
C H A P T E R 3

The neoclassical growth model

3.1 | The Ramsey problem

We will solve the optimal savings problem underpinning the Neoclassical Growth Model, and in the
process introduce the tools of dynamic optimisation we will use throughout the book. We will also
encounter, for the first time, the most important equation in macroeconomics: the Euler equation.

ċt
ct

= 𝜎
[
f ′
(
kt
)
− 𝜌

]
We have seen the lessons and shortcomings of the basic Solow model. One of its main assumptions, as
you recall, was that the savings rate was constant. In fact, there was no optimisation involved in that
model, and welfare statements are hard to make in that context. This is, however, a very rudimentary
assumption for an able policy maker who is in possession of the tools of dynamic optimisation. Thus
we tackle here the challenge of setting up an optimal program where savings is chosen to maximise
intertemporal welfare.

As it turns out, British philosopher and mathematician Frank Ramsey, in one of the two seminal
contributions he provided to economics before dying at the age of 26, solved this problem in 1928
(Ramsey (1928)).1 The trouble is, he was so ahead of his time that economists would only catch up in
the 1960s, when David Cass and Tjalling Koopmans independently revived Ramsey’s contribution.2
(That is why thismodel is often referred to either as the Ramseymodel or the Ramsey-Cass-Koopmans
model.) It has since become ubiquitous and, under the grand moniker of Neoclassical Growth Model
(NGM), it is the foremost example of the type of dynamic general equilibrium model upon which the
entire edifice of modern macroeconomics is built.

To make the problem manageable, we will assume that there is one representative household, all of
whosemembers are both consumer and producer, living in a closed economy (wewill lift this assump-
tion in the next chapter). There is one good and no government. Each consumer in the representative
household lives forever, and population growth is n > 0 as before. All quantities in small-case letters
are per capita. Finally, we will look at the problem as solved by a benevolent central planner who max-
imises the welfare of that representative household, and evaluates the utility of future consumption at
a discounted rate.

At this point, it is worth stopping and thinking about the model’s assumptions. By now you
are already used to outrageously unrealistic assumptions, but this may be a little too much. People
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24 THE NEOCLASSICAL GROWTH MODEL

obviously do not live forever, they are not identical, and what’s this business of a benevolent central
planner? Who are they? Why would they discount future consumption? Let us see why we use these
shortcuts:

1. We will look at the central planner’s problem, as opposed to the decentralised equilibrium,
because it is easier and gets us directly to an efficient allocation. We will show that, under
certain conditions, it provides the same results as the decentralised equilibrium. This is due
to the so-called welfare theorems, which you have seen when studying microeconomics, but
which we should perhaps briefly restate here:
a. A competitive equilibrium is Pareto Optimal.
b. All Pareto Optimal allocations can be decentralised as a competitive equilibrium under

some convexity assumptions. Convexity of production sets means that we cannot have
increasing returns to scale. (If we do, we need to depart from competitive markets.)

2. There’s only one household? Certainly this is not very realistic, but it is okay if we think that
typically people react similarly (not necessarily identically) to the parameters of the model.
Specifically, do people respond similarly to an increase in the interest rate? If you think they
do, then the assumption is okay.

3. Do all the people have the same utility function? Are they equal in all senses? Again, as above,
not really. But, we believe they roughly respond similarly to basic tradeoffs. In addition, as
shown by Caselli and Ventura (2000), one can incorporate a lot of sources of heterogeneity
(namely, individuals can have different tastes, skills, initial wealth) and still end up with a rep-
resentative household representation, as long as that heterogeneity has a certain structure. The
assumption also means that we are, for the most part, ignoring distributional concerns, but
that paper also shows that a wide range of distributional dynamics are compatible with that
representation. (We will also raise some points about inequality as we go along.)

4. Do they live infinitely? Certainly not, but it does look like we have some intergenerational
links. Barro (1974) suggests an individual who cares about the utility of their child: u

(
ct
)
+

𝛽V
[
u
(
cchild

)]
. If that is the case, substituting recursively gives an intertemporal utility of the

sort we have posited. And people do think about the future.
5. Whydowe discount future utility? To some extent it is a revealed preference argument: interest

rates are positive and this only makes sense if people value more today’s consumption than
tomorrow’s, which is what we refer to when we speak of discounting the future. On this you
may also want to check Caplin and Leahy (2004), who argue that a utility such as that in (3.1)
imposes a sort of tyranny of the present: past utility carries no weight, whereas future utility is
discounted. But does this make sense from a planner’s point of view? Would this make sense
from the perspective of tomorrow? In fact, Ramsey argued that it was unethical for a central
planner to discount future utility.3

Having said that, let’s go solve the problem.

3.1.1 | The consumer’s problem

The utility function is4

∫
∞

0
u(ct)ente−𝜌tdt, (3.1)

where ct denotes consumption per capita and 𝜌 (> n) is the rate of time preference.5 Assume u′(ct) > 0,
u′′(ct) ≤ 0, and Inada conditions are satisfied.
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3.1.2 | The resource constraint

The resource constraint of the economy is

K̇t = Yt − Ct = F
(
Kt, Lt

)
− Ct, (3.2)

with all variables as defined in the previous chapter. (Notice that for simplicity we assume there is
no depreciation.) In particular, F

(
Kt, Lt

)
is a neoclassical production function – hence neoclassical

growth model. You can think of household production: household members own the capital and they
work for themselves in producing output. Each member of the household inelastically supplies one
unit of labour per unit of time.

This resource constraint is what makes the problem truly dynamic. The capital stock in the future
depends on the choices that are made in the present. As such, the capital stock constitutes what we
call the state variable in our problem: it describes the state of our dynamic system at any given point in
time. The resource constraint is what we call the equation of motion: it characterises the evolution of
the state variable over time.The other key variable, consumption, is what we call the control variable: it
is the one variable that we can directly choose. Note that the control variable is jumpy: we can choose
whatever (feasible) value for it at any givenmoment, so it can vary discontinuously. However, the state
variable is sticky: we cannot change it discontinuously, but only in ways that are consistent with the
equation of motion.

Given the assumption of constant returns to scale, we can express this constraint in per capita
terms, which is more convenient. Dividing (3.2) through by L we get

K̇t
Lt

= F
(
kt, 1

)
− ct = f

(
kt
)
− ct, (3.3)

where f (.) has the usual properties. Recall

K̇t
Lt

= k̇t + nkt. (3.4)

Combining the last two equations yields

k̇t = f
(
kt
)
− nkt − ct, (3.5)

which we can think of as the relevant budget constraint. This is the final shape of the equation of
motion of our dynamic problem, describing how the variable responsible for the dynamic nature of
the problem – in this case the per capita capital stock kt – evolves over time.

3.1.3 | Solution to consumer’s problem

The household’s problem is to maximise (3.1) subject to (3.5) for given k0. If you look at our mathem-
atical appendix, you will learn how to solve this, but it is instructive to walk through the steps here,
as they have intuitive interpretations. You will need to set up the (current value) Hamiltonian for the
problem, as follows:

H = u(ct)ent + 𝜆t
[
f
(
kt
)
− nkt − ct

]
. (3.6)

Recall that c is the control variable (jumpy), and k is the state variable (sticky), but the Hamiltonian
brings to the forefront another variable: 𝜆, the co-state variable. It is the multiplier associated with
the intertemporal budget constraint, analogously to the Lagrange multipliers of static optimisation.
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Just like its Lagrange cousin, the co-state variable has an intuitive economic interpretation: it is the
marginal value as of time t (i.e. the current value) of an additional unit of the state variable (capital, in
this case). It is a (shadow) price, which is also jumpy.

First-order conditions (FOCs) are
𝜕H
𝜕ct

= 0 ⇒ u′(ct)ent − 𝜆t = 0, (3.7)

�̇�t = −𝜕H
𝜕kt

+ 𝜌𝜆t ⇒ �̇�t = −𝜆t
[
f ′
(
kt
)
− n

]
+ 𝜌𝜆t, (3.8)

limt→∞
(
kt𝜆te−𝜌t

)
= 0. (3.9)

What do these optimality conditions mean? First, (3.7) should be familiar from static optimisation:
differentiate with respect to the control variable, and set that equal to zero. It makes sure that, at any
given point in time, the consumer is making the optimal decision – otherwise, she could obviously
do better... The other two are the ones that bring the dynamic aspects of the problem to the forefront.
Equation (3.9) is known as the transversality condition (TVC). It means, intuitively, that the consumer
wants to set the optimal path for consumption such that, in the “end of times” (at infinity, in this case),
they are left with no capital. (As long as capital has a positive value as given by 𝜆, otherwise they don’t
really care...) If that weren’t the case, I would be “dying” with valuable capital, which I could have used
to consume a little more over my lifetime.

Equation (3.8) is the FOC with respect to the state variable, which essentially makes sure that at
any given point in time the consumer is leaving the optimal amount of capital for the future. But how
so? As it stands, it has been obtained mechanically. However, it is much nicer when we derive it purely
from economic intuition. Note that we can rewrite it as follows:

�̇�t
𝜆t

= 𝜌 −
(
f ′
(
kt
)
− n

)
⇒ 𝜌 + n =

�̇�t
𝜆t

+ f ′
(
kt
)
. (3.10)

This is nothing but an arbitrage equation for a typical asset price, where in this case the asset is the
capital stock of the economy. Such arbitrage equations state that the opportunity cost of holding the
asset (𝜌 in this case), equals its rate of return, which comprises the dividend yield ( f ′(kt) − n) plus
whatever capital gain you may get from holding the asset ( �̇�t

𝜆t
). If the opportunity cost were higher

(resp. lower), you would not be in an optimal position: you should hold less (resp. more) of the asset.
We will come back to this intuition over and over again.

3.1.4 | The balanced growth path and the Euler equation

We are ultimately interested in the dynamic behaviour of our control and state variables, ct and kt.
How can we turn our FOCs into a description of that behaviour (preferably one that we can represent
graphically)? We start by taking (3.7) and differentiating both sides with respect to time:

u′′(ct)ċtent + nu′(ct)ent = �̇�t. (3.11)

Divide this by (3.7) and rearrange:

u′′(ct)ct
u′(ct)

ċt
ct

=
�̇�t
𝜆t

− n. (3.12)
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Next, define

𝜎 ≡ −
u′(ct)

u′′(ct)ct
> 0 (3.13)

as the elasticity of intertemporal substitution in consumption.6 Then, (3.12) becomes

ċt
ct

= −𝜎
(
�̇�t
𝜆t

− n
)
. (3.14)

Finally, using (3.10) in (3.14) we obtain
ċt
ct

= 𝜎
[
f ′
(
kt
)
− 𝜌

]
. (3.15)

This dynamic optimality condition is known as the Ramsey rule (or Keynes-Ramsey rule), and in a
more general context it is referred to as the Euler equation. It may well be themost important equation
in all of macroeconomics: it encapsulates the essence of the solution to any problem that trades off
today versus tomorrow.7

But what does it mean intuitively? Think about it in these terms: if the consumer postpones the
enjoyment of one unit of consumption to the next instant, it will be incorporated into the capital
stock, and thus yield an extra f ′(⋅). However, this will be worth less, by a factor of 𝜌. They will only
consume more in the next instant (i.e. ċt

ct
> 0) if the former compensates for the latter, as mediated by

their proclivity to switch consumption over time, which is captured by the elasticity of intertemporal
substitution, 𝜎. Any dynamic problem we will see from now on involves some variation upon this
general theme: the optimal growth rate trades off the rate of return of postponing consumption (i.e.
investment) against the discount rate.

Mathematically speaking, equations (3.5) and (3.15) constitute a system of two differential
equations in two unknowns.These plus the initial condition for capital and the TVC fully characterise
the dynamics of the economy: once we have ct and kt, we can easily solve for any remaining variables
of interest.

To make further progress, let us characterise the BGP of this economy. Setting (3.5) equal to zero
yields

c∗ = f (k∗) − nk∗, (3.16)

which obviously is a hump-shaped function in c, k space. The dynamics of capital can be understood
with reference to this function (Figure 3.1): for any given level of capital, if consumption is higher
(resp. lower) than the BGP level, this means that the capital stock will decrease (resp. increase).

By contrast, setting (3.15) equal to zero yields

f ′ (k∗) = 𝜌. (3.17)

This equation pins down the level of the capital stock on the BGP, and the dynamics of consumption
can be seen in Figure 3.2: for any given level of consumption, if the capital stock is below (resp. above)
its BGP level, then consumption is increasing (resp. decreasing). This is because the marginal product
of capital will be relatively high (resp. low).

Expressions (3.16) and (3.17) together yield the values of consumption and the capital stock (both
per-capita) in the BGP, as shown in Figure 3.3. This already lets us say something important about
the behaviour of this economy. Let’s recall the concept of the golden rule, from our discussion of the
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Figure 3.1 Dynamics of capital
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Figure 3.2 Dynamics of consumption
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Solow model: the maximisation of per-capita consumption on the BGP. From (3.16) we see that this
is tantamount to setting

𝜕c∗
𝜕k∗

= f ′
(
k∗G
)
− n = 0 ⇒ f ′

(
k∗G
)
= n. (3.18)

(Recall here we have assumed the depreciation rate is zero (𝛿 = 0).) If we compare this to (3.17), we
see that the the optimal BGP level of capital per capita is lower than in the golden rule from the Solow
model. (Recall the properties of the neoclassical production function, and that we assume 𝜌 > n.)

Because of this comparison, (3.17) is sometimes known as the modified golden rule. Why does
optimality require that consumption be lower on the BGP thanwhat would be prescribed by the Solow
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Figure 3.3 Steady state

c

k

E

k*

c*

c = 0
.

k = 0
.

golden rule? Because future consumption is discounted, it is not optimal to save so much that BGP
consumption is maximised – it is best to consume more along the transition to the BGP. Keep in mind
that it is (3.17), not (3.18), that describes the optimal allocation.The kind of oversaving that is possible
in the Solow model disappears once we consider optimal savings decisions.

Now, you may ask: is it the case then that this type of oversaving is not an issue in practice (or even
just in theory)? Well, we will return to this issue in Chapter 8. For now, we can see how the question
of dynamic efficiency relates to issues of inequality.

3.1.5 | A digression on inequality: Is Piketty right?

It turns out that we can say something about inequality in the context of the NGM, even though the
representative agent framework does not address it directly. Let’s start by noticing that, as in the Solow
model, on the BGP output grows at the rate n of population growth (since capital and output per
worker are constant). In addition, once we solve for the decentralised equilibrium, which we sketch
in Section 2 below, we will see that in that equilibrium we have f ′ (k) = r, where r is the interest rate,
or equivalently, the rate of return on capital.

This means that the condition for dynamic efficiency, which holds in the NGM, can be interpreted
as the r > g condition made famous by Piketty (2014) in his influential Capital in the 21st Century.
The condition r > g is what Piketty calls the “Fundamental Force for Divergence”: an interest rate that
exceeds the growth rate of the economy. In short, he argues that, if r > g holds, then there will be
a tendency for inequality to explode as the returns to capital accumulate faster than overall income
grows. In Piketty’s words:

‘This fundamental inequality (...) will play a crucial role in this book. In a sense, it sums up
the overall logic of my conclusions. When the rate of return on capital significantly exceeds
the growth rate of the economy (...), then it logically follows that inherited wealth grows faster
than output and income.’ (pp. 25–26)
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Does that mean that, were we to explicitly consider inequality in a context akin to the NGM we
would predict it to explode along the BGP? Not so fast. First of all, when taking the model to the data,
we could ask what k is. In particular, k can have a lot of human capital i.e. be the return to labour
mostly, and this may help undo the result. In fact, it could even turn it upside down if human capital
is most of the capital and is evenly distributed in the population. You may also want to see Acemoglu
and Robinson (2015), who have a thorough discussion of this prediction. In particular, they argue
that, in a model with workers and capitalists, modest amounts of social mobility – understood as a
probability that some capitalists may become workers, and vice-versa – will counteract that force for
divergence.

Yet the issue has been such a hot topic in the policy debate that two more comments on this issue
are due.

First, let’s understand better the determinants of labour and income shares. Consider a typical
Cobb-Douglas production function:

Y = AL𝛼K1−𝛼 . (3.19)

With competitive factor markets, the FOC for profit maximisation would give:
w = 𝛼AL𝛼−1K1−𝛼 . (3.20)

Computing the labour share using the equilibrium wage gives:
wL
Y

= 𝛼AL𝛼−1K1−𝛼L
AL𝛼K1−𝛼 = 𝛼, (3.21)

which implies that for a Cobb-Douglas specification, labour and capital shares are constant. More
generally, if the production function is

Y =
(
𝛽K

𝜀−1
𝜀 + 𝛼 (AL)

𝜀−1
𝜀

) 𝜀
𝜀−1 with 𝜀 ∈ [0,∞) , (3.22)

then 𝜀 is the (constant) elasticity of substitution between physical capital and labour. Note that when
𝜀 → ∞, the production function is linear (K and L are perfect substitutes), and one can show that
when 𝜀 → 0 the production function approaches the Leontief technology of fixed proportions, in
which one factor cannot be substituted by the other at all.

From the FOC of profit maximisation we obtain:

w =
(
𝛽K

𝜀−1
𝜀 + 𝛼 (AL)

𝜖−1
𝜖

) 1
𝜀−1 𝛼A (AL)−

1
𝜀 , (3.23)

the labour share is now:

wL
Y

=
𝛼
(
𝛽K

𝜀−1
𝜀 + 𝛼 (AL)

𝜖−1
𝜖

) 1
𝜀−1 A

𝜀−1
𝜀 L− 1

𝜀 L(
𝛽K

𝜀−1
𝜀 + 𝛼 (AL)

𝜀−1
𝜀

) 𝜀
𝜀−1

= 𝛼
(AL

Y

) 𝜀−1
𝜀 . (3.24)

Notice that as L
Y
⟶ 0, several things can happen to the labour share, and what happens depends on

A and 𝜀∶

If 𝜀 > 1 ⟹ 𝛼
(AL

Y

) 𝜀−1
𝜀 ⟶ 0 (3.25)

If 𝜀 < 1 ⟹ 𝛼
(AL

Y

) 𝜀−1
𝜀 increases. (3.26)
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These two equations show that the elasticity of substitution is related to the concept of how essential
a factor of production is. If the elasticity of substitution is less than one, the factor becomes more and
more important with economic growth. If this factor is labour this may undo the Piketty result. This
may be (and this is our last comment on the issue!) the reasonwhy over the last centuries, while interest
rates have been way above growth rates, inequality does not seem to have worsened. If anything, it
seems to have moved in the opposite direction.

In Figure 3.4, Schmelzing (2019) looks at interest rates since the 1300s and shows that, while
declining, they have consistently been above the growth rates of the economy at least until very
recently. If those rates would have led to plutocracy, as Piketty fears, we would have seen it a long
while ago. Yet the world seems to have moved in the opposite direction towards more democratic
regimes.8

Figure 3.4 Real rates 1317–2018, from Schmelzing (2019)
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3.1.6 | Transitional dynamics

How do we study the dynamics of this system? We will do so below graphically. But there are some
shortcuts that allow you to understand the nature of the dynamic system, and particularly the relevant
question of whether there is one, none, or multiple equilibria.
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A dynamic system is a bunch of differential equations (difference equations if using discrete time).
In the mathematical appendix, that you may want to refer to now, we argue that one way to approach
this issue is to linearise the systemaround the steady state. For example, in our example here, Equations
(3.5) and (3.15) are a system of two differential equations in two unknowns: c and k. To linearise the
system around the BGP or steady state we compute the derivatives relative to each variable as shown
below: [

k̇t
ċt

]
= Ω

[
kt − k∗
ct − c∗

]
, (3.27)

where

Ω =

[ 𝜕k̇
𝜕k
|||SS 𝜕k̇

𝜕c
|||SS

𝜕ċ
𝜕k
|||SS 𝜕ċ

𝜕c
|||SS

]
(3.28)

and
𝜕k̇
𝜕k

||||SS = f ′ (k∗) − n = 𝜌 − n (3.29)

𝜕k̇
𝜕c

||||SS = −1 (3.30)

𝜕ċ
𝜕k

||||SS = 𝜎c∗f ′′ (k∗) (3.31)

𝜕ċ
𝜕c

||||SS = 0. (3.32)

These computations allow us to define a matrix with the coefficients of the response of each variable
to those in the system, at the steady state. In this case, this matrix is

Ω =
[

𝜌 − n −1
𝜎c∗f ′′ (k∗) 0

]
. (3.33)

In the mathematical appendix we provide some tools to understand the importance of this matrix
of coefficients. In particular, this matrix has two associated eigenvalues, call them 𝜆1 and 𝜆2 (not to
be confused with the marginal utility of consumption). The important thing to remember from the
appendix is that the dynamic equations for the variables will be of the form Ae𝜆1 + Be𝜆2 . Thus, the
nature of these eigenvalues turns out to be critical for understanding the dynamic properties of the
system. If they are negative their effect dilutes over time (this configuration is called a sink, as vari-
ables converge to their steady state). If positive, the variable blows up (we call these systems a source,
where variables drift away from the steady state). If one is positive and the other is negative the system
typically blows up, except if the coefficient of the positive eigenvalue is zero (we call these saddle-path
systems).

You may think that what you want is a sink, a system that converges to an equilibrium. While this
may be the natural approach in sciences such as physics, this reasoning would not be correct in the
realmof economics. Imagine you have one state variable (not jumpy) and a control variable (jumpy), as
in this system. In the systemwe are analysing here k is a state variable thatmoves slowly over time and c
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is the control variable that can jump. So, if you have a sink, you would find that any cwould take you to
the equilibrium. So rather than having a unique stable equilibrium you would have infinite alternative
equilibria! Only if the two variables are state variables do you want a sink. In this case the equilibrium
is unique because the state variables are uniquely determined at the start of the program.

In our case, to pin down a unique equilibria we would need a saddle-path configuration. Why?
Because for this configuration there is only one value of the control variable that makes the coefficient
of the explosive eigenvalue equal to zero. This feature is what allows to pin the unique converging
equilibria. In the figures below this will become very clear.

What happens if all variables are control variables? Then you need the system to be a source, so
that the control variables have only one possible value that attains sustainability. We will find many
systems like this throughout the book.

In short, there is a rule that you may want to keep in mind. You need as many positive eigenvalues
as jumpy or forward-looking variables you have in your system. If these two numbers match you have
uniqueness!9

Before proceeding, one last rule you may want to remember. The determinant of the matrix is the
product of the eigenvalues, and the trace is equal to the sum. This is useful, because, for example, in
our two-equation model, if the determinant is negative, this means that the eigenvalues have different
sign, indicating a saddle path. In fact, in our specific case,

• Det(Ω) = 𝜎c∗f ′′ (k∗) < 0.

If Det(Ω) is the product of the eigenvalues of thematrixΩ and their product is negative, then we know
that the eigenvalues must have the opposite sign. Hence, we conclude one eigenvalue is positive, while
the other is negative.

Recall that k is a slow-moving, or sticky, variable, while c can jump. Hence, since we have the same
number of negative eigenvalues as of sticky variables, we conclude the system is saddle-path stable,
and the convergence to the equilibrium unique. You can see this in a much less abstract way in the the
phase diagram in Figure 3.5.

Figure 3.5 The phase diagram
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Notice that since c can jump, from any initial condition for k (0), the system moves vertically
(c moves up or down) to hit the saddle path and converge to the BGP along the saddle path. Any other
trajectory is divergent. Alternative trajectories appear in Figure 3.6.

Figure 3.6 Divergent trajectories
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The problem is that these alternative trajectories either eventually imply a jump in the price of
capital, which is inconsistent with rationality, or imply above-optimal levels of the capital stock. In
either case this violates the transversality condition. In short, the first two dynamic equations provide
the dynamics at any point in the (c,k) space, but only the TVC allows us to choose a single path that
we will use to describe our equilibrium dynamics.10

3.1.7 | The effects of shocks

Consider the effects of the following shock. At time 0 and unexpectedly, the discount rate falls forever
(people become less impatient). From the relevant k̇ = 0 and ċ = 0 schedules, we see that the former
does not move (𝜌 does not enter) but the latter does. Hence, the new BGP will have a higher capital
stock. It will also have higher consumption, since capital and output are higher. Figure 3.7 shows the
old BGP, the new BGP, and the path to get from one to the other. On impact, consumption falls (from
point E to point A). Thereafter, both c and k rise together until reaching point E ′.

Similar exercises can be carried out for other permanent and unanticipated shocks.
Consider, for example, an increase in the discount rate (Figure 3.8). (The increase is transitory,

and that is anticipated by the planner.) The point we want to make is that there can be no anticipated
jump in the control variables throughout the optimal path as this would allow for infinite capital gains.
This is why the trajectory has to put you on the new saddle path when the discount rate goes back to
normal.
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Figure 3.7 A permanent fall in the discount rate
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Figure 3.8 A transitory increase in the discount rate
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3.2 | The equivalence with the decentralised equilibrium

We will show that the solution to the central planner’s problem is exactly the same as the solution to
a decentralised equilibrium.

Now we will sketch the solution to the problem of finding the equilibrium in an economy that is
identical to the one we have been studying, but without a central planner. We now have households
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and firms (owned by households) who independently make their decisions in a perfectly competitive
environment. We will only sketch this solution.

The utility function to be maximised by each household is

∫
∞

0
u(ct)ente−𝜌tdt, (3.34)

where ct is consumption and 𝜌 (> n) is the rate of time preference.
The consumer’s budget constraint can be written as

ctLt + Ȧ = wtLt + rAt, (3.35)

where Lt is population, At is the stock of assets, Ȧ is the increase in assets, wt is the wage per unit of
labour (in this case per worker), and r is the return on assets. What are these assets? The households
own the capital stock that they then rent out to firms in exchange for a payment of r; they can also
borrow and lend money to each other, and we denote their total debt by Bt. In other words, we can
define

At = Kt − Bt. (3.36)

You should be able to go from (3.35) to the budget constraint in per worker terms:

ct +
dat
dt

+ nat = wt + rat. (3.37)

Households supply factors of production, and firms maximise profits. Thus, at each moment, you
should be able to show that equilibrium in factor markets involves

rt = f ′
(
kt
)
, (3.38)

wt = f
(
kt
)
− f ′

(
kt
)
kt. (3.39)

In this model, we must impose what we call a no-Ponzi-game (NPG) condition.11 What does that
mean?Thatmeans that households cannot pursue the easy path of getting arbitrarily rich by borrowing
money and borrowing evenmore to pay for the interest owed on previously contracted debt. If possible
that would be the optimal solution, and a rather trivial one at that. The idea is that the market will not
allow these Ponzi schemes, so we impose this as a constraint on household behaviour.

lim
t→∞

ate−(r−n)t ≥ 0. (3.40)

You will have noticed that this NPG looks a bit similar to the TVC we have seen in the context of
the planner’s problem, so it is easy to mix them up. Yet, they are different! The NPG is a constraint
on optimisation – it wasn’t needed in the planner’s problem because there was no one in that closed
economy from whom to borrow. In contrast, the TVC is an optimality condition – that is to say,
something that is chosen in order to achieve optimality. They are related, in that both pertain to what
happens in the limit, as t → ∞. We will see how they help connect the decentralised equilibrium with
the planner’s problem.
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3.2.1 | Integrating the budget constraint

The budget constraint in (3.37) holds at every instant t. It is interesting to figure out what it implies
for the entire path to be chosen by households. To do this, we need to integrate that budget constraint.
In future chapters we will assume that you know how to do this integration, and you can consult the
mathematical appendix for that. But the first time we will go over all the steps.

So let’s start again with the budget constraint for an individual family:

ȧt − (r − n) at = wt − ct. (3.41)

This is a first-order differential equation which (as you can see in the Mathematical Appendix) can be
solved using integrating factors. To see how that works, multiply both sides of this equation by e−(r−n)t:

ȧte−(r−n)t + (n − r) ate−(r−n)t = (wt − ct)e−(r−n)t. (3.42)

The left-hand side is clearly the derivative of ate(n−r)t with respect to time, so we can integrate both
sides between 0 and t:

ate−(r−n)t − a0 = ∫
t

0
(ws − cs)e−(r−n)sds. (3.43)

Taking the lim t ⟶ ∞ (and using the no-Ponzi condition) yields:

0 = ∫
∞

0

(
ws − cs

)
e−(r−n)sds + a0, (3.44)

which can be written as a standard intertemporal budget constraint:

∫
∞

0
wse−(r−n)sds + a0 = ∫

∞

0
cse−(r−n)sds. (3.45)

This is quite natural and intuitive: all of what is consumed must be financed out of initial assets or
wages (since we assume that Ponzi schemes are not possible).

3.2.2 | Back to our problem

Now we can go back to solve the consumer’s problem

Max ∫
∞

0
u(ct)ente−𝜌tdt (3.46)

s.t.

ct + ȧ + (n − r) at = wt. (3.47)

The Hamiltonian now looks like this

H = u
(
ct
)
ent + 𝜆t

[
wt − ct − (n − r) at

]
. (3.48)

From this you can obtain the FOCs and, following the same procedure from the previous case, you
should be able to get to

−ct
u′′ (ct)
u′
(
ct
) ċt

ct
= (r − 𝜌) . (3.49)
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How does that compare to (3.15), the Euler equation, which is one of our dynamic equations in the
central planner’s solution? We leave that to you.

You will also notice that, from the equivalent FOCs (3.7) and (3.8), we have
u̇′

u′ = (𝜌 − r) , (3.50)

or

u′ (ct) = e(𝜌−r)t. (3.51)

Using this in the equivalent of (3.7) yields:

e(n−r)t = 𝜆te−𝜌t. (3.52)

This means that the NPG becomes:

lim
t→∞

at𝜆te−𝜌t = lim
t→∞

ate−(r−n)t. (3.53)

You can show that this is exactly the same as the TVC for the central planner’s problem. (Think about it:
since all individuals are identical, what is the equilibrium level of bt? If an individual wants to borrow,
would anyone else want to lend?)

Finally, with the same reasoning on the equilibrium level of bt, you can show that the resource
constraint also matches the dynamic equation for capital, (3.5), which was the relevant resource con-
straint for the central planner’s problem.

3.3 | Do we have growth after all?

Not really.

Having seen the workings of the Ramsey model, we can see that on the BGP, just as in the Solow
model, there is no growth in per capita variables: k is constant at k∗ such that f ′ (k∗) = 𝜌, and y is
constant at f (k∗). (It is easy to show that once again we can obtain growth if we introduce exogenous
technological progress.)

3.4 | What have we learned?

We are still left with a growth model without long-run growth: it was not the exogeneity of the savings
rate that generated the unsatisfactory features of the Solow model when it comes to explaining long-
run growth. We will have to keep looking by moving away from diminishing returns or by modelling
technological progress.

On the other hand, our exploration of the Ramsey model has left us with a microfounded frame-
work that is the foundation of a lot of modern macroeconomics. This is true not only of our further
explorations that will lead us into endogenous growth, but eventually also when we move to the realm
of short term fluctuations. At any rate, the NGM is a dynamic general equilibrium framework that we
will use over and over again.

Even in this basic application some key results have emerged. First, we have the Euler equation
that encapsulates how consumers make optimal choices between today and tomorrow. If the marginal
benefit of reducing consumption – namely, the rate of return on the extra capital you accumulate –
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is greater than the consumer’s impatience – the discount rate – then it makes sense to postpone con-
sumption. This crucial piece of intuition will appear again and again as we go along in the book, and
is perhaps the key result in modern macroeconomics. Second, in this context there is no dynamic
inefficiency, as forward-looking consumers would never choose to oversave in an inefficient way.

Most importantly, nowwe are in possession of a powerful toolkit for dynamic analysis, and we will
make sure to put it to use from now on.

Notes
1 The other one was to the theory of optimal taxation (Ramsey 1927).
2 See Cass (1965) and Koopmans et al. (1963).
3 Another interesting set of questions refer to population policies: say you impose a policy to reduce
population growth. How does that play into the utility function?How do you count people that have
not been and will not be born? Should a central planner count those people?

4 We are departing from standard mathematical convention, by using subscripts instead of parenthe-
ses to denote time, even though we are modelling time as continuous and not discrete. We think it
pays off to be unconventional, in terms of making notation look less cluttered, but we apologise to
the purists in the audience nonetheless!

5 Note that we must assume that 𝜌 > n, or the problem will not be well-defined. Why? Because if
𝜌 < n, the representative household gets more total utility out of a given level of consumption per
capita in the future as there will be more “capitas” then. If the discount factor does not compensate
for that, it wouldmake sense to always postpone consumption! Andwhy dowe have ent in the utility
function in the first place? Because we are incorporating the utility of all the individuals who are
alive at time t – the more, the merrier!

6 Recall that the elasticity of a variable x with respect to another variable y is defined as
dx
dy
x
y
.

As such, 1
𝜎

is the elasticity of the marginal utility of consumption with respect to consumption – it
measures how sensitive the marginal utility is to increases in consumption. Now, think about it: the
more sensitive it is, the more I will want to smooth consumption over time, and this means I will be
less likely to substitute consumption over time.That is why the inverse of that captures the intertem-
poral elasticity of substitution: the greater 𝜎 is, the more I am willing to substitute consumption
over time.

7 This is the continuous-time analogue of the standard optimality condition that you may have
encountered in microeconomics: the marginal rate of substitution (between consumption at two
adjacent points in time) must be equal to the marginal rate of transformation.

8 At any rate, it may also be argued that maybe we haven’t seen plutocracies because Piketty was right.
After all, the French and U.S. revolutions may be explained by previous increases in inequality.

9 It works the same for a system of difference equation in discrete time, except that the cutoff is with
eigenvalues being larger or smaller than one.

10 To rule out the path that leads to the capital stock of when the k̇ = 0 locus crosses the horizontal axis
to the right of the golden rule, notice that 𝜆 from (3.8) grows at the rate 𝜌 + n − f ′(k) so that 𝜆e−𝜌t
grows at rate n− f ′(k), but to the right of the golden rule n > f ′(k), so that the term increases. Given
that the capital stock is eventually fixed we conclude that the transversality condition cannot hold.
The paths that lead to high consumption and a zero capital stock imply a collapse of consumption
to zero when the path reaches the vertical axis. This trajectory is not feasible because at some point
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it cannot continue. When that happens the price of capital increases, and consumers would have
arbitraged that jump away, so that that path would have not occurred in the first place.

11 Or should it now be the no-Madoff-game condition?
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