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1 Introduction

The threshold autoregressive (TAR) model holds a prominent place in the nonlinear time

series literature, since its introduction by Tong (1978). See also Tong and Lim (1980)

and Tong (1990). It is capable of modeling many nonlinear phenomena, as well as often

offering interpretable results in substantive fields, thus leading to its popularity. Indeed,

it has extensive applications in many fields, such as economics (Hansen; 2011), finance

(Chen et al.; 2011), ecology (Stenseth; 2009), epidemiology (Samia et al.; 2007), population

dynamics (Chan et al.; 2009; Stenseth et al.; 1999) and actuarial science (Chan et al.; 2004),

among others.

Most studies to-date of the TAR models are concerned with a single threshold variable.

However, in many applications, we may need multiple threshold variables. Among several

others, we cite two examples. Tong and Lim (1980) showed that improvements could be

made by using both the “level” and “slope” as threshold variables. Using similar ideas,

Tiao and Tsay (1994) separated the U.S. quarterly real Gross National Product(GNP)

growth rate into four regimes according to the sign of a past growth rate and that of the

first difference of two consecutive past growth rates as follows:

yt =



0.004 + 0.443yt−1 + 0.0082εt, if yt−1 − yt−2 > 0, yt−2 > 0,

0.006 + 0.438yt−1 + 0.0094εt, if yt−1 − yt−2 ≤ 0, yt−2 > 0,

−0.015− 1.076yt−1 + 0.0062εt, if yt−1 − yt−2 ≤ 0, yt−2 ≤ 0,

−0.006 + 0.630yt−1 − 0.756yt−2 + 0.0132εt, if yt−1 − yt−2 > 0, yt−2 ≤ 0,

(1.1)

where the threshold parameters were set at zero. As we shall show later, it is more appro-

priate to estimate the latter from data.

This paper addresses multiple threshold variables that can be exogenous variables be-

sides endogenous ones. For readability, we start by detailing the large sample theory for

LSE of two threshold variables, the 2-TAR model, in the fixed-threshold-effect framework

of Chan (1993), before generalizing it to the K-TAR model, K > 2. We show that Chan’s

large sample results carry over to the present context. However, his methodology deals with

only one threshold variable. In the case of multiple threshold variables, it is important to

study the independence or otherwise of the estimated threshold parameters. For this, we

adopt a fundamentally different methodology and succeed in proving the asymptotic in-
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dependence of the threshold parameters under some mild conditions. We stress that the

asymptotic independence reduces substantially computation time for large samples, as well

as facilitates the construction of their large-sample confidence intervals, because we can do

so individually instead of jointly.

To simulate the limiting distribution of the estimated thresholds and derive confidence

intervals for the threshold parameters had been open problems until Li and Ling (2012)

proposed a resampling method to simulate the jump distribution. Unfortunately, their

method is only for the self-exciting TAR model with an endogenous threshold variable at

a single lag for reasons given in Section 4. We modify their method to allow for linear

combinations of different lags of the endogenous threshold variable. However, to cope with

both endogenous and exogenous threshold variables, we need a completely new method.

This we achieve by developing the weighted Nadaraya-Watson (WNW) method. Both the

WNW method and the modified resampling method are evaluated. We conduct simulations

to assess the performance of the LSE in finite samples and showcase the efficacy of our

approach with two real data sets.

Major contributions of our paper are as follows.

First, we introduce a framework for the multiple-threshold-variable TAR model that can

cover two or more threshold variables and is without any need for a Gaussian assumption. It

should not be confused with the single-threshold-variable-multiple-regime TAR model in Li

and Ling (2012). Specifically, based on the classic TAR model with one indicator function,

the generalization by Li and Ling (2012) has a number of shortcomings. Let us name just

a couple of them here. First it is through a summation of indicator functions, implying

the absence of interactions, while ours is through a multiplication of indicator functions

involving interactions among the threshold variables. Interactions are clearly important

and pose nontrivial and theoretically significant challenges. Next, Li and Ling (2012) can

only cope with endogenous threshold variables, while ours can cope with both endogenous

and exogenous threshold variables. Regarding Chen et al. (2012), we note that it is limited

to only two threshold variables and, more significantly, to data driven by Gaussian errors.

In contrast, our method enjoys much wider applicability beyond two threshold variables

and beyond Gaussian errors. Later we discuss the poor performance of confidence intervals
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based on Chen et al. (2012).

Second, we prove the asymptotic independence of the estimated thresholds. It is a new

and important result. To prove it, we discover that the methodology initiated by Chan

(1993) is not appropriate. Instead, we utilize a fundamentally new methodology based

on the degeneracy of a spatial process. It affords us substantial practical convenience

for large samples in that instead of a time consuming two-dimensional joint search, two

one-dimensional searches will suffice, thus reducing computational time by an order of

magnitude.

Third, we develop a new method, the WNW method, to construct confidence intervals

(CIs) for the threshold parameters. As far as we know, this is the first time that a valid

method for exogenous threshold variables is developed. We stress that it overcomes the

difficulties encountered in constructing CIs for the threshold parameters of such variables.

To compare, under the diminishing-threshold-effect framework in Chen et al. (2012), CIs

are constructed jointly for all thresholds instead of individually, which might be hard, if

not impossible, to implement, especially for large samples or when K is large. Another

important advantage of the new method is that it produces CIs with coverage probabilities

that are much closer to the nominal levels, in sharp contrast to those produced by the

methods of Chen et al. (2012); the latter tend to give misleading, and often conservative,

coverage probabilities. For more detail, see Supplementary S.3. The favourable comparative

results regarding CIs enjoyed by our method relative to the diminishing-threshold-effect

framework of Hansen (2000) stems from the super n-consistency of the threshold estimates.

We refer to Yu and Phillips (2018) and Li et al. (2019) for more discussion of the connection

and difference between Chan’s framework and Hansen’s.

The remainder of the paper is organized as follows. Section 2 presents the 2-TAR

model and its estimation. The asymptotic properties of the estimates are established

in Section 3. Section 4 gives numerical methods to obtain the limiting distribution of

the estimated thresholds. Section 5 reports simulation results. Section 6 analyzes two

empirical examples. Section 7 addresses the general K-TAR case, K ≥ 2. We conclude in

Section 8. The Supplementary Material discusses issues of information criteria and regime

structure specification, gives extended numerical algorithms, compares confidence intervals
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constructed under two frameworks with theory and simulation, and includes all technical

proofs.

2 Model and Least Squares Estimation

A time series {yt} is said to follow a p-th order 2-TAR model if it satisfies

yt =
4∑
j=1

(β′jyt−1 + σjεt)Ijt(r, s), (2.1)

where yt−1 = (1, yt−1, ..., yt−p)
′, βj = (βj0, βj1, ..., βjp)

′ ∈ Rp+1, σj > 0, and

I1t(r, s) = I(zt−1 > r,wt−1 > s), I2t(r, s) = I(zt−1 ≤ r, wt−1 > s),

I3t(r, s) = I(zt−1 ≤ r, wt−1 ≤ s), I4t(r, s) = I(zt−1 > r,wt−1 ≤ s),

in which zt−1 and wt−1 are the threshold variables that classify {yt} into four regimes.

Here, zt−1 and wt−1 are given real-valued random variables, measurable with respect to the

natural filtration generated by {(yt−i, vt−i) : i ≥ 1}, where vt is an exogenous time series.

Different choices of (zt−1, wt−1) can be used in applications. For example, they each can be

exogenous or endogenous. Here τ = (r, s)′ is the threshold parameter; {εt} is independent

and identically distributed (i.i.d.) with zero mean and unit variance, and is independent

of the past information Ft−1 = σ{(yt−i, zt−i, wt−i) : i ≥ 1}. Let et = εt
∑4

j=1 σjIjt(r, s).

Let θ = (β′, τ ′)′ = (β′1,β
′
2,β

′
3,β

′
4, r, s)

′ ∈ R4(p+1)+2. Let {y1, ..., yn} denote the obser-

vations from model (2.1) with true parameter θ0 = (β′10,β
′
20,β

′
30,β

′
40, r0, s0)′. Given initial

values {y1−p, ..., y0}, the sum-of-squared-error function Ln(θ) is defined as

Ln(θ) =
n∑
t=1

[yt − Eθ(yt|Ft−1)]2 =
n∑
t=1

[
yt −

4∑
j=1

β′jyt−1Ijt(τ )
]2

.

Henceforth, Ijt(τ ) and Ijt(r, s) are used interchangeably. The minimizer of Ln(θ) is called

the LSE of θ0, i.e.,

θ̂n = arg min
θ∈Θ

Ln(θ).

Since Ln(θ) is discontinuous in τ , a multi-parameter grid-search algorithm is needed.

We can obtain θ̂n as follows.
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• Fix τ , then minimize Ln(θ) and get its minimizer β̂n(τ ) and minimum L∗n(τ ) =

Ln(θ)|β=β̂n(τ ).

• As L∗n(τ ) only takes finitely many values, we can obtain the minimizer τ̂n of L∗n(τ )

by an enumeration approach.

• Using a plug-in method, we can finally obtain β̂n ≡ β̂n(τ̂n). Thus, θ̂n = (β̂′n, τ̂
′
n)′.

Generally, τ̂n ≡ (r̂n, ŝn)′ takes the form of (z(i), w(j))
′, where {z(1), z(2), ..., z(n)} and

{w(1), w(2), ..., w(n)} are, respectively, the order statistics of the observations {z1, z2, ..., zn}

and {w1, w2, ..., wn}. If (z(i0), w(j0))
′ is an estimator of τ0 for some subscript (i0, j0), then

L∗n(τ ) is a constant over the rectangular region {(r, s) : r ∈ [z(i0), z(i0+1)), s ∈ [w(j0), w(j0+1))}.

Thus, there exist infinitely many τ s such that Ln(·) can achieve its global minimum and

each can be considered an estimator of τ0. In this case, we choose the lower left vertex of

the rectangular region, (z(i0), w(j0))
′, as the estimator of τ0.

For large data sets, Theorem 3.3 below justifies separate grid searches, one for each

threshold parameter, and we can use the fast algorithm of Li and Tong (2016). For not

so large data sets, a joint grid-search may be needed and time consuming since it involves

two threshold parameters. Our experience suggests that we may relax the one-by-one

enumeration by searching say every other point, so as to save substantial computation

time with slight loss of precision.

Let σj0 be the true value of σj for j = 1, ..., 4. Once θ̂n is obtained, we can estimate σ2
j0

by

σ̂2
jn =

1

nj

n∑
t=1

(yt − β̂′jnyt−1)2Ijt(τ̂n),

where nj =
∑n

t=1 Ijt(τ̂n).

In practical applications, the unknown order of the j-th regime, say pj, for each j needs

to be specified. This challenging and open problem involves parameters that may not be

all independently adjusted. For the self-exciting threshold autoregressive (SETAR) model

with one threshold variable, there is a moderate amount of literature proposing differ-

ent information criteria and assessing their performance. See, e.g., Wong and Li (1998),

De Gooijer (2001), Peña and Rodriguez (2005), among others. A good choice is the AICu,

which was proposed by McQuarrie et al. (1997) as an approximate unbiased estimator of
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Kullback-Leibler information. It is shown, in the literature, that it enjoys competitive small

sample performance and computational convenience for threshold models. However, fur-

ther research is needed, especially for the case of multiple or exogenous threshold variables.

As an interim suggestion, we adopt the following AICu

AICu({pj}) =
4∑
j=1

[
nj log(σ̂2

jn) +
2nj(pj + 2)

nj − pj − 3
+ nj log

(
nj

nj − pj − 2

)]
. (2.2)

Alternatively, we can consider other model selection criteria such as the BIC (appropriately

modified) and others. Supplementary S.1.1 discusses the issues of information criteria for

threshold models. Throughout the paper, we assume that pj’s are known.

3 Asymptotic Properties

We first introduce several assumptions.

Assumption 3.1. {εt} is i.i.d. with zero mean and unit variance. Its density fε(·) is

bounded, continuous and positive on R.

Assumption 3.2. The parameter space Θ is a compact subset of R4(p+1)+2.

Assumption 3.3. Let {(yt, zt, wt)} be strictly stationary and ergodic, where {(zt, wt)} are

random vectors with a bounded, continuous and positive density π(·, ·) on R2. Denote the

marginal density of zt and wt as π1(·) and π2(·), respectively. If {(zt, wt)} are exogenous,

we further assume they are Markovian.

Assumptions 3.1 and 3.2 are standard. See Chan (1993) and Li and Ling (2012). If

the model is endogenous with multiple different lagged variables as threshold variables and

with homoscedastic errors, a sufficient condition for the strictly stationarity and ergodicity

of yt in Assumption 3.3 to hold is
∑

i maxj |βji,0| < 1, as illustrated by Brachner et al.

(2009). Now, we have the following theorem.

Theorem 3.1. Suppose Assumptions 3.1-3.3 hold. We further assume (i) Ey2
t < ∞; (ii)

there exists some j0 ∈ {1, 2, 3, 4} for which βj0,0 6= βj0+1,0 and βj0,0 6= βj0−1,0, with the

convention β00 = β40 and β50 = β10. Then, θ̂n → θ0 a.s. as n→∞.
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Condition (ii) in Theorem 3.1 guarantees the identification of τ0, so that the threshold

parameter can be identified not only under the four-regime case, but also when some

regimes coalesce, resulting in a three-regime case or even a two-regime case, as illustrated

in Figure 1. For example, Figure 1(b) means β10 6= β20,β20 6= β30,β30 = β40,β40 6= β10,

Figure 1: Cases where τ0 = (r0, s0)′ can be identified: (a) four-regime case; (b) three-regime

case;(c) two-regime case.

in which case the model has three regimes and condition (ii) is satisfied for j0 = 1 and

j0 = 2. Figure 1(c) means β10 6= β20 = β30 = β40, resulting in two regimes and condition

(ii) being satisfied for only j0 = 1. However, not all two-regime cases are admissible; only

those that satisfy condition (ii) are. For example, if β10 = β20 6= β30 = β40, we still have

two regimes. However, condition (ii) is not satisfied and only one threshold, s0, can be

identified, so this case is not admissible. In the three- or two-regime cases, the model (2.1)

and the parameters should be modified accordingly. In Supplementary S.1.2, we discuss

specifying the regime structure using information criterion and we give a real data example

in Section 6. Within this paper, we assume the 4-regime structure.

For the convergence rate and the limiting distribution of the estimated parameters, we
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introduce several assumptions, as follows. Let

f1(r) = E
(
|wt|
∣∣zt = r

)
, g1(s) = E

(
|zt|
∣∣wt = s

)
,

f2(r) = E
(
‖yt‖3

∣∣zt = r
)
, g2(s) = E

(
‖yt‖3

∣∣wt = s
)
,

f3(r) = E
(
‖yty′t‖

∣∣zt = r
)
, g3(s) = E

(
‖yty′t‖

∣∣wt = s
)
,

f4(r) = E
(
‖yt‖2|wt|

∣∣zt = r
)
, g4(s) = E

(
‖yt‖2|zt|

∣∣wt = s
)
,

f5(r) = E
(
‖ytet+1zt+1‖

∣∣zt = r
)
, g5(s) = E

(
‖ytet+1zt+1‖

∣∣wt = s
)
,

f6(r) = E
(
‖ytet+1wt+1‖

∣∣zt = r
)
, g6(s) = E

(
‖ytet+1wt+1‖

∣∣wt = s
)
.

(3.1)

Assumption 3.4. Suppose E(ε4t + y4
t ) <∞, and all fi(r)’s in (3.1) are continuous at r0,

and gi(s)’s at s0, for i = 1, ..., 6.

Let xt = (yt, yt−1, ..., yt−p+1, zt, wt)
′. Then {xt : t ≥ 0} is automatically a Markov chain

with respect to its natural filtration. Denote its k-step transition probability by Pk(x, A),

where x ∈ Rp+2 and A is a Borel set of Rp+2.

Assumption 3.5. {xt : t = 0, 1, ...} admits a unique invariant measure Π(·) such that there

exist K > 0 and 0 < ρ < 1, for any x ∈ Rp+2and any integer k ≥ 1, ‖Pk(x, ·)− Π(·)‖v ≤

Kρk(1 + ‖x‖), where ‖ · ‖v and ‖ · ‖ denote the total variation norm and the Euclidean

norm, respectively.

Assumption 3.6. There exists at least one regime j ∈ {1, 2, 3, 4}, in which Γ′βj0 is differ-

ent from that of its two neighboring regimes. Here Γ = E(yt|zt = r0, wt = s0). Specifically,

there is at least one j ∈ {1, 2, 3, 4} such that Γ′(βj0−βj−1,0) 6= 0 and Γ′(βj0−βj+1,0) 6= 0.

The first part of Assumption 3.4 is standard, and the second part is mainly for cases

with exogenous threshold variables. Under Assumption 3.5, {xt} is V -uniformly ergodic

with V (·) = K(1 + ‖ · ‖), which is stronger than geometric ergodicity. For the concept of

V -uniform ergodicity, see Chapter 16 in Meyn and Tweedie (2009). In the special case that

all the threshold variables are lags of yt and errors are homoskedastic across all regimes, a

sufficient condition for Assumption 3.5 is Assumption 3.1 together with
∑

i maxj |βji,0| < 1.

See Chan and Tong (1985) and Chan (1989). Assumption 3.6 implies that the autoregressive

function is discontinuous at the threshold (r0, s0). The process yt is generated from a fixed

dynamic mechanism. It is different from Hansen (2000), who assumes that the parameters
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change with the sample size, n, and the magnitude of change goes to zero as n → ∞. In

contrast, Assumption 3.6 implies that for all yt near Γ, |y′t(βi0 − βj0)| exceeds a positive

constant. The identifiability condition (ii) in Theorem 3.1 is a necessary condition of

Assumption 3.6.

Theorem 3.2. If Assumptions 3.1-3.6 hold and θ0 is an interior point of Θ, then

(i) n‖τ̂n − τ0‖ = Op(1);

(ii)
√
n sup‖τ−τ0‖<B/n ‖β̂n(τ ) − β̂n(τ0)‖ = op(1) for any fixed B ∈ (0,∞). Further, for

the four-regime case, as n→∞,

√
n(β̂n − β0) =

√
n(β̂n(τ0)− β0) + op(1)→d N (0,Σ−1),

where Σ = diag(Σ1/σ
2
10,Σ2/σ

2
20,Σ3/σ

2
30,Σ4/σ

2
40), and Σj = E[yt−1y

′
t−1Ijt(τ0)] for j =

1, ..., 4.

For the three- or two-regime case, Σ should be modified accordingly.

Theorem 3.2(i) implies that the convergence rate of τ̂n is n, i.e. super-efficient. In

order to establish the limiting distribution of n(τ̂n − τ0), we consider the following profile

sum-of-squared-error function:

L̄n(u, v) = Ln
(
β̂n(r0 + u/n, s0 + v/n), r0 + u/n, s0 + v/n

)
− Ln

(
β̂n(τ0), τ0

)
.

Using Theorem 3.2 and Taylor’s expansion, similar to Li and Ling (2012), we can approx-

imate L̄n(u, v) in the function space D(R2) by

L̃n(u, v) = Ln(β0, r0 + u/n, s0 + v/n)− Ln(β0, r0, s0),

where the definition of D(R2) is given in subsection 7.1 of Li and Ling (2012). Define

R̃n(u) =Ln
(
β0, r0 + u/n, s0

)
− Ln

(
β0, r0, s0

)
=

n∑
t=1

[
γ

(1)
t I
(
r0 < zt−1 ≤ r0 + u/n

)
I(u > 0) + γ

(2)
t I
(
r0 + u/n < zt−1 ≤ r0

)
I(u ≤ 0)

]
,

Q̃n(v) =Ln
(
β0, r0, s0 + v/n

)
− Ln(β0, r0, s0)

=
n∑
t=1

[
γ

(3)
t I
(
s0 < wt−1 ≤ s0 + v/n

)
I(v > 0) + γ

(4)
t I
(
s0 + v/n < wt−1 ≤ s0

)
I(v ≤ 0)

]
.
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Here

γ
(1)
t =ξ

(1,2)
t I(wt−1 > s0) + ξ

(4,3)
t I(wt−1 ≤ s0),

γ
(2)
t =ξ

(2,1)
t I(wt−1 > s0) + ξ

(3,4)
t I(wt−1 ≤ s0),

γ
(3)
t =ξ

(1,4)
t I(zt−1 > r0) + ξ

(2,3)
t I(zt−1 ≤ r0),

γ
(4)
t =ξ

(4,1)
t I(zt−1 > r0) + ξ

(3,2)
t I(zt−1 ≤ r0),

(3.2)

with

ξ
(i,j)
t = [(βi0 − βj0)′yt−1]2 + 2σi0εt(βi0 − βj0)′yt−1, i, j = 1, ..., 4.

A significant result is given in Proposition 3.1, the proof of which can be found in the

Supplementary, and some intuitive discussion can be found in Remark 3.1.

Proposition 3.1. If Assumptions 3.1–3.6 hold, then sup|u|,|v|≤B
∣∣L̃n(u, v)−R̃n(u)−Q̃n(v)

∣∣ =

op(1) for any fixed B ∈ (0,∞).

By Proposition 3.1, the process L̃n(u, v) of (u, v) can be written as the summation of a

process of u and a process of v, while the cross term of (u, v) will degenerate, which is the

key to the asymptotic independence in the following Theorem 3.3.

We define two independent one-dimensional two-sided compound Poisson processes

{P1(u), u ∈ R} and {P2(v), v ∈ R} as

P1(u) =I(u > 0)

N1(u)∑
k=1

ζ
(1)
k + I(u ≤ 0)

N2(−u)∑
k=1

ζ
(2)
k , (3.3)

P2(v) =I(v > 0)

N3(v)∑
k=1

ζ
(3)
k + I(v ≤ 0)

N4(−v)∑
k=1

ζ
(4)
k , (3.4)

where {N1(u), u ≥ 0} and {N2(u), u ≥ 0} are two independent Poisson processes with

N1(0) = N2(0) = 0 a.s. and the same jump rate π1(r0). Here {ζ(1)
k : k ≥ 1} are i.i.d. from

F1(·|r0) and {ζ(2)
k : k ≥ 1} from F2(·|r0), and they are mutually independent, where F1(·|r0)

is the conditional distribution of γ
(1)
2 given z1 = r0, and F2(·|r0) that of γ

(2)
2 .

Similarly, {N3(v), v ≥ 0} and {N4(v), v ≥ 0} are two independent Poisson processes

with N3(0) = N4(0) = 0 a.s. and the same jump rate π2(s0). Also {ζ(3)
k : k ≥ 1} are

i.i.d. from G1(·|s0) and {ζ(4)
k : k ≥ 1} from G2(·|s0), and they are mutually independent,

where G1(·|s0) is the conditional distribution of γ
(3)
2 given w1 = s0, and G2(·|s0) that of
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γ
(4)
2 . Here, we work with the right continuous version for N1(u) and N3(v), and the left

continuous version for N2(u) and N4(v).

We further define a spatial compound Poisson process

ψ(u, v) = P1(u) + P2(v).

Clearly, ψ(u, v) goes to +∞ a.s. when |u|, |v| → ∞ since all jump distributions have

positive means by Assumption 3.6. Therefore, there exists a unique 2-dimensional cube

[M−,M+) ≡ [M
(1)
− ,M

(1)
+ ) × [M

(2)
− ,M

(2)
+ ) on which the process ψ(u, v) attains its global

minimum a.s., namely,

[M−,M+) = arg min
(u,v)∈R2

ψ(u, v).

Actually, since P1(u) and P2(v) are independent, the minimization above is equivalent to

[M
(1)
− ,M

(1)
+ ) = arg min

u∈R
P1(u), [M

(2)
− ,M

(2)
+ ) = arg min

v∈R
P2(v).

Accordingly, M
(1)
− and M

(2)
− are independent. Now, we can state our result.

Theorem 3.3. If Assumptions 3.1–3.6 hold, then n(τ̂n− τ0) converges weakly to M− and

its components are asymptotically independent as n → ∞. Furthermore, n(τ̂n − τ0) is

asymptotically independent of
√
n(β̂n − β0).

Remark 3.1. At first sight, the asymptotic independence might seem counter-intuitive

since the two threshold parameters are not separable in the modeling procedure. However,

it is a direct result of Proposition 3.1, which proves the degeneracy of the cross term of

(u, v). Figure 2 gives an intuitive graphical representation of L̃n(u, v) when u, v > 0, which

is nonzero only in the grey “road” zones. Intuitively, R̃n(u) and Q̃n(v) are related to I
(
r0 <

zt−1 ≤ r0 +u/n
)

(the vertical “road”) and I
(
s0 < wt−1 ≤ s0 +v/n

)
(the horizontal “road”),

respectively, while the cross term is related to I
(
r0 < zt−1 ≤ r0 +u/n, s0 < wt−1 ≤ s0 +v/n

)
(the “crossing” zone). When τn approaches τ0 at the rate of n, by Assumption 3.3 on the

density π(·, ·), π1(·) and π2(·), the area of R̃n(u) and Q̃n(v) will shrink at the same rate of

n. However, the “crossing” area will shrink at a faster rate of n2 and is thus negligible,

resulting in the asymptotic independence between the two estimated thresholds.
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Figure 2: An intuitive “crossroad” illustration of L̃n(u, v) and the asymptotic independence

between the two estimated thresholds.

In practice, zt and wt may be highly correlated, such as zt = yt−1 − yt−2 and wt = yt−2

in the motivating example (1.1). The correlation between zt and wt will not affect the

asymptotic independence, as long as Assumption 3.3 on the density π(·, ·) is satisfied. A

violation of Assumption 3.3 occurs when zt and wt are exactly the same, in which case

π(·, ·) is not well defined. In fact, this case reduces to the single-threshold-multiple-regime

TAR model in Li and Ling (2012), and asymptotic independence still holds as proved by

them.

4 Numerical Implementation of M−

The distribution of M− does not have a closed form. From Theorem 3.3, M− is equivalent

to M
(1)
− and M

(2)
− separately. Modifying Algorithm 6.2 in Cont and Tankov (2004), we

obtain an algorithm to output a sequence of M
(1)
− , by simulating the two-sided compound

Poisson process on the interval [−T, T ], for any given T > 0 large enough. We can deal

with M
(2)
− similarly and thus omit the details.

Algorithm A:

Step A.1 Simulate two independent Poisson random variables N1 and N2 with the same

parameter π1(r0)T , which are the total number of jumps on the intervals [0, T ]

and [−T, 0], respectively.

13



Step A.2 Simulate two independent jump time sequences: {U1, ..., UN1} and {V1, ..., VN2},

where Ui’s and Vi’s are independently and uniformly distributed on [0, T ] and

[−T, 0], respectively.

Step A.3 Simulate two independent jump-size sequences: {ζ(1)
1 , ..., ζ

(1)
N1
} from F1(·|r0), and

{ζ(2)
1 , ..., ζ

(2)
N2
} from F2(·|r0).

Step A.4 For u ∈ [−T, T ], the trajectory of P1(u) in (3.3) is given by

P1(u) =I(u > 0)

N1∑
k=1

I(Uk < u)ζ
(1)
k + I(u ≤ 0)

N2∑
k=1

I(Vk > u)ζ
(2)
k .

Take the smallest minimizer of P1(u) on [−T, T ] as an observed value of M
(1)
− .

Step A.5 Repeating Step A.1-A.4, we can obtain a sequence of observations of M
(1)
− .

In practice, Step A.1 can be implemented by substituting π1(r0) by its nonparametric

kernel estimate. However, the difficulty lies in Step A.3, which involves sampling from

conditional distributions F1(·|r0) and F2(·|r0). It remained a problem until Li and Ling

(2012) developed a resampling method for self-exciting TAR models, whose key idea is to

estimate the jump distribution by simulating the time series yt following the TAR mecha-

nism conditional on zt−1 = r0. As such, this procedure is invalid for exogenous threshold

variables. Thus, to implement Step A.3 in the general setting, we need to take a new

route. In subsection 4.1, we develop the weighted Nadaraya-Watson (WNW) method. The

WNW method estimates the conditional distribution from the viewpoint of nonparametric

regression, so it is valid whether the threshold variable is endogenous or exogenous. As

far as we know, this is the first valid method to handle the exogenous case. Besides, in

subsection 4.2, we give a modified resampling method when the threshold variables are

linear functions of lags of yt.

Conditional on X ≡ {y1−p, ..., yn; z0, . . . , zn−1;w0, . . . , wn−1} from model (2.1), we give

two estimators of F1(·|r0), namely F̂WNW
1 (γ|r0,X ) and F̂RS

1 (γ|r0,X ) with the WNW and

modified resampling methods respectively, and illustrate how to sample from them. For

simplicity, in subsections 4.1 and 4.2, we assume the ideal case that the true model is

known, i.e., θ0, σj0, π1(r0), fε(·) and Fε(·), which are respectively the density and distri-

bution function of εt, are all known. We give the algorithms with estimated parameters in

Supplementary S.2. The procedures are similar for F2(·|r0) and thus omitted.
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4.1 The Weighted Nadaraya-Watson Method

Needs for estimating a conditional distribution arise in settings such as quantile regression

and prediction interval of time series. Some nonparametric methods have been proposed,

including the local linear estimators in Yu and Jones (1998), the local logistic estimator

in Hall et al. (1999), the weighted Nadaraya-Watson estimator in Hall et al. (1999) and

Cai (2002), among others. The WNW estimator enjoys two nice properties. It reproduces

superior properties of local linear estimators in respect of bias and automatic boundary

behavior, and it preserves the property of always being a distribution function. Given X ,

θ0, and σj0, we can obtain γ
(1)
t in (3.2) for t = 1, . . . , n. We introduce the WNW estimator

for F1(γ|z), the conditional distribution of γ
(1)
t given zt−1 = z.

Let pt(z) for 1 ≤ t ≤ n, denote the weight functions of the data zt−1 and the point z

with the property

pt(z) ≥ 0,
n∑
t=1

pt(z) = 1, and
n∑
t=1

(zt−1 − z)pt(z)Kh(z − zt−1) = 0, (4.1)

where K(·) is a kernel function, Kh(·) = K(·/h)/h, and h = hn is the bandwidth. Then,

the WNW estimator of the conditional distribution F1(γ|z) is defined as

F̂WNW
1 (γ|z,X ) =

∑n
t=1 pt(z)Kh(z − zt−1)I(γ

(1)
t ≤ γ)∑n

t=1 pt(z)Kh(z − zt−1)
.

We specify pt(z) by maximizing
∑n

t=1 log{pt(z)} subject to the constraints in (4.1) through

the Lagrange multiplier, which gives the solution: pt(z) = n−1{1 + λ(zt−1 − z)Kh(z −

zt−1)}−1, where λ is uniquely defined by (4.1) and can be found with the Newton-Raphson

scheme in implementation. As for the selection of the bandwidth hn, we adopt the non-

parametric Akaike information criterion proposed by Cai and Tiwari (2000).

Thus, using the following algorithm, we derive the estimator F̂WNW
1 (γ|r0) conditional

on X and sample from it.

Algorithm B:

Step B.1 For a fixed γ,

F̂WNW
1 (γ|r0,X ) =

∑n
t=1 pt(r0)Kh(r0 − zt−1)I(γ

(1)
t ≤ γ)∑n

t=1 pt(r0)Kh(r0 − zt−1)
.
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Step B.2 F̂WNW
1 (·|r0,X ) is defined as the cumulative distribution function of a discrete

distribution taking values at {γ(1)
t : t = 1, . . . , n} with the accorded cumulative

probability F̂WNW
1 (γ

(1)
t |r0,X ). Draw a random sample from this discrete distri-

bution, and denote it as ζ
(1),WNW
1 .

By Theorem 1 in Cai (2002), F̂WNW
1 (·|r0,X ) is a consistent estimator of F1(·|r0), which

is summarized as follows.

Proposition 4.1. Besides Assumptions 3.1–3.6, further assume the following: (i) F1(·|z)

has continuous second-order derivative with respect to z. (ii) The kernel function K(·)

is a symmetric, bounded and compactly supported density. (iii) As n → ∞, h → 0 and

nh→∞. (iv) Let π
(1,t)
1 (·, ·) be the joint density of z1 and zt for t ≥ 2. Assume |π(1,t)

1 (u, v)−

π1(u)π1(v)| ≤ C <∞ for all u and v and some C. Then, as n→∞,

∣∣F̂WNW
1 (γ|r0,X )− F1(γ|r0)

∣∣→ 0, in probability.

4.2 The Modified Resampling Method

When the threshold variables are both linear functions of the lags of yt, we assume zt−1 =

l(yt−d1 , ..., yt−dm), where l : Rm → R is a known linear function and 1 ≤ d1 ≤ ... ≤ dm ≤ p.

In order to estimate F1(γ|r0) = P(γ
(1)
2 ≤ γ|z1 = r0), the key idea of the resampling method

is based on conditional arguments of Q = (y1−d1 , ..., y2−d1−p)
′. Dilatate the function l to

l∗ : Rp+1 → R by appending the linear coefficients of l with (p+ 1−m) 0s. Specifically,

z1 = l(y2−d1 , ..., y2−dm) = l∗(y2−d1 , . . . , y2−dm , . . . , y2−d1−p) = l∗(y2−d1 ,Q).

Then, conditional on Q = q ∈ Rp, z1 and y2−d1 have the mapping relationship that

z1 = lq(y2−d1) ≡ l∗(y2−d1 ,Q = q). Denote π1(·|q) and φ(·|q) as the conditional densities

of z1 and y2−d1 given Q = q, respectively. Rewrite Ijt(τ ) as Ijt(yt−1, τ ) just to emphasize

the fact that zt−1 and wt−1 are both linear functions of yt−1. Let σ = (σ1, σ2, σ3, σ4), and

let σ0 be the true value. Define

h(yt−1,θ) =
4∑
j=1

β′jyt−1Ijt(yt−1, τ ), ν(yt−1,θ,σ) =
4∑
j=1

σjIjt(yt−1, τ ).
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Let qi = (yi, ..., yi−p+1)′, and q̃i = (1, qi). Then,

φ(x|qi) = [ν(q̃i,θ0,σ0)]−1fε
(
[ν(q̃i,θ0,σ0)]−1[x− h(q̃i,θ0)]

)
π1(r0|qi) = φ(l−1

qi
(r0)|qi)

∣∣(l−1
qi

)′(r0)
∣∣ . (4.2)

where (l−1
qi

)′(r0) is the derivative at r0, and is a constant among all qi.

By the property of conditional expectation and the strong law of large numbers, it

follows that

F1(γ|r0) =P(γ
(1)
2 ≤ γ|z1 = r0)

=

∫
Rp

P(γ
(1)
2 ≤ γ|z1 = r0,Q = q)

π1(r0|q)

π1(r0)
H(dq)

=
n∑
i=1

P(γ
(1)
2 ≤ γ|z1 = r0,Q = qi)

π1(r0|qi)∑n
j=1 π1(r0|qj)

+ o(1)

≡F̂RS
1 (γ|r0,X ) + o(1),

(4.3)

a.s. as n → ∞, uniformly in γ ∈ R by Theorem 2 in Pollard (1984), where H(·) is

the distribution of Q. It means that F̂RS
1 (γ|r0,X ) is a uniformly consistent estimator of

F1(γ|r0). Then, we can sample a ζ
(1),RS
1 from F̂RS

1 (γ|r0,X ) following Algorithm C.

Algorithm C:

Step C.1 For each i = 1, ..., n, set qi = (yi, ..., yi−p+1)′ and generate a sample {y(i)
1 , . . . , y

(i)
2−d1−p}

in the following way: first let (y
(i)
1−d1 , ..., y

(i)
2−d1−p)

′ = qi and y
(i)
2−d1 = l−1

qi
(r0); draw

{ε(i)3−d1 , ..., ε
(i)
1 } independently from Fε(·) and generate y

(i)
3−d1 , ..., y

(i)
1 by iterating

model (2.1) based on the initial values {y(i)
2−d1 , y

(i)
1−d1 , ..., y

(i)
2−d1−p}. Then, calculate

γ
(1)
2 in (3.2) based on the sample {y(i)

1 , . . . , y
(i)
2−d1−p} and denote it as ζi.

Step C.2 Calculate π1(r0|qi)’s in (4.2) for i = 1, ..., n and draw a U from the discrete distri-

bution: P(U = i|X ) = π1(r0|qi)/{
∑n

j=1 π1(r0|qj)}, independent of all {ε(i)3−d1 , ..., ε
(i)
1 }.

Step C.3 Obtain ζ
(1),RS
1 = ζU .

Compared to the original resampling algorithm for self-exciting threshold models in Li

and Ling (2012), our algorithm differs in the design of Q in order to adapt to threshold

variables in the form of linear functions of lags of yt.
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4.3 Theoretical Justification of the Algorithms

Now, for the ideal case that the true model is known, Algorithm A can be implemented.

Define a two-sided compound Poisson process by PWNW
1 (u) which is determined by the

jump rate π1(r0) and jump distributions F̂WNW
1 (γ|r0,X ) and F̂WNW

2 (γ|r0,X ). Similarly

define PRS
1 (u) by π1(r0), F̂RS

1 (γ|r0,X ) and F̂RS
2 (γ|r0,X ). Note that every compound Pois-

son process is a stationary independent increment process. By Proposition 4.1, (4.3) and

Theorem 16 in Pollard (1984), we have in probability

PWNW
1 (u)⇒ P1(u), PRS

1 (u)⇒ P1(u), in D(R)

conditionally on X as n → ∞, where ⇒ denotes weak convergence. Minimizing the pro-

cesses PWNW
1 (u) and PRS

1 (u), we obtain the smallest minimizer MWNW
1 and MRS

1 , respec-

tively. By Theorem 3.1 in Seijo and Sen (2011), we have the following result.

Theorem 4.1. (i) Under the conditions in Proposition 4.1, we have in probability that

limn→∞ |P(MWNW
1 ≤ x|X )− P(M

(1)
− ≤ x)| = 0 at each x for which P(M

(1)
− = x) = 0.

(ii) Suppose Assumptions 3.1–3.6 hold, and further assume the threshold variables zt−1

and wt−1 are linear functions of yt−1. Then, we have in probability that limn→∞ |P(MRS
1 ≤

x|X )− P(M
(1)
− ≤ x)| = 0 at each x for which P(M

(1)
− = x) = 0.

Since all parameters θ0, σj0, π1(r0), fε(·) and Fε(·) are unknown in practice, we first

use the sample X to estimate them consistently and then extend Algorithm B and C by

substituting all parameters by their estimate. We follow Li and Ling (2012) for the details

of estimation and the extended algorithm, and thus relegate them to the Supplementary

S.2. For the extended algorithm, denote the counterparts of MWNW
1 and MRS

1 by M̂WNW
1

and M̂RS
1 . Then, both M̂WNW

1 and M̂RS
1 converge weakly to M

(1)
− conditionally on X , in

probability, which is summarized in the following theorem the proof of which can be found

in Supplementary S.3.

Theorem 4.2. (i) Under the conditions in Proposition 4.1, we have in probability that

limn→∞ |P(M̂WNW
1 ≤ x|X )− P(M

(1)
− ≤ x)| = 0 at each x for which P(M

(1)
− = x) = 0.

(ii) Suppose Assumptions 3.1–3.6 hold, and further assume the threshold variables zt−1

and wt−1 are linear functions of yt−1. Assume fε(·) is uniformly continuous on R. Then,
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we have in probability that limn→∞ |P(M̂RS
1 ≤ x|X )−P(M

(1)
− ≤ x)| = 0 at each x for which

P(M
(1)
− = x) = 0.

5 Simulation Studies

In order to assess the performance of the LSE of θ0 in finite samples, we consider the

following 2-TAR model:

yt =



1 + 0.4yt−1 + 0.8εt, if yt−1 − yt−2 > 0, yt−2 > 0,

0.3yt−1 + 0.5yt−2 + 1.3εt, if yt−1 − yt−2 ≤ 0, yt−2 > 0,

0.5 + 0.7yt−1 + 0.1yt−2 + 0.9εt, if yt−1 − yt−2 ≤ 0, yt−2 ≤ 0,

−0.8yt−1 + 0.4yt−2 + 0.8εt, if yt−1 − yt−2 > 0, yt−2 ≤ 0,

(5.1)

where εt is i.i.d from N (0, 1). Let the sample sizes be n = 300, 600, 900, and 1200, each

with 1000 replications. For this model, the two thresholds are respectively the 48% and

45% quantile of the according threshold variables. The average proportions of observations

in the four regimes are 16.8% : 37.7% : 10.4% : 35.1%.

Table 1 summarizes the bias, the empirical standard deviation (ESD) and the asymp-

totic standard deviation (ASD). The ASDs of β̂n are provided by Theorem 3.2 in closed

form, however they can not be directly computed based on the model due to the difficulty

in computing Σj. Thus, to obtain Σj, we first draw a large number of long series following

(5.1), randomly and independently. Take the averaged empirical Σj as the true Σj, based

on which we obtain the ASDs of β̂n. The ASDs of r̂n and ŝn are estimated by the WNW

and resampling method, with the superscript W and R respectively. Table 1 shows that the

ESDs and ASDs become closer with increasing sample size. In line with the n-consistency,

the ESDs for r̂n and ŝn are about halved with n doubled.

To show the asymptotic normality of β̂n, we present the densities of each of its elements.

Take β30 as a typical example. Figure 3 displays the densities of
√
n(β̂30,n − β30,0) and

N (0, 5.682) when n = 600 and n = 1200, respectively. The number 5.68 is the asymptotic

standard deviation of β̂30,n multiplied by
√
n. From Figure 3, we can see that they are very

close when n = 1200.
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Table 1: Simulation studies for model (5.1).

n 300 600 900 1200

Bias ESD ASD Bias ESD ASD Bias ESD ASD Bias ESD ASD

β10 0.060 0.357 0.253 0.042 0.192 0.179 0.032 0.154 0.146 0.023 0.136 0.126

β11 -0.027 0.149 0.102 -0.018 0.078 0.072 -0.014 0.061 0.059 -0.009 0.054 0.051

β20 -0.022 0.299 0.243 -0.008 0.185 0.172 -0.008 0.148 0.140 -0.005 0.129 0.122

β21 -0.009 0.101 0.092 -0.005 0.070 0.065 -0.003 0.054 0.053 -0.003 0.046 0.046

β22 -0.010 0.153 0.133 -0.008 0.101 0.094 -0.004 0.080 0.077 -0.003 0.067 0.067

β30 -0.029 0.565 0.327 0.000 0.293 0.231 0.023 0.208 0.189 0.002 0.178 0.163

β31 -0.015 0.446 0.283 0.002 0.242 0.200 0.011 0.182 0.163 -0.001 0.152 0.141

β32 -0.006 0.585 0.369 -0.005 0.306 0.261 0.001 0.239 0.213 0.003 0.196 0.184

β40 0.002 0.203 0.151 -0.003 0.113 0.107 -0.003 0.094 0.087 0.000 0.073 0.075

β41 0.004 0.093 0.080 0.003 0.061 0.056 0.002 0.048 0.046 0.000 0.042 0.040

β42 -0.001 0.120 0.097 -0.003 0.074 0.068 -0.003 0.060 0.056 -0.001 0.048 0.048

r -0.047 0.207
W 0.150

R0.150
-0.029 0.097

W 0.075

R0.075
-0.015 0.058

W 0.050

R0.050
-0.013 0.042

W 0.037

R0.037

s 0.006 0.071
W 0.055

R0.060
-0.002 0.030

W 0.027

R0.030
-0.002 0.018

W 0.018

R0.020
-0.001 0.014

W 0.014

R0.015
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Figure 3: The densities of
√
n(β̂30,n − β30,0) when n = 600 and n = 1200.
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To study the coverage probabilities of r0 and s0, we use the WNW and modified resam-

pling methods respectively, and obtain the empirical quantiles of M
(1)
− and M

(2)
− with 10,000

replications. Table 2 shows the coverage probabilities of r0 and s0 by the two methods,

which are quite accurate. In Supplementary S.3, we also provide the coverage probabilities

with our method and method under the diminishing-threshold-effect framework. It turns

out that our methods enjoys the accuracy without being conservative.

Table 2: Coverage probabilities using the WNW and the modified resampling methods.

WNW RS

1− α 300 600 900 1200 300 600 900 1200

0.99 0.959 0.976 0.981 0.988 0.957 0.971 0.978 0.986

r0 0.95 0.897 0.929 0.938 0.951 0.898 0.933 0.937 0.951

0.90 0.832 0.881 0.888 0.901 0.845 0.885 0.894 0.905

0.99 0.979 0.985 0.993 0.991 0.962 0.971 0.985 0.987

s0 0.95 0.930 0.940 0.946 0.944 0.911 0.932 0.942 0.945

0.90 0.866 0.883 0.886 0.906 0.830 0.887 0.876 0.880

For an overall assessment of the estimated thresholds, Figure 4(a) and (d) respectively

show the histograms of n(r̂n − r0) and n(ŝn − s0) when n = 600. Figure 4(b) and (c) show

the histograms of MWNW
1 and MRS

1 respectively. Figure 4(e) and (f) show those of MWNW
2

and MRS
2 respectively, which are similarly defined as in Theorem 4.1. It shows that both

methods behave well, and the WNW is better.

To check the asymptotic independence between the two estimated thresholds, we use the

multivariate independence test that is based on the empirical copula process as proposed

by Genest and Rémillard (2004). By implementing the functions “indepTestSim” and

“indepTest” in the package copula in the software R, we got the p-values 0.08, 0.74,

0.90, and 0.80 for n = 300, 600, 900, and 1200, respectively. None is rejected at the 5%

significance level. This result is in line with Theorem 3.3.
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Figure 4: The histogram of (a) n(r̂n− r0); (b) MWNW
1 ; (c) MRS

1 ; (d) n(ŝn−s0); (e) MWNW
2 ;

(f) MRS
2 .

6 Empirical Examples

6.1 Analysis of U.S. Real GNP

The quarterly U.S. real GNP data have been analyzed by many statisticians and econome-

tricians. Regimes have been suggested to reflect various economic scenarios, e.g. expansion,

recession, depression, and recovery. See, e.g., Schumpeter (1939), Tiao and Tsay (1994)

and Li and Ling (2012). To model the 4 scenarios, we build a 2-TAR model to fit the

growth rate of the quarterly data.

Let xt denote the original data from the first quarter of 1947 to the second quarter

of 2019, totaling 290 observations. We define the growth rate series as yt = 100(log xt −

log xt−1). The GNP data {xt} and the growth rate {yt} are plotted in Figure 5. No trend is

discernible in yt, the growth rate of GNP data, and Tiao and Tsay (1994) fitted a stationary

model with yt−1−yt−2 and yt−2 as the two threshold variables. It is well known that if {yt}

is strictly stationary and ergodic, so is the vector sequence {(yt, yt−1 − yt−2, yt−2)′, t ∈ Z},

since measurable transformations of strictly stationary and ergodic sequences are strictly
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Figure 5: The original GNP data and growth rate.

stationary and ergodic; see Theorem A.1 in Francq and Zakoian (2019).

Thus, we follow the choice of yt−1−yt−2 and yt−2 as the two threshold variables. Instead

of setting the threshold parameters arbitrarily at zero, we estimate them from data. Set

max{p1, p2, p3, p4} = 7. Using the AICu in (2.2), we select the following model for the

growth :

yt =



β10 +
∑2

i=1 β1iyt−i + σ1εt, if yt−1 − yt−2 > −0.95, yt−2 > 1.30,

β20 +
∑1

i=1 β2iyt−i + σ2εt, if yt−1 − yt−2 ≤ −0.95, yt−2 > 1.30,

β30 +
∑1

i=1 β3iyt−i + σ3εt, if yt−1 − yt−2 ≤ −0.95, yt−2 ≤ 1.30,

β40 +
∑3

i=1 β4iyt−i + σ4εt, if yt−1 − yt−2 > −0.95, yt−2 ≤ 1.30.

(6.1)

The coefficients with their standard errors are summarized in Table 3. The estimates of

σi’s are σ̂1 = 0.65, σ̂2 = 0.72, σ̂3 = 1.60, σ̂4 = 0.78, respectively. There are 37, 27, 19 and

197 observations for regimes 1, 2, 3 and 4, respectively. The 95% confidence intervals of r0

and s0 are (−1.61,−0.35) and (1.18, 1.53), respectively, computed by the WNW method.

To gain some insight, we refer to the National Bureau of Economic Research (NBER)

Business Cycle Dating Committee, which has been classifying the state of the U.S. econ-

omy for the past 60 years. Members of the committee reach a subjective consensus about

business cycle turning points, and their decision is generally accepted as the official dat-

ing of the U.S. business cycle. Their decision is based on a wide range of measurements

of economic activities, including real personal income less transfers, nonfarm payroll em-

ployment, real personal consumption expenditures, industrial production, among others.

They interpret expansion as the normal state of economy, while caution should be taken
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Table 3: Coefficients and standard errors for model (6.1).

Regime βi0 βi1 βi2 βi3

1 -1.44* -0.10 1.44*

0.47 0.22 0.35

2 0.85* 0.20

0.19 0.23

3 0.28 0.16

0.67 0.54

4 0.56* 0.31* 0.18* -0.16*

0.09 0.08 0.09 0.07

* denotes significance at 5%.

in recession. Note that there is a subtle difference in the terminology between their two-

regime classification and our four-regime one, i.e., their recession actually corresponds to

our Regime 3, namely depression epoch. Although their multi-information-source method-

ology is different from our model, it remains interesting to compare their recession epochs

with those in our Regime 3. This we do in Figure 6, which also shows the Regime 3 for the

case in which the thresholds are set at (0, 0) as in Tiao and Tsay (1994). As we can see,

the epochs of Regime 3 of our model match quite well the recession epochs declared by the

NBER, except for two points (we miss the 1990 and add 2014). The matching is perhaps

as good as could be reasonably expected, on bearing in mind the fact that the NBER uses

multiple information sources while our model uses the sole information provided by the

GNP. It is interesting to note that if the threshold values were arbitrarily fixed at (0, 0)

(-a practice we prefer not to adopt), the model would miss almost half of the depression

epochs.

For the two thresholds, yt−2 reflects the speed of economic growth and yt−1 − yt−2 the

acceleration. Equivalently, −(yt−1 − yt−2) reflects the deceleration. Thus, yt−2 > 1.30 (≤

1.30) indicates high speed (normal speed); −(yt−1 − yt−2) < 0.95 (≥ 0.95) indicates weak

deceleration (strong deceleration) of, i.e. weak break (strong break) on, the economy.

Based on all the estimated coefficients and thresholds, the four regimes can be interpreted

as follows.
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Figure 6: GNP growth rate with recession epoch indicated by NBER (grey band), Regime 3

by model (6.1) (red points), Regime 3 by 2-TAR model with (0,0) thresholds (blue squares).

• Regime 1 is an expansion epoch with high speed and weak deceleration. The fact

that yt−2 > 1.30 and its significant positive coefficient indicates expansion.

• Regime 2 is a recession epoch with high speed and strong deceleration.

• Regime 3 is a depression epoch with normal speed and strong deceleration. Reassur-

ingly it lasted the shortest. This regime has more fluctuations. During this epoch,

yt−1 ≤ 0.35, which tends to be negative with high probability. Thus, the positive

coefficient at order 1 (albeit not significantly large) tends to suggest contraction.

• Regime 4 is a recovery epoch with normal speed and weak deceleration. This regime

consists of most of the observations and can be seen as the normal state of the

economy.

6.2 Analysis of Stock Return

The relationship between return autocorrelation and trading volume has attracted much

attention in finance. See, e.g., Campbell et al. (1993). In Llorente et al. (2002), information
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asymmetry was also considered. For each individual stock, proxy time series such as quoted

spread and market capitalization, averaged over the sample period, are used as information

asymmetry. However, we suggest that raw data before averaging may also be useful in

modeling the dynamics of the stock return.

Generally speaking, for large firms, the degree of informed trading is relatively low and

the quoted spread is almost zero. So we pick the moderate-size stock Sinopec Shanghai

Petrochemical Company Limited (SHI) over the period from January 2, 2015 to December

31, 2019, totalling 1256 observations. Multiply the daily return by 100 to remove decimal

places and let it be yt.

The two threshold variables are analogous to those of Llorente et al. (2002). We use

daily turnover as a measure of trading volume, which is the total number of shares traded

on the day divided by the total number of shares outstanding. Thus, the first threshold

variable is defined as the detrended log turnover of the previous day,

zt−1 = log(turnovert−1)− 1

200

200∑
j=1

log(turnovert−1−j).

We use the quoted spread to measure information asymmetry, which is the difference be-

tween the highest price favoured by a buyer and the lowest price favoured by a seller.

Due to the inaccessibility of the transaction-to-transaction data, we use the daily (time

weighted) quoted spread as a proxy of information asymmetry on that day. The second

threshold variable, wt−1, is defined as the quoted spread of the previous day. The return

and turnover data are from CRSP (Center for Research of Security Prices), and the quoted

spread data are from WRDS Intraday Indicator Dataset (IID). See Figure 7.

Let max{p1, p2, p3, p4} = 4. Using the AICu in (2.2), we selected the following model:

yt =



β10 +
∑3

i=1 β1iyt−i + σ1εt, if zt−1 > 0.722, wt−1 > 0.132,

β20 + β21yt−1 + σ2εt, if zt−1 ≤ 0.722, wt−1 > 0.132,

β30 + β31yt−1 + σ3εt, if zt−1 ≤ 0.722, wt−1 ≤ 0.132,

β40 + β41yt−1 + σ4εt, if zt−1 > 0.722, wt−1 ≤ 0.132.

(6.2)

The estimated coefficients with their standard deviations are summarized in Table 4. The

estimates of σi’s are σ̂1 = 3.65, σ̂2 = 1.90, σ̂3 = 2.08, σ̂4 = 3.52, respectively. The numbers
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Figure 7: Stock return (multiplied by 100), detrended log turnover and quoted spread for

the stock SHI.

of observations are 67, 466, 563 and 156. The 95% confidence intervals of r0 and s0 are

(0.515, 0.823) and (0.110, 0.138), respectively, computed by the WNW method.

Table 4: Coefficients and standard deviations for model (6.2).

Regime βi0 βi1 βi2 βi3

1 -0.23 0.12 -0.28 -0.62*

0.46 0.12 0.15 0.14

2 0.11 -0.10*

0.09 0.05

3 0.02 -0.10*

0.09 0.05

4 -0.07 0.39*

0.28 0.07

* denotes significance at 5%.

From the table, Regimes 2 and 3 have close coefficients, suggesting potential regime

coalescence. Thus, we use the AICu to choose the most appropriate regime structure, and

the detailed procedure can be found in Supplementary S.1.2. The AICu chose to coalesce
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Regimes 2 and 3, and selected the following model with max{p1, p2, p3, p4} = 4.

yt =


β10 +

∑3
i=1 β1iyt−i + σ1εt, if zt−1 > 0.722, wt−1 > 0.129,

β20 + β21yt−1 + σ2εt, if zt−1 ≤ 0.722,

β40 + β41yt−1 + σ4εt, if zt−1 > 0.722, wt−1 ≤ 0.129.

(6.3)

The estimated coefficients with their standard deviations are summarized in Table 5. The

estimates of σi’s are σ̂1 = 3.55, σ̂2 = 2.00, σ̂4 = 3.56, respectively. The numbers of

observations are 74, 1029 and 149, respectively.

Table 5: Coefficients and standard deviations for model (6.3).

Regime βi0 βi1 βi2 βi3

1 -0.29 0.10 -0.24 -0.61*

0.43 0.12 0.14 0.13

2 0.06 -0.10*

0.06 0.03

4 -0.01 0.40*

0.29 0.07

* denotes significance at 5%.

Compared with model (6.2), the estimated thresholds are very close, and so are the

estimated AR coefficients. Thus, this coalescence is reasonable since it reduces the AICu

and simplifies the model. It seems that the return series on days with high trading volume

are more volatile. Especially, Regime 1, which means days with high volume and potential

information asymmetry, has the maximum volatility and the fewest observations. On high

trading volume days, days with low information asymmetry (Regime 4) show a significant

return continuation; while days with high information asymmetry (Regime 1) show less

continuation or reversal. Most observations fall in the low trading volume regime (Regimes

2), with significant negative coefficients, suggesting reversal. Refer to Supplementary S.1.2

for more knowledge of regime coalescence.
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7 K-TAR Cases

To generalize a 2-TAR model to aK-TAR model, let zt = (z1t, ..., zKt)
′ be theK-dimensional

threshold variables, which are observed and real-valued. Each such variable can be an ex-

ogenous time series or a linear function of the lags of yt. The threshold parameter is

τ = (τ1, ..., τK)′. These K threshold variables divide the whole space RK into 2K regimes.

Let j = (j1, ..., jK) be the regime index, where jk = I(zk,t−1 > τk) for 1 ≤ k ≤ K. It is

similar to the binary encoding. Let J = {j : jk = 0, 1, 1 ≤ k ≤ K} be the set of all

possible regime indexes arranged by the binary size. So, given a regime index j, we can

locate this regime by

It(j, τ ) =
K∏
k=1

It(jk, τk), (7.1)

with It(jk, τk) = I(zk,t−1 ≤ τk)I(jk = 0) + I(zk,t−1 > τk)I(jk = 1). In the j-indexed regime,

the coefficient is βj and the standard deviation of the error term is σj .

Thus, the p-th order K-TAR model is defined as

yt =
∑
j∈J

(
β′jyt−1 + σjεt

)
It(j, τ ), (7.2)

where {εt} is i.i.d. with zero mean and unit variance, and is independent of the past

information. When K = 2, the K-TAR model reduces to the 2-TAR model in (2.1). The

regime indexed by j = (1, 1) in (7.1) corresponds to Regime 1 in (2.1); j = (0, 1) to Regime

2; j = (0, 0) to Regime 3; j = (1, 0) to Regime 4.

Let β′ = (β′j , j ∈ J ), and θ = (β′, τ ′)′. Assume that {y1, ..., yn} is from model (7.2)

with the true parameter θ0 = (β′0, τ
′
0)′, where β′0 = (β′j,0, j ∈ J ) and τ0 = (τ1,0, ..., τK,0)′.

Then, using the LSE method and multi-parameter grid-search algorithm introduced in

Section 2, we can estimate θ0 and obtain θ̂n.

Most assumptions in Section 3 remain valid here, with appropriate modifications. Fur-

ther, the convergence rate given by Theorem 3.1 and 3.2 continues to hold. Here we will

only restate the limiting distribution of the estimated threshold parameters and the re-

quired assumptions, since it is our main interest.

Let {(yt, zt)} be strictly stationary and ergodic, where {zt} are random vectors with a

bounded, continuous and positive density π(·) on RK . Denote the marginal density of zt

as πk(·) for k = 1, . . . , K. We still allow the less-than-2K-regimes cases in Assumption 3.6.
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To establish the limiting distribution of n(τ̂n − τ0), similar to the 2-TAR case, we

consider L̃n(u) = Ln(β0, τ0 + u/n) − Ln(β0, τ0). Let τ (uk) be a vector that differs from

τ0 only for the k-th element by a magnitude uk/n, specifically, τ (uk) = (τ1,0, ..., τk,0 +

uk/n, ..., τK,0)′. Define

R̃n(uk) =Ln
(
β0, τ (uk)

)
− Ln

(
β0, τ0

)
=

n∑
t=1

[
γ

(1)
k,t I
(
τ0 < zk,t−1 ≤ τ0 + uk/n

)
I(uk > 0) + γ

(2)
k,t I
(
τ0 + uk/n < zk,t−1 ≤ τ0

)
I(uk ≤ 0)

]
.

In order to explicitly write the form of γ
(1)
k,t and γ

(2)
k,t , let’s consider the threshold vari-

ables other than the kth one. Specifically, let z−k,t = (z1,t, ..., zk−1,t, zk+1,t, ..., zK,t)
′ and

τ−k,0 = (τ1,0, ..., τk−1,0, τk+1,0, ..., τK,0)′. Let j−k = (j1, ..., jk−1, jk+1, ..., jK) denote the

regime index j without the component jk. Then, the region located by j−k is It(j−k, τ−k,0)

by (7.1). Let J−K be the set of all possible j−k, which includes 2K−1 elements. Let

jk0 = (j1, ..., jk−1, 0, jk+1, ..., jK) and jk1 = (j1, ..., jk−1, 1, jk+1, ..., jK). Then,

γ
(1)
k,t =

∑
j−k∈J−K

It(j−k, τ−k,0)
{[

(βjk1,0 − βjk0,0)′ yt−1

]2
+ 2σjk1,0εt (βjk1,0 − βjk0,0)′ yt−1

}
,

γ
(2)
k,t =

∑
j−k∈J−K

It(j−k, τ−k,0)
{[

(βjk0,0 − βjk1,0)′ yt−1

]2
+ 2σjk0,0εt (βjk0,0 − βjk1,0)′ yt−1

}
.

Let Fk(·|τk) be the conditional distribution of γ
(1)
k,2 given zk,1 = τk, and Gk(·|τk) be that of

γ
(2)
k,2 given zk,1 = τk.

Then, we define K independent one-dimensional two-sided compound Poisson processes

{Pk(uk), uk ∈ R} for 1 ≤ k ≤ K as

Pk(uk) =I(uk > 0)

Nk,1(uk)∑
i=1

ζ
(1)
k,i + I(uk ≤ 0)

Nk,2(−uk)∑
i=1

ζ
(2)
k,i ,

where {Nk,1(uk), uk ≥ 0} and {Nk,2(uk), uk ≥ 0} are two independent Poisson processes

with Nk,1(0) = Nk,2(0) = 0 a.s. and the same jump rate πk(τk,0). We work with the

right continuous version for Nk,1(uk), and the left continuous version for Nk,2(uk). Here

{ζ(1)
k,i : i ≥ 1} are i.i.d. from Fk(·|τk,0) and {ζ(2)

k,i : i ≥ 1} from Gk(·|τk,0), and they are

mutually independent.

We further define a spatial compound Poisson process ψ(u) =
∑K

k=1Pk(uk). Clearly,

ψ(u) goes to +∞ a.s. when |uk| → ∞, 1 ≤ k ≤ K since all jump distributions have positive
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means. Therefore, there exists a uniqueK-dimensional cube [M−,M+) ≡
∏K

k=1[M
(k)
− ,M

(k)
+ )

on which the process ψ(u) attains its global minimum a.s., namely,

[M−,M+) = arg min
u∈RK

ψ(u).

Now we can state our result, which is a generalization of Theorem 3.3 from 2-TAR to

K-TAR.

Theorem 7.1. If Assumptions 3.1-3.6 with modifications for K-TAR hold, then n(τ̂n−τ0)

converges weakly to M− and its components are asymptotically independent as n → ∞.

Furthermore, n(τ̂n − τ0) is asymptotically independent of
√
n(β̂n − β0).

8 Conclusion

In this paper, we have, first of all, generalized the classical 1-TAR model, with one threshold

variable, to a 2-TAR model, with two threshold variables, in which we allow interaction

terms and both exogenous and endogenous threshold variables. The driving noise terms

are not restricted to be Gaussian. We have established the asymptotic theory and proved

that the two estimated thresholds will each converge weakly to a smallest minimizer of a

two-sided compound Poisson process and they are asymptotically independent. We have

developed algorithms to obtain the limiting distribution of the estimated thresholds. A

new method, the weighted Nadaraya-Watson method, has been introduced to construct

confidence intervals of threshold parameters, which is a universal method not limited by

the type of threshold variables. The associated computation is much lighter relative to

existing methods. Above all, we have demonstrated the efficacy of our approach to 2-TAR

modelling.

Finally, we have explained in some detail how to extend our results to a K-TAR model

for K ≥ 2. A number of interesting problems await future research: number of threshold

variables, number of regimes, count data and others.

Supplemental Material
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The supplementary contains five parts. Section S.1 discusses information criteria for

order selection and regime specification, and provides an example of regime coalescence.

Section S.2 gives the extended weighted Nadaraya-Watson and modified resampling al-

gorithms with all the parameters estimated. In order to compare with the diminishing-

threshold-effect framework in Chen et al. (2012), Section S.3 discusses on confidence inter-

val construction for thresholds, provides theoretical support and gives simulation results

for different distributions. Section S.4 and S.5 contain proofs of the main results and some

auxiliary lemmas.
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