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Abstract

A growing literature has documented sizeable negative effects of air pollution on

individuals’ health, labour market performance and human capital accumulation, all

determinants of a country’s overall economic activity. So what are the effects of air

pollution on aggregate economic production? To answer this, I study the effects of

PM2.5 on county-level GDP, GDP per capita, and GDP per employee in the United States

(2006-2018) by exploiting a detailed dataset of yearly air pollution exposure by county

and a set of instrumental variables. In my main specification, I use exogenous year-

to-year variation in wildfire-induced PM2.5 exposure from air trajectories simulations.

Contrary to recent studies in China and the EU, which find large negative effects in

all regions, my results show no effect for the US. However, these headline results mask

spatial and temporal heterogeneity. Economically relevant negative effects appear to be

present in rural areas during working days, when base levels or air pollution are above

the median, and in the trade sector and educational services. The results are robust to

various alternative specifications and alternative instruments previously used in the

literature, such as thermal inversions or smoke plume polygons.
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1 Introduction

Air pollution is globally recognised as a major threat to human health. More than 99% of the

world’s population live in areas where air pollution levels exceed the World Health Organisation

guidelines (WHO, 2022) and 4.5 million deaths a year worldwide are attributed to ambient air

pollution alone, 0.37 from ambient ozone and 4.14 from particulate matter (PM)1 (Fuller et al.,

2022).

These large health costs of air pollution have led to increasingly restrictive regulations in

multiple countries, with the Clean Air Act in the United States of America (US), being a worldwide

role model for environmental legislation (Holman et al., 2015). But how much pollution control is

enough? The answer depends on the costs to reduce it and the size of is negative effects. As Zivin

and Neidell (2018) pointed out, the effects on hospitalisations and deaths are only the tip of the

iceberg, with more common (but less lethal) negative effects on labour productivity and human

capital accumulation that “can add up to considerable, society-wide impacts across the globe”. An

estimate of these aggregated effects on health and economic production is then a valuable source

of information to guide policymakers on the optimal strength of clean air policies, especially when

concerned with their effects on economic growth and job creation (Morgenstern et al., 2002).

The impact of air pollution on individuals’ economic outcomes is strong and wide-ranging. Air

pollution has been documented to reduce labour supply and productivity in various settings and

locations (Aguilar-Gomez et al., 2022; Zivin and Neidell, 2018). There is also evidence of its

contemporaneous effects on human capital formation, such as lower performance in high school

(Ebenstein et al., 2016; Lavy and Roth, 2014) and university examinations (Roth, 2016). Based on

these results, recent research has tried to uncover the aggregate macroeconomic costs of these

negative effects. Fu et al. (2021) and Dechezleprêtre et al. (2019) found strong negative

macroeconomic consequences, with a 10% increase in PM2.5 (a common air pollutant) causally

reducing the GDP of China and the EU by 0.4% and 0.8%, respectively. These estimates suggest

strong co-benefits from using less carbon-intensive fuels, reducing the overall cost of the efforts set

in the Paris Agreement to decarbonise the economy.

On the other hand, the external validity of these studies for the US economy is nonetheless

questionable as labour and health markets, levels of air pollution, and urban planning in the US

differ strongly from the EU and China, potentially affecting the relationship between pollution

and aggregate economic production. Sick leaves in the US are less common than in Europe,

reducing a proven mechanism in which air pollution can reduce overall GDP (Holub et al., 2006;

Leroutier and Ollivier, 2022). Furthermore, these air pollution-induced illnesses like asthma

1Particulate matter (PM) consists of small suspended particles. The most conventional measurement of PM are PM10

and PM2.5. Their concentration in the air is measured in micrograms per cubic meter (μg/m3) and the number 10 or 2.5
refers to the particle’s diameter in micrometres.
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might even positively affect GDP due to the US’ costly and mostly private healthcare system.

Finally, secondary results from Williams and Phaneuf (2019) conclude that air pollutants had no

effect on manufacturing establishments, employment, or wages in the US and thus suggest its

effects on overall GDP might differ from other studied regions.

The main objective of this article is to contribute to this literature and estimate the causal

effect of air pollution on US macroeconomic outcomes such as local GDP, GDP per capita, and

industry-specific GDP. To recover this effect, I used panel data on local economic outcomes and

exposure to PM2.5 from 2001-2018 at the US county level. The main obstacles in estimating the

effect of air pollution on economic output with ordinary least squares regression are reverse

causality and measurement error. Reverse causality results from air pollution being a by-product

of economic and social activity. Measurement error is a feature of all studies on air pollution

(Graff Zivin and Neidell, 2013). To overcome these problems, I use various instruments to create

conditionally-exogenous variation in air pollution levels together with a set of fixed effects to

control for constant and time-varying confounders. This is a standard estimation strategy of

various previous studies on the effect of air pollution on outcomes with large geographic extent

such as Dechezleprêtre et al. (2019), Borgschulte et al. (2022), Arceo et al. (2016), Fu et al. (2021),

Chen et al. (2017) and Sager (2019). For this, I use year-on-year changes of two instruments:

exposure to wildfire smoke and the prevalence of thermal inversions. Exposure to wildfire smoke

proves to be a stronger and more consistent instrument across the US geography and is therefore

chosen for the main results described below.

As anticipated, my results deviate from previous analyses from Dechezleprêtre et al. (2019) for

the European Union and Fu et al. (2021) for China, finding precise and insignificant effects of

PM2.5 on overall GDP, GDP per capita, GDP per employee and population in urban regions. On

the other hand, I find that air pollution has a significant negative impact on US rural areas’ GDP

and GDP per capita of 0.40% (SE: 0.19%) and 0.37% (SE: 0.19%) per μg/m3 of average ambient

exposure to PM2.5, respectively. This effect in rural areas seems to be only present during working

days and with air pollution levels above the median concentration (7.3 μg/m3). Concerning

individual sectors, only “Trade” and “Educational Services” experience a significant negative effect

of 0.60% (SE: 0.2%) and 0.7% (SE: 0.33%) per μg/m3, respectively. These translate to a yearly

aggregate loss of 13 billion and 145 2012-equivalent dollars of GDP and GDP per capita per year.

Finally, a large set of robustness tests with alternative samples, instruments, regions, pollution

measures, and model specifications are performed, with no changes in the main results.

The rest of this paper is structured as follows: Section 2 discusses the current literature and how

it guides my research; section 3 explains the research strategy; section 4 describes the data sources,

transformation and descriptive statistics; section 5 describes the results, and section 6 concludes.
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2 Background and literature review

Air pollution more generally, and PM2.5 specifically, have been consistently found to increase the

risks of death and hospitalisation for cardiovascular and respiratory diseases both in the short

and long term (US EPA, 2009). As mentioned before, these strong effects have been recently

shown to be only the tip of the iceberg, with less life-threatening but more common effects of PM2.5

having deep societal consequences.

After pollution particles are inhaled, they can pass from the lungs to the bloodstream, finally

affecting multiple organs such as the heart and the brain (Calderón-Garcidueñas et al., 2014; Du

et al., 2016; Ranft et al., 2009). Even when it does not cause hospitalisations, short-term air

pollution exposure can reduce working hours and increase sick leaves of workers (Fan and

Grainger, 2019; Hoffmann et al., 2022; Holub et al., 2006; Leroutier and Ollivier, 2022; Ron Chan

et al., 2022) and caregiving activities when vulnerable population, such as kids, get sick (Aragón

et al., 2017; Hanna and Oliva, 2015).

On top of changes in the number of hours worked, air pollution has been shown to reduce

productivity in a wide range of work types including outdoor, physical, and desk-based. Some

examples include peer packers in California (Graff-Zivin and Neidell, 2012), garment factories in

India (Adhvaryu et al., 2014), call centres in China (Graff Zivin and Neidell, 2013), investors in

New York (Heyes et al., 2016) and Canadian members of Parlament (Heyes et al., 2019). More

generally, Fu et al. (2021) looked at changes in productivity due to air pollution for a

representative sample of Chinese manufacturing firms and found an elasticity of −0.44, with large

effects in both high- and low-technology industries (elasticities of −0.73 and −0.33, respectively).

Even more subtly, air pollution can reduce productivity while at work (Hanna and Oliva, 2015) by

increasing fatigue, impairing cognition or increasing stress (Sager, 2019) and sleeplessness (Heyes

and Zhu, 2019). Finally, in a more recent study for the US, Cook and Heyes (2022) show that

psychological exposure, i.e. ‘the thought of pollution’ can also reduce willingness to work (labour

supply) and work performance (labour productivity) in an experimental setting.

The literature has also studied the negative effects of air pollution on cognitive performance

and human capital formation by looking at high school and university test results in the US,

Israel and the UK (Gilraine and Zheng, 2022; Lavy and Roth, 2014; Roth, 2016). Less specific to

students in high-stakes examinations, Zhang et al. (2018) find similar results in nationally

representative cognitive tests of Chinese families, finding larger negative effects for men and

low-income families. All of them coincide that air pollution can cause a decrease of cognitive

performance in the studied populations.

In summary, short-term exposure to air pollution can both reduce the number of hours worked
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and the productivity (by hour worked) of an individual, reducing overall production and changing

the determinants of local employment, wages and income. Various recent papers have looked at

this question too, by focusing on the regional effects of higher average pollution levels over some

months or years. This is especially relevant when we are interested in how it affects general

economic outcomes in equilibrium as regional or aggregate effects are not necessarily equivalent

to the sum of short-term effects due to spatial spillovers of long-run consequences. In a recent

publication, Borgschulte et al. (2022) use the geographic extension of wildfire plumes to get the

causal effect of air pollution changes on quarterly labour earnings, employment and labour force

participation in the US. They find a 1μg increase in PM2.5 reduced earnings by 1.8%, employment

by 0.12% and LFP by 0.27%. Focusing on the firm side, Leroutier and Ollivier (2022) find that a

monthly 1μg increase in PM2.5 decreased monthly sales of French firms by 0.26% in the two

months after. On the other hand, Williams and Phaneuf (2019) find no effect of SO2 and NOx on

manufacturing establishments, employment and wages during the 1999-2003 period for US (see

their online appendix).

The literature on how changes in average air pollution exposure can determine aggregate

regional production and productivity is fairly recent. The two papers published on the topic, and

main guidance for this project are Fu et al. (2021) and Dechezleprêtre et al. (2019) which study the

case of China and the EU, respectively.

Fu et al. (2021) use data from a nationally representative sample of China’s manufacturing

firms from 1998 to 2007 and estimate the causal effects of air pollution on productivity and hiring.

They use thermal inversions as an instrument to find that a 1μg increase in PM2.5 decreases

productivity by 0.82%. Using the differential effect between coastal and inner regions of China’s

access to the WTO, they estimate the effect of output on PM2.5. Finally, they estimate the general

equilibrium effects of PM2.5 on GDP concluding that an increase of 10% in PM2.5 (≈5μg) is

expected to cause a decrease of 0.4% in China’s GDP.

Dechezleprêtre et al. (2019) use the same methodology with thermal inversions as an

instrument as Fu et al. (2021) but directly estimates the effects of air pollution on local GDP, GDP

per capita and each sector’s GVA. With 2000-2015 NUTS-3 data for the EU, they estimate that a

10% increase (1μg) in PM2.5 causally decreases GDP by 0.8%, roughly the size of a small EU

Member Country (such as Slovakia or Hungary) or 200e per inhabitant per year. They conclude

that 95% of this impact is due to reductions of output per worker (absenteeism or productivity)

and that the largest effect is in the agricultural sector (5 times the overall effect). This is the

closest work to my own and their formalisation of the effect can be applied here.

Finally, it is essential to be clear that neither this paper nor the ones just mentioned are

exercises to calculate the sum of all economic costs of air pollution. GDP aggregates all market
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production and ignores non-market goods and externalities. Research by Muller and Mendelsohn

(2007) is then an important complement to this work as it calculated the gross annual damages

(GAD) of air pollution emissions.

Three major facts motivate a new study on these effects. First, only two studies have been

published on the topic with no replications (that I know of). Second, their estimated effects are

quite large. For example, Dechezleprêtre et al. (2019) estimate that reductions of GDP due to air

pollution are two orders of magnitude larger than their respective abatement costs, as estimated

by European Commission, and that “significant reductions in air pollution would easily pass a

cost-benefit test, even ignoring their large benefits in terms of avoided mortality” (p. 34). It is then

important to check if this also applies to the US economy. And third, the US geography, urban

planning, health system and labour markets legislation differ strongly from the EU and China,

potentially affecting the effect of air pollution exposure on overall GDP. For example, the US has a

higher share of private (and longer) car commutes, which have been shown to experience higher

air pollution levels (Chertok et al., 2004), a lower city density and a higher use of air conditioning

(which filters air pollution indoors) and an overall lower exposure to PM2.5. On the other hand,

sick leaves are much less prevalent in the US than in Europe OECD (2023), this can reduce the

effect of air pollution on GDP. Finally, the health system in the US is especially expensive and

thus it could transform negative shocks of air pollution-induced illnesses into increases in GDP.

For instance, air pollution-induced illnesses like asthma can cause medical expenses to surge. The

impact of these conditions could be substantial, as approximately 15.4 million people in the US are

diagnosed with asthma, with their average annual per-person medical cost being around $3,266

for the insured and $2,145 for the uninsured (Nurmagambetov et al., 2018).

3 Research Strategy

3.1 Econometric Specification

I start with a simple linear regression of the relation between aggregate economic output Y and

average air pollution exposure P in county c in state s and year t:

ln(Ycst) = β0 + β1Pcst + β2f(W cst) + γc + φcwcst + ηst + εcst (1)

Where Ycst is a measure of economic output (GDP, GDP per capita, ...) in a given county and year,

Pcst is the average exposure to PM2.5 (population-weighted PM2.5 concentration), f(W cst) is a

flexible function that captures any surface-level weather shocks that might affect both a county’s

pollution and economic activity2, γc are county fixed effects which capture any time-invariant

differences between counties (such as geography), wcst are county-specific slopes, ηst are state-year

2It includes second-degree polynomials for atmospheric pressure and humidity, 20 bins of surface temperature, 10 bins of
rain, 10 bins of snow, 12 bins of wind speeds and interactions between the temperature bins and both humidity and humidity
squared as suggested by Deschênes and Greenstone (2011).
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fixed effects which account for unobserved time-varying regional or policy shocks which might be

correlated with both economic activity and pollution across states, and εcst is a random

disturbance term.

To control for permanent county characteristics (γc) and to address the non-stationarity of the

left-hand-side, I model the variables of Equation (1) in differences:

Δln(Ycst) = β1ΔPM2.5cst + β2Δf(W cst) + φcwcst + ηst +Δεcst (2)

With ΔXt ≡ Xt −Xt−1

In this case, the specification models the levels of Yit (not its yearly growth) and β1 can be

interpreted as the expected change in the contemporaneous growth rate given an increase in the

level of PM2.5
3.

My objective is to capture the causal effect of changes in PM2.5 in the aggregate output level

from possible changes in employment, productivity and morbidity, but various obstacles arise.

First, changes in economic output can also affect the PM2.5 concentrations as air pollution is a

by-product of economic activity. This reverse causality would create a positive bias in our β1.

Furthermore, most air pollution estimates are prone to measurement errors which would bias β1

to 0.

To overcome the issues of reverse causality and measurement error, I need a mechanism that

affects exposure to air pollution exogenously. In other words, that is only related to our outcome of

interest (Y ) through its effect on air pollution exposure. Based on the literature, I use the

dissemination of wildfire smoke by wind currents and the presence of thermal inversions as two

mechanisms that serve as a natural experiment after controlling for confounders. To do this, I

adopt a two-stage estimation method with instrumental variables. The first stage predicts

exogenous changes in air pollution exposure with changes in wildfire smoke or thermal inversions.

The second stage estimates the effect of our predicted exogenous changes in air pollution on

economic output.

The first stage that estimates an exogenous variation in air pollution can be written as

ΔPM2.5cst = α1ΔIcst +α2Δf(W cst) +α3ΔCcst + ρcwcst + θst +Δπcst (3)

where Icst is a set of one or more instruments constructed with the presence or strength of wildfire

smoke drift or thermal inversions in county c and year t and Ccst are instrument-specific controls

that help satisfy the conditional exogeneity between the instruments and Ycst. θst are state-year

3So β1 ≈ E(Ycst|P2.5cst+1)−E(Ycst|P2.5cst)

E(Ycst|P2.5cst)
.

Page 8 of 49



fixed effects and πit is the error term. The second step that estimates the effect of exogenous

variation in PM2.5 exposure in percentage changes of economic outcome Y can be written as

Δln(Ycst) = β1Δ ̂PM2.5cst + β2Δf(W cst) + β3ΔCcst + φcwcst + ηst +Δεcst (4)

where ̂PM2.5cst is air pollution exposure predicted by the first stage, all other variables are

defined as in Equation (1), and the error term ε is clustered at the county level. Table 1 shows the

values of Icst and Ccst:

[Table 1 about here.]

It is important to note that as both steps are estimated in differences, the effects are estimated

by within-county changes in the instrument. Furthermore, including state-year fixed effects (θst

and ηst) controls for any state-level time-specific shock such as federal legislation, differentiated

impacts of the 2008 financial crisis, or the number and intensity of wildfires on that state-year.

Finally, adding county-specific slopes helps to control for any general relationship between the

change in the speed of growth of the instrument and the outcome. For example, if urban areas

within a state face a higher increase in both their GDP growth rate and wildfire smoke exposure.

For my coefficients (β1) to be representative of the whole contiguous US4, I weigh individual

counties i by their population or aggregate economic production. This is fairly common in the

literature (Dechezleprêtre et al., 2019; Kalkuhl and Wenz, 2020).

The following directed acyclic graph (DAG) summarises the implied relationships between the

variables in the two-step procedure:

ΔAir Pollutionct

β1
ΔEconomyctΔInstrument(s)ct

α1

ΔWeatherct and ΔControlsct

State×Year FEst and County slopesc

Using an instrumental variable addresses the reverse causality issue and changes the nature

of the other two primary sources of bias: omitted variable bias and measurement error in air

pollution. For omitted variable bias to be a concern before using an instrument (equation 2), the

non-controlled correlation had to be between economic output and air pollution, two closely related

variables. The use of an instrument corrects for the measurement error bias while the

omitted-variable bias could only emerge from non-controlled correlations between economic output

4Continental US, excluding Alaska.
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and thermal inversions or wildfire smoke drift within states, both of which are clearly less

plausible or relevant. Nonetheless, the use of an instrumental variable requires additional

assumptions to hold and can lead to new types of biases. These are explained in the following

subsection.

3.2 Instrumental variables

The two-stage method requires one (or more) instrumental variables that (1) affect air pollution

exposure (i.e., are relevant), and (2) that they are not caused by pollution or economic activity and

only affect the dependent variable through their effect on air pollution concentrations (i.e., that

they are exogenous). In the following paragraphs, I will explain how exposure to PM2.5 from

wildfire smoke drift, my preferred instrument, can satisfy both conditions in the two-stage method

shown above. To test for the robustness of my estimates, I also use exogenous changes in the

frequency of thermal inversions, which I explain in detail in Appendix A.

Like other sources of air pollution, the combustion of vegetation creates particulate matter and

other contaminants such as ozone, carbon monoxide, atmospheric mercury, and a variety of

volatile organic compounds (VOCs). This pollution is then ejected into the atmosphere and

dispersed by wind currents. While exposure to wildfire smoke is understood to operate similarly to

other sources of air pollution, its composition may be different and thus, it can be more (or less)

harmful to human health per unit of measured particulate matter. I explore this in depth and

conclude that daily changes in wildfire-induced PM2.5 concentrations in my sample have an

almost-zero correlation with SO2, CO and NO2 concentrations and have a similar correlation with

O3 as non-wildfire-induced PM2.5 (ρ̂ = 0.09). These results coincide with previous atmospheric

science literature (Langmann et al., 2009) and allows my results to show the effects of particulate

matter isolated from other usual co-pollutants in the literature such as SO2, CO and NO2. A table

with pairwise correlations between by-source PM2.5 and other pollutants is available on Table B.3

in the appendix.

In addition to the literature mentioned above, large increases in wildfire smoke have been

shown to produce various behavioural responses, including spending more time indoors, running

air conditioners for longer times, and missing work (Langmann et al., 2009). Burke et al. (2022)

record a wide range of awareness and behaviour changes in response to a large increase in wildfire

smoke, including mobility, sentiment, and health-protective behaviours. This contrasts with

smaller (and more common) changes in urban air pollution created by other factors. In our data,

wildfire smoke creates both small and large increases in daily PM2.5, with small changes being

much more common5 (Figure B3 in the appendix).

5We look if small or large changes in pollution have different effects by unit of PM2.5 both by looking at non-linearities
in our coefficient and by interacting the increase in PM2.5 with the number of days that a given county experienced large
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Wildfires account, on average, for around 17% of the PM2.5 emitted in the United States in the

last 20 years6. Wind currents then carry these emissions for thousands of kilometres (Langmann

et al., 2009), a process that depends on current weather conditions such as moisture, rain and

heat. Thanks to satellite-based plume identification and other information on the trajectory of

pollution, it is possible to infer the average exposure to PM2.5 that originated from wildfires in

each county and day. That makes the relevance of this instrument straightforward as it is on the

same units as the endogenous variable (PM2.5 exposure). On the other hand, it is convenient to

think about its exogeneity to local economic activity in detail. For that, I distinguish between two

types of wildfire smoke:

First, let us assume that the origin of the smoke is sufficiently far away that its only effect on

local economic outcomes is through the change in air pollution it generates. In that case, various

concerns might arise. Unobserved local characteristics might be correlated with being down or

upwind of wildfire-prone areas, but as our specification is in differences we consider only the

changes in local characteristics, such as prevailing wind patterns. Also, various large scale

weather shocks can affect economic activity while increasing the range of wildfire drift from far

away locations, such a dry season or changes in wind speed (Langmann et al., 2009). State-year

fixed effects would account for any such deviations from the regional average.

Second, we can focus on the case where the origin of the smoke is close enough to affect local

economic outcomes through other channels. These could be direct fire damages to property and

amenities, emergency responses or visible dust expenditure of other pollutants which, as pointed

out before, can cause their own behavioural responses. For these local effects, I include variables

that control for the presence and scale of a wildfire within a given county7. Finally, even if we

consider the occurrence, strength, and impact of wildfire events in local air pollution levels to be fully

determined by the random within-state variation of weather conditions (wind, rain dryness, heat)8,

these might affect economic activity by themselves. For that, I control for weather conditions non-

parametrically with large set of flexible weather controls as in Deschênes and Greenstone (2011)9.

4 Data

To study the causal effect of PM2.5 exposure on aggregate economic variables with the methods

described in the Research Strategy section, I aggregate multiple sources of PM2.5 concentrations

and emissions, economic variables, weather variables and population density rasters on a

changes in the wildfire-induced pollution. All results suggest this is not the case.
6Own calculation with data from the EPA (2022).
7The main results are also robust to excluding county-year pairs that had a wildfire.
8Although it is hard to know the causes of wildfires, less than 1% of fires are considered due to Arson in the data.
9Weather controls include atmospheric pressure and humidity squared, 20 bins of temperature, 10 bins of rain, 12 bins

of wind speeds and interactions between the temperature bins and humidity.
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county-by-year panel data. In the following paragraphs, I explain in detail the data sources,

modifications, aggregations and cleaning procedures to construct the final panel data structure

ready for analysis.

4.1 Data sources

I start with the local economic outcomes and demographics such as overall and sector real GDP

and population. All of these are from the US Bureau of Economic Analysis (BEA)10 and are yearly

(2001-2018) estimates by county11. All other estimates of control values are spatially aggregated

to these geographic and time units.

To look at the average exposure to air pollution for each county, I use the pollution estimates

constructed by Hammer et al. (2020). They consist of yearly (2000-2018) estimates of surface

PM2.5 mean concentration, and its components, in a 0.01º x 0.01º grid (approx. 1km2 at the

equator). These estimates were constructed using both satellite and monitor data from the EEA

Air quality E-reporting, are used extensively in the literature, and cover the contiguous United

States12. I use this data source that combines satellite and ground measurements for my main

specification for two main reasons: first, it provides me with complete spatial coverage at a fine

resolution, and thus it allows me to create population-weighted exposure to pollution. Secondly,

Mu et al. (2022) documented how local governments of 14 metro areas in the US had tended to

skip air pollution monitoring when they expected air quality to deteriorate. As wildfire smoke

increases can be easily predicted, the satellite measurements would avoid the resulting bias from

this endogenous measurement error. For an alternative measure of local air pollution, I also use

the county-level pollution estimates from Borgschulte et al. (2022), taken directly from monitor

stations. Although they are only available for around half of the counties, they still represent over

85% of the U.S. population. For the emissions of PM2.5 I use the estimates of Global Air Pollutant

Emissions from the EDGAR database (v5.0) from Crippa et al. (2020)13.

To have information on the exposure to wildfire PM2.5, my main instrumental variable, I use a

new dataset by Childs et al. (2022)14 of ambient wildfire-smoke-attributable PM2.5 on a daily

10km2 grid for the contagious US (2006-2018). This data is created by combining information

from satellite-based smoke plume identification and simulations of air trajectories from fire

locations to identify when smoke is detected in the air by monitors or satellite and reanalysis

products. This is a more detailed dataset relative to the one used by Borgschulte et al. (2022),

10Source: CAGDP9 and CAINC4 datasets from https://www.bea.gov/data/employment/employment-county-metro-and-
other-areas

11The total number of counties in my sample is around 1% less than the official number as some ‘combination areas’ in
Virginia are taken as one county. These consist of “one or two independent cities with 1980 populations of less than 100,000
combined with an adjacent county.”

12Source: https://sites.wustl.edu/acag/datasets/surface-pm2-5/#V4.NA.03
13Source: https://edgar.jrc.ec.europa.eu/gallery?release=v50 AP&substance=PM2.5&sector=TOTALS
14Source: https://www.stanfordecholab.com/wildfire smoke
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mentioned above, as it not only gives information of the geographic extent of wildfire smoke, but

its quantity measured in PM2.5
15. Finally, to get additional information on the location and extent

of wildfires, I also use a combination of the wildfire datasets for the United States done by the

Forest and Rangeland Ecosystem Science Center (Welty and Jeffries, 2019)16, which provides

polygons of wildfires by day together with additional metadata on their documented causes.

Weather measurements are used to create the thermal inversion instrument and construct the

surface weather controls. To this end, I use data on temperature, pressure, wind speed and

humidity from NASA’s MERRA 217 at an hourly rate for a 0.50º x 0.625º grid (Randles et al., 2017)

and daily precipitation data (interpolated from monitors) from the NOAA CPC on a 0.25ºx0.25º

definition18. Thermal inversions are constructed based on data from NASA’s MERRA 219 which

provides estimates of air temperature a in a 0.50º x 0.625º grid at multiple heights (pressure

levels). The construction of the instrument is detailed in the next section. Finally, I use 1km2

estimates of population density from the 2010 US census by CIESIN (2017) to create

population-weighted averages for each county of PM2.5 emissions and concentrations20. An

illustrative example of this procedure is available in Figure B9.

4.2 Construction of the final panel data

The construction of the final panel data consists in the transformation of 6 data sources into the

county-year format of aggregate economic data: Economic outcomes, weather control variables,

the share of days with temperature inversions, average historical emissions and exposure to

PM2.5, the proportion of area burnt by wildfires and average wildfire-induced PM2.5 exposure. I

explain each one of them in the following paragraphs and illustrate the hole process in Figure 1.

[Figure 1 about here.]

First, the economic outcomes are not changed as they already start as county-year observations

dimension. Estimates for the average exposure and emissions of PM2.5 in a given county are

constructed from a population-weighted average of 1km2 or 10km2 grids of yearly estimates, thus

reducing the measurement error.

The data to construct the weather controls starts with a set of daily weather rasters of surface

measurements (such as precipitation, temperature, humidity, and atmospheric pressure) which

are aggregated by county using population-weighted averages. To flexibly control for weather

15I use Borgschulte et al. (2022) classification as an alternative instrument for a robustness test.
16Source: https://www.sciencebase.gov/catalog/item/5ee13de982ce3bd58d7be7e7
17Specifically the M2T1NXSLV 5.12.4 files: https://disc.gsfc.nasa.gov/datasets/M2T1NXSLV 5.12.4/summary
18Source: https://psl.noaa.gov/data/gridded/data.unified.daily.conus.html
19Specifically the M2I3NPASM 5.12.4 files https://disc.gsfc.nasa.gov/datasets/M2I3NPASM 5.12.4/summary
20For a variable X and county c, we have: X̄c = (

∑
g∈G Xg × Populationg)/populationc, with g being a raster grid and

G being the set of grids inside that county.
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variables, I follow Deschênes et al. (2017) and create counts of the number of days an average

measurement falls inside a given bin (see the econometric specification in Research Strategy for

further details).

I then go to construct the two instruments used to generate quasi-random variation in the

exposure to pollution. First, I use population weights to get the daily exposure to wildfire smoke

for each county and day, from which I create yearly averages. As I want to distinguish between the

effects of air pollution from wildfires and other effects they might have on neighbouring economic

activity, I create indicators of the proportion of area burned by year in each county. This comes

from daily polygons of wildfire extent that are aggregated by year and then averaged by county.

The second instrument used is the prevalence of thermal inversions. As a dataset of this

phenomenon is not readily available, I construct my own measure from NASA’s MERRA-2

database. Air temperature measurements are available in a 3-hourly 3D raster (with layers of

altitude 200-1000m wide). Given that a thermal inversion happens when temperature increases

with altitude, the instrument is constructed by comparing the temperature of overlapping layers

in a unique coordinate grid. This can be done in multiple ways by looking at the presence or the

‘strength’ of thermal inversions. I focus on the definitions presented by Dechezleprêtre et al.

(2019) and Chen et al. (2017), which look at the differences the closest possible to the surface.

First, I average all measurements to the day, and then I count a day-grid as having a thermal

inversion if the temperature at the lowest level is lower than the one just above it. An extensive

explanation of how exactly this is constructed and possible alternatives is available in Appendix 1.

After having a daily indicator of thermal inversions, I count the proportion of days a given grid

had a thermal inversion each year. Finally, these grids are averaged for each county using

population weights21.

After having a unified dataset with all the necessary variables, I check the data for outliers. The

distribution of year-on-year changes in average county PM2.5 exposure and growth levels of GDP,

GDP per capita, GDP per employee and population have a small number of observations showing

extreme changes, most probably due to extreme local events in the case of economic variables and

measurement error or large wildfires in the PM2.5 estimates22. To discard these observations, I

exclude all observations of the top and bottom 0.5% of these 5 variables, ensuring that the remaining

data is not driven by extreme values23, this excludes 3% of all observations. For sector regressions,

all observations that exhibit an extreme growth in the top or bottom 0.5% on any sector are also

21Figure B10 provides an illustrative example of this aggregation in the case there are no raster centroids in a county.
22Some examples are decreases of 80% of the population, 89% of GDP per capita and 85% of air pollution concentrations

or increases of 42% in population, 279% in GDP per capita and 184% in air pollution concentrations.
23counties of St Bernard Parish, St. John the Baptist Parish and Kemper county are completely excluded from the sample

due to their substantial relative changes in population and GDP due to extreme weather events and very large infrastructure
constructions (hurricane Katrina and the Kemper Project power plant)
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discarded (≈ 7%).

4.3 Descriptive Statistics

[Figure 2 about here.]

Here I present some descriptive statistics and maps to describe the variation (Table 2) and

geographical distribution (Figure 2) of the variables used.

From the first map on average GDP per county (the main independent variable), it is clear that

economic production is strongly concentrated few counties and has a very strong variation (see

that the legend is in a logarithmic scale of thousands of US$). This clearly illustrates why my

estimates are weighted by county production or population. The second map shows the average

exposure to PM2.5 (main explanatory variable) over the sample period (2001-2018). We see that

there is also wide heterogeneity between regions with the east side of the contiguous US having

higher levels of air pollution and the area of Los Angeles having the highest exposures in the

country. The third map shows the urban and rural categories used. The fourth map shows the

average Agricultural GDP of each county in the US. As the other indicators of sectorial GDP, it is

highly concentrated in some counties and has a fair proportion of counties with no data.

[Table 2 about here.]

After excluding observations with extreme changes in average air pollution or economic output

I end up with a panel data of 3077 counties and 18 years (2001-2018). Nevertheless, the measure

of average wildfire exposure to PM2.5 is only available for 12 years (from 2006) and one year of

data is lost when treating the outcomes in differences.

For this final data, Table 2 describes the main variables’ overall (xit), between (x̄i) and within

(xit − x̄i + x̄) variation. We can first see the extreme differences in GDP levels between counties,

also visible in Figure 2. The growth of GDP, GDP per capita and GDP per employee show much

less heterogeneity. Although some regions grew at an average of 30% a year and others shrank at

an average of 7%, the variation is strong both within and between counties. Average air pollution

exposure shows significant variation both in levels and changes, with much of the heterogeneity

on the changes in PM2.5 exposure happening within counties. The variation in the instruments

is also large, especially within counties and not between them. This shows that the instrument is

strong within counties while being homogeneous in space, which is crucial for interpreting of the

final coefficients as causal effects representative of the whole sample. Figures B2 and A2 in the

Appendix show the spatial distribution of the changes in wildfire smoke and thermal inversions,

respectively.
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5 Results:

The linear model (equation 4) results show the conditional correlation between an increase in

average exposure to PM2.5 with a change in GDP growth (Table 3). A 1μg increase in exposure is

correlated with a decrease of GDP by 0.02% if I don’t weigh by population and include all counties.

Such correlation turns out insignificant when the relative population of counties is weighted in, or

we restrict our sample to urban areas.

[Table 3 about here.]

To correct for the intrinsic reverse causality between changes in air pollution exposure and

economic growth and move to causal estimates, I use the two-stage method described in section 3.

In the first stage of my main specification, I use the exposure of PM2.5 from wildfire plumes to

predict average PM2.5 exposure while controlling for the presence and size of local wildfires as in

equation 324. The results of this first stage are shown in column (1) of Table 4, where, as expected,

a 1μg/m3 increase in PM2.5 exposure from wildfire smoke is almost exactly equivalent to a 1μg/m3

increase in overall exposure25. It would be possible, and even equivalent, to use the created

measure of PM2.5 exposure from wildfires in a simple reduced-form linear regression specification.

Nevertheless, I keep the IV setup to be consistent with the literature and continuously show the

strength and validity of this new instrument.

The second stage estimates the aggregate causal effect of PM2.5 in economic output are

presented in columns 2-5 of Table 4 with their respective Kleibergen-Paap F statistic (larger than

400). Second-stage coefficients for GDP, GDP per capita, GDP per employee and Population are

almost identical to zero and not statistically significant, even if the standard errors are equivalent

or smaller to the previous literature.

[Table 4 about here.]

On the other hand, these null effects on economic outcomes can hide effects that are more

specific to a specific sector, geography or time. I perform various alternative specifications and

tests to explore this heterogeneity and give a notion of the possible mechanisms behind any effect.

Sector-specific GDP: The results on how increases in PM2.5 affects different sectors are

shown in Figure B5. As the geographical distribution of these industries varies widely, counties

are weighted by the average level of each sector’s GDP over the whole sample period. Contrary to

previous research by Dechezleprêtre et al. (2019) for Europe, I find no significant effects on the

24The residual variance in wildfire PM2.5 exposure and thermal inversions after including their respective controls can
be seen in Figure B8 in the appendix.

25Other alternative instruments are also explored in the Appendix on Table B.2, showing the first stage ) for each one of
them and including the ones used by Borgschulte et al. (2022), Dechezleprêtre et al. (2019) and Fu et al. (2021).
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GDP of most sectors. Only Trade and Educational Services return significant results, with a 1μg

increase in ambient exposure to PM2.5 decreasing Trade’s GDP by 0.6% and Educational Service’s

GDP by 0.7%. For some of these sectors (such as Mining, Agriculture, Information or

Manufacturing) it could well be that large standard errors make sizeable effects statistically

insignificant but for others such as Health Services, Government Expenditure or Transportation,

the results suggest no causal effect. These significant results are merely indicative, as only 13% (2

out of 15) of the coefficients are statistically significant at the 5% level and after adjusting for

multiple hypothesis testing, all become insignificant. It then is advisable to treat the statistical

significance of these estimates with caution.

Urban vs. rural counties: To look at heterogeneities between geographies, Table 5 divides

the main results between urban and rural counties, using the NCHS Urban-Rural Classification

Scheme for Counties (see Figure 2) and defining “large and medium metros” as urban and “small

metros, micropolitan and non-core-areas” as rural. The first stage is strong in both samples,

although the results differ. As the main results, urban counties have no significant effects in any

of the outcomes. On the other hand, for rural counties, air pollution levels negativelly affected

both GDP and GDP per capita, but not GDP per employee or population numbers. The coefficients

suggest a 1μg increase in average ambient exposure to PM2.5 decreased GDP and GDP per capita

levels by 0.40% and 0.37%, respectively. These translate to a yearly aggregate loss of 13 billion

dollars of GDP and 145 dollars of GDP per capita26. The results coincide with previous research

suggesting the effect of pollution to be larger in rural areas in Europe. On the other hand, the

results are half the size of those brought forward by Dechezleprêtre et al. (2019), with no

significant reduction in GDP per employee.

[Table 5 about here.]

So air pollution does not have a significant effect on urban counties, which represent 73% of the

population according to the 2010 census and an 80% of GDP in 2001, while it has some negative

impacts on rural counties. Given this is a prevalent feature of the results, all other tests of

heterogeneity are performed separately for both samples of urban and rural regions.

Working days vs. weekends: Another way to understand the mechanisms by which air

pollution can affect economic outcomes is to examine weekends and working days separately, as

the types of economic activities performed differ significantly between these two periods. Working

days are characterised by active realisation and coordination of the productive process, while

weekends are more focused on consumption and leisure activities. Furthermore, air pollution

levels in weekends are smaller on average.

262012 US$-equivalent, base estimates multiplied by the sum of average GDP of rural counties over the study period.
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To explore whether the effects of air pollution on the economy differ between the two periods, I

construct yearly averages of exposure to wildfire PM2.5 during weekends or working days, and use

these two new instruments separately. Their second stages show the effect of an increase in

average PM2.5 exposure during these periods. The results (in Table 6) show that the adverse

effects of air pollution are concentrated during working days in rural areas and air pollution

increases on weekends do not affect aggregate economic output.

[Table 6 about here.]

Non-linearities with respect to background concentrations: A prevalent finding of

previous work is that the effect of air pollution can be non-linear with respect to background

concentrations (Aragón et al., 2017; Dechezleprêtre et al., 2019). To test if this is also the case for

US aggregate output, I divide the urban and rural counties into 2 equal samples by their air

pollution levels during that specific year and compare their results, displayed below in Table 7.

[Table 7 about here.]

The results coincide very strongly with the ones in Table 5, with average PM2.5 exposure

decreasing GDP and GDP per capita only on rural areas. On top of this we can see that the

previous average effect of 0.40% (Table 5) is concentrated on county-years with average air

pollution levels above the median [7.3μg/m3], doubling its effect to 0.80% of GDP and GDP per

capita. These effects are large in scale but coincide with previous findings such as Dechezleprêtre

et al. (2019)’s 1.0% negative effect for European regions with high pollution. Additionally, these

effects are for concentrations with an average of 9μg/m3, showing that increases of air pollution

can have large negative effects even when levels are way below the EPA yearly standard of

12μg/m3. The results are consistent when the instrument exploits the variation of air pollution on

either working days or weekends. So if air pollution is high enough it can cause GDP reductions in

rural counties irrespective of its timing.

5.1 Robustness tests

To check the robustness and heterogeneity of my results, I conducted a series of robustness checks

and alternative specifications, summarised in Table 8. The complete results of individual

regressions for the main variables and sectors can be found in the appendix (tables B.4-B.22).

[Table 8 about here.]

Changes in instruments: To review that my results are not sensitive to the selection of the

instrument, I use various specifications. I use (1) yearly thermal inversions interacted with
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historic emissions, (2) summer and winter thermal inversions27 from Fu et al. (2021) and

Dechezleprêtre et al. (2019), and (3) the share of days county covered by smoke plumes used by

Borgschulte et al. (2022), finding the same null results. As in the section before, I look at

differentiated impacts on weekends and working days for the whole set of counties, but the results

continue to be insignificant in this case.

Changes in regions: To look at heterogeneity between different regions of the contiguous US,

I divide counties between the North, South, East or West of its population centroid (so each sample

includes around half of the population). Although all the results are not significantly different

from the main estimates, the effect on population is significantly negative for counties north of the

centroid. Finally, I change the regression weights as to explore this geographical heterogeneity. I

first weigh counties by GDP instead of population levels: thus, the results can be interpreted as

“the average effect to a unit of GDP”. Secondly, I remove all regression weights to interpret the

results as “the average effect to a county” in the contiguous US. From this last regression, a strong

negative effect of PM2.5 on GDP, GDP per capita, and GDP per employee is clear with a 1μg/m3

increase in PM2.5 concentrations causing a 0.67%, 0.60% and 0.50% decrease in each of them,

respectively. This is a clarifying result as shows that the changes in PM2.5 do affect aggregate

output, but this effect is concentrated on counties with small population and GDP.

Changes in sample: All changes in sample yield no different results to the main specification.

First, including all counties (even if they had very large changes in GDP, productivity, or

population) only increases the standard error of the estimates. We also exclude of the years of the

Great Recession (2008-2011), which reduces the standard errors but keeps the estimates

reasonably similar. Finally, we exclude the San Francisco area given its aggregate importance in

GDP and the large wildfire events it has experienced on recent years and find the same robust

results.

Other changes: Additionally, I explore the results with four additional changes in

specification. First, I execute my main specification using Borgschulte et al. (2022)’s measure of

local air pollution, which they derive exclusively from monitor stations. The results are equivalent

to my main specification28. Finally, I ran the analysis without county-specific slopes or state-year

FE to test if these controls were necessary to attain my main results and thus as a guide of

possible biases for future research. Omitting county-specific slopes does not change my results

significantly. However, only having year fixed effects (instead of state-year) in addition to

differenced outcomes produces biased results as it fails to control for unobserved time-specific

regional shocks such as state-level legislation, differentiated impacts of the 2008 financial crisis,

or the number and intensity of wildfires on that state-year.

27April 15th to October 14th being Summer and October 15th to April 14th being Winter
28The number of counties included is slightly lower and represents counties with a higher population as not all counties

had enough data to create their measure.
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Placebo test: Finally, as the main negative effects of air pollution are found in rural areas, I

perform a simple of placebo test of our negative effect coefficient on rural areas by regressing

changes in predicted air pollution at time t, Δ ̂PM2.5t, on past changes (lags) of GDP:

Δln(GDP )t−1, ..., ln(GDP )t−9. The results are visible on Figure B6 in the appendix with the

estimate for β1 being statistically insignificant for all of them.

6 Conclusions

The primary goal of this article was to evaluate the causal influence of air pollution on

macroeconomic outcomes in the United States: local GDP, GDP per capita, and industry-level

GDP. To recover this impact, I employed a panel data set of local economic outcomes and PM2.5

exposure at the county level from 2001 to 2018, as well as two instrumental variables to account

for reverse causality and measurement error: Year-on-year variations in exposure to wildfire

smoke and the occurrence of thermal inversions.

My main findings suggest PM2.5 had no substantial effects on overall GDP, GDP per capita,

GDP per employee, and population in urban areas even when considering only working days or

years with high baseline air pollution. This is contrasts with previous studies by Dechezleprêtre

et al. (2019) for the European Union and Fu et al. (2021) for China. On the other hand, air

pollution has a considerable negative impact on rural regions’ GDP and GDP per capita of 0.40%

and 0.30% per μg/m3 of average ambient exposure to PM2.5, respectively. These go in line with

previous research in Europe by Dechezleprêtre et al. (2019) and on the effect of PM2.5 on crop

production employment in the US by Borgschulte et al. (2022). As expected, these effects seem to

be more salient when pollution increases during working days or in counties with an already high

level of air pollution, For this last case, a 1μg/m3 increase of average ambient exposure to PM2.5,

when its level is above 7.3μg/m3, can cause up to a 0.8% reduction in local yearly GDP and GDP

per capita. Looking at individual sectors, only “Trade” and “Educational Services” GDP seem to

exhibit a substantial decrease of 0.40% and 0.37% per μg, respectively. These results are robust to

a large number of alternative sample limits, instruments, geographies, pollution indicators, and

model specifications.

Finally, it is important to note that GDP should not be considered as a complete measure of

social cost as it does not capture non-market assets such as leisure or clean air, can result in

double counting since investment today results in a stream of future consumption benefits, and

may even increase when welfare decreases. The EPA’s Scientific Advisory Board provides a

detailed discussion on this (SAB, 2017).
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The policy implications of this work can be viewed from two perspectives. First, economically,

they depend on the size of air pollution costs (here measured in aggregate production) relative to

its abatement costs through policy. With regards to the costs of air pollution, and although I find

no negative effects in urban counties, I do find that a 1μg/m3 increase in rural areas creates a

yearly aggregate loss of 13 billion 2012 dollars of rural GDP and 158 dollars of GDP per capita in

rural areas. We can get a simple back-of-the envelope calculation of the abatement costs for the

US using the compliance costs and reduction of pollution estimates from the US Clean Air Act

Amendments conducted by the US Environment Protection Agency (EPA, 2011). With their

sample period from 2000 to 2020, we get an average yearly compliance cost of 7 billion per μg/m3

reduced of PM2.5. With this figure, it is simple to see that the increase in GDP in rural areas due

to the average reduction of pollution is around twice as large as its costs. With an average

reduction of 8μg/m3, the aggregated net benefits of the policy (without considering the reduction of

other pollutants and other benefits not accounted in contemporaneous GDP changes) would be

around 900 billion US dollars over the 2000-2020 period.

Second, and focusing on public policy, this study provides additional information to

policymakers. The current federal legislation on air quality was last updated in 2012. It thus was

conceived with a much more limited knowledge of the economic costs of air pollution, including the

estimates brought forward by this paper. This should lead to a reconsideration of current policy

and stricter limits on air pollution levels. These limits would be most effective when the negative

impact of air pollution on local GDP is particularly pronounced in the US context, such as in rural

areas during working days, or when pollution levels are large enough to affect aggregate GDP

(above 7.3μg/m3 in rural areas). Only the last of these three factors is included in the current

legislation which limits yearly averages of PM2.5 to 12μg/m3.

In summary, this study contributes to the ongoing debate on the causal effect of air pollution

on economic outcomes by using a panel data set from the United States and a robust econometric

methodology. The results suggest that the impact of air pollution on US aggregate production is

heterogeneous across regions and time. Moreover, these findings highlight the importance of further

research on the effects of air pollution on the economy, as well as the need for effective and evidence-

based air pollution policies.
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Tables

Table 1: Combinations of instruments and instrument-specific controls

Icst Ccst

Average exposure to wildfires
PM2.5 (main specification)

• Presence of any wildfire in the
county on that year

• log(share of county area burned)

Share of days with the whole
county influenced by wildfire
smoke (robustness)

• Presence of any wildfire in the
county on that year

• log(share of county area burned)

Share of days with thermal
inversions (robustness)

• None
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Table 2: Panel descriptive statistics

Variable Panel Mean Sd Min Max Observations

GDP (M, 2012) Overall 5158.8 21868.26 9.95 710893.3 N = 53779
Between 21456.65 15.37 588194.3 n = 3077
Within 2646.6 -106141.3 132720.4 T̄ = 17.48

Δ ln(GDP) Overall 0.02 0.07 -0.29 0.39 N = 50702
Between 0.02 -0.07 0.3 n = 3077
Within 0.07 -0.34 0.38 T̄ = 16.48

Δ ln(GDP/capita) Overall 0.01 0.07 -0.29 0.38 N = 50369
Between 0.02 -0.08 0.25 n = 3054
Within 0.07 -0.36 0.39 T̄ = 16.49

Δ ln(GDP/employee) Overall 0.01 0.07 -0.29 0.37 N = 50369
Between 0.02 -0.08 0.26 n = 3054
Within 0.07 -0.35 0.39 T̄ = 16.49

Δ ln(Population) Overall 0 0.01 -0.04 0.05 N = 50369
Between 0.01 -0.02 0.05 n = 3054
Within 0.01 -0.05 0.06 T̄ = 16.49

Avg. PM2.5 Overall 8.35 2.7 2.07 42.48 N = 53779
Between 2.3 2.73 33.01 n = 3077
Within 1.51 -2.41 18.65 T̄ = 17.48

Δ Avg. PM2.5 Overall -0.19 0.92 -3.01 3.14 N = 50702
Between 0.14 -0.74 0.46 n = 3077
Within 0.91 -3.44 3.32 T̄ = 16.48

Avg. wildfire PM2.5 Overall 0.41 0.36 0 7.01 N = 38848
Between 0.18 0.04 1.8 n = 3077
Within 0.32 -1.28 5.9 T̄ = 12.63

Δ Avg. wildfire PM2.5 Overall 0.03 0.41 -4.78 4.95 N = 35150
Between 0.06 -0.47 0.64 n = 3076
Within 0.41 -4.95 4.78 T̄ = 11.43

% burned area Overall 0 0.01 0 0.64 N = 53779
Between 0.01 0 0.19 n = 3077
Within 0.01 -0.19 0.6 T̄ = 17.48

Prop. inv. days Overall 0.23 0.09 0 0.64 N = 53761
Between 0.09 0 0.55 n = 3076
Within 0.02 0.14 0.47 T̄ = 17.48

Δ Prop. inv. days Overall 0 0.03 -0.14 0.24 N = 50685
Between 0 -0.01 0.02 n = 3076
Within 0.03 -0.14 0.22 T̄ = 16.48

Avg. PM2.5 emis (1999) Overall 48.59 95.68 0.81 1749.63 N = 53779
Between 94.95 0.81 1749.63 n = 3077
Within 0 48.59 48.59 T̄ = 17.48
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Table 3: Linear model

(1) (2) (3) (4)
Δ ln(GDP) Δ ln(GDP) Δ ln(GDP) Δ ln(GDP)

Δ PM2.5 exposure -0.0019∗∗∗ -0.00048 -0.0011 -0.00080
(0.00067) (0.00054) (0.00097) (0.00073)

Weighted by Pop. No Yes No Yes
Sample All All Cities Cities
Nº obs 49629 49629 12906 12906
Nº of counties 3074 3074 788 788
R2 0.24 0.42 0.36 0.56

Standard errors in parentheses

Clustered SE by county (BEA). Weighted by county population. Includes state-year
fixed effects and county-specific slopes. Weather controls include atmospheric pressure
and himidity squared, 20 bins of temperature, 10 bins of rain, 10 bins of snow, 12 bins
of wind speeds and interactions between the temperature bins and both humidity and
humidity squared.
∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < .01

Table 4: Effect of PM2.5 on economic output

First stage (2) (3) (4) (5)
Δ PM2.5 exposure Δ ln(GDP) Δ ln(GDP/capita) Δ ln(GDP/employee) Δ ln(Population)

Δ PM2.5 exposure -0.0011 -0.00078 0.00035 -0.00032
(0.0023) (0.0024) (0.0024) (0.00023)

Δ Wildfire PM2.5 exp. 1.04∗∗∗

(0.049)

Nº obs 35137 35137 34939 34939 34939
Nº of counties 3074 3074 3051 3051 3051
R2 0.76 0.45 0.44 0.32 0.84
Kleibergen-Paap F 458.9 463.1 463.1 463.1

Standard errors in parentheses

Clustered SE by county (BEA). Weighted by county population. Weather controls include atmospheric pressure and humidity squared, 20 bins
of temperature, 10 bins of rain, 10 bins of snow, 12 bins of wind speeds and interactions between the temperature bins and both humidity and
humidity squared. Includes state-year fixed effects and county-specific slopes.

Stock-Yogo weak ID test critical value: 10% maximal IV size → F = 19.93
∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < .01

Table 5: IV results for urban and rural areas

First stage (1) (2) (3) (4)
Δ Avg. PM2.5 exposure Δ ln(GDP) Δ ln(GDP/capita) Δ ln(GDP/employee) Δ ln(Population)

Large and medium metros

Δ Avg. PM2.5 exposure 0.000342 0.000665 0.00138 -0.000348
(0.00303) (0.00310) (0.00322) (0.000297)

Δ Wildfire PM2.5 exp. 1.086∗∗∗

(0.0817)

Nº obs 8530 8530 8457 8457 8457
Nº of counties 729 729 720 720 720
R2 0.790 0.598 0.586 0.428 0.880
Kleibergen-Paap F 176.8 177.3 177.3 177.3

Small metros, micropolitan and non-core areas

Δ Avg. PM2.5 exposure -0.00398∗∗ -0.00369∗ -0.00188 -0.000323
(0.00193) (0.00195) (0.00185) (0.000309)

Δ Wildfire PM2.5 exp. 0.906∗∗∗

(0.0517)

Nº obs 26595 26595 26470 26470 26470
Nº of counties 2344 2344 2330 2330 2330
R2 0.779 0.331 0.320 0.273 0.745
Kleibergen-Paap F 306.7 308.4 308.4 308.4

Standard errors in parentheses

Clustered SE by county (BEA). Weather controls include atmospheric pressure and humidity squared, 20 bins of temperature, 10 bins of rain, 10
bins of snow, 12 bins of wind speeds and interactions between the temperature bins and both humidity and humidity squared. Includes state-year
fixed effects and county-specific slopes.

Stock-Yogo weak ID test critical value: 10% maximal IV size F = 19.93
∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < .01
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Table 6: IV results for weekends and weekdays for both rural and urban counties

First stage (1) (2) (3) (4)
Δ Avg. PM2.5 exposure Δ ln(GDP) Δ ln(GDP/capita) Δ ln(GDP/employee) Δ ln(Population)

Large and medium metros

Δ PM2.5 exposure 0.0000073 0.00029 0.0015 -0.00031
(0.0032) (0.0033) (0.0034) (0.00030)

Δ Wildfire PM2.5 exp. 1.01∗∗∗

Workday (0.077)

Δ PM2.5 exposure -0.0013 -0.0010 -0.00044 -0.00032
(0.0028) (0.0029) (0.0030) (0.00035)

Δ Wildfire PM2.5 exp. 0.83∗∗∗

Weekend (0.057)

Nº obs 9206 9206 9124 9124 9124
Nº of counties 788 788 778 778 778
R2 (min) 0.78 0.58 0.57 0.41 0.88
Kleibergen-Paap F (min) 172.9 173.4 173.4 173.4

Small metros, micropolitan and non-core areas

Δ PM2.5 exposure -0.0041∗∗ -0.0037∗ -0.0024 -0.00039
(0.0019) (0.0019) (0.0018) (0.00031)

Δ Wildfire PM2.5 exp. 0.82∗∗∗

Workday (0.048)

Δ PM2.5 exposure -0.0035 -0.0032 -0.0022 -0.00033
(0.0021) (0.0022) (0.0021) (0.00034)

Δ Wildfire PM2.5 exp. 0.70∗∗∗

Weekend (0.036)

Nº obs 25907 25907 25791 25791 25791
Nº of counties 2284 2284 2271 2271 2271
R2 (min) 0.77 0.33 0.32 0.28 0.72
Kleibergen-Paap F (min) 290.4 293.0 293.0 293.0

Standard errors in parentheses

Clustered SE by county (BEA). Weather controls include atmospheric pressure and humidity squared, 20 bins of temperature, 10 bins of rain, 10
bins of snow, 12 bins of wind speeds and interactions between the temperature bins and both humidity and humidity squared. Includes state-year
fixed effects and county-specific slopes.

Stock-Yogo weak ID test critical value: 10% maximal IV size F = 19.93
∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < .01

Table 7: IV results for various levels of background PM2.5. Urban and rural counties.

(1) (2) (3) (4)
[Min Mean Max] Stats Δ ln(GDP) Δ ln(GDP/capita) Δ ln(GDP/employee) Δ ln(Population)

Large and medium metros

Δ Avg. PM2.5 exposure Nº obs: 4544 -0.0032 -0.0032 -0.0013 -0.000040
[2.9 7.1 8.4] F = 180.3 (0.0022) (0.0021) (0.0023) (0.00047)

Δ Avg. PM2.5 exposure Nº obs: 4524 0.0011 0.0014 0.0026 -0.00040
[8.4 10.3 37.6] F = 57.8 (0.0049) (0.0049) (0.0048) (0.00047)

Small metros, micropolitan and non-core areas

Δ Avg. PM2.5 exposure Nº obs: 12736 0.00012 -0.00011 -0.00042 0.00023
[2.2 5.7 7.3] F = 257.4 (0.0033) (0.0034) (0.0031) (0.00051)

Δ Avg. PM2.5 exposure Nº obs: 12791 -0.0088∗∗∗ -0.0086∗∗ -0.0053 -0.00045
[7.3 9.0 36.5] F = 308.6 (0.0034) (0.0035) (0.0035) (0.00049)

Standard errors in parentheses. Kleibergen-Paap F reported.

Clustered SE by county (BEA). Weather controls include atmospheric pressure and humidity squared, 20 bins of temperature, 10 bins of
rain, 10 bins of snow, 12 bins of wind speeds and interactions between the temperature bins and both humidity and humidity squared.
Includes state-year fixed effects and county-specific slopes. First stages are not displayed for simplicity but are all highly significant.

Stock-Yogo weak ID test critical value: 10% maximal IV size F = 19.93
∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < .01
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Table 8: Robustness tests and alternative specifications

Changes in... Δln(GDP) Δln(GDP/capita) Δln(GDP/employee) Δln(Population) #Counties / (F )
Instruments

Share of days with TI interacted with 1999 0.0028 0.0039 0.00079 −0.00071 3073
county PM2.5 emissions (0.0026) (0.0028) (0.0027) (0.00057) (16)

Winter and summer TI, as Fu et al. (2021) 0.0021 0.0024 0.00091 0.000079 3073
and Dechezleprêtre et al. (2019). (0.0030) (0.0031) (0.0029) (0.00056) (19)

Share of days county covered by smoke plumes 0.00012 −0.00029 0.0024 −0.00011 3071
polygons as Borgschulte et al. (2022). (0.0054) (0.0054) (0.0053) (0.00043) (103)

Saturday-Sunday Smoke PM2.5 −0.0013 −0.00082 0.000053 −0.00043 3074
(0.0021) (0.0022) (0.0023) (0.00026) (374)

Monday-Friday Smoke PM2.5 −0.0011 −0.00074 0.00057 −0.00037 3074
(0.0024) (0.0025) (0.0025) (0.00023) (389)

Geography
East of population centroid −0.00116 −0.000855 −0.00215 −0.000363 1219

(0.00249) (0.00261) (0.00243) (0.000503) (320)
West of population centroid −0.00119 −0.000775 0.000809 −0.000413 1832

(0.00267) (0.00274) (0.00283) (0.000287) (299)
North of population centroid −0.00114 −0.000469 −0.000902 −0.000663∗∗ 1509

(0.00204) (0.00201) (0.00193) (0.000287) (233)
South of population centroid −0.000050 0.00027 0.00205 −0.000293 1561

(0.00335) (0.00342) (0.00348) (0.000305) (157)
Weighted by county GDP −0.00085 −0.00063 0.00080 −0.00026 3074

(0.0029) (0.0029) (0.0030) (0.00023) (369)
Not weighted by county population −0.0066 ∗∗∗ −0.0062 ∗∗∗ −0.0043 ∗∗ −0.00046 3074

(0.0022) (0.0022) (0.0022) (0.00030) (915)
Sample

Including economic outliers −0.0014 −0.0014 −0.00048 −0.000027 3076
(0.0013) (0.0014) (0.0014) (0.00017) (684)

Excluding county-year pairs with −0.0029 −0.0022 −0.0012 −0.00074 ∗ 2864
active wildfires (0.0041) (0.0041) (0.0039) (0.00041) (186)

Excluding Great Recession (2008-2011) −0.0013 −0.0011 0.00021 −0.00020 3069
(0.0015) (0.0015) (0.0014) (0.00037) (200)

Excluding San Francisco area −0.0015 −0.0013 −0.0000046 −0.00026 3070
(0.0025) (0.0025) (0.0026) (0.00023) (454)

Others
With monitored PM2.5 measurements from −0.00086 −0.00053 0.00075 −0.00035 1614

Borgschulte et al. (2022) as PM2.5cst (0.0030) (0.0030) (0.0031) (0.00027) (75)
Without county-specific slopes 0.00059 0.00055 0.0018 0.000015 3075

(0.0018) (0.0019) (0.0019) (0.00038) (479)
Without county-specific slopes and only 0.00679∗∗∗ 0.00600∗∗∗ 0.00501∗∗ 0.000804∗∗ 3076

year FE (0.00231) (0.00233) (0.00225) (0.000329) (491)
Without weather controls −0.0047 ∗∗ −0.0044 ∗∗ −0.0030 −0.00037 3074

(0.0020) (0.0020) (0.0020) (0.00027) (954)
Standard errors in parentheses. Kleibergen-Paap F for Δln(GDP ) regression reported as it is quite stable though outcomes.
Clustered SE by county (BEA). Weighted by county population (unless stated). # of counties corresponds to the Δln(GDP ) regression.
Weather controls include atmospheric pressure and himidity squared, 20 bins of temperature, 10 bins of rain, 10 bins of snow, 12 bins of wind
speeds and interactions between the temperature bins and both humidity and humidity squared. Includes state-year fixed effects and county-
specific slopes.
∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < .01
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Figures

Figure 1: Summary of the construction of the final panel data. Different data sets (marked with
black rectangles) begin with different spatial and temporal dimensions and are joined in the ‘Final
Data’ format through various transformations (arrows).
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Figure 2: Regional variation of overall GDP, PM2.5 exposure, Urban-Rural categories and
Agricultural GDP by US counties
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Appendices

A Thermal Inversions

A.1 Relevance and exogeneity

Under normal atmospheric conditions, air temperature decreases with altitude (up to the end of

the Troposphere, ≈ 11 km above sea level). This creates a natural convection flow called

‘atmospheric ventilation’ that rises and dissipates air from the surface which tends to be hotter

and more polluted. Thermal inversions are a temporal deviation from this rule and occur when a

mass of air happens to be below a warmer mass of air. This breaks the convection cycle and thus

traps the pollution closer to the surface (Trinh et al., 2019; Wallace and Kanaroglou, 2009) making

them a relevant instrument.

It is important to note that this effect does not create air pollution and depends on the local

emissions of air pollutants. If there are no local emissions, thermal inversions do not affect the

concentration of air pollutants. Figure A1 shows this empirical relationship for counties above and

below the median emissions level, with high-emission counties having a much steeper relationship

between the number of inversions and air pollution exposure. This heterogeneity is the main

reason why this instrument is not included in the main results, as it is not strong enough in rural

areas where emissions per area are much lower than in big cities. To account for this

heterogeneity when modelling, the equivalent of equation 3 for Thermal Inversions includes an

interaction between thermal inversions and the population-weighted emissions from 1999 to

predict ̂ΔPM2.5cst
29.

Thermal inversions occur mainly through atmospheric conditions and large movements of air

masses. For example, the large-scale movement of air masses throughout the atmosphere

typically forms thermal inversions at its leading edge, as warm air masses rise over cooler air

masses. Thermal inversions also form in winter at higher latitudes, as the air higher in the

atmosphere gets more heat from the low-angle sun than the ground-level air or when precipitated

snow cools the ground-level air. It is important to note that thermal inversions work with different

mechanisms in winter and in summer and “summer inversions tend to happen during the

morning, whereas winter inversions usually take place in the afternoon, having different effects on

the pollution levels” (Hicks et al., 2016). This is why I differentiate between summer and winter

inversions in some alternative specifications.

29As I include implicit county fixed effect by taking differences on the right-hand side, we should not worry that 1990
emissions are correlated with thermal inversions, breaking the exclusion restriction.
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Figure A1: Descriptive relation between changes in the proportion of thermal inversions in a year
and the average exposure to PM2.5.

The assumption of exogeneity can only be viable if thermal inversions are not affected by air

pollution concentrations or economic activity. First, I have found no studies that show or

hypothesise that air pollution might cause thermal inversions. Secondly, air pollution and thermal

inversions should not be simultaneously affected by something else. On this, yearly changes in

surface temperature are usually assumed to be exogenous in the climate economics literature

(Burke et al. (2015); Dell et al. (2008); Kalkuhl and Wenz (2020) so it is fair to argue that the air

temperature at higher levels that causes thermal inversions, is also exogenous.

Even though thermal inversions affect the concentration of air pollution exogenously, they also

can be linked with weather, which can potentially influence economic activity on the ground

(Burke et al., 2015). Thermal inversions can determine cloud formation, reduce precipitation,

increase temperatures and reduce visibility (Encyclopedia Britannica, 2020). This is why I flexibly

control for on-the-ground weather conditions as to rule out these potential correlations as

Dechezleprêtre et al. (2019) and Fu et al. (2021). Finally, PM2.5 is also (positively and negatively30)

correlated with other pollutants that are also likely to be affected by thermal inversions. As other

research that uses this same instrument (Chang et al., 2018), the estimates include the effects of

other air pollutants correlated with local concentrations of PM2.5.

30Table B.3 gives my results for the US while Dechezleprêtre et al. (2019) finds similar results for Europe. This is not the
case for wildfire-induced PM2.5, which is very weekly correlated with other pollutants.
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If thermal inversions create exogenous variation in air pollution, it is possible to use them as a

natural experiment. And the quality of the results will strongly depend if the variation it creates

is correctly modelled by the first-stage specification (equation 3). The literature usually assumes

this (Dechezleprêtre et al., 2019; Fu et al., 2021). Other alternative instrument specifications are

shown in Table B.2, in the appendix.

First, thermal inversions and air pollution emissions are not necessarily homogeneous across

large extents of land such as the US, Europe or China. This implies that some regions will have a

higher influence in the results than others with the final results being the “average effects for

subpopulations that are induced by the instrument to change the value of the endogenous

regressors.” or local average treatment effect (LATE) (Imbens and Wooldrige, 2007). To have

understand the degree of this heterogeneity, Figure A2 shows the average absolute change in the

prevalence of thermal inversions (ΔTIc) and the log of tons of PM2.5 emissions per 10km in 1999

(Ec). Figure A2 shows that most counties are in the centre of the distribution of both variables and

that, in general, there are no large regions where the instrument is way stronger than others. A

possible exception is the San Francisco Bay, where the instrument is especially powerful. Thanks

to this, and its economic relevance, I do specifications with and without it and find no significant

differences in results.

Figure A2: Identifying variation of the thermal inversion instrument.

A.2 Construction

To construct a measure of the prevalence or strength of thermal inversions I follow Chen et al.

(2017) and Dechezleprêtre et al. (2019). As thermal inversions are a deviation from the monotonic

declining relationship between altitude and air temperature. The data on air temperature is a 3D

raster in which, for each coordinate pair, there are temperature measurements for a set of altitude

layers. Layers are separated by 200m (roughly). These depend slightly on the temperature and the

initial height as they are defined by pressure levels (hPa), with the lowest layer representing the

first 200m above the surface. As I am interested in those that affect surface air pollution I have
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constructed 3 different measures of thermal inversions:31

1. If the temperature of the second layer is higher than that of the surface. This is closer to the

adopted by Chen et al. (2017), Dechezleprêtre et al. (2019) and this study on my specifications

that use thermal inversions.

2. If the temperature at any layer below the first 1000m is higher than the that of the surface

3. If the temperature at any layer below the first 1000m is higher than the layer below it

All 3 are strong instruments in urban areas that attain very similar results on the effect on

GDP, GDP per capita, GDP per employee and population size.

31I also create measures of the strength of those differences (in ºC)
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B Additional Figures and Tables

Figure B1: Geographical distribution of yearly exposure to Wildfire PM2.5

Figure B2: Geographical distribution of yearly changes of exposure to Wildfire PM2.5
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(b) Daily values (d) Daily changes

Figure B3: Distribution wildfire PM2.5 exposure relative to the closeness of wildfires on that year.
A and B display the absolute and relative frequencies, respectively. Distributions capped at [-10,
10].

First Stage GDP GDP per capita

Urban

Rural

Figure B4: Binscatters of the first stage and reduced form for urban and rural counties reported
in Table 5. Each dot represents a 5% of the counties, population-weighted. Outcomes and PM2.5

exposure are cleaned of all influence of fixed effects and control variables.
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Figure B5: Summary of the impact of an 1μg increase in PM2.5 on sector-level GDP with 95% CI.
Full results are available in Table B.1, in the Appendix. Not corrected for multiple hypothesis.

Table B.1: Effect of PM2.5 on the output of economic sectors

(1) (2) (3) (4) (5)
Δ ln(Agriculture) Δ ln(Mining) Δ ln(Utilities) Δ ln(Construction) Δ ln(Manufacturing)

Δ PM2.5 exposure 0.0063 0.0059 -0.0036 -0.0094 0.015
(0.022) (0.020) (0.010) (0.0085) (0.021)

Nº obs 24530 26935 26588 29824 30117
Nº of counties 2726 2623 2817 2867 2847
R2 0.23 0.51 0.32 0.50 0.46
Kleibergen-Paap F 133.6 257.7 188.4 402.4 371.0

(6) (7) (8) (9) (10)
Δ ln(Transportation) Δ ln(Trade) Δ ln(Information) Δ ln(Finance) Δ ln(Prof.Services)

Δ PM2.5 exposure 0.0043 -0.0061*** 0.010 -0.0030 -0.0061
(0.0064) (0.0021) (0.013) (0.0024) (0.0048)

Nº obs 20873 25195 26604 33406 26189
Nº of counties 2310 2632 2669 3067 2854
R2 0.39 0.76 0.64 0.60 0.59
Kleibergen-Paap F 286.8 325.3 164.5 313.9 256.7

(11) (12) (13) (14) (15)
Δ ln(Educ.Services) Δ ln(Heal.Services) Δ ln(Acom.Food.Arts) Δ ln(OtherServices) Δ ln(Government)

Δ PM2.5 exposure -0.0071** -0.00028 -0.00051 -0.0037* 0.00084
(0.0033) (0.0013) (0.0029) (0.0022) (0.0017)

Nº obs 20788 20109 29989 29873 33451
Nº of counties 2347 2259 2978 2925 3069
R2 0.56 0.55 0.59 0.56 0.60
Kleibergen-Paap F 220.0 310.3 366.5 341.4 298.8

Standard errors in parentheses
Clustered SE by county (BEA). Weighted by average county sector’s GDP over the whole sample. Counties with the 0.5% more extreme growth in
any sector are excluded. Weather controls include atmospheric pressure and humidity squared, 20 bins of temperature, 10 bins of rain, 10 bins
of snow, 12 bins of wind speeds and interactions between the temperature bins and both humidity and humidity squared. Includes state-year
fixed effects and county-specific slopes.
Stock-Yogo weak ID test critical value: 10% maximal IV size → F = 19.93
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table B.2: Alternative first stage specifications

(1) (2) (3) (4) (5) (6) (7)
Δ PM2.5 Δ PM2.5 Δ PM2.5 Δ PM2.5 Δ PM2.5 Δ PM2.5 Δ PM2.5

Δ Wildfire PM2.5 exp. 1.030∗∗∗

(main instrument) (0.0470)

Δ Prop. days with inv. 3.384∗∗∗ 4.158∗∗∗ -2.829∗∗ -2.530∗∗∗ 3.380∗∗∗

(0.650) (0.682) (1.142) (0.886) (0.647)

Δ Prop. days with inv.2 11.72∗∗∗

(2.433)

Δ Prop. days with inv. 1.824∗∗∗

(Winter) (0.298)

Δ Prop. days with inv. 1.518∗∗∗

(Summer) (0.420)

Δ Prop. days with 0.0220∗∗∗

wildfire smoke (0.00217)

Δ Prop. days with inv. 1.306∗∗∗

× log(avg. emis) (0.269)

Surface Pressure -0.00685
× Prop. days with inv. (0.00465)

Nº obs 49612 35125 49612 32252 49612 49612 49612
Nº of counties 3073 3073 3073 3071 3073 3073 3073
R2 0.741 0.768 0.744 0.728 0.741 0.742 0.741

Standard errors in parentheses
Clustered SE by county (BEA). Weighted by county population. Includes state-year fixed effects and county-specific slopes.
Weather controls include atmospheric pressure and himidity squared, 20 bins of temperature, 10 bins of rain, 10 bins of
snow, 12 bins of wind speeds and interactions between the temperature bins and both humidity and humidity squared.
∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < .01

Figure B6: Estimated coefficients of β1 For the effect of ΔPM2.5,t=0 on ΔGDPt for t ∈ {0,−1, ...,−9}
in rural areas with 95% C.I., t = 0 corresponds with the rural result from table 5.

Table B.3: Correlation of daily changes in PM2.5 concentrations and other common pollutants.

PM2.5 Non-wildfire PM2.5 Wildfire PM2.5 SO2 NO2 CO O3

PM2.5 1 0.92 0.28 0.14 0.38 0.40 0.09
Non-wildfire PM2.5 1 -0.09 0.13 0.38 0.39 0.06
Wildfire PM2.5 1 0.02 0.04 0.07 0.09
Daily concentrations of PM2.5, SO2, NO2, CO and O3 are taken form Borgschulte et al. (2022). “Wildfire PM2.5” corresponds
to my measure of daily exposure to PM2.5 from wildfire smoke and Non-wildfire PM2.5 is equal to PM2.5 − Wildfire PM2.5.
All correlations are significant to the 1% level.

Page 36 of 49



Figure B7: Histogram of log(Emissions) in 1999 (Ec), weighted by population

Yearly wildfire PM2.5 exposure Wildfire smoke

Figure B8: Histogram of residual variation in the instruments after including controls. Weighted
by county population
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(a) Outcome to weight (X) (b) Weights (W )

(c) Average with no population weights (X̄) (d) Average with population weights ( ¯XW )

Figure B9: Illustrative example of population weighting within counties. This is especially relevant
in areas such as Las Vegas where population, emissions, and air pollution are spatially clustered.

Table B.4: Main results, with proportion of days with thermal inversions interacted with
log(emissions) from 1999 as instruments

(1) (2) (3) (4) (5)
Δ PM2.5 exposure Δ ln(GDP) Δ ln(GDP/capita) Δ ln(GDP/employee) Δ ln(Population)

Δ PM2.5 exposure 0.0028 0.0039 0.00079 -0.00071
(0.0026) (0.0028) (0.0027) (0.00057)

Δ Pro. inv. -2.61∗∗∗

(0.90)

Δ Pro. inv. × log(emissions) 1.33∗∗∗

(0.28)

Nº obs 49612 49612 49321 49321 49321
Nº of counties 3073 3073 3050 3050 3050
R2 0.74 0.42 0.38 0.30 0.82
Kleibergen-Paap F 16.3 15.4 15.4 15.4
Hansen J 0.25 1.27 0.025 .
p-value 0.62 0.26 0.87

Standard errors in parentheses

Clustered SE by county (BEA). Weighted by county population. Weather controls include atmospheric pressure and humidity
squared, 20 bins of temperature, 10 bins of rain, 10 bins of snow, 12 bins of wind speeds and interactions between the
temperature bins and both humidity and humidity squared. Includes state-year fixed effects and county-specific slopes.

Stock-Yogo weak ID test critical value: 10% maximal IV size → F = 19.93
∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < .01
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Table B.5: Main results, with Winter and Summer inversions as instruments

(1) (2) (3) (4) (5)
Δ PM2.5 exposure Δ ln(GDP) Δ ln(GDP/capita) Δ ln(GDP/employee) Δ ln(Population)

Δ PM2.5 exposure 0.0021 0.0024 0.00091 0.000079
(0.0030) (0.0031) (0.0029) (0.00056)

Δ Pro. S inv. 1.52∗∗∗

(0.43)

Δ Pro. W inv. 1.85∗∗∗

(0.30)

Nº obs 49612 49612 49321 49321 49321
Nº of counties 3073 3073 3050 3050 3050
R2 0.74 0.42 0.39 0.30 0.82
Kleibergen-Paap F 19.3 18.4 18.4 18.4
Hansen J 0.14 0.24 0.037 .
p-value 0.71 0.62 0.85

Standard errors in parentheses

Clustered SE by county (BEA). Weighted by county population. Weather controls include atmospheric pressure and humidity
squared, 20 bins of temperature, 10 bins of rain, 10 bins of snow, 12 bins of wind speeds and interactions between the
temperature bins and both humidity and humidity squared. Includes state-year fixed effects and county-specific slopes.

Stock-Yogo weak ID test critical value: 10% maximal IV size → F = 19.93
∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < .01

Table B.6: Main results,number of days the county is covered by a smoke plume as instrument
(same as Borgschulte et al. (2022)).

(1) (2) (3) (4) (5)
Δ PM2.5 exposure Δ ln(GDP) Δ ln(GDP/capita) Δ ln(GDP/employee) Δ ln(Population)

Δ PM2.5 exposure -0.00012 -0.00029 0.0024 -0.00011
(0.0054) (0.0054) (0.0053) (0.00043)

Δ Prop. days smoke 0.022∗∗∗

(0.0022)

Nº obs 32252 32252 32071 32071 32071
Nº of counties 3071 3071 3048 3048 3048
R2 0.73 0.47 0.45 0.33 0.86
Kleibergen-Paap F 103.1 107.2 107.2 107.2

Standard errors in parentheses

Clustered SE by county (BEA). Weighted by county population. Weather controls include atmospheric pressure and himidity
squared, 20 bins of temperature, 10 bins of rain, 10 bins of snow, 12 bins of wind speeds and interactions between the
temperature bins and both humidity and humidity squared. Includes state-year fixed effects and county-specific slopes.

Stock-Yogo weak ID test critical value: 10% maximal IV size → F = 19.93
∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < .01

Table B.7: Main results, average wildfire-induced PM2.5 for Saturday and Sunday as instrument.

(1) (2) (3) (4) (5)
Δ Avg. PM2.5 exp. Δ ln(GDP) Δ ln(GDP/capita) Δ ln(GDP/employee) Δ ln(Population)

Δ Avg. PM2.5 exp. -0.0013 -0.00082 0.000053 -0.00043
(0.0021) (0.0022) (0.0023) (0.00026)

(mean) smokePMWeekend 2.82∗∗∗

(0.15)

Nº obs 35137 35137 34939 34939 34939
Nº of counties 3074 3074 3051 3051 3051
R2 0.75 0.45 0.44 0.32 0.84
Kleibergen-Paap F 374.9 377.0 377.0 377.0

Standard errors in parentheses

Clustered SE by county (BEA). Weighted by county population. Weather controls include atmospheric pressure and himidity squared, 20 bins of
temperature, 10 bins of rain, 10 bins of snow, 12 bins of wind speeds and interactions between the temperature bins and both humidity and humidity
squared. Includes state-year fixed effects and county-specific slopes.

Stock-Yogo weak ID test critical value: 10% maximal IV size → F = 19.93
∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < .01
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Table B.8: Main results, average wildfire-induced PM2.5 for Monday to Friday as instrument.

(1) (2) (3) (4) (5)
Δ Avg. PM2.5 exp. Δ ln(GDP) Δ ln(GDP/capita) Δ ln(GDP/employee) Δ ln(Population)

Δ Avg. PM2.5 exp. -0.0011 -0.00074 0.00057 -0.00037
(0.0024) (0.0025) (0.0025) (0.00023)

(mean) smokePMWorkday 1.34∗∗∗

(0.068)

Nº obs 35137 35137 34939 34939 34939
Nº of counties 3074 3074 3051 3051 3051
R2 0.75 0.45 0.44 0.32 0.84
Kleibergen-Paap F 389.0 392.1 392.1 392.1

Standard errors in parentheses

Clustered SE by county (BEA). Weighted by county population. Weather controls include atmospheric pressure and himidity squared, 20 bins of
temperature, 10 bins of rain, 10 bins of snow, 12 bins of wind speeds and interactions between the temperature bins and both humidity and humidity
squared. Includes state-year fixed effects and county-specific slopes.

Stock-Yogo weak ID test critical value: 10% maximal IV size → F = 19.93
∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < .01

Table B.9: Main IV results for counties with centroid east of the US median population point

(1) (2) (3) (4) (5)
Δ Avg. PM2.5 exposure Δ ln(GDP) Δ ln(GDP/capita) Δ ln(GDP/employee) Δ ln(Population)

Δ Wildfire PM2.5 exp. 0.985∗∗∗

(0.0550)

Δ Avg. PM2.5 exposure -0.00116 -0.000855 -0.00215 -0.000363
(0.00249) (0.00261) (0.00243) (0.000503)

Nº obs 14604 14604 14406 14406 14406
Nº of counties 1242 1242 1219 1219 1219
R2 0.818 0.518 0.505 0.384 0.842
Kleibergen-Paap F 320.5 329.2 329.2 329.2

Standard errors in parentheses

Clustered SE by county (BEA). Weather controls include atmospheric pressure and humidity squared, 20 bins of temperature, 10 bins of rain, 10
bins of snow, 12 bins of wind speeds and interactions between the temperature bins and both humidity and humidity squared. Includes state-year
fixed effects and county-specific slopes.

Stock-Yogo weak ID test critical value: 10% maximal IV size F = 19.93
∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < .01

Table B.10: Main IV results for counties with centroid west of the US median population point

(1) (2) (3) (4) (5)
Δ Avg. PM2.5 exposure Δ ln(GDP) Δ ln(GDP/capita) Δ ln(GDP/employee) Δ ln(Population)

Δ Wildfire PM2.5 exp. 1.037∗∗∗

(0.0600)

Δ Avg. PM2.5 exposure -0.00119 -0.000775 0.000809 -0.000413
(0.00267) (0.00274) (0.00283) (0.000287)

Nº obs 20531 20531 20531 20531 20531
Nº of counties 1832 1832 1832 1832 1832
R2 0.741 0.414 0.401 0.289 0.831
Kleibergen-Paap F 299.0 299.0 299.0 299.0

Standard errors in parentheses

Clustered SE by county (BEA). Weather controls include atmospheric pressure and humidity squared, 20 bins of temperature, 10 bins of rain, 10
bins of snow, 12 bins of wind speeds and interactions between the temperature bins and both humidity and humidity squared. Includes state-year
fixed effects and county-specific slopes.

Stock-Yogo weak ID test critical value: 10% maximal IV size F = 19.93
∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < .01
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Table B.11: Main IV results for counties with centroid north of the US median population point

(1) (2) (3) (4) (5)
Δ Avg. PM2.5 exposure Δ ln(GDP) Δ ln(GDP/capita) Δ ln(GDP/employee) Δ ln(Population)

Δ Wildfire PM2.5 exp. 1.038∗∗∗

(0.0680)

Δ Avg. PM2.5 exposure -0.00114 -0.000469 -0.000902 -0.000663∗∗

(0.00204) (0.00201) (0.00193) (0.000287)

Nº obs 17210 17210 17183 17183 17183
Nº of counties 1513 1513 1509 1509 1509
R2 0.821 0.450 0.432 0.343 0.844
Kleibergen-Paap F 233.0 233.2 233.2 233.2

Standard errors in parentheses

Clustered SE by county (BEA). Weather controls include atmospheric pressure and humidity squared, 20 bins of temperature, 10 bins of rain, 10
bins of snow, 12 bins of wind speeds and interactions between the temperature bins and both humidity and humidity squared. Includes state-year
fixed effects and county-specific slopes.

Stock-Yogo weak ID test critical value: 10% maximal IV size F = 19.93
∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < .01

Table B.12: Main IV results for counties with centroid south of the US median population point

(1) (2) (3) (4) (5)
Δ Avg. PM2.5 exposure Δ ln(GDP) Δ ln(GDP/capita) Δ ln(GDP/employee) Δ ln(Population)

Δ Wildfire PM2.5 exp. 1.010∗∗∗

(0.0804)

Δ Avg. PM2.5 exposure -0.0000502 0.000271 0.00205 -0.000293
(0.00335) (0.00342) (0.00348) (0.000305)

Nº obs 17927 17927 17756 17756 17756
Nº of counties 1561 1561 1542 1542 1542
R2 0.762 0.469 0.455 0.315 0.817
Kleibergen-Paap F 157.8 157.1 157.1 157.1

Standard errors in parentheses

Clustered SE by county (BEA). Weather controls include atmospheric pressure and humidity squared, 20 bins of temperature, 10 bins of rain, 10
bins of snow, 12 bins of wind speeds and interactions between the temperature bins and both humidity and humidity squared. Includes state-year
fixed effects and county-specific slopes.

Stock-Yogo weak ID test critical value: 10% maximal IV size F = 19.93
∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < .01

Table B.13: Main IV results, regression weighted by average county GDP levels

(1) (2) (3) (4) (5)
Δ Avg. PM2.5 exposure Δ ln(GDP) Δ ln(GDP/capita) Δ ln(GDP/employee) Δ ln(Population)

Δ Avg. PM2.5 exposure -0.00085 -0.00063 0.00080 -0.00026
(0.0029) (0.0029) (0.0030) (0.00023)

Δ Wildfire PM2.5 exp. 1.06∗∗∗

(0.055)

Nº obs 35137 35137 34939 34939 34939
Nº of counties 3074 3074 3051 3051 3051
R2 0.78 0.49 0.47 0.37 0.84
Kleibergen-Paap F 369.1 374.7 374.7 374.7

Standard errors in parentheses

Clustered SE by county (BEA). Weather controls include atmospheric pressure and humidity squared, 20 bins of
temperature, 10 bins of rain, 12 bins of wind speeds and interactions between the temperature bins and humidity Includes
state-year fixed effects and county-specific slopes.

Stock-Yogo weak ID test critical value: 10% maximal IV size → F = 19.93
∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < .01

Page 41 of 49



Table B.14: Main IV results, with no population weights

(1) (2) (3) (4) (5)
Δ Avg. PM2.5 exposure Δ ln(GDP) Δ ln(GDP/capita) Δ ln(GDP/employee) Δ ln(Population)

Δ Avg. PM2.5 exposure -0.0066∗∗∗ -0.0062∗∗∗ -0.0043∗∗ -0.00046
(0.0022) (0.0022) (0.0022) (0.00030)

Δ Wildfire PM2.5 exp. 0.89∗∗∗

(0.029)

Nº obs 35137 35137 34939 34939 34939
Nº of counties 3074 3074 3051 3051 3051
R2 0.77 0.28 0.28 0.25 0.66
Kleibergen-Paap F 915.8 916.4 916.4 916.4

Standard errors in parentheses

Clustered SE by county (BEA). Weather controls include atmospheric pressure and humidity squared, 20 bins of temperature, 10 bins of rain, 10
bins of snow, 12 bins of wind speeds and interactions between the temperature bins and both humidity and humidity squared. Includes state-year
fixed effects and county-specific slopes.

Stock-Yogo weak ID test critical value: 10% maximal IV size → F = 19.93
∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < .01

Table B.15: Main results, including economic outliers (counties with extreme changes in GDP,
population or GDP/capita)

(1) (2) (3) (4) (5)
Δ PM2.5 exposure Δ ln(GDP) Δ ln(GDP/capita) Δ ln(GDP/employee) Δ ln(Population)

Δ PM2.5 exposure -0.0014 -0.0014 -0.00048 -0.000027
(0.0013) (0.0014) (0.0014) (0.00017)

Δ Wildfire PM2.5 exp. 1.11∗∗∗

(0.042)

Nº obs 36912 36912 36636 36636 36636
Nº of counties 3076 3076 3053 3053 3053
R2 0.76 0.39 0.38 0.27 0.82
Kleibergen-Paap F 684.1 685.6 685.6 685.6

Standard errors in parentheses

Clustered SE by county (BEA). Weighted by county population. Weather controls include atmospheric pressure and humidity squared, 20 bins of
temperature, 10 bins of rain, 10 bins of snow, 12 bins of wind speeds and interactions between the temperature bins and both humidity and humidity
squared. Includes state-year fixed effects and county-specific slopes.

Stock-Yogo weak ID test critical value: 10% maximal IV size → F = 19.93
∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < .01

Table B.16: Main results, excluding county-year pairs with active wildfires.

(1) (2) (3) (4) (5)
Δ PM2.5 exposure Δ ln(GDP) Δ ln(GDP/capita) Δ ln(GDP/employee) Δ ln(Population)

Δ PM2.5 exposure -0.0029 -0.0022 -0.0012 -0.00074∗

(0.0041) (0.0041) (0.0039) (0.00041)

Δ Wildfire PM2.5 exp. 1.02∗∗∗

(0.075)

Nº obs 28724 28724 28563 28563 28563
Nº of counties 2864 2864 2844 2844 2844
R2 0.82 0.45 0.43 0.35 0.86
Kleibergen-Paap F 186.3 188.2 188.2 188.2

Standard errors in parentheses

Clustered SE by county (BEA). Weighted by county population. Weather controls include atmospheric pressure and humidity squared, 20 bins of
temperature, 10 bins of rain, 10 bins of snow, 12 bins of wind speeds and interactions between the temperature bins and both humidity and humidity
squared. Includes state-year fixed effects and county-specific slopes.

Stock-Yogo weak ID test critical value: 10% maximal IV size → F = 19.93
∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < .01
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Table B.17: Main IV results, Excluding the Great Recession years (2008-2011)

(1) (2) (3) (4) (5)
Δ Avg. PM2.5 exposure Δ ln(GDP) Δ ln(GDP/capita) Δ ln(GDP/employee) Δ ln(Population)

Δ Avg. PM2.5 exposure -0.0013 -0.0011 0.00021 -0.00020
(0.0015) (0.0015) (0.0014) (0.00037)

Δ Wildfire PM2.5 exp. 1.06∗∗∗

(0.075)

Nº obs 23488 23488 23322 23322 23322
Nº of counties 3069 3069 3046 3046 3046
R2 0.75 0.46 0.41 0.38 0.87
Kleibergen-Paap F 200.5 200.5 200.5 200.5

Standard errors in parentheses

Clustered SE by county (BEA). Weather controls include atmospheric pressure and humidity squared, 20 bins of temperature, 10 bins of rain, 10
bins of snow, 12 bins of wind speeds and interactions between the temperature bins and both humidity and humidity squared. Includes state-year
fixed effects and county-specific slopes.

Stock-Yogo weak ID test critical value: 10% maximal IV size → F = 19.93
∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < .01

Table B.18: Main results, excluding countiers from the San Fancisco area

(1) (2) (3) (4) (5)
Δ Avg. PM2.5 exposure Δ ln(GDP) Δ ln(GDP/capita) Δ ln(GDP/employee) Δ ln(Population)

Δ Avg. PM2.5 exposure -0.0015 -0.0013 -0.0000046 -0.00026
(0.0025) (0.0025) (0.0026) (0.00023)

Δ Wildfire PM2.5 exp. 1.03∗∗∗

(0.048)

Nº obs 35089 35089 34891 34891 34891
Nº of counties 3070 3070 3047 3047 3047
R2 0.76 0.44 0.43 0.31 0.84
Kleibergen-Paap F 454.1 458.2 458.2 458.2

Standard errors in parentheses

Clustered SE by county (BEA). Weather controls include atmospheric pressure and humidity squared, 20 bins of temperature, 10 bins of rain, 10
bins of snow, 12 bins of wind speeds and interactions between the temperature bins and both humidity and humidity squared. Includes state-year
fixed effects and county-specific slopes.

Stock-Yogo weak ID test critical value: 10% maximal IV size → F = 19.93
∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < .01

Table B.19: Main results, With monitor-based PM2.5 measures from Borgschulte et al. (2022)

(1) (2) (3) (4) (5)
Monitored PM2.5 Δ ln(GDP) Δ ln(GDP/capita) Δ ln(GDP/employee) Δ ln(Population)

Monitored PM2.5 -0.00086 -0.00053 0.00075 -0.00035
(0.0030) (0.0030) (0.0031) (0.00027)

Δ Wildfire PM2.5 exp. 1.02∗∗∗

(0.12)

Nº obs 14934 14934 14827 14827 14827
Nº of counties 1614 1614 1600 1600 1600
R2 0.68 0.56 0.55 0.40 0.90
Kleibergen-Paap F 75.0 74.7 74.7 74.7

Standard errors in parentheses

Clustered SE by county (BEA). Weighted by county population. Weather controls include atmospheric pressure and humidity squared, 20 bins of
temperature, 10 bins of rain, 10 bins of snow, 12 bins of wind speeds and interactions between the temperature bins and both humidity and humidity
squared. Includes state-year fixed effects and county-specific slopes.

Stock-Yogo weak ID test critical value: 10% maximal IV size → F = 19.93
∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < .01
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Table B.20: Main results, without county-specific slopes

(1) (2) (3) (4) (5)
Δ Avg. PM2.5 exp. Δ ln(GDP) Δ ln(GDP/capita) Δ ln(GDP/employee) Δ ln(Population)

Δ Avg. PM2.5 exp. 0.00059 0.00055 0.0018 0.000015
(0.0018) (0.0019) (0.0019) (0.00038)

Avg. wildfire PM2.5 1.06∗∗∗

(0.048)

Nº obs 35138 35138 34940 34940 34940
Nº of counties 3075 3075 3052 3052 3052
R2 0.74 0.30 0.30 0.18 0.37
Kleibergen-Paap F 479.2 483.5 483.5 483.5

Standard errors in parentheses

Clustered SE by county (BEA). Weighted by county population. Weather controls include atmospheric pressure and himidity squared, 20 bins of
temperature, 10 bins of rain, 10 bins of snow, 12 bins of wind speeds and interactions between the temperature bins and both humidity and humidity
squared. Includes state-year fixed effects.

Stock-Yogo weak ID test critical value: 10% maximal IV size → F = 19.93
∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < .01

Table B.21: Main IV results, without county-specific slopes and only year FE

(1) (2) (3) (4) (5)
Δ Avg. PM2.5 exposure Δ ln(GDP) Δ ln(GDP/capita) Δ ln(GDP/employee) Δ ln(Population)

Δ Avg. PM2.5 exposure 0.00679∗∗∗ 0.00600∗∗∗ 0.00501∗∗ 0.000804∗∗

(0.00231) (0.00233) (0.00225) (0.000329)

Δ Wildfire PM2.5 exp. 0.802∗∗∗

(0.0362)

Nº obs 35150 35150 34952 34952 34952
Nº of counties 3076 3076 3053 3053 3053
R2 0.512 0.159 0.176 0.0734 0.0322
Kleibergen-Paap F 491.1 492.2 492.2 492.2

Standard errors in parentheses

Clustered SE by county (BEA). Weather controls include atmospheric pressure and humidity squared, 20 bins of temperature, 10 bins of rain, 10
bins of snow, 12 bins of wind speeds and interactions between the temperature bins and both humidity and humidity squared. Includes state-year
fixed effects and county-specific slopes.

Stock-Yogo weak ID test critical value: 10% maximal IV size -¿ F = 19.93
∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < .01

Table B.22: Main IV results, without weather controls

(1) (2) (3) (4) (5)
Δ Avg. PM2.5 exposure Δ ln(GDP) Δ ln(GDP/capita) Δ ln(GDP/employee) Δ ln(Population)

Δ Avg. PM2.5 exposure -0.0047∗∗ -0.0044∗∗ -0.0030 -0.00037
(0.0020) (0.0020) (0.0020) (0.00027)

Δ Wildfire PM2.5 exp. 0.93∗∗∗

(0.030)

Nº obs 35137 35137 34939 34939 34939
Nº of counties 3074 3074 3051 3051 3051
R2 0.75 0.28 0.27 0.25 0.66
Kleibergen-Paap F 954.3 953.9 953.9 953.9

Standard errors in parentheses

Clustered SE by county (BEA). Weather controls include atmospheric pressure and humidity squared, 20 bins of temperature, 10 bins of rain, 10
bins of snow, 12 bins of wind speeds and interactions between the temperature bins and both humidity and humidity squared. Includes state-year
fixed effects and county-specific slopes.

Stock-Yogo weak ID test critical value: 10% maximal IV size → F = 19.93
∗ p < 0.1, ∗∗ p < .05, ∗∗∗ p < .01
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(a) With centroids inside a region (b) With no centroids inside a region

Figure B10: Imputation of raster values to counties (image from Dechezleprêtre et al. (2019))
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