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C H A P T E R 8

Overlapping generations
models

Theneoclassical growthmodel (NGM), with its infinitely-lived and identical individuals, is very useful
for analysing a large number of topics in macroeconomics, as we have seen, and will continue to see,
for the remainder of the book. However, there are some issues that require a departure from those
assumptions. An obvious example involves those issues related to the understanding of the interaction
of individuals who are at different stages in their life cycles. If lives are finite and not infinite, as in the
NGM, individuals are not the same (or at a minimum are not at the same moment in their lives). This
diversity opens a whole new set of issues, such as that of optimal consumption and investment over
the life cycle, and the role of bequests. It also requires a redefinition of optimality. Not only because
we need to address the issue of how to evaluate welfare when agents have different utility functions,
but also because we will need to check if the optimality properties of the NGM prevail. For example,
if there are poor instruments to save, yet people need to save for retirement, can it be possible that
people accumulate too much capital?

This richer framework will provide new perspectives for evaluating policy decisions such as pen-
sions, taxation, and discussing the impact of demographic changes. Of course, the analysis becomes
more nuanced, but the added difficulty is not an excuse for not tackling the issue, particularly because
in many instances the fact that individuals are different is the key aspect that requires attention.

To study these very important issues, in the next three chapters we develop the overlapping gener-
ations (OLG) model, the second workhorse framework of modern macroeconomics. We will see that,
when bringing in some of these nuances, the implications of the model turn out to be very different
from those of the NGM. This framework will also allow us to address many of the most relevant cur-
rent policy debates in macroeconomics, including low interest rates, secular stagnation, and topics in
fiscal and monetary policy.

8.1 | The Samuelson-Diamond model

The Samuelson-Diamond model simplifies by assuming two generations: young and old. The young
save for retirement, and this is the capital stock next period. The dynamics of capital will be sum-
marised by a savings equation of the form s(w, r). This savings equation will allow us to trace the
evolution of capital over time.

How to cite this book chapter:
Campante, F., Sturzenegger, F. and Velasco, A. 2021. Advanced Macroeconomics: An Easy Guide.

Ch. 8. ‘Overlapping generations models’, pp. 115–134. London: LSE Press.
DOI: https://doi.org/10.31389/lsepress.ame.h License: CC-BY-NC 4.0.

https://doi.org/10.31389/lsepress.ame.h


116 OVERLAPPING GENERATIONS MODELS

Herewe present a discrete timemodel initially developed byDiamond (1965), building on earlier work
by Samuelson (1958), in which individuals live for two periods (young and old). The economy lasts
forever as new young people enter in every period. We first characterise the decentralised competitive
equilibrium of the model. We then ask whether the market solution is the same as the allocation that
would be chosen by a central planner, focusing on the significance of the golden rule, which will allow
us to discuss the possibility of dynamic inefficiency (i.e. excessive capital accumulation).

8.1.1 | The decentralized equilibrium

The market economy is composed of individuals and firms. Individuals live for two periods. They
work for firms, receiving a wage. They also lend their savings to firms, receiving a rental rate.

An individual born at time t consumes c1t in period t and c2t+1 in period t+1, and derives utility( 𝜎
𝜎 − 1

)
c
𝜎−1
𝜎

1t + (1 + 𝜌)−1
( 𝜎
𝜎 − 1

)
c
𝜎−1
𝜎

2t+1, 𝜌 ≥ 0, 𝜎 ≥ 0. (8.1)

Note that the subscript “1” refers to consumption when young, and “2” labels consumption when old.
Individuals work only in the first period of life, inelastically supplying one unit of labour and earning
a real wage of wt. They consume part of their first-period income and save the rest to finance their
second-period retirement consumption.The saving of the young in period t generates the capital stock
that is used to produce output in period t + 1 in combination with the labour supplied by the young
generation of period t + 1.

The time structure of the model appears in Figure 8.1.
The number of individuals born at time t and working in period t is Lt. Population grows at rate n

so that Lt = L0 (1 + n)t.

Figure 8.1 Time structure of overlapping generations model
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Firms act competitively and use the constant returns technology Y = F (K, L). For simplicity,
assume that capital fully depreciates after use, which is akin to assuming that F(⋅, ⋅) is a net production
function, with depreciation already accounted for. As before, output per worker, Y∕L, is given by the
production function y = f(k), where k is the capital-labour ratio. This production function is assumed
to satisfy the Inada conditions. Each firm maximises profits, taking the wage rate, wt, and the rental
rate on capital, rt, as given.

We now examine the optimisation problem of individuals and firms and derive the market
equilibrium.

Individuals

Consider an individual born at time t. His maximisation problem is

max
{( 𝜎

𝜎 − 1

)
c
𝜎−1
𝜎

1t + (1 + 𝜌)−1
( 𝜎
𝜎 − 1

)
c
𝜎−1
𝜎

2t+1

}
(8.2)

subject to

c1t + st = wt, (8.3)

c2t+1 =
(
1 + rt+1

)
st, (8.4)

where wt is the wage received in period t and rt+1 is the interest rate paid on savings held from period t
to period t+1. In the second period the individual consumes all his wealth, both interest and principal.
(Note that this assumes that there is no altruism across generations, in that people do not care about
leaving bequests to the coming generations. This is crucial.)

The first-order condition for a maximum is

c
− 1
𝜎

1t −
(1 + rt+1

1 + 𝜌

)
c
− 1
𝜎

2t+1 = 0, (8.5)

which can be rewritten as
c2t+1

c1t
=
(1 + rt+1

1 + 𝜌

)𝜎

. (8.6)

This is the Euler equation for the generation born at time t. Note that this has the very same intuition,
in discrete time, as the Euler equation (Ramsey rule) we derived in the context of the NGM.

Next, using (8.3) and (8.4) to substitute out for c1t and c2t+1 and rearranging we get

st =

(
1(

1 + rt+1
)1−𝜎 (1 + 𝜌)𝜎 + 1

)
wt. (8.7)

We can think of this as a saving function:

st = s
(
wt, rt+1

)
, 0 < sw ≡ 𝜕st

𝜕wt
< 1, sr ≡ 𝜕st

𝜕rt+1
≥ 0 or ≤ 0. (8.8)

Saving is an increasing function of wage income since the assumption of separability and concavity of
the utility function ensures that both goods (i.e. consumption in both periods) are normal.The effect of
an increase in the interest rate is ambiguous, however, because of the standard income and substitution
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effects with which you are familiar from micro theory. An increase in the interest rate decreases the
relative price of second-period consumption, leading individuals to shift consumption from the first
to the second period, that is, to substitute second- for first-period consumption. But it also increases
the feasible consumption set, making it possible to increase consumption in both periods; this is the
income effect. The net effect of these substitution and income effects is ambiguous. If the elasticity of
substitution between consumption in both periods is greater than one, then in this two-period model
the substitution effect dominates and an increase in interest rates leads to an increase in saving.

Firms

Firms act competitively, renting capital to the point where the marginal product of capital is equal to
its rental rate, and hiring labour to the point where themarginal product of labour is equal to the wage

f ′
(
kt
)
= rt (8.9)

f
(
kt
)
− ktf ′

(
kt
)
= wt, (8.10)

where kt is the firm’s capital-labour ratio. Note that f
(
kt
)
− ktf ′

(
kt
)
is the marginal product of labour,

because of constant returns to scale.

8.1.2 | Goods and factor market equilibrium

The goods market equilibrium requires that the demand for goods in each period be equal to supply,
or equivalently that investment be equal to saving:

Kt+1 − Kt = Lts
(
wt, rt+1

)
− Kt. (8.11)

The left-hand side is net investment: the change in the capital stock between t and t+1.The right-hand
side is net saving: the first term is the saving of the young; the second is the dissaving of the old.

Eliminating Kt from both sides tells us that capital at time t+ 1 is equal to the saving of the young
at time t. Dividing both sides by Lt gives us the equation of motion of capital in per capita terms:

(1 + n) kt+1 = s
(
wt, rt+1

)
. (8.12)

The services of labour are supplied inelastically; the supply of services of capital in period t is deter-
mined by the savings decision of the young made in period t − 1. Equilibrium in the factor markets
obtains when the wage and the rental rate on capital are such that firms wish to use the available
amounts of labour and capital services. The factor market equilibrium conditions are therefore given
by equations (8.9) and (8.10).

8.1.3 | The dynamics of the capital stock

Thecapital accumulation equation (8.12), togetherwith the factormarket equilibrium conditions (8.9)
and (8.10), implies the dynamic behaviour of the capital stock:

kt+1 =
s
[
w
(
kt
)
, r
(
kt+1

)]
1 + n

, (8.13)
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or

kt+1 =
s
[
f
(
kt
)
− kt f ′

(
kt
)
, f ′

(
kt+1

)]
1 + n

. (8.14)

This last equation implies a relationship between kt+1 and kt. We will describe this as the savings locus.
The properties of the savings locus depend on the derivative:

dkt+1

dkt
=

−sw
(
kt
)
kt f

′′ (kt
)

1 + n − sr
(
kt+1

)
f ′′

(
kt+1

) . (8.15)

The numerator of this expression is positive, reflecting the fact that an increase in the capital stock in
period t increases the wage, which increases savings. The denominator is of ambiguous sign because
the effects of increases in the interest rate on savings are ambiguous. If sr ≥ 0, then the denominator
in (8.15) is positive, and then so is dkt+1∕dkt.

The savings locus in Figure 8.2 summarises both the dynamic and the steady-state behaviour of
the economy. The 45-degree line in Figure 8.2 is the line along which steady states, at which kt+1 = kt,
must lie. Any point at which the savings locus s crosses that line is a steady state. We have drawn
a locus that crosses the 45-degree line only once, and hence guarantees that the steady state capital
stock both exists and is unique. But this is not the only possible configuration. The model does not,
without further restrictions on the utility and/or production functions, guarantee either existence or
uniqueness of a steady-state equilibrium with positive capital stock.

If there exists a unique equilibrium with positive capital stock, will it be stable? To answer this,
evaluate the derivative around the steady state:

dkt+1

dkt

|||||SS = −swk∗f ′′ (k∗)
1 + n − srf ′′ (k∗)

. (8.16)

Figure 8.2 The steady-state capital stock

k*

k*

kt +1

kt
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(Local) stability requires that dkt+1

dkt

|||SS be less than one in absolute value:

||||| −swk∗f ′′ (k∗)
1 + n − srf ′′ (k∗)

||||| < 1.

Again, without further restrictions on the model, the stability condition may or may not be satisfied.
To obtain definite results on the comparative dynamic and steady-state properties of the model, it is
necessary either to specify functional forms for the underlying utility and production functions, or to
impose conditions sufficient for uniqueness of a positive steady-state capital stock.1

8.1.4 | A workable example

In this sub-section, we analyse the properties of the OLG model under a fairly simple set of assump-
tions: log utility (i.e. the limit case where 𝜎 = 1) and Cobb-Douglas production. (This is sometimes
referred to as the canonical OLGmodel.)This permits a simple characterisation of both dynamics and
the steady state.

With this assumption on preferences, the saving function is

st =
(

1
2 + 𝜌

)
wt, (8.17)

so that savings is proportional to wage income. Notice that the interest rate cancels out in the case of
log utility, but not otherwise. This is a case in which the savings rate will be constant over time (as in
the Solow model), though, once again, here this is the result of an optimal choice (as in the version of
the AK model that we studied in Chapter 5).

With Cobb-Douglas technology, the firm’s rules for optimal behaviour (8.9) and (8.10) become

rt = 𝛼k𝛼−1
t (8.18)

and

wt = (1 − 𝛼) k𝛼t = (1 − 𝛼) yt. (8.19)

Using (8.17) and (8.19) in (8.12) yields

kt+1 =
(

1 − 𝛼
2 + 𝜌

)( 1
1 + n

)
k𝛼t , (8.20)

which is the new law of motion for capital.
Define as usual the steady state as the situation in which kt+1 = kt = k∗. Equation (8.20) implies

that the steady state is given by

k∗ =
(

1 − 𝛼
2 + 𝜌

1
1 + n

) 1
1−𝛼

, (8.21)

so that we have a unique and positive steady-state per-capita capital stock. This stock is decreasing in
𝜌 (the rate of discount) and n (the rate of population growth). Note the similarities with the NGM and
the Solow model.
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Similarly, we can write steady-state income per-capita as y∗ = (k∗)𝛼 , or

y∗ =
(

1 − 𝛼
2 + 𝜌

1
1 + n

) 𝛼
1−𝛼

. (8.22)

Again, this steady-state level is decreasing in 𝜌 and n .
Will the system ever get to the steady state? Local stability requires that dkt+1

dkt

|||SS be less than one in
absolute value, which in this case implies

𝛼
(

1 − 𝛼
2 + 𝜌

)( 1
1 + n

)
(k∗)𝛼−1 = 𝛼 < 1, (8.23)

which is always satisfied. Hence, if the initial capital stock is larger than zero it will gradually converge
to k∗. Convergence is depicted in Figure 8.3.The economy starts out at k0 and gradually moves toward
the steady-state capital stock.

The effects of a shock

Suppose next that the economy is at the steady state and at some time 0 the discount rate falls from 𝜌
to 𝜌′ , where 𝜌′ < 𝜌. This shock is unexpected, and will last forever.

From (8.21) we see that the new steady-state per capita capital stock will clearly rise, with k∗new >
k∗old. In Figure 8.4 we show the dynamic adjustment toward the new stationary position. The economy
starts out at k∗old and gradually moves toward k∗new. Income per capita rises in the transition and in the
new steady state.

Figure 8.3 Convergence to the steady state

k*

k*k0

kt +1

kt
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Figure 8.4 Fall in the discount rate

k* ktold

k*old

k*new

k*new

kt +1

8.2 | Optimality

Thedistinctive characteristic of theOLGmodel is that the interest ratemay be smaller than the growth
rate. In this case, there is a potential gain of reducing the stock of capital. The OLG model can lead to
dynamic inefficiency.

We now ask how the market allocation compares to that which would be chosen by a central planner
who maximises an intertemporal social welfare function. This raises a basic question, that of the rel-
evant social welfare function. When individuals have infinite horizons and are all alike, it is logical to
take the social welfare function to be their own utility function. But here the generations that are alive
change as time passes, so it is not obvious what the central planner should maximise.

8.2.1 | The steady-state marginal product of capital

In any event, as in the Solow model, there is something we can say about efficiency here. Notice that,
at the steady state, the marginal product of capital is

f ′ (k∗) = 𝛼 (k∗)𝛼−1 = r∗ =
( 𝛼
1 − 𝛼

)
(2 + 𝜌) (1 + n) . (8.24)

Notice that this interest rate depends onmore parameters than in the NGM.The relationship between
the discount factor and the interest rate is still there. A higher discount factor implies less savings
today and a higher interest rate in equilibrium. But notice that now that the population growth affects
the interest rate. Why is this the case? The intuition is simple. A higher growth rate of population
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decreases the steady-state stock of capital thus increasing the marginal product of capital. How does
this compare with the golden rule of f ′

(
kG
)
= n? From the above it is clear that k∗ > kG if

r∗ < n, (8.25)

which in turn implies

𝛼 < n
n + (1 + n) (2 + 𝜌)

. (8.26)

That is, if 𝛼 is sufficiently low (or, alternatively, if n is sufficiently high), the steady-state capital stock
in the decentralised equilibrium can exceed that of the golden rule.

Dynamic inefficiency

Suppose a benevolent planner found that the economy was at the steady state with k∗ and y∗. Suppose
further that k∗ > kG. Is there anything the planner could do to redistribute consumption across gen-
erations that would make at least one generation better off without making any generation worse off?
Put differently, is this steady state Pareto efficient?

Let resources available for per-capita consumption (of the young and old), in any period t, be given
by xt. Note next that in any steady state,

xSS = k𝛼SS − nkSS. (8.27)

Note that, by construction, kG is the kSS that maximises xSS, since
𝜕xSS
𝜕kSS

= 0.
The initial situation is one kSS = k∗, so that xSS = c∗. Suppose next that, at some point t = 0, the
planner decides to allocate more to consumption and less to savings in that period, so that next period
the capital stock is kG < k∗.
Then, in period 0, resources available for consumption will be

x0 = (k∗)𝛼 − nkG +
(
k∗ − kG

)
. (8.28)

In every subsequent period t > 0, resources available for consumption will be

xt = k𝛼G − nkG, t > 0. (8.29)

Clearly, in t > 0 available resources for consumption will be higher than in the status quo, since kG
maximises xSS. Note next that x0 > xt (this should be obvious, since at time 0 those alive can consume
the difference between k∗ and kG). Therefore, in t = 0 resources available will also be higher than in
the status quo. We conclude that the change increases available resources at all times. The planner can
then split them between the two generations alive at any point in time, ensuring that everyone is at
least as well off as in the original status quo, with at least one generation being better off. Put differently,
the conclusion is that the decentralised solution leading to a steady state with a capital stock of k∗ is
not Pareto efficient. Generally, an economy with k∗ > kG (alternatively, one with r∗ < n) is known as
a dynamically inefficient economy.

8.2.2 | Why is there dynamic inefficiency?

If there is perfect competition with no externalities or other market failures, why is the competitive
solution inefficient? Shouldn’t the First Welfare Theorem apply here as well? The reason why this
isn’t the case is the infinity of agents involved, while the welfare theorems assume a finite number of
agents.2
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An alternative way to build this intuition is that when the interest rate is below the growth rate of
the economy, budget constraints are infinite and not well-defined, making our economic restrictions
meaningless. This infinity gives the planner a way of redistributing income and consumption across
generations that is not available to the market. In a market economy, individuals wanting to consume
in old age must hold capital, even if the marginal return on capital is low. The planner, by contrast, can
allocate resources between the current old and young in any manner they desire. They can take part
of the fruit of the labour income of the young, for instance, and transfer it to the old without forcing
them to carry so much capital. They can make sure that no generation is worse off by requiring each
succeeding generation to do the same (and remember, there are infinitely many of them).3 And, if the
marginal product of capital is sufficiently low (lower than n, so the capital stock is above the golden
rule), this way of transferring resources between young and old is more efficient than saving, so the
planner can do better than the decentralized allocation.

8.2.3 | Are actual economies dynamically inefficient?

Recall that in the decentralised equilibrium we had

rSS = f ′
(
kSS

)
, (8.30)

so the rental rate is equal to the marginal product of capital. Notice also that the rate of growth of
the economy is n (income per-capita is constant, and the number of people is growing at the rate n).
Therefore, the condition for dynamic inefficiency is simply that rSS be lower than the rate of growth
of the economy, or, taking depreciation into account (which we have ignored here), that the rate of
interest minus depreciation be lower than the rate of growth of the economy.

Abel et al. (1989) extend the model to a context with uncertainty (meaning that there is more than
one observed interest rate, since you have to adjust for risk), and show that in this case a sufficient
condition for dynamic efficiency is that net capital income exceeds investment. To understand why,
notice that the condition for dynamic efficiency is that the marginal product of capital (r) exceeds the
growth rate of population (n), which happens to be the growth rate of the economy g. So, rK is the total
return to capital and nK is total investment, so the condition r > g can be tested by comparing the
return on capital vs new investment: the net flow out of firms.Their evidence from seven industrialised
countries suggests that this condition seems to be comfortably satisfied in practice.

However, a more recent appraisal, by Geerolf (2013), suggests that this picture may have actually
changed or never been quite as sanguine. He updates the Abel et al. data, and provides a different
treatment to mixed income and land rents.4 With these adjustments, he finds that, in general, coun-
tries are in dynamically efficient positions, though some countries such as Japan and South Korea are
definitely in a dynamically inefficient state! (And Australia joins the pack more recently...) In other
words, it seems at the very least that we cannot so promptly dismiss dynamic inefficiency as a theo-
retical curiosity.

8.2.4 | Why is this important?

At this point you may be scratching your head asking why we seem to be spending so much time with
the question of dynamic efficiency.The reason is that it is actually very relevant for a number of issues.
For example, a dynamically inefficient economy is one in which fiscal policy has more leeway. Any
debt level will eventually be wiped out by growth. Blanchard (2019) (p. 1197) takes this point seriously
and argues
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... the current U.S. situation, in which safe interest rates are expected to remain below growth
rates for a long time, is more the historical norm than the exception. If the future is like the
past, this implies that debt rollovers, that is the issuance of debt without a later increase in taxes,
may well be feasible. Put bluntly, public debt may have no fiscal cost.

Not surprisingly, during 2020/2021, in response to the Covid-19 pandemic, many countries
behaved as if they could tap unlimited resources through debt issuing. Dynamic inefficiency, if present
and expected to remain in the future, would say that was feasible. If, on the contrary, economies are
dynamically efficient, the increases in debt will required more taxes down the road.

The second issue has to do with the possibility of bubbles, that is, assets with no intrinsic value. By
arbitrage, the asset price of a bubble will need to follow a typical pricing equation

(1 + r)Pt = Pt+1, (8.31)

assuming for simplification a constant interest rate. The solution to this equation is

Pt = P0(1 + r)t, (8.32)

(simply replace to check it is a solution). The price of the asset needs to grow at the rate of interest rate
(you may hold a dividend-less asset, but you need to get your return!). In an NGM where r > g, this
asset cannot exist, because it will eventually grow to become larger than the economy. But if r < g this
is not the case, and the bubble can exist. We will come back to this later. What are examples of such
assets? Well, you may have heard about Bitcoins and cryptocurrency. In fact, money itself is really a
bubble!

Finally, notice that the OLG model can deliver very low interest rates. So, it is an appropriate setup
to explain the current world of low interest rates. We will come back to this in our chapters on fiscal
and monetary policy.

Before this, however, we need to provide a continuous-time version of the OLG model, to provide
continuity with the framework we have been using so far, and because it will be useful later on.

8.3 | Overlapping generations in continuous time

The OLG model can be modelled in continuous time through an ingenious mechanism: a constant
probability of death and the possibility of pre-selling your assets upon death in exchange for a payment
while you live. This provides cohorts and steady-state behaviour that make the model tractable. Even
so, the details get a bit eerie. This section is only for the brave-hearted.

The trick to model the OLG model in a continuous-time framework is to include an age-independent
probability of dying p. By the law of large numbers this will also be the death rate in the population.
Assume a birth rate n > p. Together these two assumptions imply that population grows at the rate
n − p.5 This assumption is tractable but captures the spirit of the OLG model: not everybody is the
same at the same time.

As in Blanchard (1985), we assume there exist companies that allow agents to insure against the
risk of death (and, therefore, of leaving behind unwanted bequests). This means that at the time of
death all of an individual’s assets are turned over to the insurance company, which in turn pays a return
of p on savings to all agents who remain alive. If rt is the interest rate, then from the point of view of
an individual agent, the return on savings is rt + p.
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We will also assume logarithmic utility which will make the algebra easier. As of time t the repre-
sentative agent of the generation born at time 𝜏 maximises

∫
∞

t
log cs,𝜏e−(𝜌+p)(s−t)ds, (8.33)

subject to the flow budget constraint

ȧt,𝜏 =
(
rt + p

)
at,𝜏 + yt,𝜏 − ct,𝜏 , (8.34)

where at,𝜏 is the stock of assets held by the individual and yt,𝜏 is labour income. The other constraint
is the no-Ponzi game condition requiring that if the agent is still alive at time s, then

lim
s→∞

as,𝜏e− ∫ s
t (rv+p)dv ≥ 0. (8.35)

If we integrate the first constraint forward (look at our Mathematical Appedix!) and use the second
constraint, we obtain

∫
∞

t
cs,𝜏e− ∫ s

t (rv+p)dvds ≤ at,𝜏 + ht,𝜏 , (8.36)

where

ht,𝜏 = ∫
∞

t
ys,𝜏e− ∫ s

t (rv+p)dvds, (8.37)

can be thought of as human capital. So the present value of consumption cannot exceed available
assets, a constraint that will always hold with equality.

With log utility the individual Euler equation is our familiar

ċs,𝜏 =
(
rs − 𝜌

)
cs,𝜏 , (8.38)

which can be integrated forward to yield

cs,𝜏 = ct,𝜏e∫
s
t (rv−𝜌)dv. (8.39)

Using this in the present-value budget constraint gives us the individual consumption function

∫∞t ct,𝜏e∫
s
t (rv−𝜌)dve− ∫ s

t (rv+p)dvds = at,𝜏 + ht,𝜏 ,

ct,𝜏 ∫∞t e−(𝜌+p)(s−t)ds = at,𝜏 + ht,𝜏 ,

ct,𝜏 = (𝜌 + p)(at,𝜏 + ht,𝜏),

(8.40)

so that the individual consumes a fixed share of available assets, as is standard under log utility. That
completes the description of the behaviour of the representative agent in each generation.

Thenext task is to aggregate across generations or cohorts. LetNt,𝜏 be the size at time t of the cohort
born at 𝜏 . Denoting the total size of the population alive at time 𝜏 as N𝜏 , we can write the initial size
of the cohort born at 𝜏 (that is, the newcomers to the world at 𝜏) as nN𝜏 . In addition, the probability
that someone born at 𝜏 is still alive at t ≥ 𝜏 is e−p(t−𝜏). It follows that

Nt,𝜏 = nN𝜏e−p(t−𝜏). (8.41)



OVERLAPPING GENERATIONS MODELS 127

Now taking into account deaths and births, we can write the size of the total population alive at time t
as a function of the size of the population that was alive at some time 𝜏 in the past: Nt = N𝜏e(n−p)(t−𝜏).
It follows that

Nt,𝜏

Nt
= ne−p(t−𝜏)e−(n−p)(t−𝜏) = ne−n(t−𝜏). (8.42)

We conclude that the relative size at time t of the cohort born at 𝜏 is simply ne−n(t−𝜏).
For any variable xt,𝜏 define the per capita (or average) xt as

xt = ∫ t
−∞ xt,𝜏

(
Nt,𝜏

Nt

)
d𝜏

xt = ∫ t
−∞ xt,𝜏ne−n(t−𝜏)d𝜏.

(8.43)

Applying this definition to individual consumption from (8.40) we have

ct = (𝜌 + p)
(
at + ht

)
, (8.44)

so that per capita consumption is proportional to per capita assets, where

at = ∫
t

−∞
at,𝜏ne−n(t−𝜏)d𝜏, (8.45)

and

ht = ∫
t

−∞
ht,𝜏ne−n(t−𝜏)d𝜏, (8.46)

are non-human and human wealth, respectively. Focus on each, beginning with human wealth, which
using the expression for ht,𝜏 in (8.37) can be written as

ht = ∫
t

−∞

{
∫
∞

t
ys,𝜏e− ∫ s

t (rv+p)dvds
}

ne−n(t−𝜏)d𝜏. (8.47)

Now, if labour income is the same for all agents who are alive at some time s, we have

ht = ∫
t

−∞

{
∫
∞

t
yse− ∫ s

t (rv+p)dvds
}

ne−n(t−𝜏)d𝜏, (8.48)

where the expression in curly brackets is the same for all agents. It follows that

ht = ∫
∞

t
yse− ∫ s

t (rv+p)dvds. (8.49)

Finally, differentiating with respect to time t (with the help of Leibniz’s rule) we arrive at6

ḣt =
(
rt + p

)
ht − yt, (8.50)

which is the equation of motion for human capital. It can also we written as

rt + p =
ḣt + yt

ht
. (8.51)

This has our familiar, intuitive asset pricing interpretation. If we think of human capital as an asset,
then the RHS is the return on this asset, including the capital gain ḣt and the dividend yt, both
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expressed in proportion to the value ht of the asset. That has to be equal to the individual discount
rate rt+ p, which appears on the LHS.

Turn next to the evolution of non-human wealth. Differentiating at, from (8.45), with respect to t
(again using Leibniz’s rule!) we have

ȧt = nat + n ∫ t
−∞

{
−at,𝜏ne−n(t−𝜏) + e−n(t−𝜏)ȧt,𝜏

}
d𝜏,

ȧt = nat,0 − nat + n ∫ t
−∞ ȧt,𝜏e−n(t−𝜏)d𝜏,

(8.52)

since at,0 is non-human wealth at birth, which is zero for all cohorts, we have

ȧt = −nat − n ∫ t
−∞ ȧt,𝜏e−n(t−𝜏)d𝜏,

ȧt = −nat + ∫ t
−∞

{(
rt + p

)
at,𝜏 + yt − ct,𝜏

}
ne−n(t−𝜏)d𝜏,

ȧt = −nat +
(
rt + p

) ∫ t
−∞ at,𝜏ne−n(t−𝜏)d𝜏 + yt ∫ t

−∞ ne−n(t−𝜏)d𝜏 − ∫ t
−∞ ct,𝜏ne−n(t−𝜏)d𝜏,

ȧt =
[
rt − (n − p)

]
at + yt − ct.

(8.53)

Notice that while the individual the rate of return is rt+p, for the economy as a whole the rate of return
is only rt, since the p is a transfer from people who die to those who remain alive, and washes out once
we aggregate. Recall, however, that at is assets per capita, so naturally (n − p), the rate of growth of
population, must be subtracted from rt.

The consumption function (8.40) and the laws of motion for per capita human and non-human
wealth, (8.50) and (8.53), completely characterise the dynamic evolution of this economy. It can be
expressed as a two-dimensional system in the following way. Differentiate the consumption function
with respect to time in order to obtain

ċt = (𝜌 + p)
(
ȧt + ḣt

)
. (8.54)

Next use the laws of motion for both forms of wealth to obtain

ċt = (𝜌 + p)
[(

rt − n + p
)
at − ct +

(
rt + p

)
ht
]
. (8.55)

Write the consumption function in the following way

ht =
ct

𝜌 + p
− at, (8.56)

and use it to substitute out ht from the ċt equation (8.55):

ċt = (𝜌 + p)
[(

rt − n + p
)
at − ct −

(
rt + p

)
at +

rt+p
𝜌+p

ct
]
,

ċt = (𝜌 + p)
[
−nat +

rt−𝜌
𝜌+p

ct
]
,

ċt =
(
rt − 𝜌

)
ct − n(p + 𝜌)at.

(8.57)

This is a kind of modified Euler equation. The first term is standard, of course, but the second term is
not. That second term comes from the fact that, at any instant, there are n newcomers for each person
alive, and they dilute assets per capita by nat since at birth they have no assets. This slows down the
average rate of consumption growth.
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This modified Euler equation plus the law of motion for non-human wealth (8.53) are a two-
dimensional system of differential equations in ct and at. That system, plus an initial condition and a
transversality condition for at, fully describes the behaviour of the economy.

8.3.1 | The closed economy

We have not taken a stance on what kind of asset at is. We now do so. In the closed economy we
assume that at = kt, and kt is per-capita productive capital that yields output according to the function
yt = k𝛼t , where 0 < 𝛼 < 1. In this context profit maximisation dictates that rt = 𝛼k𝛼−1

t , so that our two
differential equations become

ċt =
(
𝛼k𝛼−1

t − 𝜌
)
ct − n(p + 𝜌)kt,

k̇t = (1 + 𝛼)k𝛼t − (n − p)kt − ct.
(8.58)

In steady state we have
c∗

k∗
= n(p+𝜌)

𝛼k∗𝛼−1−𝜌
,

(1 + 𝛼)k∗𝛼−1 − (n − p) = c∗

k∗
.

(8.59)

Combining the two yields

(1 + 𝛼)k∗𝛼−1 = (n − p) +
n(p + 𝜌)
𝛼k∗𝛼−1−𝜌 , (8.60)

which pins down the capital stock. For given k∗, the first SS equation yields consumption.
Rewrite the last equation as

𝛼k∗𝛼−1 − 𝜌 =
n(p + 𝜌)

(1 + 𝛼)k∗𝛼−1 − (n − p)
> 0. (8.61)

So the steady-state level of the (per capita) capital stock is smaller than the modified golden rule level
that solves 𝛼k𝛼−1 = 𝜌, implying under-accumulation of capital.7 This is in contrast to the NGM,
in which the modified golden rule applies, and the discrete-time OLG model with two-period lives,
in which over-accumulation may occur. Before examining that issue, consider dynamics, described in
Figure 8.5.

Along the saddle-path ct and kt move together. If the initial condition is at k > k∗, then consump-
tion will start above its SS level and both ct and kt will gradually fall until reaching the steady-state
level. If, by contrast, the initial condition is at k < k∗, then consumption will start below its steady-
state level and both ct and kt will rise gradually until reaching the steady state.

8.3.2 | A simple extension

But how come we have no dynamic inefficiency in this model? Just switching to continuous time does
away with this crucial result? Not really. The actual reason is that the model so far is not quite like
what we had before, in another aspect: there is no retirement! In contrast to the standard OLG model,
individuals have a smooth stream of labour income throughout their lives, and hence do not need to
save a great deal in order to provide for consumption later in life.
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Figure 8.5 Capital accumulation in the continuous time OLG model
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Introducing retirement (i.e. a stretch of time with no income, late in life) is analytically cumber-
some, but as Blanchard (1985) demonstrates, there is an alternative that is easily modelled, has the
same flavour, and delivers the same effects: assuming labour income declines gradually as long as an
individual is alive.

Let’s take a look. Blanchard (1985) assumes that each individual starts out with one unit of effec-
tive labour and thereafter his available labour declines at the rate 𝛾 > 0. At time t, the labour earn-
ings of a person in the cohort born at 𝜏 is given by wte−𝛾(t−𝜏), where wt is the market wage per
unit of effective labour at time t. It follows that individual human wealth for a member of the 𝜏
generation is

ht,𝜏 = ∫
∞

t
wse−𝛾(s−𝜏)e− ∫ s

t (rv+p)dvds. (8.62)

Using the same derivation as in the baseline model, we arrive at a modified Euler equation

ċt =
(
𝛼k𝛼−1

t + 𝛾 − 𝜌
)
ct − (n + 𝛾)(p + 𝜌)kt, (8.63)

which now includes the parameter 𝛾 .
The steady state per-capita capital stock is now again pinned down by the expression

k∗𝛼−1 = (n − p) +
(n + 𝛾)(p + 𝜌)
𝛼 + 𝛾 − 𝜌

, (8.64)

which can be rewritten as

𝛼k∗𝛼−1 − 𝜌 =
(n + 𝛾)(p + 𝜌)
k∗𝛼−1 − (n − p)

− 𝛾. (8.65)

So if 𝛾 is sufficiently large, then the steady-state per capita capital stock can be larger than the golden
rule level, which is the one that solves the equation 𝛼k𝛼−1 = 𝜌.This would imply over-accumulation
of capital. The intuition is that the declining path of labour income forces people to save more, too
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Figure 8.6 Capital accumulation with retirement
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much in fact. Again, intergenerational transfers would have been amore efficient way to pay for retire-
ment, but they cannot happen in the decentralized equilibrium, in the absence of intergenerational
altruism.

In this case, dynamics are given by Figure 8.6, with the steady state to the right of the modified
golden-rule level of capital:

8.3.3 | Revisiting the current account in the open economy

We can also revisit the small open economy as a special case of interest. For that, let’s go back to the
case in which 𝛾 = 0, and consider what happens when the economy is open, and instead of being
capital, the asset is a foreign bond ft that pays the fixed world interest rate r. In turn, labour income is
now, for simplicity, an exogenous endowment yt,𝜏 = y for all moments t and for all cohorts 𝜏 .

The two key differential equations now become

ċt = (r − 𝜌)ct − n(p + 𝜌)ft,

ḟt = [r − (n − p)]ft + y − ct,
(8.66)

with steady-state values

[r − (n − p)]f ∗ + y = c∗, (8.67)

(r − 𝜌)c∗ = n(p + 𝜌)f ∗, (8.68)

which together pin down the levels of consumption and foreign assets. The first equation reveals that
in steady state the current account must be balanced, with consumption equal to endowment income
plus interest earnings from foreign assets. As the second equation reveals, the steady-state stock of
foreign assets can be positive or negative, depending on whether r is larger or smaller than 𝜌.
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If r > 𝜌, individual consumption is always increasing, agents are accumulating over their lifetimes,
and the steady-state level of foreign assets is positive. If r = 𝜌, individual consumption is flat and they
neither save nor dissave; steady-state foreign assets are zero. Finally, if r < 𝜌, individual consumption
is always falling, agents are decumulating over their lifetimes, and in the steady state the economy is a
net debtor.

Equilibrium dynamics are given by Figure 8.7, drawn for the case r > 𝜌. It is easy to show that the
system is saddle-path stable if r < 𝜌+ p. So the diagram below corresponds to the case 𝜌 < r < 𝜌+ p.
Along the saddle-path, the variables ct and ft move together until reaching the steady state.

In this model the economy does not jump to the steady state (as the open-economy model in
Chapter 4 did). The difference is that new generations are constantly being born without any foreign
assets and they need to accumulate them. The steady state is reached when the accumulation of the
young offsets the decumulation of the older generation.

Figure 8.7 The current account in the continuous time OLG model
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8.4 | What have we learned?

In this chapter we developed the second workhorse model of modern macroeconomics: the OLG
model. This framework allows us to look at questions in which assuming a single representative agent
is not a useful shortcut. We will see how this will enable us to tackle some key policy issues, starting
in the next chapter.

Moreover, we have already shown how this model yields new insights about capital accumulation,
relative to the NGM. For instance, the possibility of dynamic inefficiency – that is to say, of over-
accumulation of capital – emerges. This is a result of the absence of intergenerational links, which
entail that individuals may need to save too much, as it is the only way to meet their consumption
needs as their labor income declines over their life cycle.

Notes
1 If the production function makes the function hit the 45-degree line with a negative slope the model
can give origin to cyclical behaviour around the steady-state. This cycle can be stable or unstable
depending on the slope of the curve.
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2 The First Welfare Theorem can be extended to deal with an infinite number of agents, but this
requires a condition that the total value of resources available to all agents taken together be finite
(at equilibrium prices). This is not satisfied in the OLG economy, which lasts forever.

3 For those of you who are mathematically inclined, the argument is similar to Hilbert’s Grand Hotel
paradox. If the argument sounds counter-intuitive and esoteric, it’s because it is – so much so that
some people apparently think the paradox can be used to prove the existence of God! (see http:
//en.wikipedia.org/wiki/Hilbert’s_paradox_of_the_Grand_Hotel).

4 Mixed income is that which is registered as accruing to capital, because it comes from the residual
income of businesses, but that Geerolf argues should be better understood, at least partly as, returns
to entrepreneurial labour. Land rents, which Abel et al. only had for the U.S., should not be under-
stood as capital in their sense, as land cannot be accumulated.

5 Suppose, in addition, that the economy starts with a population N0 = 1.
6 Leibniz’s rule? Why, of course, you recall it from calculus: that’s how you differentiate an integral. If
you need a refresher, here it is: take a function g(x) = ∫ b(x)

a(x) f(x, s)ds, the derivative of g with respect
to x is: dg

dx
= f(x, b(x)) db

dx
− f(x, a(x)) da

dx
+ ∫ b(x)

a(x)
df(x,s)

dx
ds. Intuitively, there are three components of the

marginal impact of changing x on g: those of increasing the upper and lower limits of the integral
(which are given by f evaluated at those limits), and that of changing the function f at every point
between those limits (which is given by ∫ b(x)

a(x)
df(x,s)

dx
ds). All the other stuff is what you get from your

run-of-the-mill chain rule.
7 Because individuals discount the future (𝜌 > 0), this is not the same as the golden rule in the Solow
model, which maximises consumption on the steady state. In the modified golden rule, the capital
stock is smaller than that which maximises consumption, precisely because earlier consumption is
preferred to later consumption.
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