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Abstract 18 

Economic analyses of global climate change have been criticised for their poor representation of 19 

climate change damages. Here, we develop and apply aggregate damage functions in three economic 20 

Integrated Assessment Models (IAMs) with different degrees of complexity. The damage functions 21 

encompass a wide, but still incomplete, set of climate change impacts based on physical impact 22 

models. We show that with medium estimates for damage functions, global damages are in the range 23 

of 10% to 12% of GDP by 2100 in a baseline scenario with 3 °C temperature change, and about 2% in 24 

a well-below 2 °C scenario. These damages are much higher than previous estimates in benefit-cost 25 

studies, resulting in optimal temperatures below 2 °C with central estimates of damages and discount 26 

rates. Moreover, we find a Benefit-Cost Ratio of 1.5 to 3.9, even without considering damages that 27 

could not be accounted for, such as biodiversity losses, health, and tipping points.   28 
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Introduction 29 

Cost-benefit analysis (CBA) of climate change provides insight into the economic consequences of 30 

different climate policy strategies. The results of CBAs critically depend on the quality of the underlying 31 

information on mitigation costs, avoided damages, the processes represented in the models and the 32 

coverage of relevant uncertainties. While there is a rich literature on mitigation costs1–7, it has been 33 

notoriously difficult to get reliable information on the damages. Similarly, much less is known about 34 

the role of the type of integrated assessment model used to analyse the costs and benefits. While 35 

model intercomparison studies are common for other climate change research areas8–12, very few 36 

have been performed on cost-benefit analyses.  37 

In CBA models, the benefits of climate change mitigation can be obtained from reduced-form damage 38 

functions, which relate global average temperature increase to aggregate economic losses. In recent 39 

years, empirical, top-down estimates have been developed which relate observed temperature with 40 

economic growth13–15. The disadvantage of this method is that the underlying drivers of climate 41 

damages are unknown, and it is very uncertain whether historical empirical correlations between 42 

temperature and economic growth can be extrapolated to the (far) future. In earlier CBA studies, on 43 

the other hand, most estimates of damage functions relied on semi-qualitative assessment by experts, 44 

which are currently considered mostly outdated16.17–2021–23 45 

To overcome these drawbacks, a new set of regional climate change damage functions17 were recently 46 

built in a bottom-up process as part of the European Horizon 2020 project COACCH (www.coacch.eu). 47 

They are based on physical impacts derived from last-generation impact models covering a wide range 48 

of sectors (agriculture, forestry, fishery, energy demand, energy supply, labour supply, riverine floods, 49 

transportation, and sea-level rise) 17. The impact of these physical damages on economic losses were 50 

estimated by an economic model: the Computable General Equilibrium (CGE) model18–20 ICES21 with 51 

improved representation of driving forces and transmission mechanisms of economic impacts (Fig. 1 52 

and Table SI. 3.1).  53 

 54 

Fig. 1 | Overview of the creation and use of the damage functions. Results from nine sectoral impact models (a) are included 55 
in a CGE model to calculate GDP losses for various scenarios and points in time (b). Using quantile regression, a curve is fitted 56 
through the points at the 5th (low estimate), 50th (medium) and 95th (high) percentiles for each region. These reduced-form 57 
damage functions are used in the IAMs (c) for the macro-economic analysis of this paper (d). The example damages shown 58 
in the bottom panel are the combined damages (including sea-level rise, no adaptation) aggregated for the world, and are 59 
compared to several literature damage estimates. Burke et al. (LR, SSP2) refers to the SSP2 Long Run damage function. 60 



 

 

Compared with similar exercises19,20,22, the damage functions developed here use a higher level of 61 

regional detail and provide internally consistent uncertainty ranges. This high spatial granularity 62 

applies particularly to the EU, where the macroeconomic impact assessments are determined at the 63 

NUTS2 level. The consistency in uncertainty representation derives from accounting for i) different 64 

climate scenarios, ii) different socio-economic scenarios, iii) different impact ranges within each 65 

climate scenario originated by impact model uncertainty, and, finally, iv) how the economy reacts to 66 

these impacts. The new damage functions have been separately estimated for impacts related to 67 

temperature increase and sea-level rise (with a much longer time delay). The damage curves also 68 

include versions for the case of sea-level rise with and without optimal adaptation (see Methods). 69 

Literature shows that the results of cost-benefit studies depend not only on the damage function but 70 

also on the macroeconomic parameters and assumptions like discounting or savings, as well as the 71 

representation of mitigation costs and dynamics23. Several studies have been published in recent years 72 

looking into uncertainty in cost-benefit analysis. These studies typically only consider a single model23–73 
26 and use the older top-down or empirical damage functions. Here, we perform the first multi-model 74 

CBA study using the newly developed COACCH damage functions, allowing to explore the impacts of 75 

a consistent set of damage curves (including an explicit uncertainty estimate) in different models. 76 

Three IAMs are used: the reduced form model MIMOSA23, and the process-based models WITCH27 and 77 

REMIND28. First, we investigate how the damage functions translate to (regional) GDP losses given 78 

different temperature pathways and how the results from each model relate to each other (so 79 

covering the uncertainty as result of model representation). Next, we determine the combined effect 80 

of mitigation costs and damages on optimal emission pathways using cost-benefit analysis and 81 

compare them with the goals of the Paris Agreement (Fig. 1). We also calculate Benefit-Cost Ratios 82 

(BCRs) for these optimal emission pathways, which indicates the relationship between the relative 83 

costs and benefits of climate mitigation. For medium estimates of damage function and discount rate, 84 

we find a BCR of 1.5 to 3.9. This presents an important case to improve societal acceptance of climate 85 

policy, as the purely economic benefits of reduced climate damages significantly outweigh the costs 86 

of climate policy. 87 

 88 

Fig. 2 | End-of-century damages for the five macro-regions for two scenarios. The damages are split into three types (direct 89 
temperature-related damages, direct sea-level-rise damages and indirect damages from GDP loss accumulation). The 90 
damages are shown for the year 2100 in the RCP6.0 scenario (a) and the RCP2.6 scenario (b). Both scenarios assume optimal 91 
sea-level-rise adaptation. This figure does not show intra-regional differences; only the population-weighted average per 92 
macro-region is shown. 93 



 

 

Multi-model comparison of economic damages  94 

We first compare the sensitivity of final economic damages to different model dynamics. To do this, 95 

we calculate the macro-economic effect of the damage functions in the three IAMs under two fixed 96 

temperature pathways: the Representative Concentration Pathway29 (RCP) 6.0 leading to a global 97 

average temperature change of about 3°C by 2100 (also coinciding with the no-policy scenario in one 98 

of the models, REMIND), and RCP 2.6, which is a trajectory in line with the well below 2 °C target of 99 

the Paris Agreement, i.e. RCP 2.6. We fixed the temperature pathways to reveal whether the model 100 

parameterisations shaping the economic growth differ substantively. 101 

The COACCH functions allow decomposing the total GDP losses into (i) direct impacts from sea level 102 

rise, (ii) direct temperature-related impacts and (iii) indirect impacts from cumulated dynamic effects, 103 

e.g. through investment30,31. Unless stated otherwise, we assume that optimal adaptation has taken 104 

place against sea-level rise (SLR) damages. Therefore, reported SLR damages are the sum of SLR 105 

adaptation costs and residual damages.  106 

 107 

Fig. 3 | Sensitivity analysis of the global damage costs. Damage cost decomposition of the global GDP losses with optimal 108 
sea-level-rise adaptation for RCP6.0 (top row) and RCP2.6 (bottom row) for three levels of damages (low: 5th quantile, 109 
medium: 50th quantile, high: 95th quantile), in 2030, 2050 and 2100. 110 
 111 

On a global level, the GDP loss in the baseline RCP 6.0 scenario ranges from 10 to 12% at the end of 112 

the century when using medium damage (50th damage quantile) estimates. The damages are 113 

significantly reduced in the mitigation scenario RCP 2.6 to 3.1-3.6% GDP loss in 2100. The economic 114 

damages are not very sensitive to the model used.  115 

In Fig. 2, higher spatial resolution results from the original COACCH damage functions and the IAM 116 

used have been aggregated for the five macro-regions of the SSP database32 to facilitate comparison 117 

(see Methods).  118 

There is high agreement across models also on regional damage patterns, although the ranges are 119 

larger in some regions than others. In the RCP 6.0 scenario (Fig. 2a), the damages are the highest in 120 

the Middle East and Africa region, with total losses between 13% and 18% of GDP, followed by 12% to 121 

14% for Asia. The other three regions have lower total damages (6-8% for Latin America, 5% for OECD 122 



 

 

and 3-5% for Eastern Europe and Northern Asia). This figure does not show intra-regional differences; 123 

only the population-weighted average per macro-region is shown. 124 

Even with optimal adaptation, sea-level rise damages, including adaptation costs, make up a 125 

significant part (10-13% of total direct damages) in Asia and the OECD region. This share is much lower 126 

in the other regions (as low as 2% of total direct damages for Africa). Without sea-level rise adaptation 127 

(Fig. SI.1.1), total damages per region become substantially higher (from global average damages of 128 

11-12% with SLR adaptation to global damages of 14-17% without SLR adaptation). This is especially 129 

pronounced in the OECD (5-6% total damages with SLR adaptation to 12% total damages without SLR 130 

adaptation), which confirms previous literature on the benefits of SLR adaptation33. 131 

RCP 2.6 reduces the total damages to a regional maximum of 4.5%, compared to the 18% for RCP 6.0 132 

(Fig. 2b). The regional distribution of damages is similar to RCP 6.0, except that Asia has now slightly 133 

higher damages than Africa. Because of the slow processes of sea-level rise, the differences in sea-134 

level rise damages between RCP 2.6 and RCP 6.0 are relatively small in the first half of the century. 135 

Accordingly, the relative share of damages from sea-level rise becomes larger, especially in regions 136 

with relatively long coastlines, like Asia and the OECD. Without SLR adaptation, Asia and the OECD 137 

have the highest damages in RCP 2.6, as, in that case, sea-level rise damages account for most of the 138 

total damages (Fig. SI.1.1b). 139 

 140 

Impact of damage curve uncertainty 141 

The total damages are significantly higher when using the high end of the damage quantile (95th 142 

damage quantile, see Methods): 18-22% global average GDP loss instead of 11-12% for the medium 143 

damage quantile (Fig. 3). There is a small probability that global impacts are slightly positive up to 144 

2050, indicated by negative GDP losses for the 5th damage quantile, due to significant gains in Latin 145 

America from increased agricultural yield (see Fig. SI.1.4b). These gains are offset by sea-level rise 146 

damages towards the end of the century. 147 

Until 2050, the differences between RCP 2.6 and 6.0 are still moderate. They only strongly diverge 148 

towards 2100 (up to 50% higher damages in RCP 6.0 than RCP 2.6 in 2050, whereas the damages are 149 

300% higher towards the end of the century). REMIND shows lower indirect effects than the other 150 

models. While in MIMOSA and WITCH all economic assets are fixed, in REMIND, assets can be 151 

relocated, facilitated by more advanced trade mechanisms34, and, accordingly, losses are lower. 152 

Cost-benefit analysis 153 

We now add mitigation costs of each model to perform a comprehensive CBA.  154 

The cost-optimal (or, in a strict sense, welfare-optimal) end-of-century temperature for the medium 155 

estimates of damages is similar for all three models: around 1.9°C above pre-industrial levels (Fig. 4). 156 

These temperature estimates are median climate estimates; we have not assessed uncertainty in the 157 

climate module. Interestingly, none of the models applies net-negative emissions to limit temperature 158 

increase to these levels. This is a consequence of running the models in cost-benefit mode (minimising 159 

damages and mitigation costs) instead of cost-effectiveness mode (minimising mitigation costs only). 160 

Previous23,35,36 research has shown that cost-benefit runs lead to much higher reductions early in the 161 

century and less use of net-negative emissions than cost-effectiveness runs.  162 



 

 

 163 

Figure 4. Emission pathways, damage costs and climate policy costs in cost-benefit (CBA) setting. (a) Cost-optimal emission 164 
trajectory and corresponding end-of-century temperature in cost-benefit runs for the low, medium and high end of the 165 
damage function uncertainty range (damage quantiles). While only global CO2 emissions are shown in this figure, each model 166 
takes into account non-CO2 gases as well in their calculation of temperature outcomes. (b) GDP loss (compared to baseline 167 
GDP) decomposed in policy costs (mitigation costs), damage costs and indirect costs. Here, the indirect costs result from 168 
accumulated GDP impacts from mitigation and damage costs. 169 

 170 

As expected, the low damage function leads to higher optimal end-of-century temperature increases 171 

of 2.8-3.1°C, and the higher end of the damages leads to optimal temperature increases, which are 172 

very close to the 1.5 °C target of the Paris Agreement (1.5-1.7°C).  173 

 174 

Model uncertainty 175 

The optimal emission pathways in MIMOSA, WITCH and REMIND are similar. REMIND is slightly less 176 

sensitive to variability in the damage function than the other two models. It can be also noted that 177 

overall mitigation costs are lower in REMIND (Fig. 4b, see also 6). Nonetheless, in terms of 178 

temperature, the model shows the smallest difference (only 0.2°C) between the 50th and 95th damage 179 

quantile. The bottom-up description of mitigation options, including hard-to-abate processes, puts 180 

stringent constraints on the total mitigation potential; this means that the model already exploits the 181 

largest share of the total mitigation potential already in the 50th damage quantile run. In MIMOSA, the 182 

mitigation costs are higher (around 2% of GDP for the medium CBA scenario) than REMIND, but the 183 

model is more flexible in achieving higher mitigation levels. It has less strict inertia constraints and 184 

allows more net-negative emissions towards the end of the century than REMIND or WITCH, 185 

explaining the lower optimal end-of-century temperature in the high damage quantile scenario. 186 

WITCH shows a stronger initial mitigation effort and less towards the end of the period, even with the 187 

modest global carbon price of $67/tCO2 in 2030 (see Fig. SI.2.1) for medium damages. WITCH still 188 

reaches similar end-of-century temperatures as REMIND and MIMOSA, based on different 189 

assumptions about land-use CO2 emissions, other greenhouse gases, and the climate model used. 190 

 191 

 192 



 

 

The role of discounting 193 

Another key component in long-term cost-benefit analysis is the discount rate. By default, we use a 194 

pure rate of time preference (PRTP) of 1.5%/year, combined with an elasticity of marginal utility of 1, 195 

in line with recent literature23,24 and a recent expert elicitation37. We perform a sensitivity analysis 196 

with a lower and higher discounting parameter to cover the full range of current discounting 197 

estimates. We use 0.1%/year as a low PRTP value, as in the Stern38 review, and 3%/year as a high PRTP 198 

value covering a range similar to the Inter-Agency Working Group on the Social Cost of Carbon39, while 199 

keeping the elasticity of marginal utility fixed. 200 

As shown in Fig. 5, the impact of damage function uncertainty on the cost-optimal end-of-century 201 

temperature is twice as large as the impact from discounting uncertainty. The spread in optimal 202 

temperatures is around 1.5°C for damage cost uncertainty and 0.7°C for uncertainty in discounting. 203 

Without sea-level rise adaptation, the optimal temperature is, across all discounting scenarios, 204 

between 0.1°C and 0.2°C lower than with optimal sea-level rise adaptation, as the models choose to 205 

reduce the other damages as much as possible. Only for end-of-century temperatures of 1.5°C or 206 

lower, peak temperatures are in some cases more than 0.1°C higher than 2100 temperatures (see 207 

Suppl. Fig. 2.2). 208 

 209 

Comparing costs to avoided damages using the Benefit-Cost Ratio 210 

Besides providing a cost-optimal target, an important and policy-relevant metric is the Benefit-Cost 211 

Ratio, showing by how much the avoided damages outweigh the mitigation costs. When subtracting 212 

the residual damages of a CBA scenario from the damages in a baseline scenario, we obtain the 213 

avoided damages, or, in other words, the economic benefits of mitigation (expressed as % of GDP). 214 

Comparing the total discounted avoided damages to the total mitigation costs gives a Benefit-Cost 215 

Ratio of mitigation (Extended Figure 1). Globally, most benefits occur in the second half of the century 216 

or even beyond 2100, as damages increase slowly while mitigation costs increase early, even incurring 217 

the large costs at the beginning of the transformation. Therefore, we consider the 2020-2150 time 218 

range. Using a medium discount rate (pure rate of time preference of 1.5%/yr), the benefits are almost 219 

twice the total discounted costs (multi-model range of 1.5 to 3.9, Fig. 6). This gives strong economic 220 

validation of the Paris-consistent mitigation scenario, especially when considering that the damage 221 

functions are likely to be underestimates since not all damage sectors have been included (see 222 

Discussion). When assuming the high damage function, the benefit-cost ratio increases to 1.8 - 5.0 for 223 

medium discounting (Figure SI.2.2.). Since the low damage function yields CBA paths with very low to 224 

no mitigation effort, the BCR is not calculated here. Since these scenarios are performed in a 225 

cooperative setting, only the global results are calculated. A regional BCR requires assumptions on 226 

equity and burden sharing, which are outside the scope of this paper (see Discussion). 227 

 228 



 

 

 229 

Figure 5. Optimal temperature in 2100 in CBA for different levels of discounting and SLR adaptation assumptions. The 230 
levels of discounting are quantified by three values of the Pure Rate of Time Preference (PRTP), also called utility discounting. 231 
REMIND has not been calibrated to use the low utility discount rate. 232 
 233 

 234 
Figure 6. Benefit-cost ratio for the CBA scenario using the medium damage function (50th percentile). Left: policy costs 235 
(dotted lines) and avoided damages (benefits, solid lines) over time for the scenario with medium discounting. Right: Benefit-236 
Cost Ratio (BCR): total discounted avoided damages divided by the total discounted mitigation costs. REMIND is not 237 
calibrated for the lowest discount rate. 238 

 239 

Discussion 240 

The results in this study show that, from a purely economic perspective, the benefits of reduced 241 

climate damages significantly outweigh the costs of climate policy, even when some climate change 242 

damages, including those on biodiversity and health, are not accounted for. This presents an 243 

important case to improve societal acceptance of climate policy. 244 

The results are based on i) detailed process-based biophysical impacts, ii) a consistent economic 245 

modelling approach to quantify and monetise these impacts in a multi-model context, iii) the 246 

separation of temperature and sea-level rise impacts, and iv) allowing for sea-level rise adaptation 247 

investment. We show that with medium damages (evaluated at the median of our multi-impact-model 248 

chain estimated damage function), the optimal temperature increase is below 2°C according to all 249 

three models. Assuming the high end of the damage function (estimated at the 95th percentile), the 250 

optimal temperature increase is close to 1.5°C in all three models. Since the COACCH damage 251 

functions do not include all impacts (e.g. biodiversity loss, health impacts and tipping points), the 252 

resulting temperature outcomes are likely to be conservative, meaning that this study gives strong 253 

economic validation of the Paris Agreement. Our damage functions only explicitly modelled 254 

adaptation for sea-level rise. For the other impacts, adaptation is implicitly addressed in the CGE 255 

(market-driven adaptation), but not in the impact models. Future research needs to improve our 256 

understanding of adaptation in a comprehensive global impact study. 257 



 

 

Interestingly, when aggregated globally, the COACCH low, medium and high damage functions are 258 

close to, respectively, the DICE40, Howard et al. 16 and Burke et al. 13 functions (see Fig. 1.), thus also 259 

leading to similar optimal temperature levels22. However, the methodology for creating the damage 260 

function is completely different. While DICE, just like the new functions presented here, also relies on 261 

bottom-up sectoral physical impacts, major criticisms about these damage functions (as used in 262 

DICE40, FUND41 and PAGE42) are the lack of empirical foundation, the relatively simple monetisation 263 

method used, and that they are based on relatively old and scarce impact data43,44. A more recent 264 

study26 with bottom-up impacts directly included damages from a limited set of 4 sectors in their IAM 265 

using a simplified damage function for each of the sectors. Contrary to the bottom-up methods like 266 

DICE and Rennert et al (2022)26, empirical damage functions, like Burke et al., with their “reduced-267 

form nature” constitute black boxes: the underlying impact drivers are unknown, which makes it far 268 

from certain that these historical correlations between temperature and economic growth also hold 269 

for the (far) future45,46. With the advancement of sectoral physical impact models, the COACCH 270 

damage functions rely much less on semi-qualitative expert assessment and avoid simple 271 

monetisation by translating the state-of-the-art physical impacts into economic damages using a CGE. 272 

This improves the transparency of how each type of physical impact is implemented in the economical 273 

assessment (see Table SI. 3.1). However, more research should be performed to monetize and include 274 

more climate impact sectors, like biodiversity losses, health impacts and tipping points. 275 

Apart from the results of the CBA, the regional macro-economic implications of the new COACCH 276 

damage functions show equally important insights. While there is a lot of attention regarding the 277 

regional distribution of mitigation costs47–50, this research shows that financing loss and damages is 278 

just as important, since even Paris-compliant scenarios still yield significant damages, especially in 279 

developing regions. While the new damage functions provide improved estimates of economic climate 280 

damages on a regional level (as shown in Fig. 2), the Benefit-Cost Ratios provided in this study are only 281 

applicable on a global scale. A regional BCR would imply specific assumptions about regional equity 282 

regarding the distribution of mitigation costs, like burden sharing regimes and emission trading 283 

schemes47,51, which are outside the scope of this study.  284 

In this research, we have not taken all possible uncertainties into account. We have instead 285 

concentrated on the two main sources of uncertainty in CBA: damage costs and discounting, together 286 

accounting for almost 75% of total variance in cost-optimal temperature variance according to a 287 

recent CBA study23. Other relevant sources of variance are mitigation cost uncertainty, climate 288 

uncertainty and socio-economic uncertainty. By systematically using three different IAMs, this study 289 

considers between-model uncertainty in mitigation costs and climate model, but not within-model 290 

uncertainty. 291 

An extra source of uncertainty originates from the separation between sea-level rise damages and 292 

purely temperature related damages. While all three models considered in this study have the ability 293 

to separate the two by modelling sea-level rise explicitly, this is not the case for all IAMs. For this 294 

reason, the new damage functions are also provided as combined damage functions depending only 295 

on temperature (SI.3.2c). These functions include the aggregated effect of SLR and non-SLR damages. 296 

They result in similar damages for high temperature scenarios (RCP 6.0, see Suppl. Fig. 1.2). However, 297 

the combined damages are up to 50% lower than the disaggregated damage functions in an RCP 2.6 298 

scenarios without SLR adaptation (Suppl. Fig. 1.2), due to the different time scales that are not being 299 

captured when SLR is not modelled explicitly. This highlights the importance of separating sea-level 300 

rise damages from other temperature-related damages. 301 

This analysis shows the importance of including the full range of damage function uncertainty, as this 302 

strongly influences possible policy recommendations. It also highlights that different models can lead 303 



 

 

to different results. Using multiple models can highlight these differences and lead to more robust 304 

outcomes in the case of model agreement. While the uncertainty due to three models in the cost-305 

optimal end-of-century temperature is much smaller than the damage and discounting uncertainty, 306 

the model range in the Benefit Cost Ratio does show the importance of including multiple models in 307 

a cost-benefit analysis. 308 

 309 

Data availability 310 

All regional damage coefficients for the reduced-form climate change damage functions are available 311 

at https://zenodo.org/record/5546264#.YlWeBehBw2w52. This includes the sea-level rise, non-sea-312 

level rise and combined damage functions for all used damage quantiles. All scenario data from the 313 

three models is available at https://doi.org/10.5281/zenodo.762767953. 314 

Code availability 315 

The calculations and the figures used in this paper and the scripts required to reproduce them are 316 

available at https://doi.org/10.5281/zenodo.762767953. 317 

The model code and documentation of the MIMOSA model is available at 318 

https://github.com/kvanderwijst/Project-MIMOSA/, of the WITCH model at 319 

https://www.witchmodel.org/ and of the REMIND model at https://rse.pik-320 

potsdam.de/doc/remind/2.1.0/ and https://github.com/remindmodel/remind for the model code. 321 
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Methods 456 

Damage functions 457 

Damage functions connect global or local temperature increase to loss of income or consumption. 458 

Here, we use the newly created COACCH damage functions.  459 

In a first step a set of climate change damages quantified by process-based sectoral impact models 460 

have been evaluated in their macroeconomic consequences applying the ICES recursive-dynamic 461 

computable general equilibrium model54 (www.icesmodel.org). The list of impacts considered and 462 

their implementation in the CGE model for the evaluation are reported in Error! Reference source 463 

not found.. The climate change impacts do not include potential losses originated in ecosystems or 464 

in the health sector. This is motivated by the difficulty to address with a “market-transaction-based” 465 

model like a CGE, the non-market dimension of those impacts. Also, catastrophic events are not 466 

considered, even though some “extremes” (riverine floods) are included.  467 

To provide the amplest account for uncertainty, all the impacts have been specified for 9 468 

combinations of climate change scenarios (RCPs), social economic development scenarios (SSPs) (see 469 

Fig. SI.3.1) between 2020 and 2070, a range of low-to-high variability in the climate and impact 470 

models used and two different assumptions on investment mobility determining the economic 471 

consequences.  472 

In a second step, these data are used to extrapolate the reduced-form climate change damage 473 

functions. Two different types of damage functions have been estimated using linear and quadratic 474 

quantile regression, depending on the region (see SI.3.1). One specific to sea-level rise (SLR); the 475 

other to the remaining climate change damages. SLR damage functions have been estimated 476 

assuming “current level adaptation” and “incremental adaptation”, when coastal protection 477 

upgrades following the prescription of “optimal” adaptation from the DIVA model55. For the 478 

remaining damages, adaptation is not explicitly modelled. However, some level of adaptation occurs 479 

in the CGE optimization process, where economical assets can be reallocated between sectors and 480 

regions. All damage functions and underlying GDP loss estimates are provided in SI.3.1. The damage 481 

functions have been estimated through different damage quantiles. Unless otherwise stated, the 482 

medium damage estimate is the 50th quantile, with the low and high estimates respectively the 5th 483 

and 95th quantile. 484 

 485 

Direct vs. indirect costs 486 

The COACCH damage functions are level damage functions: they directly impact economic output, 487 

instead of economic growth. However, a reduced economic output also has an indirect impact on 488 

GDP growth31 through reduced investments for the next time period. For this reason, we also report 489 

indirect damages, accounting for this reduced growth effect. When fixing the temperature path to 490 

RCP6.0 or RCP2.6, we calculate the indirect damages as the difference between an RCP run with and 491 

one without damages, while keeping the mitigation costs constant. This yields the total damages. By 492 

subtracting the direct damages as reported from the damage function, we obtain the indirect 493 

damages. For the CBA runs, it is not possible to distinguish between reduced economic growth from 494 

climate impacts and from mitigation costs. We therefore do not report the indirect damages, but the 495 

combined indirect costs from both damages and policy costs. These are calculated as the difference 496 

between in GDP between the CBA run and a baseline without damages and without mitigation costs. 497 



 

 

By subtracting both the direct damages and the mitigation costs, we obtain the combined indirect 498 

costs. For the Benefit-Cost Ratio calculation, the indirect costs need to be included for a fair 499 

comparison of benefits and costs. We therefore scale the direct policy and residual damage costs to 500 

include the indirect costs to obtain total policy and residual damage costs. The residual damages are 501 

then subtracted from the total damages in a no-policy scenario (Extended Fig. 1). 502 

 503 

Integrated Assessment Models 504 

To assess the macro-economic implications of the new COACCH damage functions, we use three 505 

different IAMs of varying levels of complexity. IAMs are models designed to capture the interplay 506 

between, among others, the climate, the economy and the energy system. 507 

MIMOSA23 is a recent IAM based on FAIR56, with 26 regions covering the whole world. It is a 508 

relatively simple Cost-Benefit IAM but still covers the relevant technological and socio-economic 509 

dynamics. Temperature is a linear function of cumulative CO2 emissions57. MIMOSA uses the DICE 510 

sea-level rise module. In contrast with the previous global version, we have now regionalized the 511 

mitigation costs, population, initial capital stock and baseline GDP and CO2 emissions (see SI.4 for 512 

more details). The direct regional mitigation costs are calculated as area under the Marginal 513 

Abatement Cost (MAC) curve, and have been recalibrated to the IPCC AR6 WGIII database. 514 

WITCH27 is a dynamic optimisation IAM of intermediate complexity, with 17 world regions. The 515 

climate module is based on the DICE and MERGE climate modules, calibrated to reproduce the 516 

CMIP5 model ensemble results. The sea-level rise module is the model of Li et al. (2020)58. Mitigation 517 

costs are endogenously computed based on a fully hard-linked energy system covering all main 518 

energy supply technologies and demand sectors. Moreover, land-use mitigation actions and costs 519 

are computed based on the linked GLOBIOM model. The policy costs are then calculated as total 520 

GDP loss compared to a baseline scenario without climate policy. 521 

REMIND28 is an optimal growth IAM with a high level of detail in the representation of the economy 522 

and the energy sector including mitigation options in the energy system and land-use sector. 523 

REMIND is soft-coupled to MAGICC59 as its climate module. The policy costs are calculated as GDP 524 

losses compared to a baseline scenario without climate policy. 525 

 526 

The Computable General Equilibrium model 527 

ICES21 is a recursive dynamic computable general equilibrium (CGE) model for the world economy 528 

based on the GTAP 8 database60. While, at the time of writing, GTAP10 is available, ICES has been 529 

calibrated separately for the entire 2020-2070 period according to the macroeconomic trends of the 530 

SSPs, making it less sensitive to updates of the starting point (more recent calibration years) from 531 

the newer GTAP versions. It simulates in 5-year time steps from 2020 to 2070. For this exercise, a 532 

model version has been developed featuring a sub-national resolution for the EU economies 533 

represented by 138 territorial units. 24 different economic sectors are considered. An extended 534 

description of the ICES model and of the calibration process is provided in SI.6. Using a CGE to 535 

calculate the damages allows to use the highly detailed representation of the economy to account 536 

for feedbacks and rebound effects triggered by climate change impacts.  537 

 538 

 539 



 

 

Harmonisation 540 

To allow a comparison of the results between the models, we harmonise key assumptions. We use 541 

the SSP261 assumptions on baseline GDP and population growth and baseline emissions. The 542 

discounting is also harmonised: by default, we use a Pure Rate of Time Preference (PRTP, also called 543 

utility discount factor) of 1.5%/year and an elasticity of marginal utility of 1.001, in line with a recent 544 

expert elicitation37 on discount rates. Since temperature is an essential factor determining the 545 

climate damages, the climate models are calibrated such that the 2020 temperature is harmonised 546 

and equal to 1.16°C above pre-industrial levels62. Moreover, all damages are reported relative to 547 

2020 damage levels. While the COACCH damage functions are calibrated for the 1986-2005 period 548 

and therefore report non-zero damages in 2020, we assume that the observed GDP of 2020 already 549 

incorporates these damages. Specifically, if the COACCH damage function relative to 1986-2005 550 

temperature is noted by 𝐷1986−2005(𝑇𝑡) for temperature level 𝑇𝑡, the damages as incorporated in 551 

the models are: 552 

𝐷rel. to 2020 level(𝑇𝑡) = 𝐷1986−2005(𝑇𝑡) − 𝐷1986−2005(𝑇2020), 553 

where 𝑇2020 is the global mean temperature in 2020. 554 

Finally, since each model uses different regional definitions, we aggregate all results to the five 555 

macro regions of the SSP database32 (see 556 

https://tntcat.iiasa.ac.at/SspDb/dsd?Action=htmlpage&page=about#regiondefs for the detailed 557 

country mapping of each region): 558 

• ASIA: most Asian countries, except for the Middle East, Japan, the Russian Federation, 559 

Central Asia and the Caucasus region 560 

• EENA: Eastern Europe and North Asia: Russian Federation, Belarus, Ukraine, the Caucasus 561 

region, Central and North Asia 562 

• LAM: Latin America 563 

• MAF: the Middle East and Africa 564 

• OECD: includes all OECD and EU countries except Egypt, Israel, Mexico and South Korea. Also 565 

includes Albania, Bosnia and Herzegovina, Bulgaria, Guam, Macedonia, Montenegro, Puerto 566 

Rico, and Serbia 567 

While these key assumptions have been harmonised across the three IAMs, the models differ, 568 

among others, in their representation of the economy, their internal climate and sea-level rise 569 

module, and the energy sector. 570 
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