iterate. The primal LLS direction is obtained by solving a series of
weighted least squares problems, starting with focusing only on the final layer Jp. This
solution is gradually extended to the higher layers (i.e., layers with lower indices). The
dual directions have analogous interpretations,with the solutions on the layers obtained
in the opposite direction, starting with J1. If we use the two-level layering J1 = B∗,
J2 = N∗, and are sufficiently close to the limit (x∗, y∗, s∗) of the central path, then
the LLS step reaches an exact optimal solution in a single step. We note that standard
AS steps generically never find an exact optimal solution, and thus some form of “LLS
rounding” in the final iteration is always necessary to achieve finite termination with
an exact optimal solution.

Of course, guessing B∗ and N∗ correctly is just as hard as solving (LP). Still, if we
work with a “good” layerings, these will reveal new information about the “optimal
order” of the variables, where B∗ is placed on higher layers than N∗. The crossover
events correspond to swapping twowrongly ordered variables into the correct ordering.
Namely, a variable i ∈ B∗ and j ∈ N∗ are currently ordered on the same layer, or j is
in a higher layer than i . After the crossover event, i will always be placed on a higher
layer than j .

Computing good layerings and the χ̄A condition measure Given the above discus-
sion, the obvious question is how to come up with “good” layerings? The philosophy
behind LLS can be stated as saying that if modifying a set of variables xI barely affects
the variables in x[n]\I (recalling that movement is constrained to �x ∈ Ker(A)), then
one should optimize over xI without regard to the effect on x[n]\I ; hence xI should be
placed on lower layers.

123

A scaling-invariant algorithm for linear programming...

VY’s strategy for computing such layerings was to directly use the size of the
coordinates of the current iterate x (where (x, y, s) is a point near the central path).
In particular, assuming x1 ≥ x2 ≥ . . . ≥ xn , the layering J1 ∪ J2 ∪ . . . ∪ Jp = [n]
corresponds to consecutive intervals constructed in decreasing order of xi values. The
break between Ji and Ji+1 occurs if the gap xr/xr+1 > g, where r is the rightmost
element of Ji and g > 0 is a threshold parameter. Thus, the expectation is that if
xi > gx j , then a small multiplicative change to x j , subject to moving in Ker(A),
should induce a small multiplicative change to xi . By proximity to the central path,
the dual ordering is reversed as mentioned above.

The threshold g for which this was justified in the VY-algorithm is a function of
the χ̄A condition measure. We now provide a convenient definition that immediately
yields this justification (see Proposition 2.4). Letting W = Ker(A) and πI (W) =
{xI : x ∈ W }, we define χ̄A := χ̄W as the minimum number M ≥ 1 such that for any
∅
= I ⊆ [n] and z ∈ πI (W), there exists y ∈ W with yI = z and ‖y‖ ≤ M‖z‖. Thus,
a change of norm ε in the variables in I can be lifted to a change of norm at most χ̄Aε

in the variables in [n] \ I . Crucially, χ̄ is a “self-dual” quantity. That is, χ̄W = χ̄W⊥ ,
where W ⊥ = range(A�) is the movement subspace for the dual problem, justifying
the reversed layering for the dual (see Sects. 2 for more details).

The question of scale invariance and χ̄∗
A While the VY layering procedure is power-

ful, its properties are somewhatmismatchedwith those of the central path. In particular,
variable ordering information has no intrinsic meaning on the central path, as the path
itself is scaling invariant. Namely, the central path point (x(μ), y(μ), s(μ)) w.r.t. the
problem instance (A, b, c) is in bijective correspondence with the central path point
(D−1x(μ), Dy(μ), Ds(μ))) w.r.t. the problem instance (AD, Dc, b) for any positive
diagonal matrix D. The standard path following algorithms are also scaling invariant
in this sense.

This lead Monteiro and Tsuchiya [36] to ask whether a scaling invariant LLS algo-
rithm exists. They noted that any such algorithm would then depend on the potentially
much smaller parameter

χ̄∗
A := inf

D
χ̄AD , (1)

where the infimum is taken over the set of n × n positive diagonal matrices. Thus,
Monteiro and Tsuchiya’s question can be rephrased as to whether there exists an exact
LP algorithm with running time poly(n, m, log χ̄∗

A).
Substantial progress on this question was made in the followup works [28, 37].

The paper [37] showed that the number of iterations of the MTY predictor–corrector
algorithm [39] can get from μ0 > 0 to η > 0 on the central path in

O
(

n3.5 log χ̄∗
A + min{n2 log log(μ0/η), log(μ0/η)}

)

iterations. This is attained by showing that the standard AS steps are reasonably close
to the LLS steps. This proximity can be used to show that the AS steps can traverse the
“curved” parts of the central path in the same iteration complexity bound as the VY

123

D. Dadush et al.

algorithm. Moreover, on the “straight” parts of the path, the rate of progress ampli-
fies geometrically, thus attaining a log log convergence on these parts. Subsequently,
[28] developed an affine invariant trust region step, which traverses the full path in
O(n3.5 log(χ̄∗

A + n)) iterations. However, the running time of each iteration is weakly
polynomial in b and c. The question of developing an LP algorithm with complexity
bound poly(n, m, log χ̄∗

A) thus remained open.
A related open problem to the above is whether it is possible to compute a near-

optimal rescaling D for program (1)? This would give an alternate pathway to the
desired LP algorithm by simply preprocessing the matrix A. The related question of
approximating χ̄A was already studied by Tunçel [54], who showed NP-hardness for
approximating χ̄A to within a 2poly(rank(A)) factor. Taken at face value, this may seem
to suggest that approximating the rescaling D should be hard.

A further open question is whether Vavasis and Ye’s cross-over analysis can
be improved. Ye showed in [66] that the iteration complexity can be reduced to
O(n2.5 log(χ̄A + n)) for feasibility problems and further to O(n1.5 log(χ̄A + n)) for
homogeneous systems, though the O(n3.5 log(χ̄A + n)) bound for optimization has
not been improved since [63].

1.1 Our contributions

In this work, we resolve all of the above questions in the affirmative. We detail our
contributions below.

1. Finding an approximately optimal rescaling. As our first contribution, we give an
O(m2n2 + n3) time algorithm that works on the linear matroid of A to compute
a diagonal rescaling matrix D which achieves χ̄AD ≤ n(χ̄∗

A)3, given any m × n
matrix A. Furthermore, this same algorithm allows us to approximate χ̄A to within
a factor n(χ̄∗

A)2. The algorithm bypasses Tunçel’s hardness result by allowing the
approximation factor to depend on A itself, namely on χ̄∗

A. This gives a simple first
answer to Monteiro and Tsuchiya’s question: by applying the Vavasis–Ye algorithm
directly on the preprocessed A matrix, we may solve any LP with constraint matrix
A using O(n3.5 log(χ̄∗

A + n)) iterations. Note that the approximation factor n(χ̄∗
A)2

increases the runtime only by a constant factor.
To achieve this result, we work with the circuits of A, where a circuit C ⊆ [n]

corresponds to an inclusion-wise minimal set of linearly dependent columns. With
each circuit, we can associate a vector gC ∈ Ker(A) with supp(gC) = C that is
unique up to scaling. By the ‘circuit ratio’ κi j associated with the pair of nodes (i, j),
we mean the largest ratio |gC

j /gC
i | taken over every circuit C of A such that i, j ∈ C .

As our first observation, we show that the maximum of all circuit ratios, which we call
the ‘circuit imbalance measure’, in fact characterizes χ̄A up to a factor n. This measure
was first studied by Vavasis [56], who showed that it lower bounds χ̄A, though, as far
as we are aware, our upper bound is new. The circuit ratios of each pair (i, j) induce
a weighted directed graph we call the ‘circuit ratio digraph’ of A. From here, our
main result is that χ̄∗

A is up to a factor n equal to the maximum geometric mean cycle
in the circuit ratio digraph. Our algorithm populates the circuit ratio digraph with
approximations of the κi j ratios for each i, j ∈ [n] using standard techniques from

123

A scaling-invariant algorithm for linear programming...

matroid theory, and then computes a rescaling by solving the dual of the maximum
geometric mean ratio cycle on the ‘approximate circuit ratio digraph’.

2. Scaling invariant LLS algorithm. While the above yields an LP algorithm with
poly(n, m, log χ̄∗

A) running time, it does not satisfactorily address Monteiro and
Tsuchiya’s question on a scaling invariant algorithm. As our second contribution, we
use the circuit ratio digraph directly to give a natural scaling invariant LLS layering
algorithm together with a scaling invariant crossover analysis.

At a conceptual level, we show that the circuit ratios give a scale invariant way
to measure whether ‘xi > x j ’ and enable a natural layering algorithm. Assume for
now that the circuit imbalance value κi j is known for every pair (i, j). Given the
circuit ratio graph induced by the κi j ’s and given a primal point x near the path, our
layering algorithm can be described as follows. We first rescale the variables so that x
becomes the all ones vector, which rescales κi j to κi j xi/x j . We then restrict the graph
to its edges of length κi j xi/x j ≥ 1/poly(n)—the long edges of the (rescaled) circuit
ratio graph—and let the layering J1 ∪ J2 ∪ . . . ∪ Jp be a topological ordering of its
strongly connected components (SCC) with edges going from left to right. Intuitively,
variables that “affect each other” should be in the same layer, which motivates the
SCC definition.

We note that our layering algorithm does not have access to the true circuit ratios
κi j ; these are in fact NP-hard to compute. Getting a good enough initial estimate for
our purposes however is easy: we let κ̂i j be the ratio corresponding to an arbitrary
circuit containing i and j . This already turns out to be within a factor (χ̄∗

A)2 from
the true value κi j—recall this is the maximum over all such circuits. Our layering
algorithm learns better circuit ratio estimates if the ‘lifting costs of our SCC layering,
i.e., how much it costs to lift changes from lower layer variables to higher layers (as
in the definition of χ̄A), are larger than we expected them to be based on the previous
estimates.

We develop a scaling-invariant analogue of cross-over events as follows. Before
the crossover event, poly(n)(χ̄∗

A)n > κi j xi/x j , and after the crossover event,
poly(n)(χ̄∗

A)n < κi j xi/x j for all further central path points. Our analysis relies on
χ̄∗

A in only a minimalistic way, and does not require an estimate on the value of χ̄∗
A.

Namely, it is only used to show that if i, j ∈ Jq , for a layer q ∈ [p], then the rescaled
circuit ratio κi j xi/x j is in the range (poly(n)χ̄∗

A)±O(|Jq |). The argument to show this
crucially utilizes the maximum geometric mean cycle characterization. Furthermore,
unlike prior analyses [36, 63], our definition of a “good” layering (i.e., ‘balanced’
layerings, see Sect. 3.5), is completely independent of χ̄∗

A.
3. Improved potential analysis. As our third contribution, we improve the Vavasis–Ye
crossover analysis using a new and simple potential function based approach. When
applied to our new LLS algorithm, we derive an O(n2.5 log n log(χ̄∗

A + n)) iteration
bound for path following, improving the polynomial term by an �(n/ log n) factor
compared to the VY analysis.

Our potential function can be seen as a fine-grained version of the crossover events
as described above. In case of such a crossover event, it is guaranteed that in every
subsequent iteration, i is in a layer before j . We analyze less radical changes instead:
an “event” parametrized by τ means that i and j are currently together on a layer of

123

D. Dadush et al.

size ≤ τ , and after the event, i is on a layer before j , or if they are together on the
same layer, then this layer must have size ≥ 2τ . For every LLS step, we can find a
parameter τ such that an event of this type happens concurrently for at least τ − 1
pairs within the next O(

√
nτ log(χ̄∗

A + n)) iterations,
Our improved analysis is also applicable to the original VY-algorithm. Let us

now comment on the relation between the VY-algorithm and our new algorithm. The
VY-algorithm starts a new layer once xπ(i) > gxπ(i+1) between two consecutive
variables where the permutation π is a non-increasing order of the xi variables, and
g = poly(n)χ̄A. Setting the initial ‘estimates’ κ̂i j = χ̄A for a suitable polynomial, our
algorithm runs the same way as the VY algorithm. Using these estimates, the layering
procedure becomes much simpler: there is no need to verify ‘balancedness’ as in our
algorithm.

However, using estimates κ̂i j = χ̄A has drawbacks. Most importantly, it does not
give a lower bound on the true circuit ratio κi j—to the contrary, g will be an upper
bound. In effect, this causes VY’s layers to be “much larger” than ours, and for this
reason, the connection to χ̄∗

A is lost. Nevertheless, our potential function analysis can
still be adapted to the VY-algorithm to obtain the same �(n/ log n) improvement on
the iteration complexity bound; see Sect. 4.1 for more details.

1.2 Related work

Since the seminal works of Karmarkar [22] and Renegar [42], there has been a tremen-
dous amount ofwork on speeding up and improving interior-pointmethods. In contrast
to the present work, the focus of these works has mostly been to improve complexity
of approximately solving LPs. Progress has taken many forms, such as the develop-
ment of novel barrier methods, such as Vaidya’s volumetric barrier [55] and the recent
entropic barrier of Bubeck and Eldan [5] and the weighted log-barrier of Lee and
Sidford [29, 31], together with new path following techniques, such as the predictor–
corrector framework [34, 39], as well as advances in fast linear system solving [30, 48].
For this last line, there has been substantial progress in improving IPM by amortizing
the cost of the iterative updates, and working with approximate computations, see e.g.
[42, 55] for classical results. Recently, Cohen, Lee and Song [7] developed a new
inverse maintenance scheme to get a randomized Õ(nω log(1/ε))-time algorithm for
ε-approximate LP, which was derandomized by van den Brand [57]; here ω ≈ 2.37
is the matrix multiplication exponent. A very recent result by van den Brand et al.
[60] obtained a randomized Õ(nm + m3) algorithm. For special classes of LP such
as network flow and matching problems, even faster algorithms have been obtained
using, among other techniques, fast Laplacian solvers, see e.g. [15, 32, 58, 59]. Given
the progress above, we believe it to be an interesting problem to understand to what
extent these new numerical techniques can be applied to speed up LLS computations,
though we expect that such computations will require very high precision. We note
that no attempt has been made in the present work to optimize the complexity of the
linear algebra.

Subsequent to the conference version of this paper [8], some of the authors
extended Tardos’s framework to the real model of computation [14], showing

123

A scaling-invariant algorithm for linear programming...

that poly(n, m, log χ̄A) running time can be achieved using approximate solvers
in a black box manner. Combined with [57], one obtains a deterministic
O(mnω+1 logO(1)(n) log(χ̄A)) LP algorithm; using the initial rescaling subroutine
from this paper, the dependence can be improved to χ̄∗

A resulting in a running time of
O(mnω+1 logO(1)(n) log(χ̄∗

A + n)). A weaker extension of Tardos’s framework to the
real model of computation was previously given by Ho and Tunçel [21].

With regard to LLS algorithms, the original VY-algorithm required explicit knowl-
edge of χ̄A to implement their layering algorithm. The paper [35] showed that this
could be avoided by computing all LLS steps associated with n candidate partitions
and picking the best one. In particular, they showed that all such LLS steps can be
computed in O(m2n) time. In [36], an alternate approach was presented to compute an
LLS partition directly from the coefficients of the AS step.We note that these methods
crucially rely on the variable ordering, and hence are not scaling invariant. Kitahara
and Tsuchiya [27], gave a 2-layer LLS step which achieves a running time depending
only on χ̄∗

A and right-hand side b, but with no dependence on the objective, assuming
the primal feasible region is bounded.

A series of papers have studied the central path from a differential geometry per-
spective. Monteiro and Tsuchiya [38] showed that a curvature integral of the central
path, first introduced by Sonnevend, Stoer, and Zhao [47], is in fact upper bounded by
O(n3.5 log(χ̄∗

A+n)). This has been extended toSDPand symmetric cone programming
[26], and also studied in the context of information geometry [25].

Circuits have appeared in several papers on linear and integer optimization (see
[13] and references within). The idea of using circuits within the context of LP algo-
rithms also appears in [12]. They develop a circuit augmentation framework for LP (as
well ILP) and show that simplex-like algorithms that take steps according to the “best
circuit” direction achieves linear convergence, though these steps are hard to com-
pute. Recently, [11] used circuit imbalance measures to obtain a circuit augmentation
algorithm for LP with poly(n, log(χ̄A)) iterations. We refer to [16] for an overview
on circuit imbalances and their applications.

Our algorithm makes progress towards strongly polynomial solvability of LP, by
improving the dependence poly(n, m, log χ̄A) to poly(n, m, log χ̄∗

A). However, in
a remarkable recent paper, Allamigeon, Benchimol, Gaubert, and Joswig [1] have
shown, using tools from tropical geometry, that path-following methods for the stan-
dard logarithmic barrier cannot be strongly polynomial. In particular, they give a
parametrized family of instances, where, for sufficiently large parameter values, any
sequence of iterations following the central path must be of exponential length—thus,
χ̄∗

A will be doubly exponential. We note that very recently, Allamigeon, Gaubert, and
Vandame [3] strengthened this result, showing that no interior point method using a
self-concordant barrier function may be strongly polynomial.

As a further recent development, Allamigeon, Dadush, Loho, Natura, and Végh
[2] complement these negative results by giving a weakly polynomial interior point
method that always terminates in at most O(2nn1.5 log n) iterations—even when
log χ̄∗

A is unbounded. Moreover, their interior point method is ‘universal’: it matches
the number of iterations of any interior point method that uses a self-concordant barrier
function up to a factor O(n1.5 log n). The ‘subspace LLS’ step used in the paper is a

123

D. Dadush et al.

generalization of the LLS step, using restricted movements in general subspaces, not
only coordinate subspaces.

1.3 Organization

The rest of the paper is organized as follows. We conclude this section by introducing
some notation. Section2 discusses our results on the circuit imbalance measure. It
startswith Sect. 2.1 on the necessary background on the conditionmeasures χ̄A and χ̄∗

A.
Section2.2 introduces the circuit imbalance measure, and formulates and explains all
main results of Sect. 2. The proofs are given in the rest of the sections: basic properties
in Sect. 2.3, the min-max characterization in Sect. 2.4, the circuit finding algorithm in
Sect. 2.5, the algorithms for approximating χ̄∗

A and χ̄A in Sect. 2.6.
In Sect. 3, we develop our scaling invariant interior-point method. Interior-point

preliminaries are given in Sect. 3.1. Section3.2 introduces the affine scaling and
layered-least-squares directions, and proves some basic properties. Section3.3 pro-
vides a detailed overview of the high level ideas and a roadmap to the analysis.
Section3.4 further develops the theory of LLS directions and introduces partition lift-
ing scores. Section3.5 gives our scaling invariant layering procedure, and our overall
algorithm can be found in Sect. 3.6.

In Sect. 4, we give the potential function proof for the improved iteration bound,
relying on technical lemmas. The full proof of these lemmas is deferred to Sect. 6;
however, Sect. 4 provides the high-level ideas to each proof. Section4.1 shows that our
argument also leads to a factor �(n/ log n) improvement in the iteration complexity
bound of the VY-algorithm.

In Sect. 5, we prove the technical properties of our LLS step, including its proximity
to AS and step length estimates. Finally, in Sect. 7, we discuss the initialization of the
interior-point method.

Besides reading the paper linearly, we suggest two other possible ways of navi-
gating the paper. Readers mainly interested in the circuit imbalance measure and its
approximation may focus only on Sect. 2; this part can be understood without any
familiarity with interior point methods. Other readers, who wish to mainly focus on
our interior point algorithm may read Sect. 2 only up to Sect. 2.2; this includes all
concepts and statements necessary for the algorithm.

1.4 Notation

Our notation will largely follow [36, 37]. We let R++ denote the set of positive reals,
andR+ the set of nonnegative reals. For n ∈ N, we let [n] = {1, 2, . . . , n}. Let ei ∈ R

n

denote the i th unit vector, and e ∈ R
n the all 1 s vector. For a vector x ∈ R

n , we let
Diag(x) ∈ R

n×n denote the diagonal matrix with x on the diagonal. We let D denote
the set of all positive n × n diagonal matrices and Ik denote the k × k identity matrix.
For x, y ∈ R

n , we use the notation xy ∈ R
n to denote xy = Diag(x)y = (xi yi)i∈[n].

The inner product of the two vectors is denoted as x�y. For p ∈ Q, we also use the
notation x p to denote the vector (x p

i)i∈[n]. Similarly, for x, y ∈ R
n , we let x/y denote

the vector (xi/yi)i∈[n]. We denote the support of a vector x ∈ R
n by supp(x) = {i ∈

[n] : xi
= 0}.

123

A scaling-invariant algorithm for linear programming...

For an index subset I ⊆ [n], we use πI : R
n → R

I for the coordinate projection.
That is, πI (x) = xI , and for a subset S ⊆ R

n , πI (S) = {xI : x ∈ S}. We let
R

n
I = {x ∈ R

n : x[n]\I = 0}.
For a matrix B ∈ R

n×k , I ⊂ [n] and J ⊂ [k] we let BI ,J denote the submatrix of
B restricted to the set of rows in I and columns in J . We also use BI ,• = BI ,[k] and
BJ = B•,J = B[n],J . We let B† ∈ R

k×n denote the pseudo-inverse of B.
We let Ker(A) denote the kernel of the matrix A ⊆ R

m×n . Throughout, we assume
that the matrix A in (LP) has full row rank, and that n ≥ 3.

We use the real model of computation, allowing basic arithmetic operations +,
−, ×, /, comparisons, and square root computations. We keep (exact) square root
computations for simplicity but we note that these could be avoided.

Subspace formulation Throughout the paper, we let W = Ker(A) ⊆ R
n denote the

kernel of the matrix A. Using this notation, (LP) can be written in the form

min c�x

x ∈ W + d

x ≥ 0,

max d�(c − s)

s ∈ W ⊥ + c

s ≥ 0,

(2)

where d ∈ R
n satisfies Ad = b. One can e.g., choose d as the minimum norm solution

d = argmin{‖x‖ : Ax = b} = A�(AA�)−1b. Note that s ∈ W ⊥ + c is equivalent
to ∃y ∈ R

m such that A�y + c = s. Hence, the original variable y is implicit in this
formulation.

2 Finding an approximately optimal rescaling

2.1 The condition number �̄

The condition number χ̄A is defined as

χ̄A = sup

{

‖A� (AD A�)−1
AD‖ : D ∈ D

}

= sup

{∥
∥A�y

∥
∥

‖p‖ : y minimizes
∥
∥
∥D1/2(A�y − p)

∥
∥
∥ for some 0
= p ∈ R

n and D ∈ D

}

.

(3)

This condition number was first studied by Dikin [9, 10], Stewart [49], and Todd [52],
among others, and plays a key role in the analysis of the Vavasis–Ye interior point
method [63]. There is an extensive literature on the properties and applications of χ̄A,
as well as its relations to other condition numbers. We refer the reader to the papers
[21, 36, 63] for further results and references.

It is important to note that χ̄A only depends on the subspace W = Ker(A). Hence,
we can alsowrite χ̄W for a subspaceW ⊆ R

n , defined to be equal to χ̄A for somematrix
A ∈ R

k×n with W = Ker(A). We will use the notations χ̄A and χ̄W interchangeably.
The next lemma summarizes some important known properties of χ̄A.

123

D. Dadush et al.

Proposition 2.1 Let A ∈ R
m×n with full row rank and W = Ker(A).

(i) If the entries of A are all integers, then χ̄A is bounded by 2O(L A), where L A is
the input bit length of A.

(ii) χ̄A = max{‖B−1A‖ : B non-singular m × m- submatrix of A}.
(iii) Let the columns of B ∈ R

n×(n−m) form an orthonormal basis of W . Then

χ̄W = max
{
‖B B†

I ,•‖ : ∅
= I ⊂ [n]
}

.

(iv) χ̄W = χ̄W⊥ .

Proof Part (i) was proved in [63, Lemma 24]. For part (ii), see [53, Theorem 1] and
[63, Lemma 3]. In part (iii), the direction ≥ was proved in [49], and the direction ≤
in [40]. The duality statement (iv) was shown in [18]. ��
In Proposition 3.8, we will also give another proof of (iv). We now define the lifting
map, a key operation in this paper, and explain its connection to χ̄A.

Definition 2.2 Let us define the lifting map LW
I : πI (W) → W by

LW
I (p) = argmin {‖z‖ : zI = p, z ∈ W } .

Note that LW
I is the unique linear map from πI (W) to W such that

(
LW

I (p)
)

I = p

and LW
I (p) is orthogonal to W ∩ R

n
[n]\I .

Lemma 2.3 Let W ⊆ R
n be an (n −m)-dimensional linear subspace. Let the columns

of B ∈ R
n×(n−m) denote an orthonormal basis of W . Then, viewing LW

I as a matrix
in R

n×|I |,

LW
I = B B†

I ,• .

Proof If p ∈ πI (W), then p = BI ,• y for some y ∈ R
n−m . By thewell-known property

of the pseudo-inverse we get B†
I ,• p = argminp=BI ,• y ‖y‖. This solution satisfies

πI (B B†
I ,• p) = p and B B†

I ,• p ∈ W . Since the columns of B form an orthonormal basis

of W , we have ‖B B†
I ,• p‖ = ‖B†

I ,• p‖. Consequently, B B†
I ,• p is the minimum-norm

point with the above properties. ��
The above lemma and Proposition 2.1(iii) yield the following characterization. This
will be the most suitable characterization of χ̄W for our purposes.

Proposition 2.4 For a linear subspace W ⊆ R
n,

χ̄W = max
{
‖LW

I ‖ : I ⊆ [n], I
= ∅
}

.

The following notation will be convenient for our algorithm. For a subspace W ⊆
R

n and an index set I ⊆ [n], if πI (W)
= {0} then we define the lifting score

�W (I) :=
√

‖LW
I ‖2 − 1 . (4)

123

A scaling-invariant algorithm for linear programming...

Otherwise, we define �W (I) = 0. This means that for any z ∈ πI (W) and x = LW
I (z),

‖x[n]\I ‖ ≤ �W (I)‖z‖.
The condition number χ̄∗

A For every D ∈ D, we can consider the condition number
χ̄DW = χ̄AD−1 . We let

χ̄∗
W = χ̄∗

A = inf{χ̄DW : D ∈ D}

denote the best possible value of χ̄ that can be attained by rescaling the coordinates
of W . The main result of this section is the following theorem.

Theorem 2.5 (Proof in Sect. 2.6) There is an O(n2m2 + n3) time algorithm that for
any matrix A ∈ R

m×n computes an estimate ξ of χ̄W such that

ξ ≤ χ̄W ≤ n(χ̄∗
W)2ξ

and a D ∈ D such that

χ̄∗
W ≤ χ̄DW ≤ n(χ̄∗

W)3 .

2.2 The circuit imbalancemeasure

The key tool in proving Theorem 2.5 is to study a more combinatorial condition
number, the circuit imbalance measure which turns out to give a good proxy to χ̄A.

Definition 2.6 For a linear subspace W ⊆ R
n and a matrix A such that W = Ker(A),

a circuit is an inclusion-wise minimal dependent set of columns of A. Equivalently, a
circuit is a set C ⊆ [n] such that W ∩ R

n
C is one-dimensional and that no strict subset

of C has this property. The set of circuits of W is denoted by CW .

Note that circuits defined above are the same as the circuits in the linear matroid
associated with A. Every circuit C ∈ CW can be associated with a vector gC ∈ W
such that supp(gC) = C ; this vector is unique up to scalar multiplication.

Definition 2.7 For a circuit C ∈ CW and i, j ∈ C , we let

κW
i j (C) =

∣
∣
∣gC

j

∣
∣
∣

∣
∣gC

i

∣
∣
. (5)

Note that since gC is unique up to scalar multiplication, this is independent of the
choice of gC . For any i, j ∈ [n], we define the circuit ratio as the maximum of κW

i j (C)

over all choices of the circuit C :

κW
i j = max

{
κW

i j (C) : C ∈ CW , i, j ∈ C
}

. (6)

123

D. Dadush et al.

By convention we set κW
i j = 0 if there is no circuit supporting i and j . Further, we

define the circuit imbalance measure as

κW = max
{
κW

i j : i, j ∈ [n]
}

.

Minimizing over all coordinate rescalings, we define

κ∗
W = min {κDW : D ∈ D} .

We omit the index W whenever it is clear from context. Further, for a vector d ∈ R
n++,

we write κd
i j = κ

Diag(d)W
i j and κd = κd

W = κDiag(d)W .

We want to remark that a priori it is not clear that κ∗
W is well-defined. Theorem 2.12

will show that the minimum of {κDW : D ∈ D} is indeed attained.
Wenext formulate themain statements on the circuit imbalancemeasure; proofswill

be given in the subsequent subsections. Crucially, we show that the circuit imbalance
κW is a good proxy to the condition number χ̄W . The lower bound was already proven
in [56], and the upper bound is from [14]. A slightlyweaker upper bound

√
1 + (nκW)2

was previously given in the conference version of this paper [8].

Theorem 2.8 (Proof in Sect. 2.3) For a linear subspace W ⊆ R
n,

√
1 + (κW)2 ≤ χ̄W ≤ nκW .

We now overview some basic properties of κW . Proposition 2.4 asserts that χ̄W is
the maximum �2 → �2 operator norm of the mappings LW

I over I ⊆ [n]. In [14], it
was shown that κW is in contrast the maximum �1 → �∞ operator norm of the same
mappings; this easily implies the upper bound χ̄W ≤ nκW .

Proposition 2.9 [14] For a linear subspace W ⊆ R
n,

κW = max

{
‖LW

I (p)‖∞
‖p‖1 : I ⊆ [n], I
= ∅, p ∈ πI (W) \ {0}

}

.

Similarly to χ̄W , κW is self-dual; this holds for all individual κW
i j values as well.

Lemma 2.10 (Proof in Sect. 2.3) For any subspace W ⊆ R
n and i, j ∈ [n], κW

i j =
κW⊥

j i .

The next lemma provides a subroutine that efficienctly yields upper bounds on
�W (I) or lower bounds on some circuit imbalance values. Recall the definition of the
lifting score �W (I) from (4).

Lemma 2.11 (Proof in Sect. 2.3)There exists a subroutineVerify- Lift(W , I , θ) that,
given a linear subspace W ⊆ R

n, an index set I ⊆ [n], and a threshold θ ∈ R++,
either returns the answer ‘pass’, verifying �W (I) ≤ θ , or returns the answer ‘fail’,
and a pair i ∈ I , j ∈ [n] \ I such that θ/n ≤ κW

i j . The running time can be bounded

as O(n(n − m)2).

123

A scaling-invariant algorithm for linear programming...

The proofs of the above statements are given in Sect. 2.3.

A min-max theorem We next provide a combinatorial min-max characterization of
κ∗

W . Consider the circuit ratio digraph G = ([n], E) on the node set [n]where (i, j) ∈
E ifκi j > 0, that is, there exists a circuitC ∈ Cwith i, j ∈ C .Wewill refer toκi j = κW

i j
as the weight of the edge (i, j). (Note that (i, j) ∈ E if and only if (j, i) ∈ E , but the
weight of these two edges can be different.)

Let H be a cycle in G, that is, a sequence of indices i1, i2, . . . , ik, ik+1 = i1. We
use |H | = k to denote the length of the cycle. (In our terminology, ‘cycles’ always
refer to objects in G, whereas ‘circuits’ refer to the minimum supports in Ker(A).)

We use the notation κ(H) = κW (H) = ∏k
j=1 κW

i j i j+1
. For a vector d ∈ R

n++, we
denote κd

W (H) = κDiag(d)W (H). A simple but important observation is that such a
rescaling does not change the value associated with the cycle, that is,

κd
W (H) = κW (H) ∀d ∈ R

n++ for any cycle H in G . (7)

Theorem 2.12 (Proof in Sect. 2.4) For a subspace W ⊂ R
n, we have

κ∗
W = min

d>0
κd

W = max
{
κW (H)1/|H | : H is a cycle in G

}
.

The proof relies on the following formulation:

κ∗
W = min t

κi j d j/di ≤ t ∀(i, j) ∈ E

d > 0.

Taking logarithms, we can rewrite this problem as

min s

log κi j + z j − zi ≤ s ∀(i, j) ∈ E

z ∈ R
n .

This is the dual of the minimum-mean cycle problem with weights log κi j , and can be
solved in polynomial time (see e.g. [4, Theorem 5.8]).

Whereas this formulation verifies Theorem 2.12, it does not give a polynomial-time
algorithm to compute κ∗

W . The caveat is that the values κW
i j are typically not available;

in fact, approximating them up to a factor 2O(m) is NP-hard, as follows from the work
of Tunçel [54].

Nevertheless, the following corollary of Theorem 2.12 shows that any arbitrary
circuit containing i and j yields a (κ∗)2 approximation to κi j .

Corollary 2.13 (Proof in Sect. 2.4) Let us be given a linear subspace W ⊆ R
n and

i, j ∈ [n], i
= j , and a circuit C ∈ CW with i, j ∈ C. Let g ∈ W be the corresponding

123

D. Dadush et al.

vector with supp(g) = C. Then,

κW
i j

(
κ∗

W

)2 ≤ |g j |
|gi | ≤ κW

i j .

The above statements are shown in Sect. 2.4. In Sect. 2.5, we use techniques from
matroid theory and linear algebra to efficiently identify a circuit for any pair of vari-
ables that are contained in the same circuit. A matroid is non-separable if the circuit
hypergraph is connected; precise definitions and background will be described in
Sect. 2.5.

Theorem 2.14 (Proof in Sect. 2.5) Given A ∈ R
m×n, there exists an O(n2m2) time

algorithm Find- Circuits(A) that obtains a decomposition of M(A) to a direct sum
of non-separable linear matroids, and returns a family Ĉ of circuits such that if i and
j are in the same non-separable component, then there exists a circuit in Ĉ containing
both i and j . Further, for each i
= j in the same component, the algorithm returns
a value κ̂i j as the the maximum of |g j/gi | such that g ∈ W , supp(g) = C for some

C ∈ Ĉ containing i and j . For these values, κ̂i j ≤ κi j ≤ (κ∗)2κ̂i j .

Finally, in Sect. 2.6, we combine the above results to prove Theorem 2.5 on
approximating χ̄∗

W and κ∗
W .

Section 2.5 contains an interesting additional statement, namely that the logarithms
of the circuit ratios satisfy the triangle inequality. Thiswill also be useful in the analysis
of the LLS algorithm. The proof uses similar arguments as the proof of Theorem 2.14.
A simpler proof of this statement was subsequently given in [16].

Lemma 2.15 (Proof in Sect. 2.5)

(i) For any distinct i, j, k in the same connected component of CW , and any gC with
i, j ∈ C, C ∈ CW , there exist circuits C1, C2 ∈ CW , i, k ∈ C1, j, k ∈ C2 such
that |gC

j /gC
i | = |gC2

j /gC2
k | · |gC1

k /gC1
i |.

(ii) For any distinct i, j, k in the same connected component of CW , κi j ≤ κik · κk j .

2.3 Basic properties of �W

Theorem 2.8 (Restatement). For a linear subspace W ⊆ R
n,

√
1 + (κW)2 ≤ χ̄W ≤ nκW .

Proof For the first inequality, let C ∈ CW be the circuit and i
= j ∈ C such that
|g j/gi | = κW for the corresponding solution g = gC . Let us use the characterization
of χ̄W in Proposition 2.4. Let I = ([n] \ C) ∪ {i}, and p = gi ei , that is, the vector
with pi = gi and pk = 0 for k
= i . Then, the unique vector z ∈ W such that zI = p
is z = g. Therefore,

χ̄W ≥ min
z∈W ,zI =p

‖z‖
‖p‖ = ‖g‖

|gi | ≥
√

|gi |2 + |g j |2
|gi | =

√
1 + κ2

W .

123

A scaling-invariant algorithm for linear programming...

The second inequality is immediate from Propositions 2.4 and 2.9, and the inequalities
between �1, �2, and �∞ norms. The proof of the slightly weaker χ̄W ≤ √1 + (nκW)2

follows from Lemma 2.11. ��
The next lemma will be needed to prove Lemma 2.11 and also to analyze the LLS

algorithm. Let us say that the vector y ∈ R
n conforms to x ∈ R

n if xi yi > 0 whenever
yi
= 0.

Lemma 2.16 For i ∈ I ⊂ [n] with ei
I ∈ πI (W), let z = LW

I (ei
I). Then for any

j ∈ supp(z) we have κW
i j ≥ |z j |.

Proof We consider the cone F ⊂ W of vectors that conform to z. The faces of F are
bounded by inequalities of the form zk yk ≥ 0 or yk = 0. The edges (rays) of F are of
the form {αg : α ≥ 0}with supp(g) ∈ CW . It is easy to see from theMinkowski–Weyl
theorem that z can be written as

z =
h∑

k=1

gk,

where h ≤ n, C1, C2, . . . , Ch ∈ CW are circuits, and the vectors g1, g2, . . . , gh ∈ W
conform to z and supp(gk) = Ck for all k ∈ [h]. Note that i ∈ Ck for all k ∈ [h], as
otherwise, z′ = z − gk would also satisfy z′

I = ei
I , but ‖z′‖ < ‖z‖ due to gk being

conformal to z, a contradiction to the definition of z.

At least one k ∈ [h] contributes at least as much to |z j | =
∑h

k=1 |gk
j |

∑h
k=1 gk

i
as the average.

Hence we find κW
i j ≥ |gk

j /gk
i | ≥ |z j |. ��

Lemma 2.11 (Restatement). There exists a subroutine Verify- Lift(W , I , θ) that,
given a linear subspace W ⊆ R

n, an index set I ⊆ [n], and a threshold θ ∈ R++,
either returns the answer ‘pass’, verifying �W (I) ≤ θ , or returns the answer ‘fail’,
and a pair i ∈ I , j ∈ [n] \ I such that θ/n ≤ κW

i j . The running time can be bounded

as O(n(n − m)2).

Proof Take any minimal I ′ ⊂ I such that dim(πI ′(W)) = dim(πI (W)). Then we
know that πI ′(W) = R

I ′
and for p ∈ πI (W) we can compute LW

I (p) = LW
I ′ (pI ′).

Let B ∈ R
([n]\I)×I ′

be the matrix sending any q ∈ πI ′(W) to the corresponding
vector (LW

I ′ (q))[n]\I . The column Bi can be computed as (LW
I ′ (ei

I ′))[n]\I for ei
I ′ ∈ R

I ′
.

We have ‖LW
I (p)‖2 = ‖p‖2 + ‖(LW

I ′ (pI ′))[n]\I ‖2 ≤ ‖p‖2 + ‖B‖2‖pI ′ ‖2 for any

p ∈ πI (W), and so �W (I) =
√

‖LW
I ‖2 − 1 ≤ ‖B‖. We upper bound the operator

norm by the Frobenius norm as ‖B‖ ≤ ‖B‖F =
√∑

j i B2
j i ≤ n max j i |B ji |. By

Lemma 2.16 it follows that |B ji | = |(LW
I ′ (ei)) j | ≤ κW

i j . The algorithm returns the
answer ‘pass’ if n max j i |B ji | ≤ θ and ‘fail’ otherwise.

To implement the algorithm, we first need to select a minimal I ′ ⊂ I such
that dim(πI ′(W)) = dim(πI (W)). This can be found by computing a matrix

123

D. Dadush et al.

M ∈ R
n×(n−m) such that range(M) = W , and selecting a maximal number of lin-

early independent columns of MI ,•. Then, we compute the matrix B ∈ R
([n]\I)×I ′

that implements the transformation [LW
I ′][n]\I : πI ′(W) → π[n]\I (W). The algorithm

returns the pair (i, j) corresponding to the entry maximizing |B ji |. The running time
analysis will be given in the proof of Lemma 3.15, together with an amortized analysis
of a sequence of calls to the subroutine. ��
Remark 2.17 We note that the algorithm Verify- Lift does not need to compute the
circuit as in Lemma 2.16. The following observation will be important in the analysis:
the algorithm returns the answer ‘fail’ even if �W (I) ≤ θ < n|B ji |.

We now prove the duality property of the circuit imbalances.

Lemma 2.10 (Restatement). For any subspace W ⊆ R
n and i, j ∈ [n], κW

i j = κW⊥
j i .

Proof Choose a circuitC ∈ CW and corresponding circuit solution g := gC ∈ W ∩R
n
C

such that κi j = κi j (C) = |g j/gi |. We will construct a circuit solution in W ⊥ that

certifies κW⊥
j i ≥ κW

i j .

Define h ∈ R
C by hi = g j , h j = −gi and hk = 0 for all k ∈ C \ {i, j}. Then,

h is orthogonal to gC by construction, and hence h ∈ (πC (W ∩ R
n
C))⊥ = πC (W ⊥).

Furthermore, we have supp(h) ∈ CπC (W⊥) since h ∈ R
C is a support minimal vector

orthogonal to gC .
Take any vector h̄ ∈ W ⊥ satisfying h̄C = h that is support minimal subject to these

constraints. We claim that supp(h̄) ∈ CW⊥ . Assume not, then there exists a non-zero
v ∈ W ⊥ with supp(v) ⊂ supp(h̄). Since supp(πC (v)) ⊆ supp(πC (h̄)) = supp(h),
we must have either vC = 0 or vC = sh for s
= 0. If vC = 0, then h̄ − αv is also
in W ⊥ satisfying πC (h̄C − αv) = h for all α ∈ R, and since v
= 0 we can choose α

such that h̄ − αv has smaller support than h̄, a contradiction. If s
= 0 then v/s ∈ W ⊥
satisfies πC (v/s) = h and has smaller support than h̄, again a contradiction.

By the above construction, we have

κW⊥
j i ≥

∣
∣
∣
∣
∣

h̄i

h̄ j

∣
∣
∣
∣
∣
=
∣
∣
∣
∣

hi

h j

∣
∣
∣
∣ =

∣
∣
∣
∣
g j

gi

∣
∣
∣
∣ = κW

i j .

By swapping the role of W and W ⊥ and i and j , we obtain κW
i j ≥ κW⊥

j i . The statement
follows. ��

2.4 Amin–max theorem on �∗
W

The proof of the characterization of κ∗
W follows.

Theorem 2.12 (Restatement). For a subspace W ⊂ R
n, we have

κ∗
W = min

d>0
κd

W = max
{
κW (H)1/|H | : H is a cycle in G

}
.

123

A scaling-invariant algorithm for linear programming...

Proof For the direction κW (H)1/|H | ≤ κ∗
W we use (7). Let d > 0 be a scaling and H a

cycle.We have κd
i j ≤ κd

W for every i, j ∈ [n], and hence κW (H) = κd
W (H) ≤ (κd

W)|H |.
Since this inequality holds for every d > 0, it follows that κW (H) ≤ (κ∗

W)|H |.
For the reverse direction, consider the following optimization problem.

min t

κi j d j/di ≤ t ∀(i, j) ∈ E

d > 0.

(8)

For any feasible solution (d, t) and λ > 0, we get another feasible solution (λd, t)
with the same objective value. As such, we can strengthen the condition d > 0 to
d ≥ 1 without changing the objective value. This makes it clear that the optimum
value is achieved by a feasible solution.

Any rescaling d > 0 provides a feasible solution with objective value κd , which
means that the optimal value t∗ of (8) is t∗ = κ∗. Moreover, with the variable
substitution zi = log di , s = log t , (8) can be written as a linear program:

min s

log κi j + z j − zi ≤ s ∀(i, j) ∈ E

z ∈ R
n .

(9)

This is the dual of a minimum-mean cycle problem with respect to the cost func-
tion log(κi j). Therefore, an optimal solution corresponds to the cycle maximizing∑

i j∈H log κi j/|H |, or in other words, maximizing κ(H)1/|H |. ��

The following example shows that κ∗ ≤ χ̄∗ can be arbitrarily big.

Example 2.18 Take W = span((0, 1, 1, M)�, (1, 0, M, 1)�), where M > 0. Then
{2, 3, 4} and {1, 3, 4} are circuits with κW

34 ({2, 3, 4}) = M and κW
43 ({1, 3, 4}) = M .

Hence, by Theorem 2.12, we see that κ∗ ≥ M .

Corollary 2.13 (Restatement). Let us be given a linear subspace W ⊆ R
n and i, j ∈

[n], i
= j , and a circuit C ∈ CW with i, j ∈ C. Let g ∈ W be the corresponding
vector with supp(g) = C. Then,

κW
i j

(
κ∗

W

)2 ≤ |g j |
|gi | ≤ κW

i j .

Proof The second inequality follows by definition. For the first inequality, note that
the same circuit C yields |gi/g j | ≤ κW

ji (C) ≤ κW
ji . Therefore, |g j/gi | ≥ 1/κW

ji .

From Theorem 2.12 we see that κW
i j κW

ji ≤ (κ∗
W)2, giving 1/κW

ji ≥ κW
i j /(κ∗

W)2,
completing the proof. ��

123

D. Dadush et al.

2.5 Finding circuits: a detour in matroid theory

We next prove Theorem 2.14, showing how to efficiently obtain a family Ĉ ⊆ CW such
that for any i, j ∈ [n], Ĉ includes a circuit containing both i and j , provided there
exists such a circuit.

We need some simple concepts and results frommatroid theory.We refer the reader
to [45,Chapter 39] or [17,Chapter 5] for definitions andbackground.LetM = ([n], I)

be a matroid on ground set [n] with independent sets I ⊆ 2[n]. The rank rk(S) of a
set S ⊆ [n] is the maximum size of an independent set contained in S. The maximal
independent sets are called bases. All bases have the same cardinality rk([n]).

For the matrix A ∈ R
m×n , we will work with the linear matroid M(A) =

([n], I(A)), where a subset I ⊆ [n] is independent if the columns {Ai : i ∈ I }
are linearly independent. Note that rk([n]) = m under the assumption that A has full
row rank.

The circuits of the matroid are the inclusion-wise minimal non-independent sets.
Let I ∈ I be an independent set, and i ∈ [n]\I such that I ∪ {i} /∈ I. Then, there
exists a unique circuit C(I , i) ⊆ I ∪{i} that is called the fundamental circuit of i with
respect to I . Note that i ∈ C(I , i).

The matroid M is separable, if the ground set [n] can be partitioned to two
nonempty subsets [n] = S ∪ T such that I ∈ I if and only if I ∩ S, I ∩ T ∈ I.
In this case, the matroid is the direct sum of its restrictions to S and T . In particular,
every circuit is fully contained in S or in T .

For the linear matroid M(A), separability means that Ker(A) = Ker(AS) ×
Ker(AT). In this case, solving (LP) can be decomposed into two subproblems,
restricted to the columns in AS and in AT , and κA = max{κAS , κAT }.

Hence, we can focus on non-separable matroids. The following characterization
is well-known, see e.g. [17, Theorems 5.2.5, 5.2.7 −5.2.9]. For a hypergraph H =
([n], E), we define the underlying graph HG = ([n], E) such that (i, j) ∈ E if there
is a hyperedge S ∈ E with i, j ∈ S. That is, we add a clique corresponding to each
hyperedge. The hypergraph is called connected if the underlying graph G = ([n], E)

is connected.

Proposition 2.19 For a matroid M = ([n], I), the following are equivalent:

(i) M is non-separable.
(ii) The hypergraph of the circuits is connected.
(iii) For any base B of M, the hypergraph formed by the fundamental circuits

CB = {C(B, i) : i ∈ [n]\B} is connected.
(iv) For any i, j ∈ [n], there exists a circuit containing i and j .

Proof The implications (i) ⇔ (ii), (iii) ⇒ (ii), and (iv) ⇒ (ii) are immediate from the
definitions.

For the implication (ii) ⇒ (iii), assume for a contradiction that the hypergraph
of the fundamental circuits with respect to B is not connected. This means that we
can partition [n] = S ∪ T such that for each i ∈ S, C(B, i) ⊆ S, and for each
i ∈ T , C(B, i) ⊆ T . Consequently, rk(S) = |B ∩ S|, rk(T) = |B ∩ T |, and therefore
rk([n]) = rk(S)+rk(T). It is easy to see that this property is equivalent to separability
to S and T ; see e.g. [17, Theorem 5.2.7] for a proof.

123

A scaling-invariant algorithm for linear programming...

Finally, for the implication (ii)⇒ (iv), consider the undirected graph ([n], E)where
(i, j) ∈ E if there is a circuit containing both i and j . This graph is transitive according
to [17, Theorem 5.2.5]: if (i, j), (j, k) ∈ E , then also (i, k) ∈ E . Consequently,
whenever ([n], E) is connected, it must be a complete directed graph. ��

We give a different proof of (iii) ⇒ (iv) in Lemma 2.21 that will be convenient for
our algorithmic purposes. First, we need a simple lemma that is commonly used in
matroid optimization, see e.g. [17, Lemma 13.1.11] or [45, Theorem 39.13].

Lemma 2.20 Let I be an independent set of a matroid M = ([n], I), and U =
{u1, u2, . . . , u�} ⊆ I , V = {v1, v2, . . . , v�} ⊆ [n] \ I such that I ∪ {vi } is dependent
for each i ∈ [�]. Further, assume that for each t ∈ [�], ut ∈ C(I , vt) and ut /∈ C(I , vh)

for all h < t . Then, (I\U) ∪ V ∈ I.

We give a sketch of the proof. First, we note that for each t ∈ [�], ut ∈ C(I , vt)

means that exchanging vt for ut maintains independence. The statement follows by
induction on �: we consider the independent set I ′ = (I\{u�}) ∪ {v�}. We can apply
induction for I ′, U ′ = {u1, u2, . . . , u�−1}, and V ′ = {v1, v2, . . . , v�−1}, noting that
the assumption guarantees that C(I ′, vt) = C(I , vt) for all t ∈ [� − 1]. Based on this
lemma, we show the following exchange property.

Lemma 2.21 Let B be a basis of the matroid M = ([n], I), and let U =
{u1, u2, . . . , u�} ⊆ B, and V = {v1, v2, . . . , v�, v�+1} ⊆ [n]\B. Assume C(B, v1) ∩
U = {u1}, C(B, v�+1)∩U = {u�}, and for each 2 ≤ t ≤ �, C(B, vt)∩U = {ut−1, ut }.
Then (B\U) ∪ V contains a unique circuit C, and V ⊆ C.

The situation described here corresponds to a minimal path in the hypergraph CB of
the fundamental circuits with respect to a basis B. The hyperedges C(B, vi) form a
path from v1 to v�+1 such that no shortcut is possible (note that this is weaker than
requiring a shortest path).

Proof of Lemma 2.21 Note that S = (B \U)∪ V /∈ I since |S| > |B| and B is a basis.
For any i ∈ [�+1], we can useLemma2.20 to show that S\{vi } = (B\U)∪(V \{vi }) ∈
I (and thus, is a basis). To see this, we apply Lemma 2.20 for the ordered sets V ′ =
{v1, . . . , vi−1, v�+1, v�, . . . , vi+1} and U ′ = {u1, . . . , ui−1, u�, u�−1, . . . , ui }.

Consequently, every circuit in S must contain the entire set V . The uniqueness of
the circuit in S follows by the well-known circuit axiom asserting that if C, C ′ ∈ C,
C
= C ′ and v ∈ C∩C ′, then there exists a circuitC ′′ ∈ C such thatC ′′ ⊆ (C∪C ′)\{v},
contradicting the claim that every circuit in S contains the entire set V . ��

We are ready to describe the algorithm that will be used to obtain lower bounds on
all κi j values.

Theorem 2.14 (Restatement). Given A ∈ R
m×n, there exists an O(n2m2) time algo-

rithm Find- Circuits(A) that obtains a decomposition of M(A) to a direct sum of
non-separable linear matroids, and returns a family Ĉ of circuits such that if i and j
are in the same non-separable component, then there exists a circuit in Ĉ containing
both i and j . Further, for each i
= j in the same component, the algorithm returns
a value κ̂i j as the the maximum of |g j/gi | such that g ∈ W , supp(g) = C for some

C ∈ Ĉ containing i and j . For these values, κ̂i j ≤ κi j ≤ (κ∗)2κ̂i j .

123

D. Dadush et al.

Proof Once we have found the set of circuits Ĉ, and computed κ̂i j as in the statement,
the inequalities κ̂i j ≤ κi j ≤ (κ∗)2κ̂i j follow easily. The first inequality is by the
definition of κi j , and the second inequality is from Corollary 2.13.

We now turn to the computation of Ĉ. We first obtain a basis B ⊆ [n] of Ker(A)

via Gauss-Jordan elimination in time O(nm2). Recall the assumption that A has full
row-rank. Let us assume that B = [m] is the set of first m indices. The elimination
transforms it to the form A = (Im |H), where H ∈ R

m×(n−m) corresponds to the
non-basis elements. In this form, the fundamental circuit C(B, i) is the support of the
i th column of A together with i for every m + 1 ≤ i ≤ n. We let CB denote the set of
all these fundamental circuits.

We construct an undirected graph G = (B, E) as follows. For each i ∈ [n] \ B,
we add a clique between the nodes in C(B, i) \ {i}. This graph can be constructed in
O(nm2) time.

The connected components of G correspond to the connected components of CB

restricted to B. Thus, due to the equivalence shown in Proposition 2.19 we can obtain
the decomposition by identifying the connected components of G. For the rest of the
proof, we assume that the entire hypergraph is connected; connectivity can be checked
in O(m2) time.

We initialize Ĉ as CB . We will then check all pairs i, j ∈ [n], i
= j . If no circuit
C ∈ Ĉ exists with i, j ∈ C , then we will add such a circuit to Ĉ as follows.

Assume first i, j ∈ [n] \ B. We can find a shortest path in G between the
sets C(B, i)\{i} and C(B, j)\{ j} in time O(m2). This can be represented by the
sequences of points V = {v1, v2, . . . , v�+1} ⊆ [n] \ B, v1 = i , v�+1 = j ,
and U = {u1, u2, . . . , u�} ⊆ B as in Lemma 2.21. According to the lemma,
S = (B \ U) ∪ V contains a unique circuit C that contains all vt ’s, including i
and j .

We now show how this circuit can be identified in O(m) time, along with the
vector gC . Let AS be the submatrix corresponding to the columns in S. Since g = gC

is unique up to scaling, we can set gv1 = 1. Note that for each t ∈ [�], the row of
AS corresponding to ut contains only two nonzero entries: Aut vt and Aut vt+1 . Thus,
the value gv1 = 1 can be propagated to assigning unique values to gv2 , gv3, . . . , gv�+1 .
Once these values are set, there is a unique extension of g to the indices t ∈ B ∩ S in
the basis. Thus, we have identified g as the unique element of Ker(AS) up to scaling.
The circuitC is obtained as supp(g). Clearly, the above procedure can be implemented
in O(m) time.

The argument easily extends to finding circuits for the case {i, j} ∩ B
= ∅. If
i ∈ B, then for any choice of V = {v1, v2, . . . , v�+1} and U = {u1, u2, . . . , u�}
as in Lemma 2.21 such that i ∈ C(B, v1) and i /∈ C(B, vt) for t > 1, the unique
circuit in (B\U) ∪ V also contains i . This follows from Lemma 2.20 by taking V ′ =
{v�+1, v�, . . . , v1} and U ′ = {u�, . . . , u1, i}, which proves that S\ {i} = (B\U ′) ∪
V ′ ∈ I. Similarly, if j ∈ B with j ∈ C(B, v�+1) and j /∈ C(B, vt) for t < � + 1,
taking V ′′ = V and U ′′ = {u1, . . . , u�, j} gives S\ { j} ∈ I.

The bottleneck for the running time is finding the shortest paths for the n(n − 1)
pairs, in time O(m2) each. ��

123

A scaling-invariant algorithm for linear programming...

The triangle inequality An interesting additional fact about the circuit ratio graph is
that the logarithm of the weights satisfy the triangle inequality. The proof uses similar
arguments as the proof of Theorem 2.14 above.

Lemma 2.15 (Restatement).

(i) For any distinct i, j, k in the same connected component of CW , and any gC with
i, j ∈ C, C ∈ CW , there exist circuits C1, C2 ∈ CW , i, k ∈ C1, j, k ∈ C2 such
that |gC

j /gC
i | = |gC2

j /gC2
k | · |gC1

k /gC1
i |.

(ii) For any distinct i, j, k in the same connected component of CW , κi j ≤ κik · κk j .

Proof Note that part (ii) immediately follows from part (i) when taking C ∈ CW such
that κi j (C) = κi j . We now prove part (i).

Let A ∈ R
m×n be a full-rank matrix with W = Ker(A). If C = {i, j}, then the

columns Ai , A j are linearly dependent.Writing Ai = λA j , we haveλ = −gC
j /gC

i . Let
h be any circuit solution with i, k ∈ supp(h), and hence j /∈ supp(h). By assumption,
the vector h′ = h − hi ei + λhi e j will satisfy Ah′ = 0 and have i /∈ supp(h′), j, k ∈
supp(h′). We know that h′ is a circuit solution, because any circuit C ′ ⊂ supp(h′)
could, by the above process in reverse, be used to produce a kernel solutionwith strictly
smaller support than h, contradicting the assumption that h is a circuit solution. Now
we have |h′

j/h′
k | · |hk/hi | = |h′

j/hi | = |λ| by construction. Thus, h and h′ are the
circuit solutions we are looking for.

Now assumeC
= {i, j}. If k ∈ C , the statement is trivially truewithC = C1 = C2,
so assume k /∈ C . Pick l ∈ C , l /∈ {i, j} and set B = C\ {l}. Assume without loss
of generality that B ⊆ [m] and apply row operations to A such that AB,B = IB×B

is an identity submatrix and A[m]\B,B = 0. Then the column Al has support given
by B, for otherwise gC could not be in the kernel. The given circuit solution satisfies
gC

t = −At,l gC
l for all t ∈ B, and in particular gC

j /gC
i = A j,l/Ai,l .

Take any circuit solution h ∈ Ker(A) such that l, k ∈ supp(h) and such that
C ∪ supp(h) is inclusion-wise minimal. Such a vectors exists by Proposition 2.19(iv).
Now let J = supp(h) \ C . Because A[m]\B,C = 0 and Ah = 0, we must have 0
=
h J ∈ Ker(A[m]\B,J). We show that we can uniquely lift any vector x ∈ Ker(AB,C∪{k})
to a vector x ′ ∈ Ker(AC∪J) with x ′

C∪k = x . Since this lift will send circuit solutions
to circuit solutions by uniqueness, it suffices to find our desired circuits as solutions
to the smaller linear system.

We first prove that dim(Ker(A[m]\B,J)) = 1. For suppose that
dim(Ker(A[m]\B,J)) ≥ 2, then |J | ≥ 2 and there would exist some vector
y ∈ Ker(A[m]\B,J) linearly independent from h J with k ∈ supp(y). This vector
could be uniquely lifted to a vector ȳ ∈ Ker(A), and we could then find a linear
combination h + α ȳ such that supp(h + α ȳ) � C ∪ J but l, k ∈ supp(h + α ȳ). The
existence of such a vector contradicts the minimality of C ∪ supp(h). As such, we
know that dim(Ker(A[m]\B,J)) = 1.

This clear linear relation between any two entries in J for any vector in
Ker(A[m]\B,J) implies that we can apply row operations to A such that AB,J has
non-zero entries only in the column AB,{k}. Note that these row operations leave
AC unchanged because A[m]\B,C = 0. From this, we can see that any element in
Ker(AB,C∪{k}) can be uniquely lifted to an element in Ker(AC∪J). Hence we can
focus on Ker(AB,C∪{k}).

123

D. Dadush et al.

If Ai,k = A j,k = 0, then any x ∈ Ker(AB,C∪{k}) satisfies xi + Ai,l xl = x j +
A j,l xl = 0 and, in particular, any circuit l, k ∈ C̄ ⊂ C ∪ {k} contains {i, j} ⊂ C̄ and

fulfills |gC
j /gC

i | = |A j,l/Ai,l | = |gC̄
j /gC̄

i | = |gC̄
j /gC̄

k ||gC̄
k /gC̄

i |. Choosing C1 = C2 =
C̄ concludes the case.

Otherwise we know that Ai,k
= 0 or A j,k
= 0, meaning that Ker(A{i, j},{i, j,l,k})
contains at least one circuit solution with k in its support. Observe that any circuit in
Ker(A{i, j},{i, j,l,k}) can be lifted uniquely to an element in Ker(AB,C∪{k}) since AB,B

is an identity matrix and we can set the entries of B \ {i, j} individually to satisfy the
equalities. Note that this lifted vector is a circuit as well, again by uniqueness of the
lift. Hence we may restrict our attention to the matrix A{i, j},{i, j,l,k}. If the columns
A{i, j},k, A{i, j},l are linearly dependent, then any circuit solution to A{i, j},{i, j,l}x =
0, xl
= 0, such as gC{i, j,l}, is easily transformed into a circuit solution to A{i, j},{i, j,k}x =
0, xk
= 0 and we are done.

If A{i, j},k, A{i, j},l are independent, we can write A{i, j},{i, j,l,k} = (
1 0 a c
0 1 b d

)
, where

gC
j /gC

i = b/a. For α = ad − bc, which is non-zero since α = det(
(a c

b d

)
)
= 0 by the

independence assumption, we can check that (α, 0,−d, b)� and (0, α, c,−a)� are
the circuits we are looking for. ��

2.6 Approximating �̄ and �̄∗

Equipped with Theorems 2.12 and 2.14, we are ready to prove Theorem 2.5. Recall
that we defined κd

i j := κ
Diag(d)W
i j = κi j d j/di when d > 0. We can similarly define

κ̂d
i j := κ̂i j d j/di , and κ̂d

i j approximates κd
i j just as in Theorem 2.14.

Theorem 2.5 (Restatement). There is an O(n2m2 + n3) time algorithm that for any
matrix A ∈ R

m×n computes an estimate ξ of χ̄W such that

ξ ≤ χ̄W ≤ n(χ̄∗
W)2ξ

and a D ∈ D such that

χ̄∗
W ≤ χ̄DW ≤ n(χ̄∗

W)3 .

Proof Let us run the algorithm Finding- Circuits(A) described in Theorem 2.14 to
obtain the values κ̂i j such that κ̂i j ≤ κi j ≤ (κ∗

W)2κ̂i j . We let G = ([n], E) be the
circuit ratio digraph, that is, (i, j) ∈ E if κi j > 0.

To show the first statement on approximating χ̄ , we simply set ξ = max(i, j)∈E κ̂i j .
Then,

ξ ≤ κW ≤ χ̄W ≤ nκW ≤ n(κ∗
W)2ξ ≤ n(χ̄∗

W)2ξ

follows by Theorem 2.8.
For the second statement on finding a nearly optimal rescaling for χ̄∗

W , we consider
the following optimization problem, which is an approximate version of (8) from

123

A scaling-invariant algorithm for linear programming...

Theorem 2.12.

min t

κ̂i j d j/di ≤ t ∀(i, j) ∈ E

d > 0.

(10)

Let d̂ be an optimal solution to (10) with value t̂ . We will prove that κ d̂ ≤ (κ∗
W)3.

First, observe that κ d̂
i j = κi j d̂ j/d̂i ≤ (κ∗

W)2κ̂i j d̂ j/d̂i ≤ (κ∗
W)2 t̂ for any (i, j) ∈ E .

Now, let d∗ > 0 be such that κd∗ = κ∗
W . The vector d∗ is a feasible solution to (10),

and so t̂ ≤ maxi
= j κ̂i j d∗
j /d∗

i ≤ maxi
= j κi j d∗
j /d∗

i = κd∗
. Hence we find that d̂ gives

a rescaling with

χ̄W D̂ ≤ nκ d̂ ≤ n(κ∗
W)3 ≤ n(χ̄W)3 ,

where we again used Theorem 2.8.
We can obtain the optimal value t̂ of (10) by solving the corresponding maximum-

mean cycle problem (see Theorem 2.12). It is easy to develop a multiplicative version
of the standard dynamic programming algorithm of the classical minimum-mean cycle
problem (see e.g. [4, Theorem 5.8]) that allows finding the optimum to (10) directly,
in the same O(n3) time.

It is left to find the labels di > 0, i ∈ [n] such that κ̂i j d j/di ≤ t̂ for all (i, j) ∈ E .
We define the following weighted directed graph. We associate the weight wi j =
log t̂ − log κ̂i j with every (i, j) ∈ E , and add an extra source vertex r with edges (r , i)
of weight wri = 0 for all i ∈ [n].

By the choice of t̂ , this graph does not contain any negative weight directed cycles.
We can compute the shortest paths from r to all nodes in O(n3) using the Bellman-
Ford algorithm; let σi be the shortest path label for i . We then set di = exp(σi). One
can avoid computing logarithms by using a multiplicative variant of the Bellman-Ford
algorithm instead.

The running time of the whole algorithm will be bounded by O(n2 m2 + n3). The
running time is dominated by the O(n2 m2) complexity of Finding- Circuits(A) and
the O(n3) complexity of solving the minimum-mean cycle problem and shortest path
computation. ��

3 A scaling-invariant layered least squares interior-point algorithm

3.1 Preliminaries on interior-point methods

In this section, we introduce the standard definitions, concepts and results from the
interior-point literature that will be required for our algorithm. We consider an LP
problem in the form (LP), or equivalently, in the subspace form (2) for W = Ker(A).
We let

P++ = {x ∈ R
n : Ax = b, x > 0} ,

123

D. Dadush et al.

D++ = {(y, s) ∈ R
m+n : A�y + s = c, s > 0} .

Recall the central path defined in (CP), with w(μ) = (x(μ), y(μ), s(μ)) denoting
the central path point corresponding to μ > 0. We let w∗ = (x∗, y∗, s∗) denote the
primal and dual optimal solutions to (LP) that correspond to the limit of the central
path for μ → 0.

For a point w = (x, y, s) ∈ P++ × D++, the normalized duality gap is μ(w) =
x�s/n.

The �2-neighborhood of the central path with opening β > 0 is the set

N (β) =
{

w ∈ P++ × D++ :
∥
∥
∥
∥

xs

μ(w)
− e

∥
∥
∥
∥ ≤ β

}

.

Furthermore, we let N (β) := cl(N (β)) denote the closure of N (β). Throughout the
paper, we will assume β is chosen from (0, 1/4]; in Algorithm 2 we use the value
β = 1/8. The following proposition gives a bound on the distance between w and
w(μ) if w ∈ N (β). See e.g., [20, Lemma 5.4], [36, Proposition 2.1].

Proposition 3.1 Let w = (x, y, s) ∈ N (β) for β ∈ (0, 1/4] and μ = μ(w), and
consider the central path point w(μ) = (x(μ), y(μ), s(μ)). For each i ∈ [n],

xi

1 + 2β
≤ 1 − 2β

1 − β
· xi ≤ xi (μ) ≤ xi

1 − β
, and

si

1 + 2β
≤ 1 − 2β

1 − β
· si ≤ si (μ) ≤ si

1 − β
.

We will often use the following proposition which is immediate from definiton of
β.

Proposition 3.2 Let w = (x, y, s) ∈ N (β) for β ∈ (0, 1/4], and μ = μ(w). Then for
each i ∈ [n]

(1 − β)
√

μ ≤ √
si xi ≤ (1 + β)

√
μ .

Proof By definition of N (�) we have for all i ∈ [n] that | xi si
μ

− 1| ≤ ‖ xs
μ

− e‖ ≤ β

and so (1 − β)μ ≤ xi si ≤ (1 + β)μ. Taking roots gives the results. ��
A key property of the central path is “near monotonicity”, formulated in the

following lemma, see [63, Lemma 16].

Lemma 3.3 Let w = (x, y, s) be a central path point for μ and w′ = (x ′, y′, s′) be
a central path point for μ′ ≤ μ. Then ‖x ′/x + s′/s‖∞ ≤ n. Further, for the optimal
solution w∗ = (x∗, y∗, s∗) corresponding to the central path limit μ → 0, we have
‖x∗/x‖1 + ‖s∗/s‖1 = n.

Proof We show that ‖x ′/x‖1 + ‖s′/s‖1 ≤ 2n for any feasible primal x ′ and dual
(y′, s′) such that (x ′)�s′ ≤ x�s = nμ; this implies the first statement with the weaker
bound 2n. For the stronger bound ‖x ′/x + s′/s‖∞ ≤ n, see the proof of [63, Lemma

123

A scaling-invariant algorithm for linear programming...

16]. Since x − x ′ ∈ W and s − s′ ∈ W ⊥, we have (x − x ′)�(s − s′) = 0. This can
be rewritten as x�s′ + (x ′)�s = x�s + (x ′)�s′. By our assumption on x ′ and s′, the
right hand side is bounded by 2nμ. Dividing by μ, and noting that xi si = μ for all
i ∈ [n], we obtain

∥
∥
∥
∥

x ′

x

∥
∥
∥
∥
1
+
∥
∥
∥
∥

s′

s

∥
∥
∥
∥
1

=
n∑

i=1

x ′
i

xi
+ s′

i

si
≤ 2n .

The second statement follows by using this to central path points (x ′, y′, s′) with
parameter μ′, and taking the limit μ′ → 0. ��

3.2 The affine scaling and layered-least-squares steps

Givenw = (x, y, s) ∈ P++ ×D++, the search directions commonly used in interior-
pointmethods are obtained as the solution (�x,�y,�s) to the following linear system
for some σ ∈ [0, 1].

A�x = 0 (11)

A��y + �s = 0 (12)

s�x + x�s = σμe − xs (13)

Predictor–corrector methods, such as the Mizuno–Todd–Ye Predictor–Corrector
(MTY P-C) algorithm [39], alternate between two types of steps. In predictor steps,
we use σ = 0. This direction is also called the affine scaling direction, and will be
denoted as �wa = (�xa,�ya,�sa) throughout. In corrector steps, we use σ = 1.
This gives the centrality direction, denoted as �wc = (�xc,�yc,�sc).

In the predictor steps, we make progress along the central path. Given the search
direction on the current iterate w = (x, y, s) ∈ N (β), the step-length is chosen such
that the line segment between the current and next steps remain in N (2β), i.e.,

αa ≤ sup{α ∈ [0, 1] : ∀α′ ∈ [0, α] : w + α′�wa ∈ N (2β)}.

Thus, we obtain a point w+ = w + αa�wa ∈ N (2β). The corrector step finds a next
iterate wc = w+ + �wc, where �wc is the centrality direction computed at w+. The
next proposition summarizes well-known properties, see e.g. [64, Section 4.5.1].

Proposition 3.4 Let w = (x, y, s) ∈ N (β) for β ∈ (0, 1/4].
(i) For the affine scaling step, we have μ(w+) = (1 − α)μ(w).
(ii) The affine scaling step-length can be chosen as

αa ≥ max

{
β√
n
, 1 − ‖�xa�sa‖

βμ(w)

}

.

(iii) For w+ ∈ N (2β) with μ(w+) > 0, let �wc be the centrality direction at w+.
Then for wc = w+ + �wc, we have μ(wc) = μ(w+) and wc ∈ N (β).

123

D. Dadush et al.

(iv) After a sequence of O(
√

nt) predictor and corrector steps, we obtain an iterate
w′ = (x ′, y′, s′) ∈ N (β) such that μ(w′) ≤ μ(w)/2t .

Minimum norm viewpoint and residualsFor any pointw = (x, y, s) ∈ P++×D++
we define

δ = δ(w) = s1/2x−1/2 ∈ R
n . (14)

With this notation, we can write (13) for σ = 0 in the form

δ�x + δ−1�s = −s1/2x1/2 . (15)

Note that for a point w(μ) = (x(μ), y(μ), s(μ)) on the central path, we have
δi (w(μ)) = si (μ)/

√
μ = √

μ/xi (μ) for all i ∈ [n]. From Proposition 3.1, we
see that if w ∈ N (β), and μ = μ(w), then for each i ∈ [n],

√
1 − 2β · δi (w(μ)) ≤ δi (w) ≤ 1√

1 − 2β
· δi (w(μ)) . (16)

Thematrix Diag(δ(w))will be often used for rescaling in the algorithm. That is, for the
current iterate w = (x, y, s) in the interior-point method, we will perform projections
in the space Diag(δ(w))W . To simplify notation, for δ = δ(w), we use Lδ

I and κδ
i j

as shorthands for LDiag(δ)W
I and κ

Diag(δ)W
i j . The subspace W = Ker(A) will be fixed

throughout.
It is easy to see from the optimality conditions that the components of the affine

scaling direction �wa = (�xa,�ya,�sa) are the optimal solutions of the following
minimum-norm problems.

�xa = argmin
�x∈Rn

{‖δ(x + �x)‖2 : A�x = 0}

(�ya,�sa) = argmin
(�y,�s)∈Rm×Rn

{‖δ−1(s + �s)‖2 : A��y + �s = 0} (17)

Following [37], for a search direction �w = (�x,�y,�s), we define the residuals
as

Rx := δ(x + �x)√
μ

, Rs := δ−1(s + �s)√
μ

. (18)

We let Rxa and Rsa denote the residuals for the affine scaling direction �wa. Hence,
the primal affine scaling direction �xa is the one that minimizes the �2-norm of the
primal residual Rxa, and the dual affine scaling direction (�ya,�sa) minimizes the
�2-norm of the dual residual Rsa. The next lemma summarizes simple properties of
the residuals, see [37].

Lemma 3.5 For β ∈ (0, 1/4] such that w = (x, y, s) ∈ N (β) and the affine scaling
direction �w = (�xa,�ya,�sa), we have

123

A scaling-invariant algorithm for linear programming...

(i)

RxaRsa = �xa�sa

μ
, Rxa + Rsa = x1/2s1/2√

μ
, (19)

(ii)

‖Rxa‖2 + ‖Rsa‖2 = n ,

(iii) We have ‖Rxa‖, ‖Rsa‖ ≤ √
n, and for each i ∈ [n], max{Rxai , Rsai } ≥ 1

2 (1−β).
(iv)

Rxa = − 1√
μ

δ−1�sa, Rsa = − 1√
μ

δ�xa .

Proof Parts (i) and (iv) are immediate from the definitions and from (11)-(13) and
(15). In part (ii), we use part (i) and (Rxa)�Rsa = 0. In part, (iii), the first statement
follows by part (ii), and the second statement follows from (i) and Proposition 3.2. ��
For a subset I ⊂ [n], we define

εaI (w) := max
i∈I

min{|Rxai |, |Rsai |} , and εa(w) := εa[n](w) . (20)

The next claim shows that for the affine scaling direction, a small ε(w) yields a
long step; see [37, Lemma 2.5].

Lemma 3.6 Let w = (x, y, s) ∈ N (β) for β ∈ (0, 1/4]. Then the affine scaling step
can be chosen such that

μ(w + αa�wa)

μ(w)
≤ min

{

1 − β√
n
,
2
√

nεa(w)

β

}

.

Proof Let ε := εa(w). From Lemma 3.5(i), we get ‖�xa�sa‖/μ = ‖RxaRsa‖. We
can bound ‖RxaRsa‖ ≤ ε(‖Rxa‖+‖Rsa‖) ≤ 2ε

√
n, where the latter inequality follows

by Lemma 3.5(iii). From Proposition 3.4(ii), we get αa ≥ max{β/
√

n, 1− 2
√

nε/β}.
The claim follows by part (i) of the same proposition. ��

3.2.1 The layered-least-squares direction

Let J = (J1, J2, . . . , Jp) be an ordered partition of [n].2 For k ∈ [p], we use the
notations J<k := J1 ∪ . . . ∪ Jk−1, J>k := Jk+1 ∪ . . . ∪ Jp, and similarly J≤k and
J≥k . We will also refer to the sets Jk as layers, and J as a layering. Layers with lower
indices will be referred to as ‘higher’ layers.

2 In contrast to how ordered partitions were defined in [37], we use the term ordered only to the p-tuple
(J1, . . . , Jp), which is to be viewed independently of δ.

123

D. Dadush et al.

Given w = (x, y, s) ∈ P++ ×D++, and the layering J , the layered-least-squares
(LLS) direction is defined as follows. For the primal direction, we proceed backwards,
with k = p, p − 1, . . . , 1. Assume the components on the lower layers �x llJ>k

have
already been determined. We define the components in Jk as the coordinate projection
�x llJk

= πJk (Xk), where the affine subspace Xk is defined as the set of minimizers

Xk := argmin
�x∈Rn

{∥
∥δJk (xJk + �xJk)

∥
∥2 : A�x = 0,�xJ>k = �x llJ>k

}
. (21)

Thedual direction�sll is determined in the forwardorder of the layers k = 1, 2, . . . , p.
Assume we already fixed the components �sllJ<k

on the higher layers. Then, �sllJk
=

πJk (Sk) for

Sk = argmin
�s∈Rn

{∥
∥
∥δ−1

Jk
(sJk + �sJk)

∥
∥
∥
2 : ∃y ∈ R

m , A��y + �s = 0, �sJ<k = �sllJ<k

}

.

(22)

The component �yll is obtained as the optimal �y for the final layer k = p. We use
the notation Rxll and εll(w) analogously to the affine scaling direction. This search
direction was first introduced in [63].

The affine scaling direction is a special case for the single element partition. In this
case, the definitions (21) and (22) coincide with those in (17).

3.3 Overview of ideas and techniques

A key technique in the analysis of layered least-squares algorithms [28, 36, 63] is
to argue about variables that have ‘converged’. According to Proposition 3.1 and
Lemma 3.3, for any iterate w = (x, y, s) ∈ N (β) and the limit optimal solution
w∗ = (x∗, y∗, s∗), the bounds x∗

i ≤ O(n)xi and s∗
i ≤ O(n)si hold. We informally

say that xi (or si) has converged, if xi ≤ O(n)x∗
i (si ≤ O(n)s∗

i) hold for the current
iterate. Thus, the value of xi (or si) remains within a multiplicative factor O(n2)

for the rest of the algorithm. Note that if μ > μ′ and xi has converged at μ, then
si (μ

′)/si (μ)
μ′/μ ∈

[
1

O(n2)
, O(n2)

]
; thus, si keeps “shooting down” with the central path

parameter.

Converged variables in the affine scaling algorithm Let us start by showing that at
any point of the algorithm, at least one primal or dual variable has converged.

Suppose for simplicity that our current iterate is exactly on the central path, i.e., that
xs = μe. This assumption will be maintained throughout this overview. In this case,
the residuals can be simply written as Rxa = (x +�xa)/x , Rsa = (s +�sa)/s. Recall
from (17) that the affine scaling direction corresponds to minimizing the residuals Rxa

and Rsa. From this choice, we see that

∥
∥
∥
∥

x∗

x

∥
∥
∥
∥ ≥

∥
∥
∥
∥

x + �xa

x

∥
∥
∥
∥ ,

∥
∥
∥
∥

s∗

s

∥
∥
∥
∥ ≥

∥
∥
∥
∥

s + �sa

s

∥
∥
∥
∥ . (23)

123

A scaling-invariant algorithm for linear programming...

We have ‖Rxa‖2 +‖Rsa‖2 = n by Lemma 3.5(ii). Let us assume ‖Rxa‖2 ≥ n/2; thus,
there exists a i ∈ [n] such that x∗

i ≥ xi/
√
2. In other words, just by looking at the

residuals, we get the guarantee that a primal or a dual variable has already converged.
Based on the value of the residuals, we can guarantee this to be a primal or a dual
variable, but cannot identify which particular xi or si this might be.

For ‖Rxa‖2 ≥ n/2, a primal variable has already converged before performing
the predictor and corrector steps. We now show that even if ‖Rxa‖ is small, a primal
variable will have converged after a single iteration. From (23), we see that there is
an index i with x∗

i /xi ≥ ‖Rxa‖/√n.
Furthermore, Proposition 3.4(ii) and Lemma 3.5 imply that 1 − α ≤

‖Rxa‖ · ‖Rsa‖/β ≤ √
n‖Rxa‖/β, since ‖Rsa‖ ≤ √

n. The predictor step moves to

x+ := x + α�xa = (1 − α)x + α(x + �xa). Hence, x+ ≤
(√

n‖Rxa‖
β

+ ‖Rxa‖
)

x .

Putting the two inequalities together, we learn that x+
i ≤ O(n)x∗

i for some i ∈ [n].
Since w+ = (x+, y+, s+) ∈ N (2β), Proposition 3.1 implies that xi will have con-
verged after this iteration. An analogous argument proves that some s j will also have
converged after the iteration. We again emphasize that the argument only shows the
existence of converged variables, but we cannot identify them in general.

Measuring combinatorial progress Tying the above together, we find that after a
single affine scaling step, at least one primal variable xi and at least one dual variable

s j has converged. This means that for any μ′ < μ,
xi (μ

′)/x j (μ
′)

xi (μ)/x j (μ)
∈
[

μ

O(n4)μ′ ,
O(n4)μ

μ′
]
;

thus, the ratio of these variables keeps asymptotically increasing. The xi/x j ratios
serve as the main progress measure in the Vavasis–Ye algorithm. If xi/x j is between
1/(poly(n)χ̄) and poly(n)χ̄ before the affine scaling step for the pair of converged
variables xi and s j , then after poly(n) log χ̄ iterations, the xi/x j ratio must leave this
interval and never return. Thus, we obtain a ‘crossover-event’ that cannot again occur
for the same pair of variables. In the affine scaling algorithm, there is no guarantee
that xi/x j falls in such a bounded interval for the converging variables xi and s j ; in
particular, we may obtain the same pairs of converged variables after each step.

The main purpose of layered-least-squares methods is to proactively force that in
every certain number of iterations, some ‘bounded’ xi/x j ratios become ‘large’ and
remain so for the rest of the algorithm.

In our approach, the first main insight is to focus on the scaling invariant quanti-
ties κW

i j xi/x j instead. For simplicity’s sake, we first present the algorithm with the

assumption that all values κW
i j are known. We will then explain how this assumption

can be removed by using gradually improving estimates on the values.
The combinatorial progress will be observed in the ‘long edge graph’. For a primal-

dual feasible point w = (x, y, s) and σ = 1/O(n6), this is defined as Gw,σ =
([n], Ew,σ) with edges (i, j) such that κW

i j xi/x j ≥ σ . Observe that for any i, j ∈ [n],
at least one of (i, j) and (j, i) are long edges: this follows since for any circuit C with
i, j ∈ C , we get lower bounds |gC

j /gC
i | ≤ κW

i j and |gC
i /gC

j | ≤ κW
ji .

Intuitively, our algorithm will enforce the following two types of events. The anal-
ysis in Sect. 4 is based on a potential function analysis capturing roughly the same
progress.

123

D. Dadush et al.

j

P
ri
m
al x

x∗

J1 J2 J3

i j

D
ua

l s

s∗

J1 J2 J3

i

j

i

j

P
ri
m
al x

x∗

J1 J2 J3

i jD
ua

l s

s∗

J1 J2 J3

i

j

i

j

P
ri
m
al x

x∗

J1 J2 J3

i
jD

ua
l s

s∗

J1 J2 J3

i j

Fig. 1 Top-down we have a chart of primal/dual variables and the estimated subgraph of the circuit ratio
digraph (Definition 3.11) for three different iterations: 1) All variables except xi are far away from their
optimal values. 2) On J1 there is a primal variable (i) and dual variable (j) that have converged, i.e. xi is
close to x∗

i and si is close to s∗
i . 3) j moves to layer J2 due to a change in the underlying subgraph of the

circuit ratio digraph

• For an iterate w and a value μ > 0, we have i, j ∈ [n] in a strongly connected
component in Gw,σ of size ≤ τ , and for any iterate w′ with μ(w′) > μ, if i, j are
in a strongly connected component of Gw′,σ then this component has size ≥ 2τ .

• For an iterate w and a value μ > 0, we have (i, j) /∈ Ew,σ , and for any iterate w′
with μ(w′) > μ we have (i, j) ∈ Ew′,σ .

At most O(n2 log n) such events can happen overall, so if we can prove that on average
an event will happen every O(

√
n log(χ̄∗

A +n)) iterations or the algorithm terminates,
then we have the desired convergence bound of O(n2.5 log(n) log(χ̄∗

A +n)) iterations.

Converged variables cause combinatorial progressWenowshow that combinatorial
progress as above must happen in the affine scaling step in the case when the graph
Gw,σ is strongly connected. As noted above, for the pair of converged variables xi and
s j after the affine scaling step, xi/x j , and thus κW

i j xi/x j , will asymptotically increase

by a factor 2 in every O(
√

n) iterations.
By the strong connectivity assumption, there is a directed path in the long edge

graph from i to j of length at most n − 1. Each edge has length at least σ , and by
the cycle characterization (Theorem 2.12) we know that (κW

ji x j/xi) · σ n−1 ≤ (κ∗
W)n .

123

A scaling-invariant algorithm for linear programming...

As such, κW
ji x j/xi ≤ (κ∗

W)n/σ n−1. Since κW
i j κW

ji ≥ 1, we obtain the lower bound

κW
i j xi/x j ≥ σ n−1/(κ∗

W)n .

This means that after O(
√

n log((κ∗
W /σ)n)) = O(n1.5 log(κ∗

W + n)) affine scaling
steps, the weight of the edge (i, j) will be more than (κ∗

W /σ)4n . There can never
again be a length n or shorter path from j to i in the long edge graph, for otherwise
the resulting cycle would violate Theorem 2.12. Moreover, by the triangle inequality
(Lemma 2.15), any other k
= i, j will have either (i, k) or (k, j) of length at least
(κ∗

W /σ)2n , similarly causing a pair of variables to never again be in the same connected
component. As such, we took O(n1.5 log(κ∗

W +n)) affine scaling steps and in that time
at least n − 1 combinatorial progress events have occured.

The layered least squares step Similarly to the Vavasis–Ye algorithm [63] and sub-
sequent literature, our algorithm is a predictor–corrector method using layered least
squares (LLS) steps as in Sect. 3.2.1 for certain predictor iterations. Our algorithm
(Algorithm 2) uses LLS steps only sometimes, and most steps are the simpler affine
scaling steps; but for simplicity of this overview, we can assume every predictor
iteration uses an LLS step.

We define the ordered partitionJ = (J1, J2, . . . , Jp) corresponding to the strongly
connected components in topological ordering. Recalling that either (i, j) or (j, i) is
a long edge for every pair i, j ∈ [n], this order is unique and such that there is a
complete directed graph of long edges from every Jk to Jk′ for 1 ≤ k < k′ ≤ p.

The first important property of the LLS step is that it is very close to the
affine scaling step. In Sect. 3.4.1, we introduce the partition lifting cost �W (J) =
max2≤k≤p �W (J≥k) as the cost of lifting from lower to higher layers; we let �1/x (J)

be a shorthand for �Diag(1/x)W (J). Note that this same rescaling is used for the affine
scaling step in (17), since δ = √

μ/x if w is on the central path. In Lemma 3.10(ii),
we show that for a small partition lifting cost, the LLS residuals will remain near the
affine scaling residuals. Namely,

‖Rxll − Rxa‖, ‖Rsll − Rsa‖ ≤ 6n3/2�1/x (J) .

Recall that the LLS residuals can be written as Rxll = (x + �x ll)/x , Rsll = (s +
�sll)/s for a point on the central path. For J defined as above, Lemma 2.11 yields
�1/x (J) ≤ n maxi∈J>k , j∈J≤k ,k∈[p] κW

i j xi/x j . This will be sufficiently small as this
maximum is taken over ‘short’ edges (not in Ew,σ).

A second, crucial property of the LLS step is that it “splits” our LP into p separate
LPs that have “negligible” interaction. Namely, the direction (�x llJk

,�sllJk
) will be

very close to the affine scaling step obtained in the problem restricted to the subspace
WJ ,k = {xJk : x ∈ W , xJ>k = 0} (Lemma 3.10(i))

Since each component Jk is strongly connected in the long edge graph Gw,σ , if
there is at least one primal xi and dual s j in Jk that have converged after the LLS
step, we can use the above argument to show combinatorial progress regarding the
κW

i j xi/x j value (Lemma 4.3).
Exploiting the proximity between the LLS and affine scaling steps, Lemma 3.10(iv)

gives a lower bound on the step size α ≥ 1 − 3
√

n
β

maxi∈[n] min{|Rxlli |, |Rslli |}. Let Jk

123

D. Dadush et al.

be the component where min{‖RxllJk
‖, ‖RsllJk

‖} is the largest. Hence, the step size α

can be lower bounded in terms of min{‖RxllJk
‖, ‖RsllJk

‖}.
The analysis nowdistinguishes twocases.Letw+ = w+α�sll be thepoint obtained

by the predictor LLS step. If the corresponding partition lifting cost �1/x+
(J) is still

small, then a similar argument that has shown the convergence of primal and dual
variables in the affine scaling step will imply that after the LLS step, at least one
xi and one s j will have converged for i, j ∈ Jk . Thus, in this case we obtain the
combinatorial progress (Lemma 4.4).

The remaining case is when �1/x+
(J) becomes large. In Lemma 4.5, we show that

in this case a new edge will enter the long edge graph, corresponding to the second
combinatorial event listed previously. Intuitively, in this case one layer “crashes” into
another.

Refined estimates on circuit imbalances In the above overview, we assumed the
circuit imbalance values κW

i j are given, and thus the graph Gw,σ is available. Whereas
these quantities are difficult to compute, we can naturally work with lower estimates.
For each i, j ∈ [n] that are contained in a circuit together, we start with the lower
bound κ̂W

i j = |gC
j /gC

i | obtained for an arbitrary circuit C with i, j ∈ C . We use the

graph Ĝw,σ = ([n], Êw,σ) corresponding to these estimates. Clearly, Êw,σ ⊆ Ew,σ ,
but some long edges may be missing. We determine the partition J of the strongly
connected components of Ĝw,σ and estimate the partition lifting cost �1/x (J). If this
is below the desired bound, the argument works correctly. Otherwise, we can identify
a pair i, j responsible for this failure. Namely, we find a circuit C with i, j ∈ C such
that κ̂W

i j < |gC
j /gC

i |. In this case, we update our estimate, and recompute the partition;
this is described in Algorithm 1. At each LLS step, the number of updates is bounded
by n, since every update leads to a decrease in the number of partition classes. This
finishes the overview of the algorithm.

3.4 A linear system viewpoint of layered least squares

We now continue with the detailed exposition of our algorithm. We present an equiva-
lent definition of the LLS step introduced in Sect. 3.2.1, generalizing the linear system
(12)–(13). We use the subspace notation. With this notation, (12)–(13) for the affine
scaling direction can be written as

s�xa + x�sa = −xs , �xa ∈ W , and �sa ∈ W ⊥ , (24)

which is further equivalent to δ�xa + δ−1�sa = −x1/2s1/2.
Given the layering J and w = (x, y, s), for each k ∈ [p] we define the subspaces

WJ ,k := {xJk : x ∈ W , xJ>k = 0} and W ⊥
J ,k := {xJk : x ∈ W ⊥, xJ<k = 0} .

We emphasize that WJ ,k and W ⊥
J ,k live on the variables in layer k. That is,

WJ ,k, W ⊥
J ,k ⊆ R

Jk . It is easy to see that these two subspaces are orthogonal comple-

ments. Our next goal is to show that, analogously to (24), the primal LLS step �x ll is

123

A scaling-invariant algorithm for linear programming...

obtained as the unique solution to the linear system

δ�x ll + δ−1�s = −x1/2s1/2 , �x ll ∈ W , and �s ∈ W ⊥
J ,1 × · · · × W ⊥

J ,p ,

(25)

and the dual LLS step �sll is the unique solution to

δ�x + δ−1�sll = −x1/2s1/2 , �x ∈ WJ ,1 × · · · × WJ ,p , and �sll ∈ W ⊥ .

(26)

It is important to note that �s in (25) may be different from �sll, and �x in (26) may
be different from �x ll. In fact, �sll = �s and �x ll = �x can only be the case for
the affine scaling step.

The following lemma proves that the above linear systems are indeed uniquely
solved by the LLS step.

Lemma 3.7 For t ∈ R
n, W ⊆ R

n, δ ∈ R
n++, and J = (J1, J2, . . . , Jp), let w =

LLSW ,δ
J (t) be defined by

δw + δ−1v = δt, w ∈ W , v ∈ W ⊥
J ,1 × · · · × W ⊥

J ,p.

Then LLSW ,δ
J (t) is well-defined and

∥
∥δJk (tJk − wJk)

∥
∥ = min

{∥
∥δJk (tJk − z Jk)

∥
∥ : z ∈ W , z J>k = wJ>k

}

for every k ∈ [p].
In the notation of the above lemma we have, for ordered partitions J =
(J1, J2, . . . , Jp), J̄ = (Jp, Jp−1, . . . , J1), and (x, y, s) ∈ P++ × D++ with

δ = s1/2x−1/2, that �x ll = LLSW ,δ
J (−x) and �sll = LLSW⊥,δ−1

J̄ (−s).

Proof of Lemma 3.7 We first prove the equality W ∩ (W ⊥
J ,1 ×· · ·× W ⊥

J ,p) = {0}, and
by a similar argument we have W ⊥ ∩ (WJ ,1 × · · · × WJ ,p) = {0}. By duality, this
last equality tells us that

(W ⊥ ∩ (WJ ,1 × · · · × WJ ,p))
⊥ = W + (W ⊥

J ,1 × · · · × W ⊥
J ,p) = R

n .

Thus, the linear decomposition defining LLSW ,δ
J (t) has a solution and its solution is

unique.
Suppose y ∈ W ∩ (W ⊥

J ,1 × · · · × W ⊥
J ,p). We prove yJk = 0 by induction on

k, starting at k = p. The induction hypothesis is that yJ>k = 0, which is an empty
requirement when k = p. The hypothesis yJ>k = 0 together with the assumption
y ∈ W is equivalent to y ∈ W ∩ R

n
J≤k

, and implies yJk ∈ πJk (W ∩ R
n
J≤k

) := WJ ,k .

Since we also have yJk ∈ W ⊥
J ,k by assumption, which is the orthogonal complement

123

D. Dadush et al.

of WJ ,k , we must have yJk = 0. Hence, by induction y = 0. This finishes the proof
that LLSW ,δ

J (t) is well-defined.
Next we prove thatw is a minimizer of min

{∥
∥δJk (tJk − z Jk)

∥
∥ : z ∈ W , z J>k = wJ>k

}
. The

optimality condition is for δJk (tJk −z Jk) to be orthogonal to δJk u for any u ∈ WJ ,k . By
the LLS equation, we have δJk (tJk − wJk) = δ−1

Jk
vJk , where vJk ∈ W ⊥

J ,k . Noting then

that 〈δJk u, δ−1
Jk

v〉 = 〈u Jk , vJk 〉 = 0 for u ∈ WJ ,k , the optimality condition follows
immediately. ��

With these tools, we can prove that the lifting costs are self-dual. This explains the
reverse order in the dual vs primal LLS step and justifies our attention on the lifting
cost in a self-dual algorithm. The next proposition generalizes the result of [18].

Proposition 3.8 (Proof in Sect. 5)For a linear subspace W ⊆ R
n and index set I ⊆ [n]

with J = [n]\I ,

‖LW
I ‖ ≤ max{1, ‖LW⊥

J ‖}.

In particular, �W (I) = �W⊥
(J).

Wedefer the proof to Sect. 5.Note that this proposition also implies Proposition 2.1(iv).

3.4.1 Partition lifting scores

Akey insight is that if the layeringJ is “well-separated”, then we indeed have x�sll+
s�x ll ≈ −xs, that is, the LLS direction is close to the affine scaling direction. This
will be shown in Lemma 3.10. The notion of “well-separatedness” can be formalized
as follows. Recall the definition of the lifting score (4). The lifting score of the layering
J = (J1, J2, . . . , Jp) of [n] with respect to W is defined as

�W (J) := max
2≤k≤p

�W (J≥k) .

For δ ∈ R
n++, we use �W ,δ(I) := �Diag(δ)W (I) and �W ,δ(J) := �Diag(δ)W (J). When

the context is clear, we omit W and write �δ(I) := �W ,δ(I) and �δ(J) := �W ,δ(J).
The following important duality claim asserts that the lifting score of a layering

equals the lifting score of the reverse layering in the orthogonal complement subspace.
It is an immediate consequence of Proposition 3.8.

Lemma 3.9 Let W ⊆ R
n be a linear subspace, δ ∈ R

n++. For an ordered partition J =
(J1, J2, . . . , Jp), let J̄ = (Jp, Jp−1, . . . , J1) denote the reverse ordered partition.
Then, we have

�W ,δ(J) = �W⊥,δ−1
(J̄).

Proof Let U = Diag(δ)W . Note that U⊥ = Diag(δ−1)W ⊥. Then by Proposition 3.8,
for 2 ≤ k ≤ p, we have that

�W ,δ(J≥k) = �U (J≥k) = �U⊥
(J≤k−1) = �U⊥

(J̄≥p−k+2) = �W⊥,δ−1
(J̄≥p−k+2).

123

A scaling-invariant algorithm for linear programming...

In particular, �W ,δ(J) = �W⊥,δ−1
(J̄), as needed. ��

The next lemma summarizes key properties of the LLS steps, assuming the partition
has a small lifting score. We show that if �δ(J) is sufficiently small, then on the one
hand, the LLS step will be very close to the affine scaling step, and on the other hand,
on each layer k ∈ [p], it will be very close to the affine scaling step restricted to this
layer for the subspace WJ ,k . The proof is deferred to Sect. 5.

Lemma 3.10 (Proof on p. 46) Let w = (x, y, s) ∈ N (β) for β ∈ (0, 1/4], let μ =
μ(w) and δ = δ(w). Let J = (J1, . . . , Jp) be a layering with �δ(J) ≤ β/(32n2),
and let �wll = (�x ll,�yll,�sll) denote the LLS direction for the layering J . Let
furthermore εll(w) = maxi∈[n] min{|Rxlli |, |Rslli |}, and define the maximal step length
as

α∗ := sup{α′ ∈ [0, 1] : ∀ᾱ ∈ [0, α′] : w + ᾱ�wll ∈ N (2β)} .

Then the following properties hold.

(i) We have

‖δJk �x llJk
+ δ−1

Jk
�sllJk

+ x1/2Jk
s1/2Jk

‖ ≤ 6n�δ(J)
√

μ , ∀k ∈ [p], and (27)

‖δ�x ll + δ−1�sll + x1/2s1/2‖ ≤ 6n3/2�δ(J)
√

μ . (28)

(ii) For the affine scaling direction �wa = (�xa,�ya,�sa),

‖Rxll − Rxa‖, ‖Rsll − Rsa‖ ≤ 6n3/2�δ(J) .

(iii) For the residuals of the LLS steps we have ‖Rxll‖, ‖Rsll‖ ≤ √
2n. For each

i ∈ [n], max{|Rxlli |, |Rslli |} ≥ 1
2 − 3

4β.
(iv) We have

α∗ ≥ 1 − 3
√

nεll(w)

β
, (29)

and for any α ∈ [0, 1]

μ(w + α�wll) = (1 − α)μ,

(v) We have εll(w) = 0 if and only if α∗ = 1. These are further equivalent to
w + �wll = (x + �x ll, y + �yll, s + �sll) being an optimal solution to (LP).

3.5 The layering procedure

Our algorithm performs LLS steps on a layering with a low lifting score. A further
requirement is that within each layer, the circuit imbalances κδ

i j defined in (6) are
suitably bounded. The rescaling here is with respect to δ = δ(w) for the current iterate

123

D. Dadush et al.

w = (x, y, s). To define the precise requirement on the layering, we first introduce an
auxiliary graph. Throughout we use the parameter

γ := β

210n5
. (30)

The auxiliary graph For a vector δ ∈ R
n++ and σ > 0, we define the directed graph

Gδ,σ = ([n], Eδ,σ) such that (i, j) ∈ Eδ,σ if κδ
i j ≥ σ . This is a subgraph of the circuit

ratio digraph studied in Sect. 2, including only the edges where the circuit ratio is at
least the threshold σ . Note that we do not have direct access to this graph, as we cannot
efficiently compute the values κδ

i j .
At the beginning of the entire algorithm, we run the subroutine Find- Circuits(A)

as in Theorem 2.14, where W = Ker(A). We assume the matroid M(A) is non-
separable. For a separable matroid, we can solve the subproblems of our LP on the
components separately. Thus, for each i
= j , i, j ∈ [n], we obtain an estimate
κ̂i j ≤ κi j . These estimates will be gradually improved throughout the algorithm.

Note that κδ
i j = κi jδ j/δi and κ̂δ

i j = κ̂i jδ j/δi . If κ̂δ
i j ≥ σ , then we are guaranteed

(i, j) ∈ Eδ,σ .

Definition 3.11 Define Ĝδ,σ = ([n], Êδ,σ) to be the directed graph with edges (i, j)
such that κ̂δ

i j ≥ σ ; clearly, Ĝδ,σ is a subgraph of Gδ,σ .

Lemma 3.12 Let δ ∈ R
n++. For every i
= j , i, j ∈ [n], κ̂δ

i j · κ̂δ
j i ≥ 1. Consequently,

for any 0 < σ ≤ 1, at least one of (i, j) ∈ Êδ,σ or (j, i) ∈ Êδ,σ .

Proof We show that this property holds at the initialization. Since the estimates can
only increase, it remains true throughout the algorithm. Recall the definition of κ̂i j

from Theorem 2.14. This is defined as the maximum of |g j/gi | such that g ∈ W ,
supp(g) = C for some C ∈ Ĉ containing i and j . For the same vector g, we get
κ̂ j i ≥ |gi/g j |. Consequently, κ̂i j · κ̂ j i ≥ 1, and also κ̂δ

i j · κ̂δ
j i ≥ 1. The second claim

follows by the assumption σ ≤ 1. ��

Balanced layerings We are ready to define the requirements on the layering in the
algorithm. In the algorithm, δ = δ(w) will correspond to the scaling of the current
iterate w = (x, y, s).

Definition 3.13 Let δ ∈ R
n++. The layeringJ = (J1, J2, . . . , Jp) of [n] is δ-balanced

if

(i) �δ(J) ≤ γ , and
(ii) Jk is strongly connected in Gδ,γ /n for all k ∈ [p].

The following lemma shows that within each layer, the κδ
i j values are within a

bounded range. This will play an important role in our potential analysis.

Lemma 3.14 Let 0 < σ < 1 and t > 0, and i, j ∈ [n], i
= j .

123

A scaling-invariant algorithm for linear programming...

(i) If the graph Gδ,σ contains a directed path of at most t − 1 edges from j to i ,
then

κδ
i j <

(
κ∗

σ

)t

.

(ii) If Gδ,σ contains a directed path of at most t − 1 edges from i to j , then

κδ
i j >

(σ

κ∗
)t

.

Proof For part (i), let j = i1, i2, . . . , ih = i be a path in Gδ,σ in J from j to i with
h ≤ t . That is, κδ

i�i�+1
≥ σ for each � ∈ [h]. Theorem 2.12 yields

(κ̄∗)t ≥ κδ
i j · σ h−1 > κδ

i j · σ t ,

since h ≤ t and σ < 1. Part (ii) follows using part (i) for j and i , and that κδ
i j · κδ

j i ≥ 1
according to Lemma 3.12. ��
Description of the layering subroutine Consider an iterate w = (x, y, s) ∈ N (β)

of the algorithm with δ = δ(w), The subroutine Layering(δ, κ̂), described in Algo-
rithm 1, constructs a δ-balanced layering. We recall that the approximated auxilliary
graph Ĝδ,γ /n with respect to κ̂ is as in Definition 3.11

Algorithm 1: Layering(δ, κ̂)
Input : δ ∈ R

n++ and κ̂ ∈ R
E++.

Output: δ-balanced layering J = (J1, . . . , Jp) and updated values κ̂ ∈ R
E++.

1 Compute the strongly connected components C1, C2, . . . , C� of Ĝδ,γ /n , listed in the ordering

imposed by Ĝδ,γ /n ;

2 Ē ← Êδ,γ /n ;
3 for k = 2, . . . , � do
4 Call Verify- Lift(Diag(δ)W , C≥k , γ) that answers ‘pass’ or ‘fail’;
5 if the answer is ‘fail’ then
6 Let i ∈ C≥k , j ∈ C<k , and t be the output of Verify- Lift such that γ /n ≤ t ≤ κδ

i j ;

7 κ̂i j ← tδi /δ j ;
8 Ē ← Ē ∪ {(i, j)};
9 Compute strongly connected components J1, J2, . . . , Jp of ([n], Ē), listed in the ordering imposed

by Ĝδ,γ /n ;
10 return J = (J1, J2, . . . , Jp), κ̂ .

Wenow give an overview of the subroutine Layering(δ, κ̂).We start by computing
the strongly connected components (SCCs) of the directed graph Ĝδ,γ /n . The edges of
this graph are obtained using the current estimates κ̂δ

i j . According to Lemma 3.12, we

have (i, j) ∈ Êδ,γ /n or (j, i) ∈ Êδ,γ /n for every i, j ∈ [n], i
= j . Hence, there is a

123

D. Dadush et al.

linear ordering of the components C1, C2, . . . , C� such that (u, v) ∈ Êδ,γ /n whenever
u ∈ Ci , v ∈ C j , and i < j . We call this the ordering imposed by Ĝδ,γ /n .

Next, for each k = 2, . . . , �, we use the subroutine Verify-
Lift(Diag(δ)W , C≥k, γ) described in Lemma 2.11. If the subroutine returns ‘pass’,
then we conclude �δ(C≥k) ≤ γ , and proceed to the next layer. If the answer is
‘fail’, then the subroutine returns as certificates i ∈ C≥k , j ∈ C<k , and t such that
γ /n ≤ t ≤ κδ

i j . In this case, we update κ̂δ
i j to the higher value t . We add (i, j) to

an edge set Ē ; this edge set was initialized to contain Êδ,γ /n . After adding (i, j), all
components C� between those containing i and j will be merged into a single strongly
connected component. To see this, recall that if i ′ ∈ C� and j ′ ∈ C�′ for � < �′, then
(i ′, j ′) ∈ Êδ,γ /n according to Lemma 3.12.

Finally, we compute the strongly connected components of ([n], Ē). We let
J1, J2, . . . , Jp denote their unique acyclic order, and return these layers.

Lemma 3.15 The subroutine Layering(δ, κ̂) returns a δ-balanced layering in
O(nm2 + n2) time.

The difficult part of the proof is showing the running time bound. We note that the
weaker bound O(n2m2) can be obtained by a simpler argument.

Proof We first verify that the output layering is indeed δ-balanced. For property (i)
of Definition 3.13, note that each Jq component is the union of some of the Ck’s.
In particular, for every q ∈ [p], the set J≥q = C≥k for some k ∈ [�]. Assume now
�δ(C≥k) > γ . At step k of the main cycle, the subroutine Verify- Lift returned the
answer ‘fail’, and a new edge (i, j) ∈ E was added with i ∈ C≥k , j ∈ C<k . Note that
we already had (j, i) ∈ Êδ,γ /n , since j ∈ Cr for some r < k, and i ∈ Cr ′ for r ′ ≥ k.
This contradicts the choice of J≥q as a maximal strongly connected component in
([n], E).

Property (ii) follows since all new edges added to E have κi j ≥ γ /n. Therefore,
([n], E) is a subgraph of Gδ,γ /n .

Let us now turn to the computational cost. The initial strongly-connected compo-
nents can be obtained in time O(n2), and the same bound holds for the computation of
the final components. (The latter can be also done in linear time, exploiting the special
structure that the components Ci have a complete linear ordering.)

The second computational bottleneck is the subroutine Verify- Lift. We assume
a matrix M ∈ R

n×(n−m) is computed at the very beginning such that range(M) = W .
We first explain how to implement one call toVerify- Lift in O(n(n −m)2) time.We
then sketch how to amortize the work across the different calls toVerify- Lift, using
the nested structure of the layering, to implement thewhole procedure in O(n(n−m)2)

time. To turn this into O(nm2), we recall that the layering procedure is the same for
W and W ⊥ due to duality (Proposition 3.8). Since dim(W ⊥) = m, applying this
subroutine on W ⊥ instead of W achieves the same result but in time O(nm2).

We now explain the implementation of Verify- Lift, where we are given as input
C ⊆ [n] and the basis matrix M ∈ R

n×(n−m) as above with range(M) = W . Clearly,
the running time is dominated by the computation of the set I ⊆ C and the matrix
B ∈ R

([n]\C)×|I | satisfying LW
C (x)[n]\C = BxI , for x ∈ πC (W). We explain how

to compute I and B from M using column operations (note that these preserve the

123

A scaling-invariant algorithm for linear programming...

range). The valid choices for I ⊆ C are in correspondence with maximal sets of
linear independent rows of MC,•, noting then that |I | = r where r := rk(MC,•).
Let D1 = [n − m − r] and D2 = [n − m]\[n − m − r]. By applying columns
operations to M , we can compute I ⊆ C such that MI ,D2 = Ir (r × r identity)
and MC,D1 = 0. This requires O(n(n − m)|C |) time using Gaussian elimination. At
this point, note that πC (W) = range(MC,D2), πI (W) = R

I and range(M•,D1) =
W ∩ R

n
[n]\C . To compute B, we must transform the columns of M•,D2 into minimum

norm lifts of ei ∈ πI (W) into W , for all i ∈ I . For this purpose, it suffices to make the
columns of M[n]\C,D2 orthogonal to the range of M[n]\C,D1 . Applying Gram-Schmidt
orthogonalization, this requires O((n − |C |)(n − m)(n − m − r)) time. From here,
the desired matrix B = M[n]\C,D2 . Thus, the total running time of Verify- Lift is
O(n(n − m)|C | + (n − |C |)(n − m)(n − m − r)) = O(n(n − m)2).

We now sketch how to amortize the work of all the calls of Verify- Lift during
the layering algorithm, to achieve a total O(n(n − m)2) running time. Let C1, . . . , C�

denote the candidate SCC layering. Our task is to compute thematrices Bk , 2 ≤ k ≤ �,
needed in the calls toVerify- Lift on W , C≥k , 2 ≤ k ≤ �, in total O(n(n−m)2) time.
We achieve this in three steps working with the basis matrix M as above. Firstly, by
applying column operations to M , we compute sets Ik ⊆ Ck and Dk = [|I≤k |]\[|I<k |],
k ∈ [�], such that MIk ,Dk = Irk , where rk = |Ik |, and MC≥k ,D<k = 0, 2 ≤ k ≤ �. Note

that this enforces
∑�

k=1 rk = (n − m). This computation requires O(n(n − m)2) time
using Gaussian elimination. This computation achieves range(MCk ,Dk) = πCk (W ∩
R

n
C≤k

), range(MC≥k ,D≥k) = πC≥k (W) and range(M•,D≤k) = W ∩R
n
C≤k

, for all k ∈ [�].
From here, we block orthogonalize M , such that the columns of M•,Dk are orthog-

onal to the range of M•,D<k , 2 ≤ k ≤ �. Applying an appropriately adapted
Gram-Schmidt orthogonalization, this requires O(n(n − m)2) time. Note that this
operation maintains MIk ,Dk = Irk , k ∈ [�], since MC≥k ,D<k = 0. At this point, for
k ∈ [�] the columns of M•,Dk are in correspondence with minimum norm lifts of
ei ∈ πD≥k (W) into W , for all i ∈ Ik . Note that to compute the matrix Bk we need the
lifts of ei ∈ πD≥k (W), for all i ∈ I≥k instead of just i ∈ Ik .

We now compute the matrices B�, . . . , B2 in this order via the following iterative
procedure. Let k denote the iteration counter, which decrements from � to 2. For
k = � (first iteration), we let B� = MC<�,D�

and decrement k. For k < �, we eliminate
the entries of MIk ,D>k by using the columns of M•,Dk . We then let Bk = MC<k ,D≥k

and decrement k. To justify correctness, one only has to notice that at the end of
iteration k, we maintain the orthogonality of M•,D≥k to the range of M•,D<k and that
MI≥k ,D≥k = I|I≥k | is the appropriate identity. The cost of this procedure is the same as
a full run of Gaussian elimination and thus is bounded by O(n(n − m)2). The calls to
Verify- Lift during the layering procedure can thus be executed in O(n(n − m)2))

amortized time as claimed. ��

3.6 The overall algorithm

Algorithm 2 presents the overall algorithm LP- Solve(A, b, c, w0). We assume that
an initial feasible solution w0 = (x0, y0, s0) ∈ N (β) is given. We address this in
Sect. 7, by adapting the extended system used in [63]. We note that this subroutine

123

D. Dadush et al.

Algorithm 2: LP- Solve(A, b, c, w0)

Input : A ∈ R
m×n , b ∈ R

m , c ∈ R
n , and an initial feasible solution w0 = (x0, y0, s0) ∈ N (1/8)

to (LP).
Output: Optimal solution w∗ = (x∗, y∗, s∗) to (LP).

1 Call Find- Circuits(A) to obtain the lower bounds κ̂i j for each i, j ∈ [n], i
= j ;
2 k ← 0, α ← 0;
3 repeat
4 /* Predictor step */
5 Compute affine scaling direction �wa = (�xa, �ya,�sa) for w;

6 if εa(w) < 10n3/2γ then // Recall εa(w) defined in (20)
7 δ ← (sk)1/2(xk)−1/2;
8 (J , κ̂) ←Layering(δ, κ̂);

9 Compute Layered Least Squares direction �wll = (�x ll,�yll, �sll) for the layering J and
w;

10 �w ← �wll;

11 α ← 1 − 24
√

nεll(w); // As in Lemma 3.10(ii)

12 else
13 �w ← �wa;
14 α ← min

{
1/(8

√
n), 1 − 8‖�xa�sa‖/μ(w)

}
; // As in Proposition 3.4(ii)

15 w′ ← wk + α�w;
16 /* Corrector step */
17 Compute centrality direction �wc = (�xc,�yc,�sc) for w′;
18 wk+1 ← w′ + �wc;
19 k ← k + 1;

20 until μ(wk) = 0;

21 return wk = (xk , yk , sk).

requires an upper bound on χ̄∗. Since computing χ̄∗ is hard, we can implement it by
a doubling search on log χ̄∗, as explained in Sect. 7. Other than for initialization, the
algorithm does not require an estimate on χ̄∗.

The algorithm starts with the subroutine Find- Circuits(A) as in Theorem 2.14.
The iterations are similar to the MTY Predictor–Corrector algorithm [39]. The main
difference is that certain affine scaling steps are replaced by LLS steps. In every
predictor step, we compute the affine scaling direction, and consider the quantity
εa(w) = maxi∈[n] min{|Rxai |, |Rsai |}. If this is above the threshold 10n3/2γ , then we
perform the affine scaling step. However, in case εa(w) < 10n3/2γ , we use the
LLS direction instead. In each such iteration, we call the subroutine Layering(δ, κ̂)
(Algorithm 1) to compute the layers, and we compute the LLS step for this layering.

Another important difference is that the algorithm does not require a final rounding
step. It terminates with the exact optimal solution w∗ once a predictor step is able to
perform a full step with α = 1.

Theorem 3.16 For given A ∈ R
m×n, b ∈ R

m, c ∈ R
n, and an initial feasible solu-

tion w0 = (x0, y0, s0) ∈ N (1/8), Algorithm 2 finds an optimal solution to (LP) in
O(n2.5 log n log(χ̄∗

A + n)) iterations.

Remark 3.17 Whereas using LLS steps enables us to give a strong bound on the total
number of iterations, finding LLS directions has a significant computational overhead

123

A scaling-invariant algorithm for linear programming...

as compared to finding affine scaling directions. The layering J can be computed in
time O(nm2) (Lemma 3.15), and the LLS steps also require O(nm2) time, see [35,
63]. This is in contrast to the computational cost O(nω) of an affine scaling direction.
Here ω < 2.373 is the matrix multiplication constant [62].

We now sketch a possible approach to amortize the computational cost of the LLS
steps over the sequence of affine scaling steps. It was shown in [37] that for the MTY
P-C algorithm, the “bad” scenario between two crossover events amounts to a series of
affine scaling stepswhere the progress inμ increases exponentially fromevery iteration
to the next. This corresponds to the term O(min{n2 log log(μ0/η), log(μ0/η)}) in
their running time analysis. Roughly speaking, such a sequence of affine scaling steps
indicates that an LLS step is necessary.

Hence, we could observe these accelerating sequences of affine scaling steps, and
perform an LLS step after we see a sequence of length O(log n). The progress made
by these affine scaling steps offsets the cost of computing the LLS direction.

4 The potential function and the overall analysis

Let μ > 0 and δ(μ) = s(μ)1/2x(μ)−1/2 = √
μ/x(μ) = s(μ)/

√
μ correspond to the

point on the central path and recall the definition of γ in (30). For i, j ∈ [n], i
= j ,
we define

ρμ(i, j) := log κ
δ(μ)
i j

log
(
4nκ∗

W /γ
) ,

and the main potentials in the algorithm as

�μ(i, j) := max

{

1,min

{

2n, inf
0<μ′<μ

ρμ′
(i, j)

}}

and

�(μ) :=
∑

i, j∈[n],i
= j

log�μ(i, j) .

Themotivation forρμ(i, j) and�μ(i, j) comes fromLemma3.14, usingσ = γ /(4n).
Thus, log κ

δ(μ)
i j / log

(
4nκ∗

W /γ
)
can be seen as a lower bound on the length of the

shortest j–i path. Recall that the layers are defined as strongly connected components
of Ĝδ,γ /n , which is a subgraph of Gδ(μ),γ /(4n) (using the bound (16)). Consequently,
whenever ρμ(i, j) ≥ n, the nodes i and j cannot be in the same strongly connected
component for the normalized duality gapμ. Thus, our potentials�μ(i, j) can be seen
as fine-grained analogues of the crossover events analyzed in [36, 37, 63]: the definition
of�μ(i, j) contains aminimizationover 0 < μ′ < μ; therefore,�μ(i, j) > n implies
that i and j may never appear on the same layer for any μ′ ≤ μ. On the other hand,
these potentials are more fine-grained: even for t < n, if �μ(i, j) ≥ t then whenever
a layer contains both i and j for μ′ ≤ μ, this layer must have size ≥ t .

By definition, for all pairs (i, j) ∈ [n] × [n] we have �μ′
(i, j) ≥ �μ(i, j) for

0 < μ′ ≤ μ; and we enforce �μ(i, j) ∈ [1, 2n]. The upper bound can be imposed

123

D. Dadush et al.

since values �μ′
(i, j) ≥ n do not yield any new information on the layering. Hence,

the overall potential �(μ) is between 0 and O(n2 log n). The overall analysis in
the proof of Theorem 3.16 divides the iterations into phases. In each phase, we can
identify a set J ⊆ [n], |J | > 1 arising as a layer or as the union of two layers in the
LLS step at the beginning of the phase. We show that �μ(i, j) doubles for at least
|J | − 1 pairs (i, j) ∈ J × J during the subsequent O(

√
n|J | log(χ̄∗ + n)) iterations;

consequently, �(μ) increases by at least |J | − 1 during these iterations. This leads to
the overall iteration bound O(n2.5 log(n) log(χ̄∗ + n)). In comparison, the crossover
analysis would correspond to showing that within O(n1.5 log(χ̄∗ + n)) iterations, one
of the�μ(i, j) values previously< n becomes larger than n. The following statement
formalizes the above mentioned properties of �μ(i, j).

Lemma 4.1 Let w = (x, y, s) ∈ N (β) for β ∈ (0, 1/4]. Let i, j ∈ [n], i
= j , and let
μ = μ(w).

1. If Ĝδ,γ /n contains a path from j to i of at most t − 1 edges, then ρμ(i, j) < t .
2. If Ĝδ,γ /n contains a path from i to j of at most t − 1 edges, then ρμ(i, j) > −t .
3. If �μ(i, j) ≥ t , then in any δ(w′)-balanced layering, where w′ = (x ′, y′, s′) ∈

N (β) with μ(w′) ≤ μ,

• i and j cannot be together on a layer of size at most t , and
• j cannot be on a layer preceding the layer containing i .

Proof From (16), we see that for any i, j ,

κ̂δ
i j ≤ κδ

i j ≤ (1 − 2β)−1κ
δ(μ)
i j ≤ 4κδ(μ)

i j .

Consequently, Ĝδ,γ /n is a subgraph of Gδ(μ),γ /(4n). The statement now follows from
Lemma 3.14 with σ = γ /(4n). ��
In what follows, we formulate four important lemmas crucial for the proof of Theorem
3.16. For the lemmas, we only highlight some key ideas here, and defer the full proofs
to Sect. 6.

For a triplew ∈ N (β),�wll refers to the LLS direction found in the algorithm, and
Rxll and Rsll denote the residuals as in (18). For a subset I ⊂ [n] recall the definition

εllI (w) := max
i∈I

min{|Rxlli |, |Rslli |} .

We introduce another important quantity ξ for the analysis:

ξ llI (w) := min{‖RxllI ‖, ‖RsllI ‖} (31)

for a subset I ⊂ [n]. For a layering J = (J1, J2, . . . , Jp), we let

ξ llJ (w) = max
k∈[p] ξ

ll
Jk

(w) .

123

A scaling-invariant algorithm for linear programming...

The key idea of the analysis is to extract information about the optimal solution w∗ =
(x∗, y∗, s∗) from the LLS direction. The first main lemma shows that if ‖RxllJq

‖ is
large on some layer Jq , then for at least one index i ∈ Jq , x∗

i /xi ≥ 1/poly(n), i.e.,
the variable xi has “converged”. The analogous statement holds on the dual side for
‖RsllJq

‖ and an index j ∈ Jq .

Lemma 4.2 (Proof in Sect. 6) Let w = (x, y, s) ∈ N (β) for β ∈ (0, 1/8] and let
w∗ = (x∗, y∗, s∗) be the optimal solution corresponding to μ∗ = 0 on the central
path. Let further J = (J1, . . . , Jp) be a δ(w)-balanced layering (Definition 3.13), and
let �wll = (�x ll,�yll,�sll) be the corresponding LLS direction. Then the following
statement holds for every q ∈ [p]:
(i) There exists i ∈ Jq such that

x∗
i ≥ 2xi

3
√

n
· (‖RxllJq

‖ − 2γ n) . (32)

(ii) There exists j ∈ Jq such that

s∗
j ≥ 2s j

3
√

n
· (‖RsllJq

‖ − 2γ n) . (33)

We outline the main idea of the proof of part (i); part (ii) follows analogously using
the duality of the lifting scores (Lemma 3.9). On layer q, the LLS step minimizes
‖δJq (xJq + �xJq)‖, subject to �xJ>q = �x llJ>q

and subject to existence of �xJ<q

such that �x ∈ W . By making use of �δ(w)(J>q) ≤ γ due to δ(w)-balancedness, we
can show the existence of a point z ∈ W + x∗ such that ‖δJq (z Jq − x∗

Jq
)‖ is small,

and z J>q = xJ>q + �x llJ>q
. By the choice of �x llJq

, we have ‖δJq z Jq ‖ ≥ ‖δJq (xJq +
�x llJq

)‖ = √
μ‖RxllJq

‖. Therefore, ‖δJq x∗
Jq

/
√

μ‖ cannot bemuch smaller than ‖RxllJq
‖.

Noting that δJq x∗
Jq

/
√

μ ≈ x∗
Jq

/xJq , we obtain a lower bound on x∗
i /xi for some i ∈ Jq .

We emphasize that the lemma only shows the existence of such indices i and j , but
does not provide an efficient algorithm to identify them. It is also useful to note that
for any i ∈ [n], max{|Rxlli |, |Rslli |} ≥ 1

2 − 3
4β according to Lemma 3.10(iii). Thus, for

each q ∈ [p], we obtain a strong and positive lower bound in either case (i) on xi/x∗
i

or case (ii) on si/s∗
i for some i ∈ Jq .

The next lemma allows us to argue that the potential function � ·(·, ·) increases for
multiple pairs of variables, if we have strong lower bounds on both x∗

i and s∗
j for some

i, j ∈ [n], along with a lower and upper bound on ρμ(i, j).

Lemma 4.3 (Proof in Sect. 6) Let w = (x, y, s) ∈ N (2β) for β ∈ (0, 1/8], let
μ = μ(w) and δ = δ(w). Let i, j ∈ [n] and 2 ≤ τ ≤ n such that for the optimal
solution w∗ = (x∗, y∗, s∗), we have x∗

i ≥ βxi/(210n5.5) and s∗
j ≥ βs j/(210n5.5), and

assume ρμ(i, j) ≥ −τ . After O(β−1√nτ log(χ̄∗ + n)) further iterations the duality
gap μ′ fulfills �μ′

(i, j) ≥ 2τ , and for every � ∈ [n] \ {i, j}, either �μ′
(i, �) ≥ 2τ ,

or �μ′
(�, j) ≥ 2τ .

123

D. Dadush et al.

We note that i and j as in the lemma are necessarily different, since i = j would
imply 0 = x∗

i s∗
i ≥ β2μ/(220n11) > 0.

Let us illustrate the idea of the proof of �μ′
(i, j) ≥ 2τ . For i and j as in the

lemma, and for a central path element w′ = w(μ′) for μ′ < μ, we have x ′
i ≥ x∗

i /n ≥
βxi/(210n6.5) and s′

j ≥ s∗
j /n ≥ βs j/(210n6.5) by the near-monotonicity of the central

path (Lemma 3.3). Note that

κδ′
i j = κi j · δ′

j

δ′
i

= κi j · x ′
i s

′
j

μ′ ≥ κi j · β2xi s j

220n13μ′ ≥ β2(1 − β)2

220n13 · κδ
i j · μ

μ′ ,

where the last inequality uses Proposition 3.2. Consequently, as μ′ sufficiently
decreases, κδ′

i j will become much larger than κδ
i j . The claim on � ∈ [n]\{i, j} can

be shown by using the triangle inequality κik · κk j ≥ κi j shown in Lemma 2.15.
Assume now ξ llJq

(w) ≥ 4γ n for some q ∈ [p] in the LLS step. Then, Lemma 4.2

guarantees the existence of i, j ∈ Jq such that x∗
i /xi , s∗

j /s j ≥ 4
3
√

n
γ n > β/(210n5.5).

Further, Lemma 4.1 gives ρμ(i, j) ≥ −|Jq |. Hence, Lemma 4.3 is applicable for i
and j with τ = |Jq |.

The overall potential argument in the proof of Theorem 3.16 uses Lemma 4.3 in
three cases: ξ llJ (w) ≥ 4γ n (Lemma 4.2 is applicable as above); ξ llJ (w) < 4γ n and

�δ+
(J) ≤ 4γ n (Lemma 4.4); and ξ llJ (w) < 4γ n and �δ+

(J) > 4γ n (Lemma 4.5).
Here, δ+ refers to the value of δ after the LLS step. Note that δ+ > 0 is well-defined,
unless the algorithm terminated with an optimal solution.

To prove these lemmas, we need to study how the layers “move” during the LLS
step. We let B = {t ∈ [n] : |Rsllt | < 4γ n} and N = {t ∈ [n] : |Rxllt | < 4γ n}. The
assumption ξ llJ (w) < 4γ n means that for each layer Jk , either Jk ⊆ B or Jk ⊆ N;
we accordingly refer to B-layers and N-layers.

Lemma 4.4 (Proof in Sect. 6) Let w = (x, y, s) ∈ N (β) for β ∈ (0, 1/8], and
let J = (J1, . . . , Jp) be a δ(w)-balanced partition. Assume that ξ llJ (w) < 4γ n,

and let w+ = (x+, y+, s+) ∈ N (2β) be the next iterate obtained by the LLS step
with μ+ = μ(w+) and assume μ+ > 0. Let q ∈ [p] such that ξ llJ (w) = ξ llJq

(w).

If �δ+
(J) ≤ 4γ n, then there exist i, j ∈ Jq such that x∗

i ≥ βx+
i /(16n3/2) and

s∗
j ≥ βs+

j /(16n3/2). Further, for any �, �′ ∈ Jq , we have ρμ+
(�, �′) ≥ −|Jq |.

For the proof sketch, without loss of generality, let ξ llJ = ξ llJq
= ‖RxllJq

‖, that is, Jq is an

N-layer. The case ξ llJq
= ‖RsllJq

‖ can be treated analogously. Since the residuals ‖RxllJq
‖

and ‖RsllJq
‖ cannot be both small, Lemma 4.2 readily provides a j ∈ Jq such that

s∗
j /s j ≥ 1/(6

√
n). Using Lemma 3.3 and Proposition 3.1, s∗

j /s+
j = s∗

j /s j · s j/s+
j >

(1 − β)/(6(1 + 4β)n3/2) > β/(16n3/2).
The key ideas of showing the existence of an i ∈ Jq such that x∗

i ≥ x+
i /(16n3/2)

are the following. With ≈, � and �, we write equalities and inequalities that hold up
to small polynomial factors. First, we show that (i) ‖δJq x+

Jq
‖ � μ+/

√
μ, and then,

that (ii) ‖δJq x∗
Jq

‖ � μ+/
√

μ .

123

A scaling-invariant algorithm for linear programming...

If we can show (i) and (ii) as above, we obtain that ‖δJq x∗
Jq

‖ � ‖δJq x+
Jq

‖, and thus,
x∗

i � x+
i for some i ∈ Jq .

Let us now sketch thefirst step.By the assumption Jq ⊂ N , one can show x+
Jq

/xJq ≈
μ+/μ, and therefore

‖δJq x+
Jq

‖ ≈ μ+

μ
‖δJq xJq ‖ ≈ μ+

μ

√
μ = μ+

√
μ

.

The second part of the proof, namely, lower bounding ‖δJq x∗
Jq

‖, is more difficult. Here,
we only sketch it for the special case when Jq = [n]. That is, we have a single layer
only; in particular, the LLS step is the same as the affine scaling step�x ll = �xa. The
general case of multiple layers follows by making use of Lemma 3.10, i.e. exploting
that for a sufficiently small �δ(J), the LLS step is close to the affine scaling step.

Hence, assume that �x ll = �xa. Using the equivalent definition of the affine
scaling step (17) as a minimum-norm point, we have ‖δx∗‖ ≥ ‖δ(x + �x ll)‖ =√

μ‖Rxll‖ = √
μξ llJ . From Lemma 3.6, μ+/μ ≤ 2

√
nεa(w)/β ≤ 2

√
nξ llJ /β. Thus,

we see that ‖δx∗‖ ≥ βμ+/(2
√

nμ).

The final statement on lower bounding ρμ+
(�, �′) ≥ −|Jq | for any �, �′ ∈ Jq fol-

lows by showing that δ+
� /δ+

�′ remains close to δ�/δ�′ , and hence the values of κμ+
(�, �′)

and κμ(�, �′) are sufficiently close for indices on the same layer (Lemma 6.1).

Lemma 4.5 (Proof in Sect. 6) Let w = (x, y, s) ∈ N (β) for β ∈ (0, 1/8], and let
J = (J1, . . . , Jp) be a δ(w)-balanced partition. Assume that ξ llJ (w) < 4γ n, and

let w+ = (x+, y+, s+) ∈ N (2β) be the next iterate obtained by the LLS step with
μ+ = μ(w+) and assume μ+ > 0. If �δ+

(J) > 4γ n, then there exist two layers Jq

and Jr and i ∈ Jq and j ∈ Jr such that x∗
i ≥ x+

i /(8n3/2), and s∗
j ≥ s+

j /(8n3/2).

Further, ρμ+
(i, j) ≥ −|Jq ∪ Jr |, and for all �, �′ ∈ Jq ∪ Jr , �
= �′ we have

�μ(�, �′) ≤ |Jq ∪ Jr |.
Consider now any � ∈ Jk ⊆ B. Then, sinceRxll� ismultiplicatively close to 1, x+

� ≈ x�;
on the other hand s+

� will “shoot down” close to the small value Rsll� · s�. Conversely,
for � ∈ Jk ⊆ N , s+

� ≈ s�, and x+
� will “shoot down” to a small value.

The key step of the analysis is showing that the increase in �δ+
(J) can be attributed

to an N-layer Jr “crashing into” a B-layer Jq . That is, we show the existence of an
edge (i ′, j ′) ∈ Eδ+,γ /(4n) for i ′ ∈ Jq and j ′ ∈ Jr , where r < q and Jq ⊆ B, Jr ⊆ N .
This can be achieved by analyzing the matrix B used in the subroutine Verify- Lift.

For the layers Jq and Jr , we can use Lemma 4.2 to show that there exists an
i ∈ Jq where x∗

i /xi is lower bounded, and there exists a j ∈ Jr where s∗
j /s j is lower

bounded. The lower bound on ρμ+
(i, j) and the upper bounds on the�μ(�, �′) values

can be shown by tracking the changes between the κδ(�, �′) and κδ+
(�, �′) values, and

applying Lemma 4.1 both at w and at w+.

Proof of Theorem 3.16 Weanalyze the overall potential function�(μ). By the iteration
at μ we mean the iteration where the normalized duality gap of the current iterate is
μ.

123

D. Dadush et al.

By Proposition 3.4(ii) and Lemma 3.10(ii), the predictor step gives w′ ∈ N (1/4)
in every iteration, and thus by Proposition 3.4(iii), if μ(w′) > 0, the iterate wc after a
corrector step fulfillswc ∈ N (1/8). Ifμ+ = 0 at the end of an iteration, the algorithm
terminates with an optimal solution. Recall from Lemma 3.10(v) that this happens if
and only if εll(w) = 0 at a certain iteration.

From now on, assume that μ+ > 0. We distinguish three cases at each iteration.
These cases are well-defined even at iterations where affine scaling steps are used. At
such iterations, ξ llJ (w) still refers to the LLS residuals, even if these have not been

computed by the algorithm. (Case I) ξ llJ (w) ≥ 4γ n; (Case II) ξ llJ (w) < 4γ n and

�δ+
(J) ≤ 4γ n; and (Case III) ξ llJ (w) < 4γ n and �δ+

(J) > 4γ n.
Recall that the algorithmuses anLLSdirection instead of the affine scaling direction

whenever εa(w) < 10n3/2γ . Consider now the case when an affine scaling direction
is used, that is, εa(w) ≥ 10n3/2γ . According to Lemma 3.10(ii), ‖Rxll−Rxa‖, ‖Rsll−
Rsa‖ ≤ 6n3/2γ . This implies that ξ llJ (w) ≥ 4n3/2γ ≥ 4nγ . Therefore, in cases II and
III, an LLS step will be performed.

Starting with any given iteration, in each case we will identify a set J ⊆ [n] of
indices with |J | > 1, and start a phase of O(

√
n|J | log(χ̄∗+n)) iterations (that can be

either affine scaling or LLS steps). In each phase, we will guarantee that � increases
by at least |J |−1. By definition, 0 ≤ �(μ) ≤ n(n−1)(log2 n+1), and ifμ′ < μ then
�(μ′) ≥ �(μ). As we can partition the union of all iterations into disjoint phases,
this yields the bound O(n2.5 log n log(χ̄∗ + n)) on the total number of iterations.

We now consider each of the cases. We always let μ denote the normalized duality
gap at the current iteration, and we let q ∈ [p] be the layer such that ξ llJ (w) = ξ llJq

(w).

Case I: ξ llJ (w) ≥ 4γ n. Lemma 4.2 guarantees the existence of xi , s j ∈ Jq such

that x∗
i /xi , s∗

j /s j ≥ 4γ n/(3
√

n) > 1/(210n5.5). Further, according to Lemma 4.1,
ρμ(i, j) ≥ −|Jq |. Thus, Lemma 4.3 is applicable for J = Jq . The phase starting at μ
comprises O(

√
n|Jq | log(χ̄∗ + n)) iterations, after which we get a normalized duality

gap μ′ such that �μ′
(i, j) ≥ 2|Jq |, and for each � ∈ [n]\{i, j}, either �μ′

(i, �) ≥
2|Jq |, or �μ′

(�, j) ≥ 2|Jq |.
We can take advantage of these bounds for indices � ∈ Jq . Again by Lemma 4.1,

for any �, �′ ∈ Jq , we have �μ(�, �′) ≤ ρμ(�, �′) ≤ |Jq |. Thus, there are at least
|Jq | − 1 pairs of indices (�, �′) for which �μ(�, �′) increases by at least a factor 2
between iterations atμ andμ′. The increase in the contribution of these terms to�(μ)

is at least |Jq | − 1 during these iterations.
We note that this analysis works regardless whether an LLS step or an affine scaling

step was performed in the iteration at μ.

Case II: ξ llJ (w) < 4γ n and �δ+
(J) ≤ 4γ n. As explained above, in this case we

perform an LLS step in the iteration at μ, and we let w+ denote the iterate obtained
by the LLS step. For J = Jq , Lemma 4.4 guarantees the existence of i, j ∈ Jq such
that x∗

i /x+
i , s∗

j /s+
j > β/(16n3/2), and further, ρμ+

(i, j) > −|Jq |. We can therefore
apply Lemma 4.3. The phase starting at μ includes the LLS step leading to μ+ (and
the subsequent centering step), and the additional O(

√
n|Jq | log(χ̄∗ + n)) iterations

123

A scaling-invariant algorithm for linear programming...

(β is a fixed constant in Algorithm 2) as in Lemma 4.3. As in Case I, we get the desired
potential increase compared to the potentials at μ in layer Jq .

Case III: ξ llJ (w) < 4γ n and �δ+
(J) > 4γ n. Again, the iteration at μ will use an

LLS step. We apply Lemma 4.5, and set J = Jq ∪ Jr as in the lemma. The argument
is the same as in Case II, using that Lemma 4.5 explicitly states that �μ(�, �′) ≤ |J |
for any �, �′ ∈ J , �
= �′. ��

4.1 The iteration complexity bound for the Vavasis–Ye algorithm

Wenow show that the potential analysis described above also gives an improved bound
O(n2.5 log n log(χ̄A + n)) for the original VY algorithm [63].

We recall the VY layering step. Order the variables via π such that δπ(1) ≤ δπ(2) ≤
. . . ≤ δπ(n). The layers will be consecutive sets in the ordering; a new layer starts with
π(i + 1) each time δπ(i+1) > gδπ(i), for a parameter g = poly(n)χ̄A.

As outlined in the Introduction, the VY algorithm can be seen as a special imple-
mentation of our algorithm by setting κ̂i j = gγ /n. With these edge weights, we have
that κ̂δ

i j ≥ γ /n precisely if gδ j ≥ δi .3

With these edge weights, it is easy to see that our Layering(δ, κ̂) subroutine finds
the exact same components as VY.Moreover, the layers will be the initial strongly con-
nected components Ci of Gδ,γ /n : due to the choice of g, this partition is automatically
δ-balanced. There is no need to call Verify- Lift.

The essential difference compared to our algorithm is that the values κ̂i j = gγ /n are
not lower bounds on κi j as we require, but upper bounds instead. This is convenient to
simplify the construction of the layering. On the negative side, the strongly connected
components of Ĝδ,γ /n may not anymore be strongly connected in Gδ,γ /n . Hence, we
cannot use Lemma 4.1, and consequently, Lemma 4.3 does not hold.

Still, the κ̂i j bounds are overestimating κi j by atmost a factor poly(n)χ̄A. Therefore,
the strongly connected components of Ĝδ,n/γ are strongly connected in Gδ,σ for some
σ = 1/(poly(n)χ̄A).

Hence, the entire argument described in this section is applicable to the VY algo-
rithm, with a different potential function defined with χ̄A instead of χ̄∗

A. This is the
reason why the iteration bound in Lemma 4.3, and therefore in Theorem 3.16, also
changes to χ̄A dependency.

It is worth noting that due to the overestimation of the κi j values, the VY algorithm
uses a coarser layering than our algorithm. Our algorithm splits up the VY layers into
smaller parts so that �δ(J) remains small, but within each part, the gaps between the
variables are bounded as a function of χ̄∗

A instead of χ̄A.

5 Properties of the layered least square step

This section is dedicated to the proofs of Proposition 3.8 on the duality of lifting scores
and Lemma 3.10 on properties of LLS steps.

3 For simplicity, in the Introduction we used gxi ≥ x j instead, which is almost the same in the proximity
in the central path.

123

D. Dadush et al.

Proposition 3.8 (Restatement). For a linear subspace W ⊆ R
n and index set I ⊆ [n]

with J = [n]\I ,

‖LW
I ‖ ≤ max{1, ‖LW⊥

J ‖}.

In particular, �W (I) = �W⊥
(J)

Proof We first treat the case where πI (W) = {0} or πJ (W ⊥) = {0}. If πI (W) = {0}
then ‖LW

I ‖ = �W (I) = 0. Furthermore, in this case R
I = πI (W)⊥ = πI (W ⊥ ∩ R

n
I),

and thus {(0, wJ) : w ∈ W ⊥} ⊆ W ⊥. In particular, ‖LW
J ‖ ≤ 1 and �W⊥

(J) = 0.

Symmetrically, if πJ (W ⊥) = {0} then ‖LW⊥
J ‖ = �W⊥

(J) = 0, ‖LW
I ‖ ≤ 1 and

�W (I) = 0.
We now restrict our attention to the case where both πI (W), πJ (W ⊥)
= {0}. Under

this assumption, we show that ‖LW
I ‖ = ‖LW⊥

J ‖ and thus that �W (I) = �W⊥
(J). Note

that by non-emptyness, we clearly have that ‖LW
I ‖, ‖LW⊥

J ‖ ≥ 1.
We formulate a more general claim. Let {0}
= U , V ⊂ R

n be linear subspaces
such that U + V = R

n and U ∩ V = {0}. Note that for the orthogonal complements
in R

n , we also have {0}
= U⊥, V ⊥, U⊥ + V ⊥ = R
n and U⊥ ∩ V ⊥ = {0}.

Claim 5.1 Let {0}
= U , V ⊂ R
n be linear subspaces such that U + V = R

n and
U ∩ V = {0}. Thus, for z ∈ R

n, there are unique decompositions z = u + v with
u ∈ U, v ∈ V and z = u′ + v′ with u′ ∈ U⊥ and v′ ∈ V ⊥. Let T : R

n → V be
the map sending T z = v. Let T ′ : R

n → V ⊥ be the map sending T ′z = v′. Then,
‖T ‖ = ‖T ′‖.

Proof To prove the statement, we claim that it suffices to show that if ‖T ‖ > 1 then
‖T ′‖ ≥ ‖T ‖. To prove sufficiency, note that by symmetry, we also get that if ‖T ′‖ > 1
then ‖T ‖ ≥ ‖T ′‖. Note that V , V ⊥
= {0} by assumption, and T z = z for z ∈ V ,
T ′z = z for z ∈ V ⊥. Thus, we always have ‖T ‖, ‖T ′‖ ≥ 1, and therefore the equality
‖T ‖ = ‖T ′‖ must hold in all cases. We now assume ‖T ‖ > 1 and show ‖T ′‖ ≥ ‖T ‖.

Representing T as an n × n matrix, we write T = ∑k
i=1 σivi u�

i using a singular
value decomposition with σ1 ≥ · · · ≥ σk > 0. As such, v1, . . . , vk is an orthonormal
basis of V , since the range(T) = V , and u1, . . . , uk is an orthonormal basis of U⊥,
since Ker(T) = U , noting that we have restricted to the singular vectors associated
with positive singular values. By assumption, we have that ‖T ‖ = ‖T u1‖ = σ1 > 1.

The proof is complete by showing that

∥
∥T ′(v1 − u1/σ1)

∥
∥ ≥ σ1‖v1 − u1/σ1‖, (34)

and that ‖v1−u1/σ1‖ > 0, since then the vector v1−u1/σ1 will certify that ‖T ′‖ ≥ σ1.
Themap T is a linear projectionwith T 2 = T . Hence 〈ui , vi 〉 = σ−1

i and 〈ui , v j 〉 =
0 for all i
= j .

We show that v1−σ−1
1 u1 can be decomposed as v1−σ1u1+(σ1−σ−1

1)u1 such that
v1 − σ1u1 ∈ V ⊥ and (σ1 − σ−1

1)u1 ∈ U⊥. Therefore, T ′(v1 − σ−1
1 u1) = v1 − σ1u1.

The containment (σ1 − σ−1
1)u1 ∈ U⊥ is immediate. To show v1 − σ1u1 ∈ V ⊥, we

need that 〈v1 − σ1u1, vi 〉 = 0 for all i ∈ [k]. For i ≥ 2, this is true since 〈ui , v j 〉 = 0

123

A scaling-invariant algorithm for linear programming...

and 〈vi , v j 〉 = 0. For i = 1, we have 〈v1 − σ1u1, v1〉 = 0 since ‖v1‖ = 1 and
〈u1, v1〉 = σ−1

1 . Consequently, T ′(v1 − σ−1
1 u1) = v1 − σ1u1.

We compute
∥
∥
∥v1 − σ−1

1 u1

∥
∥
∥ =

√
1 − σ−2

1 > 0, since σ1 > 1, and ‖v1 − σ1u1‖ =
√

σ 2
1 − 1. This verifies (34), and thus ‖T ′‖ ≥ σ1 = ‖T ‖. ��
To prove the lemma, we define J = (J , I), U = W ⊥

J ,1 × W ⊥
J ,2 and V = W

and let T : R
n → V and T ′ : R

n → V ⊥ be as in Claim 5.1. By assumption,
{0}
= πI (W) ⇒ {0}
= V and {0}
= πJ (W ⊥) = W ⊥

J ,1 ⇒ {0}
= U . Applying

Lemma 3.7, U , V satisfy the conditions of Claim 5.1 and T = LLSW ,1
J . In particular,

‖T ′‖ = ‖T ‖. Using the fact that U⊥ = WJ ,1 × WJ ,2 and V ⊥ = W ⊥, we similarly

get that T ′ = LLSW⊥,1
J̄ , where J̄ = (I , J). By (21) we have, for any t ∈ πR

n
I
(W),

that T t = LLSW ,1
J (t) = LW

I (tI). Thus, ‖T ‖ ≥ ‖LW
I ‖ ≥ 1.

To finish the proof of the lemma from the claim, we show that ‖T ‖ ≤ ‖LW
I ‖. By a

symmetric argument we get ‖T ′‖ = ‖LW⊥
J ‖.

If x ∈ R
n
J , then T x ∈ W ∩ R

n
J because any s ∈ W ⊥

J ,2, t ∈ πI (W) with s + t = 0

must have s = t = 0 since W ⊥
J ,2 is orthogonal to πI (W). But W ∩ R

n
J and W ⊥

J ,1
are orthogonal, so ‖T x‖ ≤ ‖x‖ because x = T x + (x − T x) is an orthogonal
decomposition.

If y ∈ R
n
I , then yJ = 0 and hence (T y)J = (T y− y)J . Since (T y− y)J ∈ W ⊥

J ,1 =
πJ (W ∩ R

n
J)⊥, we see that T y ∈ (W ∩ R

n
J)⊥. As such, for any x ∈ R

n
J , y ∈ R

n
I , we

see that x ⊥ y and T x ⊥ T y. For x, y
= 0, we thus have that

‖T (x + y)‖2
‖x + y‖2 = ‖T (x)‖2 + ‖T (y)‖2

‖x‖2 + ‖y2‖ ≤ max

{‖T (x)‖2
‖x‖2 ,

‖T (y)‖2
‖y‖2

}

≤ max

{

1,
‖T (y)‖2

‖y‖2
}

.

Since ‖LW
I ‖ ≥ 1, we must have that ‖T t‖/‖t‖ is maximized by some t ∈ R

n
I .

From Ker(T) = U it is clear that ‖T t‖/‖t‖ is maximized by some t ∈ U⊥. Now,
U⊥∩R

n
I = πR

n
I
(W), so any t maximizing ‖T t‖/‖t‖ satisfies T t = LW

I (tI). Therefore,

‖LW
I ‖ ≥ ‖T ‖. ��
Our next goal is to show Lemma 3.10: for a layering with small enough �δ(J), the

LLS step approximately satisfies (13), that is, δ�x ll + δ−1�sll ≈ −x1/2s1/2. This
also enables us to derive bounds on the norm of the residuals and on the step-length.
We start by proving a few auxiliary technical claims. The next simple lemma allows
us to take advantage of low lifting scores in the layering.

Lemma 5.2 Let u, v ∈ R
n be two vectors such that u − v ∈ W . Let I ⊆ [n], and

δ ∈ R
n++. Then there exists a vector u′ ∈ W + u satisfying u′

I = vI and

‖δ[n]\I (u
′[n]\I − u[n]\I)‖ ≤ �δ(I)‖δI (uI − vI)‖ .

123

D. Dadush et al.

Proof We let

u′ := u + δ−1Lδ
I (δI (vI − uI)) .

The claim follows by the definition of the lifting score �δ(I). ��
The next lemma will be the key tool to prove Lemma 3.10. It is helpful to recall the

characterization of the LLS step in Sect. 3.4.

Lemma 5.3 Let w = (x, y, s) ∈ N (β) for β ∈ (0, 1/4], let μ = μ(w) and δ = δ(w).
Let J = (J1, . . . , Jp) be a δ(w)-balanced layering, and let �wll = (�x ll,�yll,�sll)
denote the corresponding LLS direction. Let �x ∈×p

k=1 WJ ,k and �s ∈×p
k=1 W ⊥

J ,k
as in (25) and (26), that is

δ�x ll + δ−1�s + x1/2s1/2 = 0 , (35)

δ�x + δ−1�sll + x1/2s1/2 = 0. (36)

Then, there exist vectors �x̄ ∈×p
k=1 WJ ,k and �s̄ ∈×p

k=1 W ⊥
J ,k such that

‖δJk (�x̄ Jk − �x llJk
)‖ ≤ 2n�δ(J)

√
μ ∀k ∈ [p] and (37)

‖δ−1
Jk

(�s̄Jk − �sllJk
)‖ ≤ 2n�δ(J)

√
μ ∀k ∈ [p] . (38)

Proof Throughout, we use the shorthand notation λ = �δ(J). We construct �x̄ ; one
can obtain �s̄, using that the reverse layering has lifting score λ in W ⊥ Diag(δ−1)

according to Lemma 3.9.
We proceed by induction, constructing�x̄ Jk ∈ WJ ,k for k = p, p−1, . . . , 1. This

will be given as �x̄ Jk = �x (k)
Jk

for a vector �x (k) ∈ W such that �x (k)
J>k

= 0. We
prove the inductive hypothesis

∥
∥
∥δJ≤k

(
�x (k)

J≤k
− �x llJ≤k

)∥
∥
∥ ≤ 2λ

√
μ

p∑

q=k+1

√|Jq | . (39)

Note that (37) follows by restricting the norm on the LHS to Jk and since the sum on
the RHS is ≤ n.

For k = p, the RHS is 0. We simply set �x (p) = �x ll, that is, �x̄ Jp = �x llJp
,

trivially satisfying the hypothesis. Consider now k < p, and assume that we have a
�x̄ Jk+1 = �x (k+1)

Jk+1
satisfying (39) for k + 1. From (35) and the induction hypothesis,

we get that

‖δJk+1�x̄ Jk+1 + δ−1
Jk+1

�sJk+1‖ ≤ ‖x1/2Jk+1
s1/2Jk+1

‖ + ‖δJk+1(�x̄ Jk+1 − �x llJk+1
)‖

≤ ‖x1/2Jk+1
s1/2Jk+1

‖ + 2λ
√

μ

p∑

q=k+2

√|Jq | ≤ √1 + β
√

μ|Jk+1| + 2nλ
√

μ < 2
√

μ|Jk+1| ,

123

A scaling-invariant algorithm for linear programming...

using also that w ∈ N (β), Proposition 3.2, and the assumptions β ≤ 1/4, λ ≤
β/(32n2). Note that �x̄ Jk+1 ∈ WJ ,k and �sJk+1 ∈ W ⊥

J ,k are orthogonal vectors. The
above inequality therefore implies

‖δJk+1�x̄ Jk+1‖ ≤ 2
√

μ|Jk+1| .

Let us now use Lemma 5.2 to obtain �x (k) for u = �x (k+1), v = 0, and I = J>k .
That is, we get �x (k)

J>k
= 0, �x (k) ∈ W , and

‖δJ≤k (�x (k)
J≤k

− �x (k+1)
J≤k

)‖ ≤ λ‖δJ>k �x (k+1)
J>k

‖
= λ‖δJk+1�x̄ Jk+1‖ ≤ 2λ

√
μ|Jk+1| .

By the triangle inequality and the induction hypothesis (39) for k + 1,

‖δJ≤k (�x (k)
J≤k

− �x llJ≤k
)‖ ≤ ‖δJ≤k (�x (k)

J≤k
− �x (k+1)

J≤k
)‖ + ‖δJ≤k (�x (k+1)

J≤k
− �x llJ≤k

)‖

≤ 2λ
√

μ|Jk+1| + 2λ
p∑

q=k+2

√
μ|Jq |,

yielding the induction hypothesis for k. ��
Lemma 3.10 (Restatement). Let w = (x, y, s) ∈ N (β) for β ∈ (0, 1/4], let μ =
μ(w) and δ = δ(w). Let J = (J1, . . . , Jp) be a layering with �δ(J) ≤ β/(32n2),
and let �wll = (�x ll,�yll,�sll) denote the LLS direction for the layering J . Let
furthermore εll(w) = maxi∈[n] min{|Rxlli |, |Rslli |}, and define the maximal step length
as

α∗ := sup{α′ ∈ [0, 1] : ∀ᾱ ∈ [0, α′] : w + ᾱ�wll ∈ N (2β)} .

Then the following properties hold.

(i) We have

‖δJk �x llJk
+ δ−1

Jk
�sllJk

+ x1/2Jk
s1/2Jk

‖ ≤ 6n�δ(J)
√

μ , ∀k ∈ [p], and (27)

‖δ�x ll + δ−1�sll + x1/2s1/2‖ ≤ 6n3/2�δ(J)
√

μ . (28)

(ii) For the affine scaling direction �wa = (�xa,�ya,�sa),

‖Rxll − Rxa‖, ‖Rsll − Rsa‖ ≤ 6n3/2�δ(J) .

(iii) For the residuals of the LLS steps we have ‖Rxll‖, ‖Rsll‖ ≤ √
2n. For each

i ∈ [n], max{|Rxlli |, |Rslli |} ≥ 1
2 − 3

4β.
(iv) We have

α∗ ≥ 1 − 3
√

nεll(w)

β
, (29)

123

D. Dadush et al.

and for any α ∈ [0, 1]

μ(w + α�wll) = (1 − α)μ,

(v) We have εll(w) = 0 if and only if α∗ = 1. These are further equivalent to
w + �wll = (x + �x ll, y + �yll, s + �sll) being an optimal solution to (LP).

Proof Again, we use λ = �δ(J).
Part (i). Clearly, (27) implies (28). To show (27), we use Lemma 5.3 to obtain �x̄
and �s̄ as in (37) and (38). We will also use �x ∈×p

k=1 WJ ,k and �s ∈×p
k=1 W ⊥

J ,k
as in (35) and (36).

Select any layer k ∈ [p]. From (35), we get that

‖δJk �x̄ Jk + δ−1
Jk

�sJk + x1/2Jk
s1/2Jk

‖ = ‖δJk (�x̄ Jk − �x llJk
)‖ ≤ 2nλ

√
μ . (40)

Similarly, from (36), we see that

‖δ−1
Jk

�s̄Jk + δJk �xJk + x1/2Jk
s1/2Jk

‖ = ‖δ−1
Jk

(�s̄Jk − �sllJk
)‖ ≤ 2nλ

√
μ .

From the above inequalities, we see that

‖δJk (�x̄ Jk − �xJk) + δ−1
Jk

(�sJk − �s̄Jk)‖ ≤ 4nλ
√

μ .

Since δJk (�x̄ Jk − �xJk) and δ−1
Jk

(�sJk − �s̄Jk) are orthogonal vectors, we have

‖δJk (�x̄ Jk − �xJk)‖, ‖δ−1
Jk

(�sJk − �s̄Jk)‖ ≤ 4nλ
√

μ .

Together with (37), this yields ‖δJk (�x llJk
− �xJk)‖ ≤ 6nλ

√
μ. Combined with (26),

we get

‖δJk �x llJk
+ δ−1

Jk
�sllJk

+ x1/2Jk
s1/2Jk

‖ = ‖δJk (�x llJk
− �xJk)‖ ≤ 6nλ

√
μ ,

thus, (27) follows.
Part (ii). Recall from Lemma 3.5(i) that

√
μRxa + √

μRsa = x1/2s1/2. From part (i),
we can similarly see that

‖√μRxll + √
μRsll − x1/2s1/2‖ ≤ 6n3/2λ

√
μ .

From these, we get

‖(Rxll − Rxa) + (Rsll − Rsa)‖ ≤ 6n3/2λ .

The claim follows since Rxll − Rxa ∈ Diag(δ)W and Rsll − Rsa ∈ Diag(δ−1)W ⊥ are
orthogonal vectors.

123

A scaling-invariant algorithm for linear programming...

Part (iii). Both bounds follow from the previous part and Lemma 3.5(iii), using the
assumption �δ(J) ≤ β/(32n2).
Part (iv). Let w+ = w + α�wll. We need to find the largest value α > 0 such that
w+ ∈ N (2β). To begin, we first show that the normalized duality gap μ(w+) fulfills
μ(w+) = (1 − α)μ for any α ∈ R. For this purpose, we use the decomposition:

(x + α�x ll)(s + α�sll) = (1 − α)xs + α(x + �x ll)(s + �sll) − α(1 − α)�x ll�sll.

(41)

Recall from Part (i) that there exists �x ∈ ×p
k=1 WJ ,k and �s ∈ ×p

k=1 W ⊥
J ,k as in

(35) and (36) such that δ�x ll + δ−1�s = −δx and δ�x + δ−1�sll = −δ−1s. In
particular, x +�x ll = −δ−2�s and s +�sll = −δ2�x . Noting that �x ll ⊥ �sll and
�x ⊥ �s, taking the average of the coordinates on both sides of (41), we get that

μ(w + α�wll) = (1 − α)μ(w) + α〈x + �x ll, s + �sll〉/n − α(1 − α)〈�x ll,�sll〉/n

= (1 − α)μ(w) + α〈δ−2�s, δ2�x〉/n

= (1 − α)μ(w), (42)

as needed.
Let ε := εll(w). To obtain the desired lower bound on the step-length, given (42)

it suffices to show that for all 0 ≤ α < 1 − 3
√

nε
β

that

∥
∥
∥
∥
(x + α�x ll)(s + α�sll)

(1 − α)μ
− e

∥
∥
∥
∥ ≤ 2β . (43)

We will need a bound on the product of the LLS residuals:

∥
∥
∥
∥RxllRsll − 1

μ
�x ll�sll

∥
∥
∥
∥ =

∥
∥
∥
∥

x1/2s1/2√
μ

· δ�x ll + δ−1�sll + x1/2s1/2√
μ

∥
∥
∥
∥

≤ 6(1 + 2β)n3/2λ ≤ β

4
,

(44)

using Proposition 3.1, part (i), and the assumptions λ ≤ β/(32n2), β ≤ 1/4. Another
useful bound will be

‖RxllRsll‖2 =
∑

i∈[n]

∣
∣
∣Rxlli

∣
∣
∣
2 ∣∣
∣Rslli

∣
∣
∣
2 ≤ ε2

∑

i∈[n]
max

{ ∣
∣
∣Rxlli

∣
∣
∣
2
,

∣
∣
∣Rslli

∣
∣
∣
2 }

≤ ε2(‖Rxll‖2 + ‖Rsll‖2) ≤ 2nε2 .

(45)

The last inequality uses part (iii). With (41) we are ready to get the bound in (43), as

123

D. Dadush et al.

∥
∥
∥

(x + α�x ll)(s + α�sll)

(1 − α)μ
− e
∥
∥
∥ ≤ β +

∥
∥
∥

α

(1 − α)μ
(x + �x ll)(s + �sll) − α

μ
�x ll�sll

∥
∥
∥

= β +
∥
∥
∥
(α

1 − α
− α

)
RxllRsll + α

(
RxllRsll − 1

μ
�x ll�sll

)∥
∥
∥

≤ β + α2

1 − α
‖RxllRsll‖ + α

∥
∥
∥RxllRsll − 1

μ
�x ll�sll

∥
∥
∥

≤ β +
√
2nε

1 − α
+ β

4
≤ 5

4
β +

√
2nε

1 − α
.

This value is ≤ 2β whenever 2
√

nε/(1 − α) ≤ (3/4)β ⇐ α < 1− 3
√

nε
β

, as needed.

Part(v). From part (iv), it is immediate that εll(w) = 0 implies α = 1. If α = 1, we
have that w + �wll is the limit of (strictly) feasible solutions to (LP) and thus is also
a feasible solution. Optimality of w + �wll now follows from Part (iv), since α = 1
implies μ(w + �wll) = 0. The remaining implication is that if w + �wll is optimal,
then εll(w) = 0. Recall that Rxlli = δi (xi +�x lli)/

√
μ and Rslli = δ−1

i (si +�slli)/
√

μ.
The optimality of w + �wll means that for each i ∈ [n], either xi + �x lli = 0 or
si + �slli = 0. Therefore, εll(w) = 0. ��

6 Proofs of themain lemmas for the potential analysis

Lemma 4.2 Let w = (x, y, s) ∈ N (β) for β ∈ (0, 1/8] and let w∗ = (x∗, y∗, s∗)
be the optimal solution corresponding to μ∗ = 0 on the central path. Let further
J = (J1, . . . , Jp) be a δ(w)-balanced layering (Definition 3.13), and let �wll =
(�x ll,�yll,�sll) be the corresponding LLS direction. Then the following statement
holds for every q ∈ [p]:
(i) There exists i ∈ Jq such that

x∗
i ≥ 2xi

3
√

n
· (‖RxllJq

‖ − 2γ n) . (32)

(ii) There exists j ∈ Jq such that

s∗
j ≥ 2s j

3
√

n
· (‖RsllJq

‖ − 2γ n) . (33)

Proof of Lemma 4.2 We prove part (i); part (ii) follows analogously using Lemma 3.9.
Let z be a vector fulfilling the statement of Lemma 5.2 for u = x∗, v = x + �x ll, and
I = J>q . Then z ∈ W + x , z J>q = xJ>q + �x llJ>q

and by �δ(J) ≤ ©

∥
∥
∥δJ≤q (x∗

J≤q
− z J≤q)

∥
∥
∥ ≤ γ

∥
∥
∥δJ>q

(
x∗

J>q
− (xJ>q + �x llJ>q

)
)∥∥
∥ .

123

A scaling-invariant algorithm for linear programming...

Restricting to the components in Jq , and dividing by
√

μ, we get

∥
∥
∥
∥
∥

δJq (x∗
Jq

− z Jq)√
μ

∥
∥
∥
∥
∥

≤ γ

∥
∥
∥
∥
∥

δJ>q

(
x∗

J>q
− (xJ>q + �x llJ>q

)
)

√
μ

∥
∥
∥
∥
∥

≤ γ

∥
∥
∥
∥
∥

δJ>q x∗
J>q√

μ

∥
∥
∥
∥
∥

+ γ ‖RxllJ>q
‖ . (46)

Since w ∈ N (β), from Proposition 3.1 and (16) we see that for i ∈ [n]
δi√
μ

≤ 1√
1 − 2β

· δi (w(μ))√
μ

= 1√
1 − 2β

· 1

xi (μ)
,

and therefore

∥
∥
∥
∥
∥

δJ>q x∗
J>q√

μ

∥
∥
∥
∥
∥

≤ 1√
1 − 2β

∥
∥
∥x(μ)−1

J>q
x∗

J>q

∥
∥
∥ ≤ 1√

1 − 2β
·
∥
∥
∥x(μ)−1

J>q
x∗

J>q

∥
∥
∥
1

≤ n√
1 − 2β

,

where the last inequality follows by Lemma 3.3.
Using the above bounds with (46), along with ‖RxllJ≥q

‖ ≤ ‖Rxll‖ ≤ √
2n from

Lemma 3.10(iii), we get

∥
∥
∥
∥
δJq z Jq√

μ

∥
∥
∥
∥ ≤

∥
∥
∥
∥
∥

δJq x∗
Jq√

μ

∥
∥
∥
∥
∥

+ γ n√
1 − 2β

+ γ
√
2n ≤

∥
∥
∥
∥
∥

δJq x∗
Jq√

μ

∥
∥
∥
∥
∥

+ 2γ n ,

using that β ≤ 1/8 and n ≥ 3. Note that z is a feasible solution to the least-squares
problem which is optimally solved by x llJq

for layer Jq and so

‖Rx llJq
‖ ≤

∥
∥
∥
∥
δJq z Jq√

μ

∥
∥
∥
∥ .

It follows that
∥
∥
∥
∥
∥

δJq x∗
Jq√

μ

∥
∥
∥
∥
∥

≥ ‖Rx llJq
‖ − 2γ n .

Let us pick i = argmaxt∈Jq
|δt x∗

t |. Using Proposition 3.2,

x∗
i

xi
≥ 1

1 + β
· δi x∗

i√
μ

≥
‖Rx llJq

‖ − 2γ n

(1 + β)
√

n
≥ 2

3
√

n
· (‖RxllJq

‖ − 2γ n) ,

completing the proof. ��

123

D. Dadush et al.

Lemma 4.3 (Restatement). Let w = (x, y, s) ∈ N (2β) for β ∈ (0, 1/8], let μ =
μ(w) and δ = δ(w). Let i, j ∈ [n] and 2 ≤ τ ≤ n such that for the optimal solution
w∗ = (x∗, y∗, s∗), we have x∗

i ≥ βxi/(210n5.5) and s∗
j ≥ βs j/(210n5.5), and assume

ρμ(i, j) ≥ −τ . After O(β−1√nτ log(χ̄∗ + n)) further iterations the duality gap μ′
fulfills �μ′

(i, j) ≥ 2τ , and for every � ∈ [n] \ {i, j}, either �μ′
(i, �) ≥ 2τ , or

�μ′
(�, j) ≥ 2τ .

Proof of Lemma 4.3 Let us select a value μ′ such that

logμ − logμ′ ≥ 5τ log

(
4nκ∗

γ

)

+ 31 log n + 44 − 4 logβ .

The normalized duality gap decreases to such value within O(β−1√nτ · log(χ̄∗ +n))

iterations, recalling that log(χ̄∗+n) = �(log(κ∗+n)). The step-lengths for the affine
scaling and LLS steps are stated in Proposition 3.4 and Lemma 3.10(iv). Whenever
the algorithm chooses an LLS step, εa(w) < 10n3/2γ . Thus, the progress in μ will
be at least as much (in fact, much better) than the 1 − β/

√
n guarantee for the affine

scaling step in Proposition 3.4.
Let w′ = (x ′, y′, s′) be the central path element corresponding to μ′, and let

δ′ = δ(w′). From now on we use the shorthand notation

� := log

(
4nκ∗

γ

)

.

We first show that

�ρμ′
(i, j) ≥ 4�τ + 18 log n + 22 log 2 − 2 logβ (47)

for μ′, and therefore, ��μ′
(i, j) ≥ min(2�n, 4�τ +18 log n +22 log 2−2 logβ) ≥

2�τ as τ ≤ n. Recalling the definition κδ
i j = κi jδ j/δi , we see that according to

Proposition 3.2,

κδ
i j ≤ κi j

(1 − β)2
· xi s j

μ
, and κδ′

i j = κi j · x ′
i s

′
j

μ′ .

Thus,

�ρμ′
(i, j) ≥ �ρμ(i, j) + logμ − logμ′ + 2 log(1 − β) + log x ′

i − log xi + log s′
j − log s j

≥ �ρμ(i, j) + 5�τ + 31 log n + 44 − 4 logβ + 2 log(1 − β) + log x ′
i − log xi

+ log s′
j − log s j .

Using the near-monotonicity of the central path (Lemma 3.3), we have x ′
i ≥ x∗

i /n
and s′

j ≥ s∗
j /n. Together with our assumptions x∗

i ≥ βxi/(210n5.5) and s∗
i ≥

123

A scaling-invariant algorithm for linear programming...

βsi/(210n5.5), we see that

log x ′
i − log xi + log s′

j − log s j ≥ −13 log n − 20 log 2 + 2 logβ .

Using the assumption ρμ(i, j) > −τ of the lemma, we can establish (47) as β < 1/8.
Next, consider any � ∈ [n] \ {i, j}. From the triangle inequality Lemma 2.15(ii)

it follows that κδ′
i j ≤ κδ′

i� · κδ′
� j , which gives ρμ′

(i, �) + ρμ′
(�, j) ≥ ρμ′

(i, j). We
therefore get

max{�ρμ′
(i, �), �ρμ′

(�, j)} ≥ 1

2
�ρμ′

(i, j)
(47)≥ 2�τ + 9 log n + 11 log 2 − logβ.

Wenext show that if�ρμ′
(i, �) ≥ 2�τ +9 log n+11 log 2−logβ, then�μ′

(i, �) ≥
2τ . The case �ρμ′

(�, j) ≥ 2�τ + 9 log n + 11 log 2 − logβ follows analogously.
Consider any 0 < μ̄ < μ′ with the corresponding central path point w̄ = (x̄, ȳ, s̄).

The proof is complete by showing�ρμ̄(i, �) ≥ �ρμ′
(i, �)−9 log n −11 log 2+ logβ.

Recall that for central path elements, we have κδ′
i j = κi j x ′

i/x ′
j , and κδ̄

i j = κi j x̄i/x̄ j .
Therefore

�ρμ̄(i, j) = �ρμ′
(i, j) + log x̄i − log x ′

i − log x̄ j + log x ′
j .

Using Proposition 3.1, Lemma 3.3 and the assumption x∗
i ≥ βxi/(210n5.5), we have

x̄ j ≤ nx ′
j and

x̄i ≥ x∗
i

n
≥ βxi

210n6.5
≥ β(1 − β)x ′

i

210n7.5
≥ βx ′

i

211n7.5
.

Using these bounds, we get

�ρμ̄(i, j) ≥ �ρμ′
(i, j) − 9 log n − 11 log 2 + logβ,

completing the proof. ��
It remains to prove Lemma 4.4 and Lemma 4.5, addressing the more difficult case

ξ llJ < 4γ n. It is useful to decompose the variables into two sets. We let

B := {t ∈ [n] : |Rsllt | < 4γ n}, and N := {t ∈ [n] : |Rxllt | < 4γ n} . (48)

The assumption ξ llJ < 4γ n implies that for every layer Jk , either Jk ⊆ B or Jk ⊆ N .
The next two lemmas describe the relations between δ and δ+.

Lemma 6.1 Let w ∈ N (β) for β ∈ (0, 1/8], and assume �δ(J) ≤ γ and εll(w) <

4γ n. For the next iterate w+ = (x+, y+, s+) ∈ N (2β), we have

123

D. Dadush et al.

(i) For i ∈ B,

1

2
·
√

μ+
μ

≤ δ+
i

δi
≤ 2 ·

√
μ+
μ

and δ−1
i s+

i ≤ 3μ+
√

μ
.

(ii) For i ∈ N ,

1

2
·
√

μ

μ+ ≤ δ+
i

δi
≤ 2 ·

√
μ

μ+ and δi x+
i ≤ 3μ+

√
μ

.

(iii) If i, j ∈ B or i, j ∈ N , then

1

4
≤ κδ

i j

κδ+
i j

= δ+
i δ j

δiδ
+
j

≤ 4 .

(iv) If i ∈ N and j ∈ B, then

κδ
i j

κδ+
i j

≥ 4n3.5 .

Proof Part (i). By Lemma 3.10(i), we see that

‖δB�x llB‖∞ ≤ ‖δB�x llB + δ−1
B �sllB + x1/2B s1/2B ‖∞ + ‖δ−1

B (�sllB + sB)‖∞
= ‖δB�x llB + δ−1

B �sllB + x1/2B s1/2B ‖∞ + √
μ‖RsllB‖∞

≤ √
μ
(
6n�δ(J) + 4nγ

) ≤ 10nγ
√

μ ≤ √
μ/64 ,

by the assumption on �δ(J) and the definition of B.
By construction of the LLS step, |x+

i − xi | = α+|�x lli | ≤ |�x lli |, recalling that
0 ≤ α+ ≤ 1. Using the bound derived above, for i ∈ B we get

∣
∣
∣
∣
∣

x+
i

xi
− 1

∣
∣
∣
∣
∣
≤
∣
∣
∣
∣
∣

�x lli
xi

∣
∣
∣
∣
∣
= |δi�x lli |

δi xi
≤

√
μ

64δi xi
≤ 1

32
,

where the last inequality follows from Proposition 3.2. As

δ+
i

δi
=
√

x+
i s+

i

xi si
· xi

x+
i

and
1 − 2β

1 + β

√
μ+

√
μ

≤
√

x+
i s+

i

xi si
≤ 1 + 2β

1 − β

√
μ+

√
μ

by Proposition 3.2 the claimed bounds follow with β ≤ 1/8.
To get the upper bound on δ−1

i s+
i , again with Proposition 3.2

δ−1
i s+

i = δ+
i

δiδ
+
i

s+
i = δ+

i

δi
·
√

x+
i s+

i ≤ 2

√
μ+
μ

· (1 + 2β)
√

μ+ ≤ 3μ+
√

μ
.

123

A scaling-invariant algorithm for linear programming...

Part (ii). Analogously to (i).
Part (iii). Immediate from parts (i) and (ii).
Part (iv). Follows by parts (i) and (ii), and by the lower bound on

√
μ/μ+ obtained

from Lemma 3.10(iv) as follows

κδ
i j

κδ+
i j

= δ+
i δ j

δiδ
+
j

≥ μ

4μ+ = 1

4(1 − α+)
≥ β

12
√

nεll(w)
≥ 4n3.5.

��

Lemma 4.4 (Restatement). Let w = (x, y, s) ∈ N (β) for β ∈ (0, 1/8], and let
J = (J1, . . . , Jp) be a δ(w)-balanced partition. Assume that ξ llJ (w) < 4γ n, and

let w+ = (x+, y+, s+) ∈ N (2β) be the next iterate obtained by the LLS step with
μ+ = μ(w+) and assume μ+ > 0. Let q ∈ [p] such that ξ llJ (w) = ξ llJq

(w). If

�δ+
(J) ≤ 4γ n, then there exist i, j ∈ Jq such that x∗

i ≥ βx+
i /(16n3/2) and s∗

j ≥
βs+

j /(16n3/2). Further, for any �, �′ ∈ Jq , we have ρμ+
(�, �′) ≥ −|Jq |.

Proof of Lemma 4.4 Without loss of generality, let ξ llJ = ξ llJq
= ‖RxllJq

‖ for a layer q

with Jq ⊆ N . The case ξ llJq
= ‖RsllJq

‖ and Jq ⊆ B can be treated analogously.

By Lemma 3.10(iii), ‖RsllJq
‖ ≥ 1

2 − 3
4β > 1

4 + 2nγ , and therefore Lemma 4.2

provides a j ∈ Jq such that s∗
j /s j ≥ 1/(6

√
n). Using Lemmas3.3 and 3.1 we find

that s+
j /s j ≤ 2n and so s∗

j /s+
j = s∗

j /s j · s j/s+
j ≥ 1/(12n3/2) > 1/(16n3/2).

The final statement ρμ+
(�, �′) ≥ −|Jq | for any �, �′ ∈ Jq is also straightforward.

From Lemma 6.1(iii) and the strong connectivity of Jq in Gδ,γ /n , we obtain that Jq is
strongly connected in Gδ+,γ /(4n). Hence, ρ

μ+
(�, �′) ≥ −|Jq | follows by Lemma 4.1.

The rest of the proof is dedicated to showing the existence of an i ∈ Jq such that
x∗

i ≥ βx+
i /(16n3/2). For this purpose, we will prove following claim.

Claim 1 ‖δJq x∗
Jq

‖ ≥ βμ+
8
√

nμ
.

In order to prove Claim 1, we define

z := (δ+)−1Lδ+
J>q

(
δ+

J>q
(x∗

J>q
− x+

J>q
)
)

and w := x∗ − x+ − z ,

as in Lemma 5.2. By construction, w ∈ W and wJ>q = 0. Thus, wJq ∈ WJ ,q as
defined in Sect. 3.4.

Using the triangle inequality, we get

‖δJq x∗
Jq

‖ ≥ ‖δJq (x+
Jq

+ wJq)‖ − ‖δJq z Jq ‖ . (49)

123

D. Dadush et al.

We bound the two terms separately, starting with an upper bound on ‖δJq z Jq ‖. Since
�δ+

(J) ≤ 4γ n, we have with Lemma 5.2 that

∥
∥
∥δ+

Jq
z Jq

∥
∥
∥ ≤ �δ+

(J)

∥
∥
∥δ+

J>q

(
x∗

J>q
− x+

J>q

)∥
∥
∥

≤ 4nγ

∥
∥
∥δ+

J>q

(
x∗

J>q
− x+

J>q

)∥
∥
∥

= 4nγ

∥
∥
∥
∥
∥
δ+

J>q
x+

J>q

(
x∗

J>q

x+
J>q

− e

)∥
∥
∥
∥
∥

≤ 4nγ

(

‖δ+x+‖∞ ·
∥
∥
∥
∥

x∗

x+

∥
∥
∥
∥
1
+
√

nμ+
)

≤ 4nγ

(
3

2

√
μ+ · 4

3
n +

√
nμ+

)

≤ 16n2
√

μ+γ,

(50)

where the penultimate inequality follows by Proposition 3.2 and Lemma 3.3. We can
use this and Lemma 6.1(ii) to obtain

‖δJq z Jq ‖ ≤ ‖δJq /δ
+
Jq

‖∞ · ‖δ+
Jq

z Jq ‖ ≤ 32n2γμ+
√

μ
≤ βμ+

32n3√μ
, (51)

using the definition of γ .
The first RHS term in (49) will be bounded as follows.

Claim 2 ‖δJq (x+
Jq

+ wJq)‖ ≥ 1
2
√

μξ llJ .

Proof of Claim 2 We recall the characterization (25) of the LLS step �x ll ∈ W .
Namely, there exists �s ∈ W ⊥

J ,1 × · · · × W ⊥
J ,q that is the unique solution to

δ−1�s + δ�x ll = −δx . From the above, note that

‖δ−1
Jq

�sJq ‖ = ‖δJq (xJq + �x llJq
)‖ = √

μ‖RxllJq
‖ = √

μξ llJ .

From the Cauchy-Schwarz inequality,

‖δ−1
Jq

�sJq ‖ · ‖δJq (x+
Jq

+ wJq)‖ ≥
∣
∣
∣
〈
δ−1

Jq
�sJq , δJq (x+

Jq
+ wJq)

〉∣
∣
∣

=
∣
∣
∣
〈
δ−1

Jq
�sJq , δJq x+

Jq

〉∣
∣
∣ .

(52)

Here, we used that �sJq ∈ W ⊥
J ,q and wJq ∈ WJ ,q . Note that

x+ = x + α�x ll = x + �x ll − (1 − α)�x ll = −δ−2�s − (1 − α)�x ll .

123

A scaling-invariant algorithm for linear programming...

Therefore,

∣
∣
∣
〈
δ−1

Jq
�sJq , δJq x+

Jq

〉∣
∣
∣ =

∣
∣
∣
〈
δ−1

Jq
�sJq ,−δ−1

Jq
�sJq − (1 − α)δJq �x llJq

〉∣
∣
∣

≥ ‖δ−1
Jq

�sJq ‖2 − (1 − α)

∣
∣
∣
〈
δ−1

Jq
�sJq , δJq �x llJq

〉∣
∣
∣ .

ByLemma5.3, there exists�x̄ ∈ WJ ,1×· · ·×WJ ,p such that ‖δJq (�x llJq
−�x̄ Jq)‖ ≤

2n�δ(J)
√

μ. Therefore, using the orthogonality of �sJq and �x̄ Jq , we get that

∣
∣
∣
〈
δ−1

Jq
�sJq , δJq �x llJq

〉∣
∣
∣ =

∣
∣
∣
〈
δ−1

Jq
�sJq , δJq (�x llJq

− �x̄ llJq
)
〉∣
∣
∣ ≤ 2n�δ(J)

√
μ · ‖δ−1

Jq
�sJq ‖ .

From the above inequalities, we see that

‖δJq (x+
Jq

+ wJq)‖ ≥ ‖δ−1
Jq

�sJq ‖ − 2(1 − α)n�δ(J)
√

μ = √
μξ llJ − 2(1 − α)n�δ(J)

√
μ .

It remains to show (1 − α)n�δ(J) ≤ ξ llJ /4. From Lemma 3.10(iv), we obtain

(1 − α)n�δ(J) ≤ 3n3/2�δ(J)ξ llJ β−1,

using ξ llJ ≥ εll. The claim now follows by the assumption �δ(J) ≤ γ , and the choice
of γ . ��
Proof of Claim 1 Using Lemma 3.10(iv),

μ+ ≤ 3
√

nξ llJ μ

β
,

implying ‖δJq (x+
Jq

+wJq)‖ ≥ βμ+/(6
√

nμ) by Claim 2. Now the claim follows using
(49) and (51). ��
By Lemma 6.1(ii), we see that

‖δJq x+
Jq

‖ ≤ √
n‖δJq x+

Jq
‖∞ ≤ 3

√
nμ+

√
μ

.

Thus, the lemma follows immediately from Claim 1: for at least one i ∈ Jq , we must
have

x∗
i

xi
≥

‖δJq x∗
Jq

‖
‖δJq x+

Jq
‖ ≥ β

24n
≥ β

16n3/2 .

��

123

D. Dadush et al.

Lemma 4.5 (Restatement). Let w = (x, y, s) ∈ N (β) for β ∈ (0, 1/8], and let
J = (J1, . . . , Jp) be a δ(w)-balanced partition. Assume that ξ llJ (w) < 4γ n, and

let w+ = (x+, y+, s+) ∈ N (2β) be the next iterate obtained by the LLS step with
μ+ = μ(w+) and assume μ+ > 0. If �δ+

(J) > 4γ n, then there exist two layers Jq

and Jr and i ∈ Jq and j ∈ Jr such that x∗
i ≥ x+

i /(8n3/2), and s∗
j ≥ s+

j /(8n3/2).

Further, ρμ+
(i, j) ≥ −|Jq ∪ Jr |, and for all �, �′ ∈ Jq ∪ Jr , �
= �′ we have

�μ(�, �′) ≤ |Jq ∪ Jr |.
Proof of Lemma 4.5 Recall the sets B and N defined in (48). The key is to show the
existence of an edge

(i ′, j ′) ∈ Eδ+,γ /(4n) such that i ′ ∈ Jq ⊆ B, j ′ ∈ Jr ⊆ N, r < q . (53)

Before proving the existence of such i ′ and j ′, we show how the rest of the statements
follow. Note that x+ ≤ (1−β)−1(1+2 ·2β)nx ≤ 7

4nx by Lemma 3.3 and Proposition
3.1. Further, we have ‖RxllJq

‖ − 2γ n ≥ 1
2 − 3

4β − 2γ n ≥ 2
5 by Lemma 3.10 (iii).

The existence of i ∈ Jq such that x∗
i ≥ x+

i /(8n3/2) now follows immediately from
Lemma 4.2, as there is an i ∈ Jq such that

x∗
i ≥ 2xi

3
√

n
· (‖RxllJq

‖ − 2γ n) ≥ 2

3
√

n

4x+
i

7n

2

5
≥ x+

i

8n3/2 . (54)

With analogous argumentation it can be shown that there exists j ∈ Jr such that
s∗

j ≥ s+
j /(8n3/2). The other statements are that ρμ+

(i, j) ≥ −|Jq ∪ Jr |, and for
each �, �′ ∈ Jq ∪ Jr , �
= �′, �μ(�, �′) ≤ |Jq ∪ Jr |. According to Lemma 4.1, the
latter is true (even with the stronger bound max{|Jq |, |Jr |}) whenever �, �′ ∈ Jq , or
�, �′ ∈ Jr , or if � ∈ Jq and �′ ∈ Jr . It is left to show the lower bound on ρμ+

(i, j)
and �μ(�, �′) ≤ |Jq ∪ Jr | for �′ ∈ Jq and � ∈ Jr .

From Lemma 6.1(iii), we have that if �, �′ ∈ Jq ⊆ B or �, �′ ∈ Jr ⊆ N , then

κδ
��′/4 ≤ κδ+

��′ . Hence, the strong connectivity of Jr and Jq in Gδ,γ implies the strong
connectivity of these sets in Gδ+,γ /(4n). Together with the edge (i ′, j ′), we see that
every �′ ∈ Jq can reach every � ∈ Jr on a directed path of length ≤ |Jq ∪ Jr | − 1 in
Gδ+,γ /(4n). Applying Lemma 4.1 for this setting, we obtain�μ(�, �′) ≤ ρμ+

(�, �′) ≤
|Jq ∪ Jr | for all such pairs, and also ρμ+

(i, j) ≥ −|Jq ∪ Jr |.
The rest of the proof is dedicated to showing the existence of i ′ and j ′ as in (53).

We let k ∈ [p] such that �δ+
(J≥k) = �δ+

(J) > 4nγ . To simplify the notation, we let
I = J≥k .

When constructing J in Layering(δ, κ̂), the subroutine Verify-
Lift(Diag(δ)W , I , γ) was called for the set I = J≥k , with the answer ‘pass’.
Besides �δ(I) ≤ γ , this guaranteed the stronger property that max j i |B ji | ≤ γ for the
matrix B implementing the lift (see Remark 2.17).

Let us recall how this matrix B was obtained. The subroutine starts by finding a
minimal I ′ ⊂ I such that dim(πI ′(W)) = dim(πI (W)). Recall that πI ′(W) = R

I ′

and Lδ
I (p) = Lδ

I ′(pI ′) for every p ∈ πI (Diag(δ)W).

123

A scaling-invariant algorithm for linear programming...

Consider the optimal lifting Lδ
I : πI (Diag(δ)W) → Diag(δ)W . We defined B ∈

R
([n]\I)×I ′

as the matrix sending any q ∈ πI ′(Diag(δ)W) to the corresponding vector
[Lδ

I ′(q)][n]\I . The column Bi can be computed as [Lδ
I ′(ei)][n]\I for ei ∈ R

I ′
.

We consider the transformation

B̄ := Diag(δ+δ−1)B Diag
(
(δ+

I ′)−1δI ′
)
.

This maps πI ′(Diag(δ+)W) → π[n]\I (Diag(δ+)W).
Let z ∈ πI (Diag(δ+)W) be the singular vector corresponding to the maximum

singular value of Lδ+
I , namely, ‖[Lδ+

I (z)][n]\I ‖ > 4nγ ‖z‖. Let us normalize z such
that ‖zI ′ ‖ = 1. Thus,

∥
∥
∥[Lδ+

I ′ (zI ′)][n]\I

∥
∥
∥ > 4nγ .

Let us now apply B̄ to zI ′ ∈ πI ′(Diag(δ+)W). Since Lδ+
I is the minimum-norm lift

operator, we see that

∥
∥B̄z I ′

∥
∥ ≥

∥
∥
∥[Lδ+

I ′ (zI ′)]n\I

∥
∥
∥ > 4nγ .

We can upper bound the operator norm by the Frobenius norm ‖B̄‖ ≤ ‖B̄‖F =√∑
j i B̄ j i

2 ≤ n max j i |B̄ ji |, and therefore

max
j i

|B̄ ji | > 4γ .

Let us fix i ′ ∈ I ′ and j ′ ∈ [n]\I as the indices giving the maximum value of B̄. Note
that B̄ j ′i ′ = B j ′i ′δ

+
j ′δi ′/(δ

+
i ′ δ j ′).

Let us now use Lemma 2.16 for the pair i ′, j ′, the matrix B and the subspace
Diag(δ)W . Noting that B j ′i ′ = [Lδ

I ′(ei ′)] j ′ , we obtain κδ
i ′ j ′ ≥ |B j ′i ′ |. Now,

κδ+
i ′ j ′ = κδ

i ′ j ′ · δ+
j ′δi ′

δ+
i ′ δ j ′

≥ |B j ′i ′ | · δ+
j ′δi ′

δ+
i ′ δ j ′

= |B̄ j ′i ′ | > 4γ . (55)

The next claim finishes the proof. ��

Claim 6.2 For i ′ and j ′ selected as above, (53) holds.

Proof (i ′, j ′) ∈ Eδ+,γ /(4n) holds by (55). From the above, we have

|B j ′i ′ | > 4γ · δ+
i ′ δ j ′

δi ′δ
+
j ′

.

123

D. Dadush et al.

According to Remark 2.17, |B j ′i ′ | ≤ γ follows since Verify- Lift(Diag(δ)W , I , γ)
returned with ‘pass’. We thus have

δ+
i ′ δ j ′

δi ′δ
+
j ′

<
1

4
.

Lemma 6.1 excludes the scenarios i ′, j ′ ∈ N , i ′, j ′ ∈ B, and i ′ ∈ N , j ′ ∈ B, leaving
i ′ ∈ B and j ′ ∈ N as the only possibility. Therefore, i ′ ∈ Jq ⊆ B and j ′ ∈ Jr ⊆ N .
We have r < q since i ∈ I = J≥k and j ∈ [n]\I = J<k . ��

7 Initialization

Our main algorithm (Algorithm 2 in Sect. 3.6), requires an initial solution w0 =
(x0, y0, s0) ∈ N (β). In this section, we remove this assumption by adapting the
initialization method of [63] to our setting.

We use the “big-M method”, a standard initialization approach for path-following
interior point methods that introduces an auxiliary system whose optimal solutions
map back to the optimal solutions of the original system. The primal-dual system we
consider is

min c�x+Me�
¯x max y�b + 2Me�z

Ax − A¯x = b A�y + z + s = c

x + x̄ = 2Me z + s̄ = 0

x, x̄, ¯x ≥ 0 −A�y + ¯s = Me

s, s̄, ¯s ≥ 0.

(Init-LP)

The constraint matrix used in this system is

Â =
(

A −A 0
I 0 I

)

The next lemma asserts that the χ̄ condition number of Â is not much bigger than that
of A of the original system (LP).

Lemma 7.1 [63, Lemma 23] χ̄ Â ≤ 3
√
2(χ̄A + 1).

We extend this bound for χ̄∗.

Lemma 7.2 χ̄∗
Â

≤ 3
√
2(χ̄∗

A + 1).

Proof Let D ∈ Dn and let D̂ ∈ D3n the matrix consisting of three copies of D, i.e.

D̂ =
⎛

⎝
D 0 0
0 D 0
0 0 D

⎞

⎠ .

123

A scaling-invariant algorithm for linear programming...

Then

ÂD̂ =
(

AD −AD 0
D 0

)

Row-scaling does not change χ̄ as the kernel of the matrix remains unchanged. Thus,
we can rescale the last n rows of ÂD̂, to the identity matrix, i.e. multiplying by
(I , D−1) from the left hand side. We observe that

χ̄ ÂD̂ = χ̄

((
AD −AD 0
I 0 I

))

≤ 3
√
2(χ̄AD + 1)

where the inequality follows from Lemma 7.1. The lemma now readily follows as

χ̄∗
Â

= inf{χ̄ ÂD̂ : D ∈ D3n} ≤ inf{3√2(χ̄AD + 1) : D ∈ Dn} = 3
√
2(χ̄∗

A + 1).

��
We show next that the optimal solutions of the original system are preserved for suffi-
ciently large M .We let d be themin-norm solution to Ax = b, i.e., d = A�(AA�)−1b.

Proposition 7.3 Assume both primal and dual of (LP) are feasible, and M >

max{(χ̄A+1)‖c‖, χ̄A‖d‖}. Every optimal solution (x, y, s) to (LP), can be extended to
an optimal solution (x, ¯x, x̄, y, z, s, ¯s, s̄) to (Init-LP); and conversely, from every opti-
mal solution (x, ¯x, x̄, y, z, s, ¯s, s̄) to (Init-LP), we obtain an optimal solution (x, y, s)
by deleting the auxiliary variables.

Proof If system (LP) is feasible, it admits a basic optimal solution (x∗, y∗, s∗) with
basis B such that AB x∗

B = b, x∗ ≥ 0, A�
B y∗ = c and A�y∗ ≤ c. Using Proposition

2.1(ii) we see that

‖x∗
B‖ = ‖A−1

B b‖ = ‖A−1
B Ad‖ ≤ χ̄A‖d‖ < M , (56)

and using that ‖A‖ = ‖A�‖ we observe

‖A�y∗‖ = ‖A� A−�
B c‖ ≤ ‖A� A−�

B ‖‖c‖ = ‖A−1
B A‖‖c‖ ≤ χ̄A‖c‖ < M . (57)

We can extend this solution to a solution of system (Init-LP) via setting x̄∗ = 2Me −
x∗, ¯x

∗ = 0, z∗ = s̄∗ = 0 and ¯s
∗ = Me + A�y∗. Observe that x̄∗ > 0 and ¯s

∗ > 0 by
(56) and (57). Furthermore observe that by complementary slackness this extended
solution for (Init-LP) is an optimal solution. The property that ¯s

∗ > 0 immediately tells
us that ¯x vanishes for all optimal solutions of (Init-LP) and thus all optimal solutions
of (LP) coincide with the optimal solutions of (Init-LP), with the auxiliary variables
removed. ��

The next lemma is from [36, Lemma 4.4]. Recall that w = (x, y, s) ∈ N (β) if
‖xs/μ(w) − e‖ ≤ β.

123

D. Dadush et al.

Lemma 7.4 Letw = (x, y, s) ∈ P++×D++, and letν > 0. Assume that‖xs/ν−e‖ ≤
τ . Then (1 − τ/

√
n)ν ≤ μ(w) ≤ (1 + τ/

√
n)ν and w ∈ N (τ/(1 − τ)).

The new system has the advantage that we can easily initialize the system with a
feasible solution in close proximity to central path:

Proposition 7.5 We can initialize system (Init-LP) close to the central path with
initial solution w0 = (x0, y0, s0) ∈ N (1/8) and parameter μ(w0) ≈ M2 if
M > 15max{(χ̄A + 1)‖c‖, χ̄A‖d‖}.
Proof The initialization follows along the lines of [63, Section 10]. We let d as above,
and set

x̄0 = Me, x0 = Me, ¯x
0 = Me − d

y0 = 0, z0 = −Me

s̄0 = Me, s0 = Me + c, ¯s
0 = Me.

This is a feasible primal-dual solution to system (Init-LP) with parameter

μ0 = (3n)−1(〈x0, s0〉 + 〈¯x
0, ¯s

0〉 + 〈x̄0, s̄0〉) = (3n)−1(3nM2 + Mc�e − Md�e) ≈ M2 .

We see that

∥
∥
∥
∥
∥
∥

1

M2

⎛

⎝
x̄0s̄0

x0s0

¯x
0

¯s
0

⎞

⎠− e

∥
∥
∥
∥
∥
∥

2

= M−2‖c‖2 + M−2‖d‖2 ≤ 1

92χ̄2
A

≤ 1

92
.

With Lemma 7.4 we conclude that w0 = (x0, y0, s0) ∈ N
(

1/9
1−1/9

)
= N (1/8). ��

Detecting infeasibility To use the extended system (Init-LP), we still need to assume
that both the primal and dual programs in (LP) are feasible. For arbitrary instances,
we first need to check if this is the case, or conclude that the primal or the dual (or
both) are infeasible.

This can be done by employing a two-phase method. The first phase decides fea-
sibility by running (Init-LP) with data (A, b, 0) and M > χ̄A‖d‖1. The objective
value of the optimal primal-dual pair is 0 if and only if (LP) has a feasible solution. If
the optimal primal/dual solution (x∗, ¯x

∗, x̄∗, y∗, z∗, s∗, ¯s
∗, s̄∗) has positive objective

value, we can extract an infeasibility certificate in the following way.
We can w.l.o.g. assume that x∗ is supported on some basis B of A. Note that

the objective function of the primal is equivalent to ‖¯x‖1. Therefore, clearly ‖¯x
∗‖1 ≤

−∑i :di <0 di ≤ ‖d‖1 and so‖¯x
∗‖ ≤ ‖d‖1.Due to the constraint Ax∗−A¯x

∗ = b = Ad
we get that

‖x∗‖ = ‖B−1A(d + ¯x
∗)‖ ≤ ‖B−1A‖(‖d‖ + ‖¯x

∗‖) ≤ 2χ̄A‖d‖1. (58)

Therefore, if M > χ̄A‖d‖1, then x̄∗ = 2Me −‖x∗‖ > 0 so by strong duality, s̄∗ = 0.
From the dual, we conclude that z∗ = 0, and therefore A�y∗ ≤ A�y∗ + s∗ + z∗ =

123

A scaling-invariant algorithm for linear programming...

c = 0. On the other hand, by assumption the objective value of the dual is positive,
and so (y∗)�b ≥ (y∗)�b + 2 Me�z∗ > 0. Hence, y∗ is the desired certificate.

Feasibility of the dual of (LP) can be decided by running (Init-LP) on data (A, 0, c)
and M > (χ̄A + 1)‖c‖ with the same argumentation: Either the objective value of
the dual is 0 and therefore the dual optimal solution (y∗, z∗, ¯s

∗, s∗, s̄∗) corresponds
to a feasible dual solution of (LP) or the objective value is negative and we extract
a dual infeasibility certificate in the following way: For the optimal corresponding
primal solution (x∗, ¯x

∗, x̄∗) we have by assumption c�x∗ ≤ c�x∗ + Me�
¯x

∗ < 0.
Furthermore, w.l.o.g. the support of s∗ is contained in a basis which allows us to
conclude that ¯s

∗ > 0 and therefore ¯x
∗ = 0. So we have Ax∗ = 0 + A¯x

∗ = 0, which
together with c�x∗ < 0 yields the certificate of dual infeasibility.

Finding the right value of M While Algorithm 2 does not require any estimate on χ̄∗
or χ̄ , the initialization needs to set M ≥ max{(χ̄A + 1)‖c‖, χ̄A‖d‖} as in Proposition
7.3.

A straightforward guessing approach (attributed to Renegar in [63]) starts with a
constant guess, say χ̄A = 100, constructs the extended system, and runs the algorithm.
In case the optimal solution to the extended system does not map to an optimal solution
of (LP), we restart with χ̄A = 1002 and try again; we continue squaring the guess
until an optimal solution is found.

This would still require a series of log log χ̄A guesses, and thus, result in a depen-
dence on χ̄A in the running time. However, if we initially rescale our system using
the near-optimal rescaling Theorem 2.5, then we can turn the dependence from χ̄A

to χ̄∗
A. The overall iteration complexity remains O(n2.5 log n log(χ̄∗

A + n)), since the
running time for the final guess on χ̄∗

A dominates the total running time of all previous
computations due to the repeated squaring.

An alternative approach, that does not rescale the system, is to use Theorem 2.5 to
approximate χ̄A. In this case we repeatedly square a guess of χ̄∗

A instead of χ̄A which
takes O(log log χ̄∗

A) iterations until our guess corresponds to a valid upper bound for
χ̄A.

Note that either guessing technique can handle bad guesses gracefully. For the first
phase, if neither a feasible solution to (LP) is returned nor a Farkas’ certificate can be
extracted, we have proof that the guess was too low by the above paragraph. Similarly,
in phase two, when feasibility was decided in the affirmative for primal and dual, an
optimal solution to (Init-LP) that corresponds to an infeasible solution to (LP) serves
as a certificate that another squaring of the guess is necessary.

Acknowledgements The authors are grateful to the anonymous reviewers for their comments that helped
to improve the presentation.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

http://creativecommons.org/licenses/by/4.0/

D. Dadush et al.

References

1. Allamigeon, X., Benchimol, P., Gaubert, S., Joswig, M.: Log-barrier interior point methods are not
strongly polynomial. SIAM Journal on Applied Algebra and Geometry 2(1), 140–178 (2018)

2. Allamigeon, X., Dadush, D., Loho, G., Natura, B., Végh, L.A.: Interior point methods are not worse
than simplex. In: Proceedings of the 63rd Annual Symposium on Foundations of Computer Science
(FOCS), pp. 267–277. IEEE (2022)

3. Allamigeon, X., Gaubert, S., Vandame, N.: No self-concordant barrier interior point method is strongly
polynomial. In: Proceedings of the 54th Annual ACM Symposium on Theory of Computing (STOC),
pp. 515–528 (2022)

4. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications.
Prentice-Hall Inc., New York (1993)

5. Bubeck, S., Eldan, R.: The entropic barrier: a simple and optimal universal self-concordant barrier.
arXiv:1412.1587 (2014)

6. Chubanov, S.: A polynomial algorithm for linear optimization which is strongly polynomial under cer-
tain conditions on optimal solutions. http://www.optimization-online.org/DB_HTML/2014/12/4710.
html (2014)

7. Cohen, M.B., Lee, Y.T., Song, Z.: Solving linear programs in the current matrix multiplication time.
In: Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pp. 938–942
(2019)

8. Dadush, D., Huiberts, S., Natura, B., Végh, L.A.: A scaling-invariant algorithm for linear programming
whose running time depends only on the constraint matrix. In: Proceedings of the 52nd Annual ACM
Symposium on Theory of Computing (STOC), pp. 761–774 (2020)

9. Dikin, I.: Iterative solution of problems of linear and quadratic programming. Dokl. Akad. Nauk SSSR
174(4), 747–748 (1967)

10. Dikin, I.: On the speed of an iterative process. Upravlyaemye Sistemi 12(1), 54–60 (1974)
11. Dadush, D., Koh, Z.K., Natura, B., Végh, L.A.: On circuit diameter bounds via circuit imbalances. In:

Proceedings of the 23rd Integer Programming and Combinatorial Optimization Conference (IPCO),
pp. 140–153. Springer (2022)

12. De Loera, J.A., Hemmecke, R., Lee, J.: On augmentation algorithms for linear and integer-linear
programming: From edmonds-karp to bland and beyond. SIAM J. Optim. 25(4), 2494–2511 (2015)

13. De Loera, J.A., Kafer, S., Sanita, L.: Pivot rules for circuit-augmentation algorithms in linear
optimization. SIAM J. Optim. 32(3), 2156–2179 (2022)

14. Dadush,D., Natura, B., Végh, L.A.: RevisitingTardos’s framework for linear programming: faster exact
solutions using approximate solvers. In: Proceedings of the 61st Annual Symposium on Foundations
of Computer Science, pp. 931–942. IEEE (2020)

15. Daitch, S.I., Spielman, D.A.: Faster approximate lossy generalized flow via interior point algorithms.
In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 451–460 (2008)

16. Ekbatani, F., Natura, B., Végh, A.L.: Circuit imbalance measures and linear programming. In: Surveys
in Combinatorics 2022, London Mathematical Society Lecture Note Series, pp. 64–114. Cambridge
University Press (2022)

17. Frank, A.: Connections in Combinatorial Optimization. Number 38 in Oxford Lecture Series in
Mathematics and its Applications. Oxford University Press (2011)

18. Gonzaga, C.C., Lara, H.J.: A note on properties of condition numbers. Linear Algebra Appl. 261(1),
269–273 (1997)

19. Goffin, J.-L.: The relaxation method for solving systems of linear inequalities. Math. Oper. Res. 5(3),
388–414 (1980)

20. Gonzaga, C.C.: Path-following methods for linear programming. SIAM Rev. 34(2), 167–224 (1992)
21. Ho, J.C., Tunçel, L.; Reconciliation of various complexity and condition measures for linear pro-

gramming problems and a generalization of Tardos’ theorem. In: Foundations of Computational
Mathematics, pp. 93–147. World Scientific (2002)

22. Karmarkar, N.: A new polynomial-time algorithm for linear programming. In: Proceedings of the 16th
Annual ACM Symposium on Theory of Computing (STOC), pp. 302–311 (1984)

23. Khachiyan, L.G.: A polynomial algorithm in linear programming. In Doklady Academii Nauk SSSR
244, 1093–1096 (1979)

24. Kitahara, T., Mizuno, S.: A bound for the number of different basic solutions generated by the simplex
method. Math. Program. 137(1–2), 579–586 (2013)

123

http://arxiv.org/abs/1412.1587
http://www.optimization-online.org/DB_HTML/2014/12/4710.html
http://www.optimization-online.org/DB_HTML/2014/12/4710.html

A scaling-invariant algorithm for linear programming...

25. Kakihara, S., Ohara, A., Tsuchiya, T.: Information geometry and interior-point algorithms in
semidefinite programs and symmetric cone programs. J. Optim. Theory Appl. 157, 749–780 (2013)

26. Kakihara, S., Ohara, A., Tsuchiya, T.: Curvature integrals and iteration complexities in SDP and
symmetric cone programs. Comput. Optim. Appl. 57, 623–665 (2014)

27. Kitahara, T., Tsuchiya, T.: A simple variant of the Mizuno-Todd-Ye predictor-corrector algorithm and
its objective-function-free complexity. SIAM J. Optim. 23(3), 1890–1903 (2013)

28. Lan, G., Monteiro, R.D., Tsuchiya, T.: A polynomial predictor-corrector trust-region algorithm for
linear programming. SIAM J. Optim. 19(4), 1918–1946 (2009)

29. Lee, Y.T., Sidford, A.: Path finding methods for linear programming: solving linear programs in
Õ(

√
rank) iterations and faster algorithms for maximum flow. In: Proceedings of the 55th Annual

IEEE Symposium on Foundations of Computer Science (FOCS), pp. 424–433 (2014)
30. Lee, Y.T., Sidford, A.: Efficient inverse maintenance and faster algorithms for linear programming. In:

2015 IEEE 56th Annual Symposium on Foundations of Computer Science, pp. 230–249 (2015)
31. Lee, Y.T., Sidford, A.: Solving linear programs with Õ(

√
rank) linear system solves. arXiv preprint

arXiv:1910.08033 (2019)
32. Madry, A.: Navigating central path with electrical flows: From flows to matchings, and back. In:

Proceedings of the 54th IEEE Annual Symposium on Foundations of Computer Science, pp. 253–262.
IEEE (2013)

33. Megiddo, N.: Towards a genuinely polynomial algorithm for linear programming. SIAM J. Comput.
12(2), 347–353 (1983)

34. Mehrotra, S.: On the implementation of a primal-dual interior point method. SIAM J. Optim. 2(4),
575–601 (1992)

35. Megiddo, N., Mizuno, S., Tsuchiya, T.: A modified layered-step interior-point algorithm for linear
programming. Math. Program. 82(3), 339–355 (1998)

36. Monteiro, R.D.C., Tsuchiya, T.: A variant of the Vavasis-Ye layered-step interior-point algorithm for
linear programming. SIAM J. Optim. 13(4), 1054–1079 (2003)

37. Monteiro, R.D.C., Tsuchiya, T.: A new iteration-complexity bound for the MTY predictor-corrector
algorithm. SIAM J. Optim. 15(2), 319–347 (2005)

38. Monteiro, R.D., Tsuchiya, T.: A strong bound on the integral of the central path curvature and its rela-
tionship with the iteration-complexity of primal-dual path-following LP algorithms. Math. Program.
115(1), 105–149 (2008)

39. Mizuno, S., Todd, M., Ye, Y.: On adaptive-step primal-dual interior-point algorithms for linear
programming. Math. Oper. Res. MOR 18, 964–981 (1993)

40. O’Leary, D.P.: On bounds for scaled projections and pseudoinverses. Linear Algebra Appl. 132, 115–
117 (1990)

41. Olver, N., Végh, L.A.: A simpler and faster strongly polynomial algorithm for generalized flow
maximization. Journal of the ACM (JACM) 67(2), 1–26 (2020)

42. Renegar, J.: A polynomial-time algorithm, based on Newton’s method, for linear programming. Math.
Program. 40(1–3), 59–93 (1988)

43. Renegar, J.: Is it possible to know a problem instance is ill-posed?: some foundations for a general
theory of condition numbers. J. Complex. 10(1), 1–56 (1994)

44. Renegar, J.: Incorporating conditionmeasures into the complexity theory of linear programming. SIAM
J. Optim. 5(3), 506–524 (1995)

45. Schrijver, A.: Combinatorial Optimization—Polyhedra and Efficiency. Springer, Berlin (2003)
46. Smale, S.:Mathematical problems for the next century. TheMathematical Intelligencer 20, 7–15 (1998)
47. Sonnevend, G., Stoer, J., Zhao, G.: On the complexity of following the central path of linear programs

by linear extrapolation II. Math. Program. 52(1–3), 527–553 (1991)
48. Spielman, D.A., Teng, S.-H.: Nearly-linear time algorithms for graph partitioning, graph sparsifica-

tion, and solving linear systems. In: Proceedings of the 36th Annual ACM Symposium on Theory of
Computing (STOC) (2004)

49. Stewart, G.: On scaled projections and pseudoinverses. Linear Algebra Appl. 112, 189–193 (1989)
50. Tardos, É.: A strongly polynomial minimum cost circulation algorithm. Combinatorica 5(3), 247–255

(1985)
51. Tardos, É.: A strongly polynomial algorithm to solve combinatorial linear programs. Oper. Res. 34:

250–256 (1986)
52. Todd,M.J.: ADantzig-Wolfe-like variant of Karmarkar’s interior-point linear programming algorithm.

Oper. Res. 38(6), 1006–1018 (1990)

123

http://arxiv.org/abs/1910.08033

D. Dadush et al.

53. Todd, M.J., Tunçel, L., Ye, Y.: Characterizations, bounds, and probabilistic analysis of two complexity
measures for linear programming problems. Math. Program. 90(1), 59–69 (2001)

54. Tunçel, L.: Approximating the complexity measure of Vavasis-Ye algorithm is NP-hard. Math.
Program. 86(1), 219–223 (1999)

55. Vaidya, P.M.: Speeding-up linear programming using fast matrix multiplication. In: Proceedings of
the 30th IEEE Annual Symposium on Foundations of Computer Science, pp. 332–337 (1989)

56. Vavasis, S.A.: Stable numerical algorithms for equilibrium systems. SIAM J.Matrix Anal. Appl. 15(4),
1108–1131 (1994)

57. van den Brand, J.: A deterministic linear program solver in current matrix multiplication time. In:
Proceedings of the Symposium on Discrete Algorithms (SODA), pp. 259–278. SIAM (2020)

58. van den Brand, J., Liu, Y.P., Lee, Y.-T., Saranurak, T., Sidford, A., Song, Z., Wang, D.: Minimum cost
flows, MDPs, and L1-regression in nearly linear time for dense instances. In: STOC (to appear) (2021)

59. van den Brand, J., Lee, Y.-T., Nanongkai, D., Peng, R., Saranurak, T., Sidford, A., Song, Z., Wang, D.:
Bipartitematching in nearly-linear time onmoderately dense graphs. In: IEEE 61st Annual Symposium
on Foundations of Computer Science (FOCS), pp. 919–930 (2020)

60. van den Brand, J., Tat Lee, Y., Sidford, A., Song, Z.: Solving tall dense linear programs in nearly linear
time. In: Proceedings of the 52nd Annual ACM Symposium on Theory of Computing (STOC), pp.
775–788 (2020)

61. Végh, L.A.: A strongly polynomial algorithm for generalized flow maximization. Math. Oper. Res.
42(2), 179–211 (2017)

62. Vassilevska Williams, V.: Multiplying matrices faster than coppersmith-winograd. In: Proceedings of
the 44th Annual ACM Symposium on Theory of Computing, pp. 887–898 (2012)

63. Vavasis, S.A., Ye, Y.: A primal-dual interior point method whose running time depends only on the
constraint matrix. Math. Program. 74(1), 79–120 (1996)

64. Ye, Y.: Interior-Point Algorithms: Theory and Analysis. John Wiley and Sons, New York (1997)
65. Ye, Y.: A new complexity result on solving the Markov decision problem. Math. Oper. Res. 30(3),

733–749 (2005)
66. Ye,Y.: Improved complexity results on solving real-number linear feasibility problems.Math. Program.

106(2), 339–363 (2006)
67. Ye, Y.: The simplex and policy-iteration methods are strongly polynomial for the Markov decision

problem with a fixed discount rate. Math. Oper. Res. 36(4), 593–603 (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	A scaling-invariant algorithm for linear programming whose running time depends only on the constraint matrix
	Abstract
	1 Introduction
	1.1 Our contributions
	1.2 Related work
	1.3 Organization
	1.4 Notation

	2 Finding an approximately optimal rescaling
	2.1 The condition number bar-chi
	2.2 The circuit imbalance measure
	2.3 Basic properties of kappa
	2.4 A min–max theorem on kappa-star
	2.5 Finding circuits: a detour in matroid theory
	2.6 Approximating the condition numbers

	3 A scaling-invariant layered least squares interior-point algorithm
	3.1 Preliminaries on interior-point methods
	3.2 The affine scaling and layered-least-squares steps
	3.2.1 The layered-least-squares direction

	3.3 Overview of ideas and techniques
	3.4 A linear system viewpoint of layered least squares
	3.4.1 Partition lifting scores

	3.5 The layering procedure
	3.6 The overall algorithm

	4 The potential function and the overall analysis
	4.1 The iteration complexity bound for the Vavasis–Ye algorithm

	5 Properties of the layered least square step
	6 Proofs of the main lemmas for the potential analysis
	7 Initialization
	Acknowledgements
	References

