
Supplementary material for
“On The Least Squares Estimation of

Multiple-Threshold-Variable Autoregressive
Models”

The supplementary contains five parts. Section S.1 discusses information criteria for or-
der selection and regime specification, and provides an example of regime coalescence. Sec-
tion S.2 gives the extended weighted Nadaraya-Watson (WNW) and modified resampling
algorithms with all the parameters estimated. In order to compare with the diminishing-
threshold-effect framework in Chen et al. (2012), Section S.3 discusses on confidence interval
construction for thresholds, provides theoretical support and gives simulation results for
different distributions. Section S.4 and S.5 contain proofs of the main results and some
auxiliary lemmas.

S.1 Information Criteria

In this section, we first discuss information criteria for order selection of threshold models,
and the reason we adopt the AICu. Then, we use the AICu to specify the regime structure
and give an example based on the data in Section 6.2.

S.1.1 Information Criteria for Threshold Models

For the 2-TAR model, in the estimation procedure, we use information criteria to determine
the regime splitting and the order simultaneously. Specifically, the estimation of threshold
and order selection interact in the following way:

1. For each threshold (r, s), select order using information criteria within some maximum
order pmax.

2. Repeat the above procedure in the grid search for each (r, s).

3. Obtain the smallest information criteria among grid search, then output the according
(r, s) and AR coefficients with order pj, j = 1, . . . , 4.

For the self-exciting threshold autoregressive (SETAR) model with one threshold vari-
able, there is a moderate amount of literature proposing different information criteria and
assessing their performance. See, e.g. Wong and Li (1998), De Gooijer (2001), Peña and
Rodriguez (2005), among others. Commonly used ones include the AIC, BIC, AICc, AICu,
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among others. For the 2-TAR model, they write as follows.

AIC({pj}) =
4∑
j=1

[
nj log(σ̂2

jn) + 2(pj + 1)
]
,

BIC({pj}) =
4∑
j=1

[
nj log(σ̂2

jn) + log nj(pj + 1)
]
,

AICc({pj}) =
4∑
j=1

[
nj log(σ̂2

jn) +
2nj(pj + 2)

nj − pj − 3

]
,

AICu({pj}) =
4∑
j=1

[
nj log(σ̂2

jn) +
2nj(pj + 2)

nj − pj − 3
+ nj log

(
nj

nj − pj − 2

)]
,

where nj, pj and σ̂2
jn are the number of observations, order and estimated residual variance

in the jth regime, respectively. From the literature, a good choice for order selection is the
AICu, which has a competitive small sample performance and computational convenience.
Let us now provide an additional argument in favour of the AICu for our case.

Now, simultaneous regime splitting and order selection tends to cause the problem of
“small and overfitted regimes” because excessive regime splitting tends to be favoured by
the information criteria. Specifically, consider the case in which one of the regimes, say
the jth regime, is small in sample size and over-fitted. Then, the variance σ̂2

jn will be
close to zero and approaching negative infinity after taking logarithm, implying that the
first term in the information criteria,

∑4
j=1 nj log(σ̂2

jn), will be large negatively, making this
choice very competitive in the above estimation procedure. This problem is particular to
threshold modeling, since the procedure involves simultaneous regime splitting and order
selection.

One way to handle this problem is to penalize the possibility of getting a “small and
overfitted” regime. Apparently the AIC and BIC cannot do that, while the AICc and AICu
are workable, since the terms

nj
nj−pj−3 and

nj
nj−pj−2 are close to 1 for regimes with moderately

large sample size but will be large for “small and overfitted” regimes. Between the AICc
and AICu, the latter has heavier penalties.

Let’s take a specific example to illustrate the potential disadvantage of the AIC. Con-
sider the empirical application in Section 6.1. If we adopt the AIC in the estimation
procedure, we finally obtain the estimate r̂n = −0.212, ŝn = 0.571 with the smallest the
AIC, which is −222.772. In the four regimes, we have

p1 = 2, p2 = 10, p3 = 10, p4 = 9;

n1 = 77, n2 = 98, n3 = 12, n4 = 90;

σ̂1 = 0.678, σ̂2 = 0.717, σ̂3 = 0.003, σ̂4 = 0.847.

The AICs in the four regimes are −53.858, −43.201, −115.767 and −9.948, respectively.
Clearly Regime 3 is a small and overfitted regime, and its small variance is largely negative
after taking the logarithm. We can see that Regime 3 contributes a lot to the total AIC,
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although it has the fewest observations, making this choice very competitive in the estima-
tion procedure, which turns out to be our final estimate. To compare, the estimation using
the AICu in Section 6.1 is less prone to this overfitting phenomenon.

Thus, as an interim choice, we decide to use the AICu in the estimation procedure.
However, further research is needed, especially when the threshold variables are multiple
or exogenous.

S.1.2 An Example of Regime Coalescence by the AICu

In this part, we consider the regime structure specification using information criteria. For
the self-exciting threshold autoregressive (SETAR) model with one threshold variable, there
is a moderate number of alternatives, mostly to do with information criteria of some kind,
to select the number of regimes, e.g. Gonzalo and Pitarakis (2002), Hamaker (2009), among
others. However, as far as we know, it is still a blank for the multiple-threshold-variable
model as well as for the exogenous-threshold-variable model. As an interim solution, we
use the AICu for regime selection.

In the empirical application in Section 6.2, we note that the coefficients of Regimes 2
and 3 are close, suggesting potential regime coalescence. Thus, we reanalyze this data.
Recalling that a time series {yt} is said to be a pth order 2-TAR model if it satisfies

yt =
4∑
j=1

(β′jyt−1 + σjεt)Ijt(r, s), (S.1.1)

where yt−1 = (1, yt−1, ..., yt−p)
′, βj = (βj0, βj1, ..., βjp)

′ ∈ Rp+1, σj > 0. There are poten-
tially 8 additional regime coalescences.

S1 : β1 = β2, σ1 = σ2.

S2 : β2 = β3, σ2 = σ3.

S3 : β3 = β4, σ3 = σ4.

S4 : β4 = β1, σ4 = σ1.

S5 : β1 = β2 = β3, σ1 = σ2 = σ3.

S6 : β2 = β3 = β4, σ2 = σ3 = σ4.

S7 : β3 = β4 = β5, σ3 = σ4 = σ5.

S8 : β4 = β1 = β2, σ4 = σ1 = σ2.

S1-S4 are structures with 3 regimes and S5-S8 are structures with 2 regimes. And let’s
call the 4-regime structure in (S.1.1) S0. Then, our modelling procedures is modified into:

1. For j = 0, . . . , 8, under the regime structure Sj, implement the estimation procedure
in Section S.1.1.

2. Choose the smallest the AICu among the nine Sj, and output the according Sj and
estimated parameters.
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Following this procedure, we reanalyze the SHI stock data, and the estimation results
could be found in Section 6.2.

S.2 Extended Algorithms

In Section 4, we give Algorithm B and C to estimate F1(γ|r0) conditional on the as-
sumption that all other parameters are known. In practice, we need to first estimate these
parameters, including θ0, σj0, π1(r0), fε(·) and Fε(·). Given the sample X , following the
estimation procedure in Li and Ling (2012), we obtain their consistent estimator, denoting

as θ̂n, σ̂jn, π̂1(r̂n), f̂ε(·) and F̂ε(·). Meanwhile, we obtain the residuals {ε̂1, . . . , ε̂n}. Thus,
we have

γ̂
(1)
t = ξ̂

(1,2)
t I(wt−1 > ŝn) + ξ̂

(4,3)
t I(wt−1 ≤ ŝn), (S.2.1)

with
ξ̂
(i,j)
t = [(β̂in − β̂jn)′yt−1]

2 + 2σ̂inε̂t(β̂in − β̂jn)′yt−1, i, j = 1, ..., 4.

Then, we give Algorithm B′ and C′, extending Algorithm B and C by substituting all
parameters by their consistent estimates.
Algorithm B′:

Step B′.1 For a fixed γ,

F̃WNW
1 (γ|r̂n,X ) =

∑n
t=1 pt(r̂n)Kh(r̂n − zt−1)I(γ̂

(1)
t ≤ γ)∑n

t=1 pt(r̂n)Kh(r̂n − zt−1)
. (S.2.2)

Step B′.2 F̃WNW
1 (·|r0,X ) is defined as the cumulative distribution function of a discrete

distribution taking values at {γ̂(1)t : t = 1, . . . , n} with the according cumula-

tive probability F̃WNW
1 (γ̂

(1)
t |r̂n,X ). Draw a random sample from this discrete

distribution, and denote it as ζ
(1),WNW
1 .

Algorithm C′:

Step C′.1 For each i = 1, ..., n, set qi = (yi, ..., yi−p+1)
′ and generate a sample {y(i)1 , . . . , y

(i)
2−d1−p}

in the following way: first let (y
(i)
1−d1 , ..., y

(i)
2−dl−p)

′ = qi and y
(i)
2−d1 = l−1qi (r̂n); draw

{ε̂(i)3−d1 , ..., ε̂
(i)
1 } independently from F̂ε(·) and generate y

(i)
3−d1 , ..., y

(i)
1 by iterating

model (2.1) based on the initial values {y(i)2−d1 , y
(i)
1−d1 , ..., y

(i)
2−d1−p} and θ0 and σj0

being replaced by θ̂n and σ̂jn. Then, calculate γ̂
(1)
2 in (S.2.1) based on the sample

{y(i)1 , . . . , y
(i)
2−d1−p} and denote it as ζi.

Step C′.2 Replace the θ0,σ0, fε(·) by their estimate θ̂n, σ̂n, f̂ε(·) in (4.2), and calculate
π̂1(r̂n|qi)’s for i = 1, ..., n. Draw a U from the discrete distribution: P(U = i|X ) =

π̂1(r̂n|qi)/{
∑n

j=1 π̂1(r̂n|qj)}, conditionally independent of all {ε̂(i)3−d1 , ..., ε̂
(i)
1 } given

X .

Step C′.3 Obtain ζ
(1),RS
1 = ζU .
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S.3 Comparison of confidence intervals for thresholds

One important topic is to compare the fixed-threshold-effect framework and the diminishing-
threshold-effect framework. Li et al. (2019) and Yu and Phillips (2018) have given some
results on the connection of the asymptotics for these two frameworks under the single
threshold variable setting, which could be generalized to the multiple threshold variable
setting. In this section, we focus on confidence interval (CI) construction for thresholds in
our paper and Chen et al. (2012). However, since Chen et al. (2012) did not detail how to
construct CIs, we will first introduce the method and its theoretical support following the
logic and routine in Hansen (2000). Then, some simulation results will be given to compare
the empirical performance of the CI construction methods. Since Chen et al. (2012) focused
on models with two threshold variables and homoskedastic errors, we pay attention to this
specific case for comparison.

S.3.1 CI construction under the diminishing-threshold-effect frame-
work

Under the single threshold variable setting, Hansen (2000) constructed CI based on the
likelihood ratio test statistic. He did not use the commonly used Wald statistic, since the
fact that the asymptotic distributions depend on unknown parameters may lead to poor
finite sample performance. Generalizing his method, CIs can be constructed for models
with multiple threshold variables. However, Chen et al. (2012) did not demonstrate CI
construction issues. Thus, we first give the details of CI construction for the models con-
sidered in Chen et al. (2012), i.e., models with two threshold variables and homoskedastic
errors.

As shown in Section 2, based on the sum-of-squared-error function Ln(θ), we could get
the concentrated one L∗n(τ ). Define the likelihood ratio test statistic as

LRn(τ ) = n
L∗n(τ )− L∗n(τ̂)

L∗n(τ̂)
.

Then, the asymptotics of LRn(τ ) is given as below.

Lemma S.3.1. Under conditions of Theorem 1 in Chen et al. (2012), we have

LRn(τ0)→d φ = max
r,s∈R

[2W1(r)− |r|+ 2W2(s)− |s|] ,

and W1(r) and W2(s) are each a two-sided Brownian motion defined as

W1(r) =


Λ11(−r) if r < 0
0 if r = 0
Λ12(r) if r > 0

, W2(s) =


Λ21(−s) if s < 0
0 if s = 0
Λ22(s) if s > 0

,

where Λ11(r), Λ12(r), Λ21(s) and Λ22(s) are four independent standard Brownian motions
on [0,∞). And φ has the distribution function

P(φ < x) =

∫ x

0

e−z/2[z(1 + e−z/2) + 4(e−z/2 − 1)]dz.
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Proof. The limiting distribution of φ follows from Theorem 1 in Chen et al. (2012). As for
the distribution function, first define φ1 = maxr∈R [2W1(r)− |r|] and φ2 = maxs∈R [2W2(s)− |s|].
Thus, φ1 and φ2 are i.i.d. By Theorem 2 in Hansen (2000), we have that P(φ1 ≤ x) = (1−
e−x/2)2 for x ≥ 0. It follows that its probability density function is fφ1(x) = (1−e−x/2)e−x/2.
Thus, by a convolution argument, we have

fφ(z) =

∫ z

0

fφ1(x)fφ1(z − x)dx

=

∫ z

0

(1− e−x/2)e−x/2(1− e−(z−x)/2)e−(z−x)/2dx

= e−z/2
[
(1 + e−z/2)x+ 2e−x/2 − 2e−(z−x)/2

]
|z0

= e−z/2[z(1 + e−z/2) + 4(e−z/2 − 1)],

and the distribution function follows.

Since the distribution is available in its closed form, critical values can be easily calcu-
lated and p-value could be obtained. Selected critical values cφ(C) at the significance level
C (e.g. C=0.95) are reported in Table 1.

Table 1: Asymptotic critical values of φ.
C 0.80 0.85 0.90 0.95 0.99
cφ(C) 8.33 9.13 10.21 11.98 15.86

Then, under the diminishing-threshold-effect framework and with the conditions in
Lemma S.3.1, the set

{τ : LRn(τ ) ≤ C} (S.3.1)

is the asymptotic C-level confidence regions based on the likelihood ratio test statistic
LRn(τ ). A graphical method to find the region is to draw LRn(τ ) against τ and draw
a flat plane at cφ(C). Thus, the confidence regions are joint instead of individual for
thresholds. Besides, the confidence region may be disconnected. To solve this for the single
threshold case, Hansen (1997) proposed a more conservative procedure by defining the
smallest convexified interval that incorporates all the confidence regions. This procedure
can be generalized to the 2-TAR model here by changing the convexified interval to a
convexified rectangle.

When the threshold effect is relatively large or fixed, the situation becomes more com-
plicated. Theorem 3 in Hansen (2000) considers the fixed-threshold-effect framework. The
theorem shows that in the special case of iid Gaussian errors, the likelihood ratio test is
asymptotically conservative. For generic cases, the paper claimed that “Unfortunately, we
do not know if Theorem 3 generalizes to the case of non-normal errors or regressors that
are not strictly exogenous. The proof of Theorem 3 relies on the Gaussian error structure
and it is not clear how the theorem would generalize.” As far as we know, there are still
no breakthroughs on this problem.

6



S.3.2 Simulation results on CI under two frameworks

In this section, we give simulation results on CI construction for 2-TAR model with ho-
moskedastic errors, since it is the focus of Chen et al. (2012). And we will evaluate the
empirical performance of CIs construction under the two frameworks. We consider different
distributions for errors, including normal, t, uniform, skew normal and skew t distribution.
For the two skew distributions, we follow the notation in Azzalini and Capitanio (2014).
We consider two 2-TAR models with relatively large and relatively small threshold effects
respectively.

Specifically, the two models are

yt =


−0.6yt−1 + 0.7yt−2 + εt, if yt−2 > 0, yt−1 > 0,
0.7yt−1 − 0.6yt−2 + εt, if yt−2 ≤ 0, yt−1 > 0,
−0.7yt−1 + 0.6yt−2 + εt, if yt−2 ≤ 0, yt−1 ≤ 0,
0.6yt−1 − 0.7yt−2 + εt, if yt−2 > 0, yt−1 ≤ 0,

(S.3.2)

yt =


−0.2yt−1 + 0.4yt−2 + εt, if yt−2 > 0, yt−1 > 0,
0.4yt−1 − 0.2yt−2 + εt, if yt−2 ≤ 0, yt−1 > 0,
−0.4yt−1 + 0.2yt−2 + εt, if yt−2 ≤ 0, yt−1 ≤ 0,
0.2yt−1 − 0.4yt−2 + εt, if yt−2 > 0, yt−1 ≤ 0,

(S.3.3)

where in these two models, εt is i.i.d fromN (0, 1), t(3)/
√

3, U(−
√

3,
√

3), SN (−1.26, 1.61, 5)
and ST (0.82, 0.91,−2, 4), respectively. The parameters are set such that εt has 0 mean and
unit variance. Let the sample sizes be n = 600, 900, and 1200, each with 1000 replications.

To evaluate the performance of CI construction, we assess the coverage probabilities,
mean and standard deviation of the CI lengths under the two frameworks. Under the
diminishing threshold effect framework, the coverage probabilities are considered for CIs
by both the likelihood ratio test statistic and the conservative convexified region approach,
which are indicated by I and II, respectively. As for CI lengths, since they are unavailable
for method I, we use the lengths of two sides of the convexified rectangles in method II.
Tables 2-11 report the results for model (S.3.2), while tables 12-21 report the results for
model (S.3.3).

As we can see, for model (S.3.2) where the threshold effect is relatively large, the CIs
under the fixed framework have quite accurate empirical significance levels. While the CIs
under the diminishing framework generally miss the nominal levels and tend to be rather
conservative in many cases. This conservative phenomenon tends to be more obvious for
light tail distribution (uniform distribution). CIs under the fixed framework tend to have
larger lengths and much smaller standard deviation, except for t distribution.

For model (S.3.3) where the threshold effect is relatively small, the empirical significance
levels for CIs under the fixed framework tend to approach the nominal levels from below as
n increases. Conservativeness under the diminishing framework persists, albeit less severely
than in the large threshold effect model. Under both frameworks, the mean and standard
deviations of CI lengths are much larger than those for model (S.3.2).

To summarize, under the fixed framework, CIs enjoy accurate coverage and stable
lengths when the threshold effect is relatively large, while they tend to be non-conservative
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and might need a large sample size for satisfactory coverage when the threshold effect is
relatively small. Under the diminishing framework, CIs tend to be conservative generally
speaking, with a severity that tends to be lessened when the threshold effect is small.
These findings are consistent with Hansen (2000). The choice between the two frameworks
is an interesting and challenging problem and is beyond the scope of this paper. Interested
readers can find discussions in Yu and Phillips (2018) and Li et al. (2019).

Table 2: Coverage probabilities for normal distribution for model (S.3.2)
fixed r0 fixed s0 diminishing I diminishing II

1− α 600 900 1200 600 900 1200 600 900 1200 600 900 1200
0.900 0.906 0.897 0.914 0.886 0.910 0.900 0.982 0.988 0.988 0.993 0.995 0.995
0.950 0.955 0.953 0.960 0.934 0.958 0.953 0.996 0.996 0.994 1.000 0.998 0.997
0.990 0.993 0.990 0.994 0.986 0.990 0.995 0.999 1.000 0.999 1.000 1.000 1.000

Table 3: Mean and standard deviation of CI lengths for normal distribution for model
(S.3.2)

fixed r0 fixed s0 diminishing II r0 diminishing II s0
1− α 600 900 1200 600 900 1200 600 900 1200 600 900 1200
0.900 0.078 0.051 0.038 0.068 0.045 0.033 0.071 0.045 0.033 0.057 0.037 0.027

0.013 0.007 0.005 0.011 0.006 0.004 0.044 0.030 0.021 0.038 0.026 0.019
0.950 0.106 0.070 0.052 0.092 0.061 0.045 0.079 0.051 0.037 0.063 0.041 0.030

0.018 0.010 0.006 0.015 0.008 0.005 0.048 0.032 0.023 0.040 0.028 0.019
0.990 0.177 0.116 0.087 0.152 0.101 0.075 0.098 0.062 0.045 0.076 0.050 0.036

0.033 0.018 0.011 0.026 0.014 0.009 0.055 0.036 0.026 0.045 0.032 0.022
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Table 4: Coverage probabilities for t distribution for model (S.3.2)
fixed r0 fixed s0 diminishing I diminishing II

1− α 600 900 1200 600 900 1200 600 900 1200 600 900 1200
0.900 0.885 0.902 0.914 0.896 0.906 0.897 0.940 0.951 0.952 0.944 0.966 0.961
0.950 0.938 0.948 0.952 0.937 0.950 0.941 0.949 0.961 0.967 0.956 0.973 0.973
0.990 0.984 0.988 0.982 0.978 0.985 0.978 0.964 0.979 0.982 0.970 0.983 0.984

Table 5: Mean and standard deviation of CI lengths for t distribution for model (S.3.2)
fixed r0 fixed s0 diminishing II r0 diminishing II s0

1− α 600 900 1200 600 900 1200 600 900 1200 600 900 1200
0.900 0.083 0.052 0.039 0.068 0.045 0.032 0.071 0.048 0.034 0.058 0.040 0.029

0.072 0.020 0.028 0.031 0.029 0.009 0.071 0.032 0.023 0.052 0.028 0.021
0.950 0.115 0.074 0.055 0.094 0.063 0.045 0.081 0.054 0.038 0.065 0.045 0.033

0.089 0.029 0.034 0.045 0.042 0.014 0.077 0.036 0.025 0.057 0.030 0.022
0.990 0.197 0.129 0.096 0.161 0.109 0.079 0.104 0.067 0.047 0.079 0.054 0.039

0.124 0.053 0.048 0.079 0.069 0.027 0.098 0.042 0.029 0.078 0.034 0.025

Table 6: Coverage probabilities for uniform distribution for model (S.3.2)
fixed r0 fixed s0 diminishing I diminishing II

1− α 600 900 1200 600 900 1200 600 900 1200 600 900 1200
0.900 0.912 0.898 0.910 0.892 0.890 0.906 0.998 1.000 1.000 1.000 1.000 1.000
0.950 0.958 0.949 0.952 0.943 0.946 0.955 1.000 1.000 1.000 1.000 1.000 1.000
0.990 0.988 0.989 0.987 0.991 0.990 0.991 1.000 1.000 1.000 1.000 1.000 1.000

Table 7: Mean and standard deviation of CI lengths for uniform distribution for model
(S.3.2)

fixed r0 fixed s0 diminishing II r0 diminishing II s0
1− α 600 900 1200 600 900 1200 600 900 1200 600 900 1200
0.900 0.079 0.051 0.038 0.068 0.045 0.033 0.068 0.044 0.032 0.053 0.036 0.026

0.012 0.006 0.004 0.009 0.005 0.003 0.044 0.028 0.022 0.037 0.024 0.018
0.950 0.106 0.069 0.052 0.092 0.061 0.045 0.077 0.049 0.036 0.059 0.039 0.029

0.016 0.008 0.005 0.012 0.007 0.004 0.049 0.030 0.023 0.039 0.026 0.020
0.990 0.173 0.113 0.085 0.148 0.098 0.073 0.097 0.059 0.043 0.071 0.047 0.035

0.027 0.015 0.010 0.021 0.012 0.008 0.055 0.034 0.026 0.043 0.029 0.022

Table 8: Coverage probabilities for skew normal distribution for model (S.3.2)
fixed r0 fixed s0 diminishing I diminishing II

1− α 600 900 1200 600 900 1200 600 900 1200 600 900 1200
0.900 0.902 0.912 0.902 0.893 0.915 0.902 0.978 0.990 0.978 0.984 0.992 0.989
0.950 0.949 0.956 0.946 0.948 0.957 0.945 0.988 0.994 0.991 0.990 0.995 0.994
0.990 0.988 0.990 0.987 0.992 0.992 0.987 0.993 0.998 0.996 0.997 0.998 0.999
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Table 9: Mean and standard deviation of CI lengths for skew normal distribution for model
(S.3.2)

fixed r0 fixed s0 diminishing II r0 diminishing II s0
1− α 600 900 1200 600 900 1200 600 900 1200 600 900 1200
0.900 0.080 0.053 0.040 0.071 0.046 0.034 0.070 0.046 0.035 0.058 0.038 0.030

0.015 0.008 0.005 0.013 0.006 0.004 0.046 0.030 0.022 0.039 0.025 0.021
0.950 0.110 0.073 0.054 0.097 0.063 0.047 0.079 0.052 0.039 0.065 0.042 0.033

0.021 0.012 0.008 0.018 0.009 0.006 0.051 0.033 0.023 0.042 0.028 0.022
0.990 0.182 0.121 0.090 0.160 0.104 0.077 0.099 0.064 0.048 0.079 0.051 0.040

0.038 0.021 0.014 0.032 0.016 0.011 0.060 0.039 0.027 0.047 0.032 0.025

Table 10: Coverage probabilities for skew t distribution for model (S.3.2)
fixed r0 fixed s0 diminishing I diminishing II

1− α 600 900 1200 600 900 1200 600 900 1200 600 900 1200
0.900 0.909 0.902 0.910 0.910 0.907 0.902 0.952 0.957 0.951 0.954 0.970 0.959
0.950 0.951 0.958 0.955 0.951 0.945 0.943 0.960 0.970 0.963 0.962 0.973 0.968
0.990 0.986 0.990 0.989 0.987 0.978 0.983 0.979 0.978 0.982 0.981 0.980 0.985

Table 11: Mean and standard deviation of CI lengths for skew t distribution for model
(S.3.2)

fixed r0 fixed s0 diminishing II r0 diminishing II s0
1− α 600 900 1200 600 900 1200 600 900 1200 600 900 1200
0.900 0.076 0.048 0.036 0.063 0.041 0.030 0.067 0.043 0.032 0.053 0.034 0.025

0.035 0.012 0.009 0.022 0.010 0.006 0.044 0.028 0.022 0.037 0.025 0.017
0.950 0.106 0.067 0.051 0.087 0.056 0.042 0.076 0.048 0.036 0.058 0.038 0.028

0.050 0.019 0.014 0.031 0.015 0.009 0.049 0.030 0.024 0.039 0.026 0.018
0.990 0.180 0.115 0.087 0.147 0.095 0.071 0.094 0.059 0.045 0.070 0.045 0.033

0.083 0.036 0.027 0.055 0.027 0.018 0.058 0.035 0.027 0.044 0.029 0.020

Table 12: Coverage probabilities for normal distribution for model (S.3.3)
fixed r0 fixed s0 diminishing I diminishing II

1− α 600 900 1200 600 900 1200 600 900 1200 600 900 1200
0.900 0.798 0.842 0.856 0.828 0.858 0.882 0.942 0.954 0.955 0.981 0.989 0.992
0.950 0.864 0.915 0.912 0.884 0.904 0.922 0.968 0.974 0.973 0.992 0.996 0.996
0.990 0.944 0.971 0.970 0.946 0.968 0.973 0.990 0.993 0.994 1.000 0.999 1.000
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Table 13: Mean and standard deviation of CI lengths for normal distribution for model
(S.3.3)

fixed r0 fixed s0 diminishing II r0 diminishing II s0
1− α 600 900 1200 600 900 1200 600 900 1200 600 900 1200
0.900 0.313 0.185 0.134 0.253 0.152 0.106 0.416 0.240 0.169 0.303 0.177 0.123

0.203 0.102 0.068 0.179 0.090 0.050 0.276 0.141 0.107 0.229 0.108 0.064
0.950 0.410 0.251 0.183 0.334 0.206 0.147 0.498 0.293 0.200 0.359 0.207 0.142

0.221 0.118 0.080 0.198 0.104 0.063 0.321 0.171 0.121 0.261 0.118 0.070
0.990 0.622 0.405 0.298 0.518 0.335 0.245 0.689 0.398 0.269 0.497 0.277 0.189

0.246 0.144 0.098 0.226 0.130 0.085 0.400 0.209 0.144 0.334 0.153 0.088

Table 14: Coverage probabilities for t distribution for model (S.3.3)
fixed r0 fixed s0 diminishing I diminishing II

1− α 600 900 1200 600 900 1200 600 900 1200 600 900 1200
0.900 0.802 0.832 0.849 0.801 0.836 0.842 0.917 0.913 0.927 0.958 0.947 0.956
0.950 0.851 0.891 0.903 0.866 0.893 0.906 0.943 0.947 0.948 0.974 0.963 0.970
0.990 0.911 0.954 0.960 0.932 0.946 0.955 0.973 0.969 0.974 0.986 0.979 0.985

Table 15: Mean and standard deviation of CI lengths for t distribution for model (S.3.3)
fixed r0 fixed s0 diminishing II r0 diminishing II s0

1− α 600 900 1200 600 900 1200 600 900 1200 600 900 1200
0.900 0.309 0.192 0.133 0.310 0.186 0.129 0.316 0.189 0.134 0.285 0.182 0.136

0.335 0.209 0.143 0.368 0.206 0.130 0.223 0.121 0.098 0.199 0.134 0.103
0.950 0.408 0.256 0.178 0.402 0.247 0.176 0.373 0.218 0.156 0.333 0.212 0.155

0.381 0.238 0.160 0.408 0.232 0.153 0.252 0.141 0.110 0.222 0.150 0.110
0.990 0.631 0.402 0.287 0.611 0.392 0.285 0.500 0.288 0.206 0.450 0.283 0.201

0.459 0.285 0.191 0.474 0.280 0.192 0.306 0.174 0.133 0.282 0.188 0.126

Table 16: Coverage probabilities for uniform distribution for model (S.3.3)
fixed r0 fixed s0 diminishing I diminishing II

1− α 600 900 1200 600 900 1200 600 900 1200 600 900 1200
0.900 0.770 0.853 0.841 0.805 0.860 0.872 0.943 0.958 0.959 0.979 0.991 0.992
0.950 0.845 0.903 0.902 0.872 0.917 0.933 0.966 0.982 0.975 0.994 0.996 0.999
0.990 0.918 0.957 0.959 0.938 0.966 0.976 0.993 0.998 0.997 1.000 0.999 0.999
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Table 17: Mean and standard deviation of CI lengths for uniform distribution for model
(S.3.3)

fixed r0 fixed s0 diminishing II r0 diminishing II s0
1− α 600 900 1200 600 900 1200 600 900 1200 600 900 1200
0.900 0.367 0.225 0.161 0.285 0.169 0.114 0.565 0.331 0.225 0.389 0.214 0.146

0.210 0.118 0.078 0.185 0.098 0.053 0.366 0.216 0.148 0.312 0.153 0.090
0.950 0.474 0.299 0.217 0.375 0.227 0.157 0.671 0.396 0.267 0.460 0.252 0.171

0.222 0.132 0.088 0.206 0.113 0.065 0.406 0.247 0.164 0.346 0.170 0.100
0.990 0.706 0.464 0.345 0.572 0.362 0.260 0.906 0.543 0.367 0.638 0.343 0.227

0.236 0.147 0.103 0.234 0.136 0.087 0.474 0.301 0.205 0.442 0.225 0.127

Table 18: Coverage probabilities for skew normal distribution for model (S.3.3)
fixed r0 fixed s0 diminishing I diminishing II

1− α 600 900 1200 600 900 1200 600 900 1200 600 900 1200
0.900 0.809 0.833 0.857 0.847 0.855 0.846 0.947 0.941 0.942 0.982 0.978 0.985
0.950 0.880 0.892 0.919 0.914 0.918 0.903 0.981 0.966 0.970 0.993 0.991 0.992
0.990 0.935 0.956 0.979 0.961 0.971 0.973 0.994 0.994 0.988 0.998 0.999 0.998

Table 19: Mean and standard deviation of CI lengths for skew normal distribution for
model (S.3.3)

fixed r0 fixed s0 diminishing II r0 diminishing II s0
1− α 600 900 1200 600 900 1200 600 900 1200 600 900 1200
0.900 0.302 0.183 0.127 0.215 0.135 0.095 0.399 0.232 0.167 0.266 0.150 0.114

0.201 0.107 0.065 0.161 0.086 0.049 0.262 0.150 0.101 0.199 0.086 0.062
0.950 0.395 0.246 0.174 0.287 0.184 0.132 0.474 0.276 0.198 0.311 0.176 0.133

0.221 0.121 0.077 0.184 0.100 0.060 0.291 0.170 0.111 0.229 0.102 0.069
0.990 0.596 0.391 0.286 0.453 0.301 0.219 0.653 0.376 0.267 0.421 0.236 0.173

0.244 0.144 0.097 0.224 0.127 0.083 0.361 0.211 0.144 0.289 0.130 0.085

Table 20: Coverage probabilities for skew t distribution for model (S.3.3)
fixed r0 fixed s0 diminishing I diminishing II

1− α 600 900 1200 600 900 1200 600 900 1200 600 900 1200
0.900 0.791 0.831 0.832 0.774 0.825 0.835 0.924 0.929 0.925 0.964 0.962 0.961
0.950 0.845 0.881 0.891 0.823 0.877 0.893 0.947 0.949 0.956 0.974 0.977 0.977
0.990 0.923 0.948 0.960 0.912 0.949 0.962 0.979 0.980 0.977 0.994 0.989 0.986
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Table 21: Mean and standard deviation of CI lengths for skew t distribution for model
(S.3.3)

fixed r0 fixed s0 diminishing II r0 diminishing II s0
1− α 600 900 1200 600 900 1200 600 900 1200 600 900 1200
0.900 0.355 0.210 0.141 0.368 0.216 0.137 0.379 0.220 0.162 0.378 0.223 0.153

0.390 0.201 0.125 0.408 0.229 0.130 0.255 0.149 0.094 0.297 0.166 0.093
0.950 0.455 0.280 0.193 0.468 0.283 0.186 0.451 0.261 0.189 0.449 0.263 0.177

0.421 0.227 0.149 0.439 0.255 0.150 0.290 0.178 0.107 0.331 0.184 0.101
0.990 0.687 0.446 0.314 0.696 0.441 0.302 0.612 0.347 0.248 0.618 0.349 0.234

0.477 0.277 0.191 0.490 0.302 0.186 0.364 0.212 0.135 0.412 0.227 0.128

S.4 Proofs of Theorems

S.4.1 Proof of Theorem 3.1

Before the proof of Theorem 3.1, we first give two lemmas. Let et(θ) = yt−
∑4

j=1 β
′
jyt−1Ijt(r, s).

Recall that et is just the et(θ) when θ = θ0.

Lemma S.4.1. If the conditions in Theorem 3.1 hold, then Ee2t (θ) ≥ Ee2t for all θ ∈ Θ,
and the equality holds if and only if θ = θ0.

Proof. Because εt and Ft−1 are independent, a conditional argument yields that

Ee2t (θ) = E[et(θ)− et]2 + 2E{et[et(θ)− et]}+ Ee2t
= E[et(θ)− et]2 + Ee2t ≥ Ee2t ,

for all θ ∈ Θ. The equality holds if and only if E[et(θ
∗)− et]2 = 0 for some θ∗ ∈ Θ, which

is equivalent to that et(θ
∗)− et = 0 a.s. Since

et(θ
∗)− et =

4∑
j=1

β′j0yt−1Ijt(τ0)−
4∑
i=1

β∗
′

i yt−1Iit(τ
∗)

=
[ 4∑
j=1

4∑
i=1

(βj0 − β∗i )′Ijt(τ0)Iit(τ ∗)
]
yt−1,

we have

4∑
j=1

4∑
i=1

(βj0 − β∗i )Ijt(τ0)Iit(τ ∗) = 0 a.s..

By the orthogonality among the indicator functions above, it follows that

4∑
j=1

4∑
i=1

‖βj0 − β∗i ‖E[Ijt(τ0)Iit(τ
∗)] = 0. (S.4.1)
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We first prove r∗ = r0. Suppose r∗ < r0. If s∗ < s0, by Assumption 3.3, it follows that

E[I1t(τ0)I1t(τ
∗)] = P(zt−1 > r0, wt−1 > s0) > 0,

E[I2t(τ0)I1t(τ
∗)] = P(r∗ < zt−1 ≤ r0, wt−1 > s0) > 0,

E[I3t(τ0)I1t(τ
∗)] = P(r∗ < zt−1 ≤ r0, s

∗ < wt−1 ≤ s0) > 0,

E[I4t(τ0)I1t(τ
∗)] = P(zt−1 > r0, s

∗ < wt−1 ≤ s0) > 0.

Then, by (S.4.1), we have β∗1 = β10 = β20 = β30 = β40. Similarly, if s∗ ≥ s0, then
β∗1 = β10 = β20 and β∗4 = β30 = β40. Both cases contradict condition (ii) in Theorem 3.1.
Thus, r∗ ≥ r0. A similar argument can show r∗ ≤ r0 and in turn r∗ = r0. Second, we can
similarly prove s∗ = s0. Finally, by the orthogonality among the indicator functions again,
it follows that β∗j = βj0, j = 1, ..., 4. Therefore θ∗ = θ0. �

Lemma S.4.2. For any θ ∈ Θ and any η > 0, define an open neighborhood of θ as
Uθ(η) = {θ∗ ∈ Θ : ‖β∗j − βj‖ < η, |r∗ − r| < η, |s∗ − s| < η, j = 1, ..., 4}. If the conditions
in Theorem 3.1 hold, then

E sup
θ∗∈Uθ(η)

|e2t (θ∗)− e2t (θ)| → 0 as η → 0.

Proof. Clearly, e2t (θ) can be decomposed as follows

e2t (θ) = e2t + 2et[et(θ)− et] + [et(θ)− et]2

=
4∑
j=1

4∑
i=1

{e2t + 2et(βj0 − βi)′yt−1 + [(βj0 − βi)′yt−1]2}Ijt(τ0)Iit(τ )

≡
4∑
j=1

4∑
i=1

[φij1(θ) + φij2(θ) + φij3(θ)].

It suffices to prove for each φijk(θ), i, j = 1, 2, 3, 4, k = 1, 2, 3,

E sup
θ∗∈Uθ

|φijk(θ∗)− φijk(θ)| → 0 as η → 0. (S.4.2)

For example, for φ11k(θ), k = 1, 2, 3, we have

|φ111(θ
∗)− φ111(θ)| =e2t I1t(τ0)

∣∣I1t(τ ∗)− I1t(τ )
∣∣ ≤ e2t I({|zt−1 − r| ≤ η} ∪ {|wt−1 − s| ≤ η}),

|φ112(θ
∗)− φ112(θ)| =

∣∣et(β10 − β∗1)′yt−1I1t(τ0)I1t(τ
∗)− et(β10 − β1)

′yt−1I1t(τ0)I1t(τ )
∣∣

≤η‖etyt−1‖+ 2‖β10 − β1‖‖etyt−1‖I({|zt−1 − r| ≤ η} ∪ {|wt−1 − s| ≤ η}),
|φ113(θ

∗)− φ113(θ)| =
∣∣[(β10 − β∗1)′yt−1]

2I1t(τ0)I1t(τ
∗)− [(β10 − β1)

′yt−1]
2I1t(τ0)I1t(τ )

∣∣
≤2η(‖β10 − β1‖+ η)‖yt−1‖2

+ ‖β10 − β1‖2‖yt−1‖2I({|zt−1 − r| ≤ η} ∪ {|wt−1 − s| ≤ η}).

Thus, (S.4.2) holds for φ11k(θ), k = 1, 2, 3, by Ey2t < ∞ and the dominated convergence
theorem. The other cases can be proved similarly. �
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We adopt the approach in Huber (1967) to complete the proof. For any given open
neighborhood V of θ0 ∈ Θ and any θ ∈ V c = Θ\V , it follows that Ee2t (θ) > Ee2t (θ0)
by Lemma S.4.1. Lemma S.4.2 implies that Ee2t (θ) is continuous in θ. Applying the
compactness of V c, there exists a κ > 0 such that

inf
θ∈V c

Ee2t (θ)− Ee2t (θ0) ≥ 3κ > 0.

For any θ ∈ V c, by Lemma S.4.2 again, there exists an η > 0 such that

E inf
θ∗∈Uθ(η)

[e2t (θ
∗)− e2t (θ0)] ≥ Ee2t (θ)− κ− Ee2t (θ0) ≥ 2κ.

Since V c is compact, there exists a finite covering of V c: {Uθj(η),θj ∈ V c, j = 1, 2, ..., T}
such that V c ⊂ ∪Tj=1Uθj(η). Since yt is stationary and ergodic, by the strong law of large
numbers, we have a.s.

inf
θ∗∈Uθj

(η)

1

n

n∑
t=1

[e2t (θ
∗)− e2t (θ0)] ≥

1

n

n∑
t=1

inf
θ∗∈Uθj

(η)
[e2t (θ

∗)− e2t (θ0)]

≥ E inf
θ∗∈Uθ(η)

[e2t (θ
∗)− e2t (θ0)]− κ ≥ κ

for n large enough and each 1 ≤ j ≤ T . Note that

inf
θ∈V

1

n

n∑
t=1

[e2t (θ)− e2t (θ0)] ≤
1

n

n∑
t=1

[e2t (θ0)− e2t (θ0)] = 0.

Thus, for any neighborhood V of θ0, it follows that for n large enough,

inf
θ∗∈V c

1

n

n∑
t=1

[e2t (θ
∗)− e2t (θ0)] = min

1≤j≤T
inf

θ∗∈Uθj
(η)

1

n

n∑
t=1

[e2t (θ
∗)− e2t (θ0)]

≥ κ > 0 ≥ inf
θ∈V

1

n

n∑
t=1

[e2t (θ)− e2t (θ0)],

which implies that θ̂n ∈ V a.s. By the arbitrariness of V , we have θ̂n → θ0 a.s.. The proof
is complete.

S.4.2 Proof of Theorem 3.2 (i)

Since θ̂n is consistent, we restrict the parameter space to an open neighborhood of θ0.
Define Vδ = {θ ∈ Θ : ‖β − β0‖ < δ, |r − r0| < δ, |s − s0| < δ} for some 0 < δ < 1 to be
determined later.

First consider a simple case where p = 1 and there are four regimes. It suffices to prove
that for any ε > 0, there exists B > 0 such that, with probability greater than 1− ε,

Ln(β, τ )− Ln(β, τ0) > 0 for |r − r0| > B/n, |s− s0| > B/n and θ ∈ Vδ.
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Note that the difference of e2t (β, τ ) and e2t (β, τ0) is nonzero only in the region Λt =
I
(
{r ∧ r0 < zt−1 ≤ r ∨ r0} ∪ {s ∧ s0 < wt−1 ≤ s ∨ s0}

)
. Here we only treat the case r > r0,

s > s0. Proofs of the other three cases are similar. Write r = r0 + u, s = s0 + v for some
0 < u, v < 1 and let α

(j)
t = (yt − β′jyt−1)2 and α

(j0)
t = (yt − β′j0yt−1)2. Then

Ln(β, τ )− Ln(β, τ0) =
[
Ln(β, r, s0)− Ln(β, τ0)

]
+
[
Ln(β, τ )− Ln(β, r, s0)

]
≡Rn(β, u) +Qn(θ, v),

where

Rn(β, u) =
n∑
t=1

[
(α

(2)
t − α

(1)
t )I(wt−1 > s0) + (α

(3)
t − α

(4)
t )I(wt−1 ≤ s0)

]
I(r0 < zt−1 ≤ r0 + u),

Qn(θ, v) =
n∑
t=1

[
(α

(4)
t − α

(1)
t )I(zt−1 > r) + (α

(3)
t − α

(2)
t )I(zt−1 ≤ r)

]
I(s0 < wt−1 ≤ s0 + v).

Thus, it suffices to prove that, for any ε > 0, there exist constants B > 0 and γ > 0 such
that

P

(
inf

B/n<u<δ
θ∈Vδ

Rn(β, u)

nG(u)
> γ

)
≥ 1− ε and P

(
inf

B/n<v<δ
θ∈Vδ

Qn(θ, v)

nK(v)
> γ

)
≥ 1− ε,

where G(u) = P(r0 < zt−1 ≤ r0 + u) and K(v) = P(s0 < wt−1 ≤ s0 + v).
Consider Rn(β, u), which can be decomposed as

Rn(β, u) =
[
Ln(β0, r, s0)− Ln(β0, τ0)

]
+
{

[Ln(β, r, s0)− Ln(β0, r, s0)]− [Ln(β, τ0)− Ln(β0, τ0)]
}

≡R(1)
n (u) +R(2)

n (β, u), (S.4.3)

where

R(1)
n (u) =

n∑
t=1

[
(α

(20)
t − α(10)

t )I(wt−1 > s0) + (α
(30)
t − α(40)

t )I(wt−1 ≤ s0)
]
I(r0 < zt−1 ≤ r0 + u)

=
n∑
t=1

[
ξ
(1,2)
t I(wt−1 > s0) + ξ

(4,3)
t I(wt−1 ≤ s0)

]
I
(
r0 < zt−1 ≤ r0 + u

)
,

R(2)
n (β, u) =

n∑
t=1

{[
(α

(2)
t − α

(20)
t )− (α

(1)
t − α

(10)
t )

]
I(wt−1 > s0)

+
[
(α

(3)
t − α

(30)
t )− (α

(4)
t − α

(40)
t )

]
I(wt−1 ≤ s0)

}
I(r0 < zt−1 ≤ r0 + u).

For R
(1)
n (u), by Assumption 3.6, in the four-regime case, for all j there exist some

positive constants c0 and d such that |(βi0 − βj0)′yt−1| ≥ c0 > 0 for all yt−1 satisfying
‖yt−1 − Γ‖ ≤ d. Then

ξ
(i,j)
t =[(βi0 − βj0)′yt−1]2 + 2et(βi0 − βj0)′yt−1
≥c20I(‖yt−1 − Γ‖ ≤ d) + 2et(βi0 − βj0)′yt−1.

(S.4.4)
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Let ω = max
1≤i,j≤4

‖βi0 − βj0‖. By (S.4.4) and Lemma S.5.1, for R
(1)
n (u), we have

R(1)
n (u) ≥ c20G

∗
n(u)− 2ω

(∣∣∣ n∑
t=1

At(u)
∣∣∣+
∣∣∣ n∑
t=1

Dt(u)
∣∣∣),

where G∗n(u), At(u), Dt(u), and other notations used below are defined in Lemma S.5.1.
Thus,

inf
B/n<u<δ

R
(1)
n (u)

nG(u)

≥c20 inf
B/n<u<δ

G∗n(u)

nG∗(u)

G∗(u)

G(u)
− 2ω sup

B/n<u<δ

∣∣∑n
t=1At(u)

∣∣+
∣∣∑n

t=1Dt(u)
∣∣

nG(u)

≥c20
(

1− sup
B/n<u<δ

∣∣∣ G∗n(u)

nG∗(u)
− 1
∣∣∣)G∗(u)

G(u)
− 2ω sup

B/n<u<δ

∣∣∑n
t=1At(u)

∣∣+
∣∣∑n

t=1Dt(u)
∣∣

nG(u)
.

Note that

G∗(u)

G(u)
=P(‖yt−1 − Γ‖ ≤ d|r0 < zt−1 ≤ r0 + u)

→P(‖yt−1 − Γ‖ ≤ d|zt−1 = r0) > 0 as u ↓ 0,

which implies that the infimum below exists for sufficiently small δ > 0, namely,

c1 ≡ inf
0<u<δ

G∗(u)

G(u)
> 0.

Choose η0 > 0 such that 2γ = c20c1− (c20c1 + 4ω)η0 > 0. By Lemma S.5.1 (ii)-(iv), it follows
that

P
(

inf
B/n<u<δ

R
(1)
n (u)

nG(u)
> 2γ

)
≥P
(

sup
B/n<u<δ

∣∣∣ G∗n(u)

nG∗(u)
− 1
∣∣∣ < η0, sup

B/n<u<δ

∣∣∑n
t=1At(u)

∣∣
nG(u)

< η0, sup
B/n<u<δ

∣∣∑n
t=1Dt(u)

∣∣
nG(u)

< η0

)
≥1− ε. (S.4.5)

Note that[
(α

(2)
t − α

(20)
t )− (α

(1)
t − α

(10)
t )

]
I(wt−1 > s0)I(r0 < zt−1 ≤ r0 + u)

=
{[

(β20 − β2)
′yt−1

]2 − [(β10 − β1)
′yt−1

]2
+ 2(β20 − β2)

′yt−1(β10 − β20)
′yt−1

+ 2et(β1 − β10 + β20 − β2)
′yt−1

}
I(wt−1 > s0)I(r0 < zt−1 ≤ r0 + u).

(S.4.6)

For R
(2)
n (β, u), by (S.4.6) and Lemma S.5.1, we have

|R(2)
n (β, u)| ≤Cδ

(
E(‖y1‖2)Gn(u) +

∣∣∣ n∑
t=1

Ht(u)
∣∣∣+
∣∣∣ n∑
t=1

At(u)
∣∣∣+
∣∣∣ n∑
t=1

Dt(u)
∣∣∣),
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which leads to

sup
B/n<u<δ
θ∈Vδ

|R(2)
n (β, u)|
nG(u)

≤ Cδ

{
E(‖y1‖2)

[
sup

B/n<u<δ

∣∣∣Gn(u)

nG(u)
− 1
∣∣∣+ 1

]

+ sup
B/n<u<δ

∣∣∑n
t=1Ht(u)

∣∣+
∣∣∑n

t=1At(u)
∣∣+
∣∣∑n

t=1Dt(u)
∣∣

nG(u)

}
= Op(δ). (S.4.7)

Then, by (S.4.3), (S.4.5) and (S.4.7), for sufficiently small δ > 0, we have

P

(
inf

B/n<u<δ
θ∈Vδ

Rn(β, u)

nG(u)
> γ

)
≥P

(
inf

B/n<u<δ

R
(1)
n (u)

nG(u)
− sup

B/n<u<δ
θ∈Vδ

|R(2)
n (β, u)|
nG(u)

> γ

)

≥1− P
(

inf
B/n<u<δ

R
(1)
n (u)

nG(u)
≤ 2γ

)
− P

(
sup

B/n<u<δ
θ∈Vδ

|R(2)
n (β, u)|
nG(u)

≥ γ

)

≥1− 2ε.

As for Qn(θ, v), using the similar technique, we can obtain the result. Then the proofs
for four-regime cases are complete.

Now consider the three-regime and two-regime cases. The only difference is that (S.4.4)
is not satisfied for all j. All the indicator functions in Lemma S.5.1(ii), (iii) and (iv) need
to be multiplied by I(wt−1 ≤ s0). Then, with suitable modifications, the preceding proof
would go through. This completes the proof for p = 1.

For general p, replace Dt(u) = yt−1etI(r0 < zt−1 ≤ r0 + u) by Dt(u) = yt−ietI(r0 <
zt−1 ≤ r0 + u), where i = 1, ..., p and the preceding proof would go through. This finally
completes the proof.

S.4.3 Proof of Theorem 3.2 (ii)

Let ln(β, τ ) = Ln(β, τ )/n. By the Taylor expansion of ∂ln(β, τ )/∂β, we have

0 =
∂ln(β̂n(τ ), τ )

∂β
=
∂ln(β0, τ )

∂β
+
∂2ln(β̃, τ )

∂β∂β′
(β̂n(τ )− β0), (S.4.8)

where β̃ lies in between β̂n and β0, i.e., ‖β̃ − β0‖ ≤ ‖β̂n − β0‖.
Let Σ̃ = diag(Σ1,Σ2,Σ3,Σ4). Since E(y2t ) <∞, by the law of large numbers, it follows

that

∂2ln(θ0)

∂β∂β′
→ 2Σ̃, a.s. as n→∞.

Further, by (S.4.8) and Lemma S.5.2, we have

sup
‖τ−τ0‖≤B/n

∥∥∥√n[β̂n(τ )− β0

]
+ (2Σ̃)−1

√
n
∂ln(θ0)

∂β

∥∥∥ = op(1).
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Thus,

sup
‖τ−τ0‖≤B/n

√
n‖β̂n(τ )− β̂n(τ0)‖ ≤ sup

‖τ−τ0‖≤B/n

∥∥∥√n[β̂n(τ )− β0

]
+ (2Σ̃)−1

√
n
∂ln(θ0)

∂β

∥∥∥
+
∥∥∥√n[β̂n(τ0)− β0

]
+ (2Σ̃)−1

√
n
∂ln(θ0)

∂β

∥∥∥
=op(1).

Note that

√
n
∂ln(θ0)

∂β
=

2√
n

n∑
t=1

∂et(θ0)

∂β
et

and {et ∂et(θ0)/∂β} is a martingale difference sequence in terms of {Ft}. By the martingale
central limit theorem in Brown (1971), it follows that

√
n
∂ln(θ0)

∂β
→d N (0, 4Σ̊),

where Σ̊ = diag(σ2
10Σ1, σ

2
20Σ2, σ

2
30Σ3, σ

2
40Σ4). Thus,

√
n(β̂n − β0)→d N (0,Σ−1).

The proof is complete.

S.4.4 Proof of Proposition 3.1

For simplicity, we only consider the case u > 0, v > 0 and p = 1. Other cases are similar.
Denote It(u/n, v/n) = I

(
r0 < zt−1 ≤ r0 + u/n, s0 < wt−1 ≤ s0 + v/n

)
. The cross term is

L̃n(u, v)− R̃n(u)− Q̃n(v) =
n∑
t=1

(
ξ
(13)
t − ξ(12)t − ξ(14)t

)
It(u, v). (S.4.9)

Recalling ω = max
1≤i,j≤4

‖βi0 − βj0‖, it follows that

ξ
(i,j)
t = [(βi0 − βj0)′yt−1]2 + 2et(βi0 − βj0)′yt−1 ≤ ω2‖yt−1‖2 + 2ω(|et|+ |etyt−1|).

Define

G(u/n, v/n) = E(It(u/n, v/n)), At(u/n, v/n) = etIt(u/n, v/n),

Dt(u/n, v/n) = yt−1etIt(u/n, v/n), Ht(u/n, v/n) = (‖yt−1‖2 − E‖yt−1‖2)It(u/n, v/n).

Then, there exists a constant H > 0 such that

n∑
t=1

ξ
(i,j)
t It(u/n, v/n)

≤H

{
n∑
t=1

It(u/n, v/n) +

∣∣∣∣∣
n∑
t=1

Ht(u/n, v/n)

∣∣∣∣∣+

∣∣∣∣∣
n∑
t=1

At(u/n, v/n)

∣∣∣∣∣+

∣∣∣∣∣
n∑
t=1

Dt(u/n, v/n)

∣∣∣∣∣
}
.
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It suffices to prove that
∑n

t=1 It(u/n, v/n),
∣∣∑n

t=1Ht(u/n, v/n)
∣∣, ∣∣∑n

t=1At(u/n, v/n)
∣∣ and∣∣∑n

t=1Dt(u/n, v/n)
∣∣ are all op(1). And the proof arguments are similar to those of (i), (iii),

(iv) and (v) in Lemma S.5.1. We only detail the proof of
∑n

t=1 It(u/n, v/n) and others are
similar.

Similar to (S.5.1), (S.5.2) and (S.5.3), by choosing B sufficiently small, there exist
0 < m < M <∞ and H > 0, independent of n, such that for any u, v ∈ [0, B),

muv/n2 ≤ G(u/n, v/n) ≤Muv/n2,

Var(It(u/n, v/n)) ≤ HG(u/n, v/n),

Var
( n∑
t=1

It(u/n, v/n)
)
≤ nHG(u/n, v/n).

Without loss of generality, let G(u, v) = uv. Using the Markov inequality, for each ε > 0,

P

(
n∑
t=1

It(u/n, v/n) > ε

)
≤ nHuv/(n2ε2) = Huv/(nε2)→ 0, as n→∞,

which means
∑n

t=1 It(u/n, v/n) = op(1). The other three term are all op(1) by similar

approach, and thus so is
∑n

t=1 ξ
(i,j)
t It(u/n, v/n). By (S.4.9), the result holds.

S.4.5 Proof of Theorem 3.3

Define ψn(u, v) = R̃n(u)+Q̃n(v). First, we show that ψn(u, v) converges weakly to a spatial
compound Poisson process. The proof consists of two steps: (i) verifying the tightness of
ψn(u, v); (ii) characterizing the convergence of finite-dimensional distributions.

(i). Tightness of ψn(u, v). Similar to Li and Ling (2012) and Li et al. (2013), it is not
hard to prove the tightness of R̃n(u) and Q̃n(v), respectively. Thus, ψn(u, v) is tight.

(ii). Convergence of finite-dimensional distributions. Without loss of generality, we

assume ξ
(i,j)
t is bounded. Otherwise, use the truncating technique in Li et al. (2013) to

truncate ξ
(i,j)
t and then consider a truncated process. Here, we only consider the case

u > 0, v > 0. Other cases are similar. For any 0 ≤ u1 ≤ u2 ≤ u3 ≤ u4 < ∞, 0 ≤ v1 ≤
v2 ≤ v3 ≤ v4 < ∞ and any constants c1 and c2, the linear combination of the increments
of ψn(u, v) is

Sn ≡c1
[
ψn(u2, v2)− ψn(u1, v1)

]
+ c2

[
ψn(u4, v4)− ψn(u3, v3)

]
=

n∑
t=1

{[
ξ
(1,2)
t I(wt−1 > s0 + v1/n) + ξ

(4,3)
t I(wt−1 ≤ s0 + v1/n)

]
c1I

(1)
1t

+
[
ξ
(1,2)
t I(wt−1 > s0 + v3/n) + ξ

(4,3)
t I(wt−1 ≤ s0 + v3/n)

]
c2I

(3)
1t

+
[
ξ
(1,4)
t I(zt−1 > r0 + u2/n) + ξ

(2,3)
t I(zt−1 ≤ r0 + u2/n)

]
c1I

(1)
2t

+
[
ξ
(1,4)
t I(zt−1 > r0 + u4/n) + ξ

(2,3)
t I(zt−1 ≤ r0 + u4/n)

]
c2I

(3)
2t

}
,
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where

I
(j)
1t =I

(
r0 +

uj
n
< zt−1 ≤ r0 +

uj+1

n

)
, I

(j)
2t = I

(
s0 +

vj
n
< wt−1 ≤ s0 +

vj+1

n

)
for j = 1, 3. Let ε = 1/n and consider the following process indexed by ε:

xε(t) =Xε
[nt], 0 ≤ t ≤ 1,

Xε
k =Xε

k−1 + J εk, k ≥ 1, with Xε
0 = 0,

J εk =
[
ξ
(1,2)
k I(wk−1 > s0 + v1ε) + ξ

(4,3)
k I(wk−1 ≤ s0 + v1ε)

]
c1I

(1)
1k

+
[
ξ
(1,2)
k I(wk−1 > s0 + v3ε) + ξ

(4,3)
k I(wk−1 ≤ s0 + v3ε)

]
c2I

(3)
1k

+
[
ξ
(1,4)
k I(zk−1 > r0 + u2ε) + ξ

(2,3)
k I(zk−1 ≤ r0 + u2ε)

]
c1I

(1)
2k

+
[
ξ
(1,4)
k I(zk−1 > r0 + u4ε) + ξ

(2,3)
k I(zk−1 ≤ r0 + u4ε)

]
c2I

(3)
2k .

Clearly, xε(1) = Sn. We now verify Assumptions A.1-A.4 in Li et al. (2013) for J εk. By
Assumption 3.5, we have

λ = lim
ε→0

lim
m→∞

ε−1Pεk(J εm 6= 0)

= lim
ε→0

lim
m→∞

ε−1Eεk
[(
I
(1)
1m + I

(1)
2m − I

(1)
1mI

(1)
2m

)
+
(
I
(3)
1m + I

(3)
2m − I

(3)
1mI

(3)
2m

)]
=π1(r0)[(u2 − u1) + (u4 − u3)] + π2(s0)[(v2 − v1) + (v4 − v3)].

(S.4.10)

By the stationarity of yt and Assumption 3.5, for any Borel set B, it follows that

Q(B) =
4∑
i=1

ιiQi(B), (S.4.11)

where

ι1 =π1(r0)(u2 − u1)/λ, ι2 =π1(r0)(u4 − u3)/λ,
ι3 =π2(s0)(v2 − v1)/λ, ι4 =π2(r0)(v4 − v3)/λ,

and

Q1(B) =P
(
c1
[
ξ
(1,2)
k I(wk−1 > s0) + ξ

(4,3)
k I(wk−1 ≤ s0)

]
∈ B

∣∣zk−1 = r0
)
,

Q2(B) =P
(
c2
[
ξ
(1,2)
k I(wk−1 > s0) + ξ

(4,3)
k I(wk−1 ≤ s0)

]
∈ B

∣∣zk−1 = r0
)
,

Q3(B) =P
(
c1
[
ξ
(1,4)
k I(zk−1 > r0) + ξ

(2,3)
k I(zk−1 ≤ r0)

]
∈ B

∣∣wk−1 = s0
)
,

Q4(B) =P
(
c2
[
ξ
(1,4)
k I(zk−1 > r0) + ξ

(2,3)
k I(zk−1 ≤ r0)

]
∈ B

∣∣wk−1 = s0
)
.

Similarly, we can verify that, for any f ∈ Ĉ2
0 , a space of functions with compact support

and continuous second derivative, and a scalar x,

lim
ε→0

lim
t→∞

Eεk
[
f(x+ J εt )− f(x)|J εt 6= 0

]
=

∫
[f(x+ z)− f(x)]Q(dz). (S.4.12)
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By (S.4.10)-(S.4.12) and Theorem A.1 in Li et al. (2013), xε(t) converges weakly to a
compound Poisson process J(t) with jump rate λ and jump distribution Q. Thus, Sn
converges weakly to J(1). The characteristic function fJ(t) of J(1) can be written as

fJ(t) = exp
{
λ
[ ∫

R
eitxQ(dx)− 1

]}
=

4∏
i=1

exp
{
λιi

[ ∫
R
eitxQi(dx)− 1

]}
,

which equals that of c1
{
ψ(u2, v2)− ψ(u1, v1)

}
+ c2

{
ψ(u4, v4)− ψ(u3, v3)

}
, the linear com-

bination of the increments of a spatial compound Poisson process

ψ(u, v) =

N1(u)∑
k=1

ζ
(1)
k +

N3(v)∑
k=1

ζ
(3)
k , u ≥ 0, v ≥ 0.

Here, N1(u), N3(v), ζ
(1)
k , and ζ

(3)
k are defined in (3.3) and (3.4), respectively.

Now we will show that any linear combination of ψn(u(1), v(1)) and ψn(u(2), v(2)) can
be written as linear combination of increments. Assume u > 0, v > 0. Without loss of
generality, assume 0 < u(1) < u(2). First consider the case that 0 < v(1) < v(2). For any
constants c(1) and c(2), we have

c(1)ψn(u(1), v(1)) + c(2)ψn(u(2), v(2))

=c(1)ψn(u(1), v(1)) + c(2)[ψn(u(2), v(2))− ψn(u(1), v(1)) + ψn(u(1), v(1))]

=(c(1) + c(2))[ψn(u(1), v(1))− ψn(0, 0)] + c(2)[ψn(u(2), v(2))− ψn(u(1), v(1))].

Compared with Sn, we have the according relationship: c1 = c(1) + c(2), c2 = c(2), u1 = v1 =
0, u2 = u3 = u(1), v2 = v3 = v(1), u4 = u(2), v4 = v(2) with 0 ≤ u1 ≤ u2 ≤ u3 ≤ u4 < ∞ and
0 ≤ v1 ≤ v2 ≤ v3 ≤ v4 <∞. The order-distortion case v(1) > v(2) is a little different in that

c(1)ψn(u(1), v(1)) + c(2)ψn(u(2), v(2))

=c(1)[ψn(u(1), v(1))− ψn(u(1), v(2)) + ψn(u(1), v(2))]

+ c(2)[ψn(u(2), v(2))− ψn(u(1), v(2)) + ψn(u(1), v(2))]

=c(1)[ψn(u(1), v(1))− ψn(u(1), v(2))] + c(2)[ψn(u(2), v(2))− ψn(u(1), v(2))]

+ (c(1) + c(2))[ψn(u(1), v(2))− ψn(0, 0)],

(S.4.13)

which is a linear combination of three increments and the according indexes in the increment
form do not follow 0 ≤ u1 ≤ u2 ≤ u3 ≤ u4 < ∞ and 0 ≤ v1 ≤ v2 ≤ v3 ≤ v4 < ∞.
However, noting that the essential reason for Sn’s convergence is that the increments in
the combination are asymptotically independent in the sense of (S.4.10), which also holds
here for the combination in (S.4.13). Thus, following the same procedure for Sn, we could
prove the weak convergence of (S.4.13), too.

For the other three cases of u and v, we can obtain a similar result. By the Crámer-Wold
device, the finite dimensional distribution of ψn(u, v) converges weakly to that of ψ(u, v),
i.e., ψn(u, v) =⇒ ψ(u, v) in D(R2) as n→∞. By Theorem 3.1 in Seijo and Sen (2011), it
is readily seen that n(τ̂n − τ0) converges weakly to M−. The remainder is similar to the
proof of Theorem 2 in Chan (1993).
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S.4.6 Proof of Theorem 4.2

In Section 4, Proposition 4.1 follows from Theorem 1 in Cai (2002). The proofs of Theorem
4.1 and Theorem 4.2 follow the same route, the latter being more complicated since it
involves estimated parameters. Thus, we only focus on the proof of Theorem 4.2.

Compared to the original resampling algorithm for self-exciting threshold models in Li
and Ling (2012), our modified resampling algorithm only differs in the design of Q in order
to adapt to the cases of threshold variables being linear functions of lags of yt. By noting
this fact, the proof of Theorem 4.2(ii) is similar to that in Li and Ling (2012) and thus
omitted.

We focus on the weighted Nadaraya Watson method in Theorem 4.2(i). To prove (i),

we first give a lemma of the F̃WNW
1 (γ|r̂n,X ) in (S.2.2).

Lemma S.4.3. Under the conditions in Proposition 4.1, we have in probability that

|F̃WNW
1 (γ|r̂n,X )− F1(γ|r0)| → 0.

Proof. By a simple algebraic calculation, we have

F̃WNW
1 (γ|r̂n,X )− F̂WNW

1 (γ|r0,X )

=

∑n
t=1 pt(r̂n)Kh(r̂n − zt−1)I(γ̂

(1)
t ≤ γ)∑n

t=1 pt(r̂n)Kh(r̂n − zt−1)
−
∑n

t=1 pt(r0)Kh(r0 − zt−1)I(γ
(1)
t ≤ γ)∑n

t=1 pt(r0)Kh(r0 − zt−1)

=

∑n
t=1 pt(r̂n)Kh(r̂n − zt−1)I(γ̂

(1)
t ≤ γ)∑n

t=1 pt(r̂n)Kh(r̂n − zt−1)
−
∑n

t=1 pt(r̂n)Kh(r̂n − zt−1)I(γ̂
(1)
t ≤ γ)∑n

t=1 pt(r0)Kh(r0 − zt−1)

+

∑n
t=1 pt(r̂n)Kh(r̂n − zt−1)I(γ̂

(1)
t ≤ γ)∑n

t=1 pt(r0)Kh(r0 − zt−1)
−
∑n

t=1 pt(r0)Kh(r0 − zt−1)I(γ̂
(1)
t ≤ γ)∑n

t=1 pt(r0)Kh(r0 − zt−1)

+

∑n
t=1 pt(r0)Kh(r0 − zt−1)I(γ̂

(1)
t ≤ γ)∑n

t=1 pt(r0)Kh(r0 − zt−1)
−
∑n

t=1 pt(r0)Kh(r0 − zt−1)I(γ
(1)
t ≤ γ)∑n

t=1 pt(r0)Kh(r0 − zt−1)
≡J1 + J2 + J3.

It follows that

J1 =
n∑
t=1

pt(r̂n)Kh(r̂n − zt−1)I(γ̂
(1)
t ≤ γ)

(
1∑n

t=1 pt(r̂n)Kh(r̂n − zt−1)
− 1∑n

t=1 pt(r0)Kh(r0 − zt−1)

)
≤

1
n

∑n
t=1 |pt(r̂n)Kh(r̂n − zt−1)− pt(r0)Kh(r0 − zt−1)|

1
n

∑n
t=1 pt(r0)Kh(r0 − zt−1)

,

J2 ≤
1
n

∑n
t=1 |pt(r̂n)Kh(r̂n − zt−1)− pt(r0)Kh(r0 − zt−1)|

1
n

∑n
t=1 pt(r0)Kh(r0 − zt−1)

,

J3 ≤
1
n

∑n
t=1 pt(r0)Kh(r0 − zt−1)|I(γ̂

(1)
t ≤ γ)− I(γ

(1)
t ≤ γ)|

1
n

∑n
t=1 pt(r0)Kh(r0 − zt−1)

.

By Lemma 2 and Theorem 1 in Cai (2002), we have 1
n

∑n
t=1 pt(r0)Kh(r0 − zt−1) =

π1(r0) + op(1), which is positive and bounded by our Assumption 3.3. Since r̂n → r0 a.s.,
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using the fact that both pt(z) and Kh(z−zt−1) are continuous function of z, the continuous
mapping theorem leads to the fact that J1 = op(1) and J2 = op(1).

Define γ̃
(1)
t similar to γ

(1)
t but with θ0 replaced by some θ̃ = (β̃′1, β̃

′
2, β̃

′
3, β̃

′
4, r̃, s̃)

′, and
σ replaced by some σ̃. Specifically,

γ̃
(1)
t = ξ̃

(1,2)
t I(wt−1 > s̃) + ξ̃

(4,3)
t I(wt−1 ≤ s̃),

with
ξ̃
(i,j)
t = [(β̃i − β̃j)′yt−1]2 + 2σ̃iε̃t(β̃i − β̃j)′yt−1, i, j = 1, ..., 4,

where ε̃t are the corresponding residuals of the 2-TAR model with the parameters θ̃.
Consider a neighbourhood of (θ0,σ0). Define Vη = {(θ̃, σ̃) : ‖θ̃ − θ0‖ ≤ η, ‖σ̃ − σ0‖ ≤

η} for some 0 < η < 1. By the definition of γ
(1)
t , we know that it is continuous and

E
(

sup(θ̃,σ̃)∈Vη |γ̃
(1)
t − γ

(1)
t |
)

= O(η2). Then, for any (θ̃, σ̃) ∈ Vη and γ, it follows that

E
(
|I(γ̃

(1)
t ≤ γ)− I(γ

(1)
t ≤ γ)|

)
≤P
(
|γ(1)t − γ| < |γ̃

(1)
t − γ

(1)
t |
)

≤P
(
|γ̃(1)t − γ

(1)
t | > η

)
+ P

(
|γ(1)t − γ| < |γ̃

(1)
t − γ

(1)
t | ≤ η

)
≤P
(
|γ̃(1)t − γ

(1)
t | > η

)
+ P

(
|γ(1)t − γ| ≤ η

)
=O(η).

By Lemma 2 and Theorem 1 in Cai (2002), we have E(pt(r0)Kh(r0 − zt−1)) = π1(r0) +

o(1). Thus, E
(
pt(r0)Kh(r0− zt−1)|I(γ̂

(1)
t ≤ γ)− I(γ

(1)
t ≤ γ)|

)
= O(η). Then, for any ν > 0,

noting the consistency of θ̂n and σ̂n, by choosing η small enough, we have

P
( 1

n

n∑
t=1

pt(r0)Kh(r0 − zt−1)|I(γ̂
(1)
t ≤ γ)− I(γ

(1)
t ≤ γ)| > ν

)
≤P
(

sup
(θ̃,σ̃)∈Vη

1

n

n∑
t=1

pt(r0)Kh(r0 − zt−1)|I(γ̃
(1)
t ≤ γ)− I(γ

(1)
t ≤ γ)| > ν

)
+ P((θ̃, σ̃) /∈ Vη)

=o(1).

Thus, J3 = op(1).
Combining the results, we have in probability that

F̃WNW
1 (γ|r̂n,X )− F̂WNW

1 (γ|r0,X )→ 0.

Since Proposition 4.1 gives that |F̂WNW
1 (γ|r0,X )− F1(γ|r0)| → 0 in probability, we obtain

in probability that
F̃WNW
1 (γ|r̂n,X )→ F1(γ|r0).

�
Noting that every compound Poisson process is a stationary independent increment

process, by the consistency of π̂1(r̂n) to π1(r0), Lemma S.4.3, Theorem 16 in Pollard (1984)

and Theorem 3.1 in Seijo and Sen (2011), M̂WNW
1 converges weakly to M

(1)
− conditionally

on X , in probability. For details of the proof, refer to Li and Ling (2012).
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S.5 Proofs of Auxilliary Lemmas

Lemma S.5.1. If Assumptions 3.1-3.6 hold, then, for any ε > 0, η > 0 and δ ∈ (0, 1),
there exists a positive constant B such that for n large enough, we have

(i). P
(

sup
B/n<u<δ

∣∣∣Gn(u)

nG(u)
− 1
∣∣∣ < η

)
> 1− ε,

(ii). P
(

sup
B/n<u<δ

∣∣∣ G∗n(u)

nG∗(u)
− 1
∣∣∣ < η

)
> 1− ε,

(iii). P
(

sup
B/n<u<δ

∣∣∑n
t=1At(u)

∣∣
nG(u)

< η
)
> 1− ε,

(iv). P
(

sup
B/n<u<δ

∣∣∑n
t=1Dt(u)

∣∣
nG(u)

< η
)
> 1− ε,

(v). P
(

sup
B/n<u<δ

∣∣∑n
t=1Ht(u)

∣∣
nG(u)

< η
)
> 1− ε,

where

G(u) = P(r0 < zt−1 ≤ r0 + u),

Gn(u) =
n∑
t=1

I(r0 < zt−1 ≤ r0 + u),

G∗n(u) =
n∑
t=1

I(r0 < zt−1 ≤ r0 + u, ‖yt−1 − Γ‖ ≤ d),

G∗(u) = P(r0 < zt−1 ≤ r0 + u, ‖yt−1 − Γ‖ ≤ d),

At(u) = etI(r0 < zt−1 ≤ r0 + u),

Dt(u) = yt−1etI(r0 < zt−1 ≤ r0 + u),

Ht(u) = (‖yt−1‖2 − E‖yt−1‖2)I(r0 < zt−1 ≤ r0 + u).

Proof. We only prove (i), (iv) and (v) since the other two are similar.
(i). By choosing δ sufficiently small, we establish the following inequalities that there

exist 0 < m < M <∞ and H > 0, independent of n, such that any u ∈ [0, δ),

mu ≤ G(u) ≤Mu, (S.5.1)

Var(I(r0 < zt ≤ r0 + u)) ≤ HG(u), (S.5.2)

Var(Gn(u)) ≤ nHG(u). (S.5.3)

Clearly, (S.5.1) is implied by Assumption 3.3, and then (S.5.2) follows. For simplicity,
It(u) = I(r0 < zt ≤ r0 + u). Recall xt = (yt, zt, wt)

′. By a direct calculation, (S.5.3) is
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implied by the following fact∣∣Cov(I0(u), Ij(u))
∣∣ =
∣∣E(E(I0(u)Ij(u)|x0

))
− E

(
I0(u)

)
E
(
Ij(u)

)∣∣
=E
(
I0(u)

∣∣E(Ij(u)|x0

)
− E

(
I0(u)

)∣∣)
≤E
(
I0(u)‖Pj(x0, ·)− Π(·)‖v

)
≤CρjE

{
(1 + ‖x0‖)I(r0 < z0 ≤ r0 + u)

}
=O(ρjG(u)),

(S.5.4)

which is implied by Assumption 3.5. Without loss of generality, let G(u) = u. Then,
for a B > 0, choose a partition of the region (B/n, 1] as follows: fix a b > 1 and let
Ri = (biB/n, bi+1B/n] for all possible i ≥ 0. Using the Markov inequality, we obtain

P
(

sup
i

∣∣∣Gn(biB/n)

nG(biB/n)
− 1
∣∣∣ > η

)
<
∑
i≥0

H

nG(biB/n)η2
≤ H

Bη2(1− b−1)
. (S.5.5)

For 0 < x ≤ y ≤ bx ≤ δ with |Gn(x)/(nx)− 1| < η and |Gn(bx)/(nbx)− 1| < η, we have

Gn(y)/(ny)− 1 ≥ Gn(x)/(nbx)− 1 ≥ (1− η)/b− 1,

Gn(y)/(ny)− 1 ≤ Gn(bx)/(nx)− 1 ≤ (1 + η)b− 1.
(S.5.6)

By choosing η > 0 and b > 1 sufficiently small, and then choosing sufficiently large B,
(S.5.5) and (S.5.6) imply the validity of (i).

(iv). Let Ĩt−1(u1, u2) = I(r0 + u1 < zt−1 ≤ r0 + u2) and

D̃t(u1, u2) = |etyt−1|Ĩt−1(u1, u2).

Then, using the same technique in (S.5.4), we can obtain∣∣∣Cov
(
D̃1(u1, u2), D̃j(u1, u2)

)∣∣∣
=
∣∣∣E{|e1y0|Ĩ0(u1, u2) [E(|ejyj−1|Ĩj−1(u1, u2)∣∣x1

)
− E

(
|e1y0|Ĩ0(u1, u2)

)]}∣∣∣
≤C

∣∣∣E{|e1y0|Ĩ0(u1, u2) [E(E (|yj−1|∣∣zj−1) Ĩj−1(u1, u2)∣∣x1

)
− E

(
E
(
|y0|
∣∣z0) Ĩ0(u1, u2))]}∣∣∣

≤CE
{
|e1y0|Ĩ0(u1, u2)

∣∣∣∣∫ E(|y|
∣∣z)Ĩ(u1, u2)

[
Pj−2(x1, dx)− Π(dx)

]∣∣∣∣}
≤CE

{
|e1y0|Ĩ0(u1, u2)‖Pj−2(x1, ·)− Π(·)‖v

}
≤Cρj−2E

{
|e1y0|Ĩ0(u1, u2) (1 + ‖x1‖)

}
≤Cρj−2E

{
|e1y0|Ĩ0(u1, u2) (1 + |y0|+ |e1|+ |z1|+ |w1|)

}
≤Cρj−2E

{
Ĩ0(u1, u2)E

(
|e1y0|+ |e1y20|+ |e21y0|+ |e1y0z1|+ |e1y0w1|

∣∣z0)}
=O

(
ρj [G(u2)−G(u1)]

)
,
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where Assumptions 3.4 and 3.5 are used such that

Var
( n∑
t=1

D̃t(u1, u2)
)
≤ nH

(
G(u2)−G(u1)

)
. (S.5.7)

In addition, we also have

Var
( n∑
t=1

Dt(u)
)
≤nHG(u). (S.5.8)

Similarly, choose a partition of the region (B/n, 1] as follows: for B > 0, fix b > 1 and
let Ri = (biB/n, bi+1B/n] for all possible i ≥ 0. For u ∈ Ri = (biB/n, bi+1B/n], we can
obtain ∑n

t=1Dt(u)

nG(u)
=

∑n
t=1Dt(b

iB/n)

nG(u)
+

n∑
t=1

Dt(u)−Dt(b
iB/n)

nG(u)
.

By the monotonicity of G(u), it follows that∣∣∣∣∑n
t=1Dt(u)

nG(u)

∣∣∣∣ ≤ ∣∣∣∣∑n
t=1Dt(b

iB/n)

nG(u)

∣∣∣∣+

∣∣∣∣∣
∑n

t=1 D̃t(b
iB/n, u)

nG(u)

∣∣∣∣∣
≤
∣∣∣∣∑n

t=1Dt(b
iB/n)

nG(biB/n)

∣∣∣∣+

∣∣∣∣∣
∑n

t=1 D̃t(b
iB/n, bi+1B/n)

nG(biB/n)

∣∣∣∣∣
≤

∣∣∣∣∣
n∑
t=1

Dt(b
iB/n)

nG(biB/n)

∣∣∣∣∣+

∣∣∣∣∣E
(
D̃t(b

iB/n, bi+1B/n)
)

G(biB/n)

∣∣∣∣∣
+

∣∣∣∣∣
n∑
t=1

D̃t(b
iB/n, bi+1B/n)− E

(
D̃t(b

iB/n, bi+1B/n)
)

nG(biB/n)

∣∣∣∣∣ .
Thus

sup
i≥0

sup
u∈Ri

∣∣∣∣∑n
t=1Dt(u)

nG(u)

∣∣∣∣ ≤ sup
i≥0

∣∣∣∣∣
n∑
t=1

Dt(b
iB/n)

G(biB/n)

∣∣∣∣∣+ sup
i≥0

∣∣∣∣∣E
(
D̃t(b

iB/n, bi+1B/n)
)

G(biB/n)

∣∣∣∣∣
+ sup

i≥0

∣∣∣∣∣
n∑
t=1

D̃t(b
iB/n, bi+1B/n)− E

(
D̃t(b

iB/n, bi+1B/n)
)

nG(biB/n)

∣∣∣∣∣
≡J1 + J2 + J3.

For any η > 0, by (S.5.7) and (S.5.8), we have

P(J1 > η) <
∑
i≥0

H

nG(biB/n)η2
≤ H

Bη2(1− b−1)
, (S.5.9)

P(J3 > η) < sup
i

H(b− 1)

biBη2
≤ H(b− 1)

Bη2
. (S.5.10)
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By (S.5.1), it follows that
J2 ≤ H(b− 1). (S.5.11)

For any γ > 0 and ε > 0, we can choose η > 0 and b > 1 sufficiently small such that
2η +H(b− 1) < γ, and then choose sufficiently large B, such that H

Bη2(1−b−1)
+ H(b−1)

Bη2
< ε.

By (S.5.9)-(S.5.11), we have

P
(

sup
B/n<u<δ

∣∣∣∑n
t=1Dt(u)

nG(u)

∣∣∣ > γ
)

=P
(

sup
i≥0

sup
u∈Ri

∣∣∣∑n
t=1Dt(u)

nG(u)

∣∣∣ > γ
)
≤ P(J1 + J2 + J3 > γ) ≤ ε.

The proof is complete.
(v). For p = 1 here, let ỹ2t−1 = y2t−1 − Ey2t−1 and

H̃t(u1, u2) = |ỹ2t−1|Ĩt−1(u1, u2).

Then we have ∣∣∣Cov
(
H̃1(u1, u2), H̃j(u1, u2)

)∣∣∣
=
∣∣∣E{ỹ20 Ĩ0(u1, u2) [E(ỹ2j−1Ĩj−1(u1, u2)∣∣x0

)
− E

(
ỹ20 Ĩ0(u1, u2)

)]}∣∣∣
=E

{
y20 Ĩ0(u1, u2)

∣∣∣∣∫ E(ỹ2
∣∣z)Ĩ(u1, u2)

[
Pj−1(x0, dx)− Π(dx)

]∣∣∣∣}
≤CE

{
ỹ20 Ĩ0(u1, u2)‖Pj−1(x0, ·)− Π(·)‖v

}
≤Cρj−1E

{
ỹ20 Ĩ0(u1, u2) (1 + |y0|+ |z0|+ |w0|)

}
=O

(
ρj [G(u2)−G(u1)]

)
.

We complete the proof by following similar arguments as in (iv). �

Lemma S.5.2. If the conditions in Theorem 3.2 hold, then, for any 0 < B <∞,

sup
‖τ−τ0‖≤B/n

∥∥∥∂ln(β0, τ )

∂β
− ∂ln(θ0)

∂β

∥∥∥ = Op(n
−1), (S.5.12)

sup
‖τ−τ0‖≤B/n

∥∥∥∂2ln(β, τ )

∂β∂β′
− ∂2ln(θ0)

∂β∂β′

∥∥∥ = Op(n
−1). (S.5.13)

Proof. By a direct calculation, it follows that

∂et(β, τ )

∂β
=−

(
y′t−1I1t(τ ),y′t−1I2t(τ ),y′t−1I3t(τ ),y′t−1I4t(τ )

)′
,

∂2e2t (β, τ )

∂β∂β′
=2


I1t(τ )

I2t(τ )
I3t(τ )

I4t(τ )

⊗ (yt−1y
′
t−1),
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where ⊗ is the Kronecker product. Note that∥∥∥∂e2t (β0, τ )

∂β
− ∂e2t (θ0)

∂β

∥∥∥ ≤2|et(θ0)|
∥∥∥∂et(β0, τ )

∂β
− ∂et(θ0)

∂β

∥∥∥
+ 2|et(β0, τ )− et(θ0)|

∥∥∥∂et(β0, τ )

∂β

∥∥∥. (S.5.14)

Let Λ1t = I(r ∧ r0 < zt−1 ≤ r ∨ r0) and Λ2t = I(s ∧ s0 < wt−1 ≤ s ∨ s0). Recall
Λt = I({r ∧ r0 < zt−1 ≤ r ∨ r0} ∪ {s ∧ s0 < wt−1 ≤ s ∨ s0}). Then we have∥∥∥∂et(β0, τ )

∂β
− ∂et(θ0)

∂β

∥∥∥ ≤ 2‖yt−1‖Λt,

|et(β0, τ )− et(θ0)| ≤ C‖yt−1‖Λt.
(S.5.15)

By Assumption 3.4, (S.5.14)-(S.5.15) and a conditional argument, it follows that

E sup
‖τ−τ0‖≤η

∥∥∥∂e2t (β0, τ )

∂β
− ∂e2t (θ0)

∂β

∥∥∥
≤ E sup

‖τ−τ0‖≤η
C(|et(θ0)|‖yt−1‖+ ‖yt−1‖2)Λt

≤ E sup
‖τ−τ0‖≤η

C(|et(θ0)|‖yt−1‖+ ‖yt−1‖2)(Λ1t + Λ2t)

≤ CE sup
‖τ−τ0‖≤η

{
Λ1tE[(‖yt−1‖+ ‖yt−1‖2)

∣∣zt−1] + Λ2tE[(‖yt−1‖+ ‖yt−1‖2)
∣∣wt−1]}

≤ Cη.

Let η = B/n, so (S.5.12) follows.
Using the similar technique, we have∥∥∥∂2e2t (β, τ )

∂β∂β′
− ∂2e2t (θ0)

∂β∂β′

∥∥∥ ≤ C‖yt−1y′t−1‖Λt,

so that (S.5.13) can be proved. �
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