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Abstract: Change-points are a routine feature of ‘big data’ observed in
the form of high-dimensional data streams. In many such data streams,
the component series possess group structures and it is natural to assume
that changes only occur in a small number of all groups. We propose a new
change point procedure, called groupInspect, that exploits the group spar-
sity structure to estimate a projection direction so as to aggregate informa-
tion across the component series to successfully estimate the change-point
in the mean structure of the series. We prove that the estimated projection
direction is minimax optimal, up to logarithmic factors, when all group sizes
are of comparable order. Moreover, our theory provide strong guarantees
on the rate of convergence of the change-point location estimator. Numer-
ical studies demonstrates the competitive performance of groupInspect in
a wide range of settings and a real data example confirms the practical
usefulness of our procedure.
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1. Introduction

Modern applications routinely generate time-ordered high-dimensional datasets,
where many covariates are simultaneously measured over time. Examples include
wearable technologies recording the health state of individuals from multi-sensor
feedbacks (Hanlon and Anderson, 2009), internet traffic data collected by tens
of thousands of routers (Peng, Leckie and Ramamohanarao, 2004) and func-
tional Magnetic Resonance Imaging (fMRI) scans that record the time evolution
of blood oxygen level dependent (BOLD) chemical contrast in different areas
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of the brain (Aston and Kirch, 2012). The explosion in number of such high-
dimensional data streams calls for methodological advances for their analysis.

Change-point analysis is an essential statistical technique used in identifying
abrupt changes in a time series. Time points at which such abrupt change occurs
are called ‘change-points’ Through estimating the location of change-points, we
can divide the time series into shorter segments that can be analysed using
methods designed for stationary time series. Moreover, in many applications,
the estimated change-points indicate specific events that are themselves of great
interest. In the examples mentioned in the previous paragraph, they can be used
to raise alarms about abnormal health events, detect distributed denial of service
attacks on the network and pinpoint the onset of certain brain activities.

Classical change-point analysis focuses on univariate time series. The cur-
rent state-of-art methods including Killick, Fearnhead and Eckley (2012), Frick,
Munk and Sieling (2014), Fryzlewicz (2014). However, classical univariate change-
point methods are often inadequate for high-dimensional datasets that are rou-
tinely encountered in modern applications. When applied componentwise, they
are often sub-optimal as signals can spread over many components. As a result,
several new methodologies have been proposed to test and estimate change-
points in the high-dimensional settings. These include methods that apply a sim-
ple 45 or o, aggregation of test statistics across different components (Horvéth
and Huskovd, 2012, Jirak, 2015), and more complex methods such as a scan-
statistics based approach by Enikeeva and Harchaoui (2019), the Sparsified Bi-
nary Segmentation algorithm by Cho and Fryzlewicz (2015), the double CUSUM
algorithm of Cho (2016) and a projection-based approach by Wang and Sam-
worth (2018).

To overcome the curse of dimensionality, existing high-dimensional change-
point methods often assume that the signal of change possesses some form of
sparsity. For example, in the high-dimensional mean change setting studied in
Jirak (2015), Cho and Fryzlewicz (2015), Wang and Samworth (2018), Enikeeva
and Harchaoui (2019), it is assumed that the difference in mean before and after
a change-point is nonzero only in a small subset of coordinates. While the spar-
sity assumption greatly reduces the complexity of the original high-dimensional
problem, it often does not capture the the full extent of the structure in the
vector of change available in real data applications. For instance, in many appli-
cations, the coordinates of the high-dimensional vectors are naturally clustered
into groups and coordinates within the same group tend to change together. At
each change-point, only a small number of groups will undergo a change. Such
a group sparsity change-point structure is useful in modelling many practical
applications. Examples include financial data stream where changes are often
grouped by industry sectors and a small number of sectors may experience
virtually simultaneous market shocks. Also, in functional magnetic resonance
imaging data, voxels belonging to the same brain functional regions tend to
change simultaneously over time. Similar group sparsity assumptions have been
made in other statistical problems including Yuan and Lin (2006), Wang and
Leng (2008), Simon et al. (2020).

In this work, we provide a new high-dimensional change-point methodol-
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ogy that exploits the group sparsity structure of the changes. More precisely,
given pre-specified grouping information of all the coordinates, our algorithm,
named groupInspect (standing for group-based informative sparse projection
estimator of change-points), will first estimate a vector of projection that is
closely aligned with the true vector of change at each change-point. It will
then project the high-dimensional data series along this estimated direction
and apply a univariate change-point method on the projected series to iden-
tify the location of the change. The above procedure can be combined with the
narrowest-over-threshold algorithm of Baranowski et al. (2019) to recursively
identify multiple change-points. We show that, in a single change-point setting,
the projection direction estimator employed in groupInspect has a minimax
optimal dependence, up to logarithmic factors, on both the ¢y sparsity param-
eter and the group-sparsity parameter, representing respectively the number of
nonzero elements and the number of nonzero groups in the vector of change.
Furthermore, under appropriate conditions, groupInspect achieves a minimax
optimal loglog(n)/(n¥?) rate of convergence for the estimated location of a
single change-point and a log(n)/(n¥?) rate of convergence for multiple change-
points, where ¥ denotes the ¢ norm of the vector of change.

The outline of the paper is as follows. In Section 2, we describe the formal
setup of our problem. The groupInspect methodology is then introduced in
Section 3, with its theoretical performance guarantees provided in Section 4.
We illustrate the empirical performance of groupInspect via simulatinos and
a real-data example in Section 5. Proofs of all theoretical results are deferred to
Section 6, and ancillary results and their proofs are given in Appendix A.

1.1. Notation

For n € N, we write [n] = {1,...,n}. For a vector v = (vy,...,v,)" € R", we
define [[o]lo = S Lo ops Iollow = maxicq los] and [olly = {30, (v:)7}"?
for any positive integer ¢, and let S"~! = {v € R" : |Jv|]|s = 1}. For a matrix
A € RP*™ we write ||Al|. for its nuclear norm and write || A||r for its Frobenius
norm.

For any S C [n], we write vg for the |S|-dimensional vector obtained by
extracting coordinates of v in S. For a matrix A € RP*™ J € [p] and S € [n],
we write A; g for the submatrix obtained by extracting rows and columns of A
indexed by J and S respectively. When S = [n], we abbreviate A, by A;.
When S = {t} is a single element set, we slightly abuse notation and write A
instead of A (.

Given two sequences (ay)neny and (by)nen such that an,b, > 0 for all n,
we write a, < b, (or equivalently b, 2 ay) if a, < Cb,, for some universal

~

constant C.

2. Problem description
Let X1,..., X, be independent random vectors with distribution:

Xi ~ Np(pe,2), 1<t<n, where|X|,, <B (1)
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for some B € (0,00). We remark that the main focus of the current work
is to understand the effect of group sparasity structure on the change-point
estimation accuracy, and as such, to simplify exposition, we have assumed here
that observations are independent normal random vectors. All our theoretical
results can be extended to the case where the observations are sub-Gaussian and
have short-ranged temporal dependence (see Appendices B and C for details).
We can combine into a single data matrix X € RP*™. We assume that the
sequence of mean vectors ()7, undergoes changes at times z; € {1,...,n—1}
for i € {1,...,v}, in the sense that

Pogpl =0 = flzyy, = ) vie{0,...,v}, (2)
where we use the convention that zgp = 0 and 2,41 = n. We assume that con-
secutive change-points are sufficiently separated in the sense that

min{z;11 —2;: 0 < <v} >nr.

Suppose further that each of the p coordinates belong to (at least) one of G
groups. Specifically, let J, denotes the set of indices associated with the gth
group for g € {1,...,G}, we have that

G
U7 =1l (3)

We assume that coordinates in the same group will tend to change together. We
will consider both the case of overlapping and non-overlapping groups. In the
latter scenario, each coordinate belongs to a unique group and (Jy)ge(q) forms
a partition of [p].

Our goal is to estimate the locations of change z1, . .., z, from the data matrix
X and the pre-specified grouping information (Jy)4e(c)- Motivated by Wang
and Samworth (2018), when the coordinates are independent, the best way
to aggregate the component series so as to maximise the signal-to-noise ratio
around the ith change-point is to project the data along a direction close to the
vector of change 89 = () — (=1 Let v be the unit vector parallel to #():

0@ = g(i)/”g(i)nz.
In our setting, we would like to find the optimiser of max %, which is
Y. ~10. We measure the quality of any estimated projection direction ¢ with the
Davis-Kahan sin 6 loss (Davis and Kahan, 1970)

L(6,09) = /1 — (8Tv®)2

and measure the quality of the subsequent location estimator 2; by E|2; — 2.
The difficulty of the estimation task depends on both the noise level o and
the vector of change () = p(® — ;=1 More precisely, we assume that the
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change is localised in a small number of the G groups as defined in (3). Define

#: RP — RY such that ¢(z) = (||z7 |2, |22 |2, - -, |z72]12) T, we assume that
lo@Dlo <5, > [Tl <k and [[09]2>v. (4)
ge[G]:eg;;éo

3. Methodology
3.1. Single change-point estimation

Initially, we will consider estimation of a single change-point, where v = 1. This
can be extended to estimate multiple change-points in conjunction with top-
down approaches such as wild binary segmentation and narrowest-over-threshold
approach of Baranowski et al. (2019), which we will discuss in Section 3.2.

We define the CUSUM transformation 7 : RPX" — RP*(n=1) by

th—t) [ 1 & ‘1
T(M)je =\ = — (m PIRLTED gMj,r>v (5)
r=t4+1 r=1

and compute the CUSUM matrix T = T (X). As discussed in Section 2, our
general strategy is to use the matrix T' to estimate a projection direction that is
well-aligned with the direction of change, and then project the data along this
direction to estimate the change-point location from the univariated projected
series. More precisely, we would like to solve for

pe  argmax |lu'T|q, (6)
uweSP 1 [[¢(u)lo<s

where, SP~1 = {z € R? : ||z||2 = 1}. However, the above optimisation problem
is non-convex due to the group-sparsity constraint. Consequently, we perform
the following convex relaxation of the above problem. We first note that the set
of optimisers of (6) is equal to the set of leading left singular vectors of

arg max (M, T),
MeRP*( =D M||,=1,rank(M)=1
Ygerer LMy, g0} <s

We relax the above matrix-variate optimisation problem by dropping the com-
binatorial rank constraint, and replacing the nuclear norm constraint set by
the larger Frobenius norm set of S = {M € RP*X(»=1 . |M|p < 1}. The
constraint that M has at most s groups of non-zero rows can be written as
an fy constraint on the vector of Frobenius norms of such submatrices, i.e.
l(IMz,|lF:g€{l,...,G})]lo < s. Motivated by the group lasso penalty (Yuan
and Lin, 2006), we replace this group sparsity constraint with a group norm
penalty, where the group norm for a matrix M € RP*("=1) ig defined as

G
1M lgrp =D 0y 1Mz, ||2.1, (7)
g=1
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Algorithm 1: Frank—Wolfe algorithm for optimising (8)

Input: T € RPX("=1) grouping (jg)ge[g], A >0 and e > 0.
1 Initialise M[® = T/||T||¢ and i = 0.

2 repeat
3 14— 1+1
4 Compute Gl = (G[li]7 ce Gg])T € RPX(m=1) guch that
[i-1]
[1] L Jrt
G < Tie Z /\Q—M[ifll )
g:j€Ty ” Tg .t ||F
where \; = p},/z)\
5 if Gl = 0 then break
Compute
(Y (VI LG_”
i+2 i+2|Gl||g
7 Normalise MU « MU /| M|

until || M+ — prli||e < ¢
Output: M

@

where ||Mg, |21 is the sum of column £, norms of the submatrix My, and
pg = |J4|. Overall, we obtain the following optimisation problem:

M Eargmax{<T,M> _)‘”M”grp}a (8)
MeS

where X € [0, 00) is a regularization parameter.
If the groups are non-overlapping, in the sense that J;NJ, = 0 for all g # ¢,
then we see from Proposition 8 that (8) has a closed form solution

N T - R*
o ToR )
IT — R*||p
. . Ap,/?
where ijt = TJq7t 1 { 1T7g,ell2? }

For overlapping groups, (8) can be optimised using Frank—Wolfe algorithm
(Frank and Wolfe, 1956), as described in Algorithm 1. We first compute the
gradient of the objective function which is the step 4 in Algorithm 1. We then
project the M back onto S.

After solving the optimization problem, we can obtain the estimated pro-
jection direction ¥ by computing the leading left singular vector of M. Then,
we project the data along ¥ to obtain a univariate series for which existing
one-dimensional change-point estimation methods apply. Specifically, we per-
form the CUSUM transformation over the projected data series, and locate the
change-point by the maximum absolute value of the CUSUM vector. The full
procedure is described in Algorithm 2.
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Algorithm 2: Single change-point estimation procedure for data with
group structure
Input: X € RPX", (Jg)geiq), and A >0

1 Compute T - T(X) as in (5).
2 Solve

M € argmax{(T, M) — X\|M||grp }
MeS

using either the closed-form solution in (9) if groups are non-overlapping, or
Algorithm 1. .
3 Let 0 be the leading left singular vector of M.
4 Estimate z by 2 = argmax; <;«,_; |0 T¢|, where T} is the tth column of T'.
Output: 2, Tmax = @TTZ o

Algorithm 3: Multiple change-point estimation procedure

Input: X € RP*™, (Jg)geia), A >0, 8, M €N
1 Set Z <+ 0
2 Draw M pairs of integers (s1,e1),. .., (sar, ear) uniformly at random from the set
{(¢,r) ez?:0<L<r<n}
3 Function NOT(s, €)
4 Set Mg e ={m e [M]:s<sm <em <e}
5 Set Rs,e := {m € My : |T(XEmtBem =Py, > A}, where X (®] is the
submatrix of X obtained using columns indexed in (a, b]
if Rs,e # 0 then
Find m* € argminmeR&e lem — Sm|

8 Set 2[m"] as the output from Algorithm 2 with inputs X (sm*>e¢m=] and X
9 b 2lm™] s,
10 Z +— ZU{b}
11 Run recursively NOT (s, b) and NOT (b, €)
Output: Z

3.2. Multiple change-point estimation

When the data matrix possess multiple change-points, we may combine Algo-
rithm 2 with a top-down approach (Fryzlewicz, 2014, Baranowski et al., 2019,
e.g), to recursively identify all the change-points. Specifically, in Algorithm 3,
we adopt the narrowest-over-threshold approach of Baranowski et al. (2019).
We start by drawing a large number of random intervals [s1,e1],...,[sQ, Q]
and perform a test in each of these intervals to find windows that contain at
least one change-point (Line 5 of Algorithm 3, with justification given by Corol-
lary 4 in Section 4). We then select the narrowest interval for which the test
rejects the null and apply Algorithm 2 to estimate a change-point within that
window. We then partition the data into two submatrices to the left and right of
this identified change-point and repeat the above procedures until no windows
within the segmented submatrices contain any change-point.
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4. Theoretical guarantees

In this section, we provide theoretical guarantees to the performance of the
grouplnspect algorithm. As we have noted in Section 2, a key to the successful
change-point estimation in the current problem is a good estimator of the oracle
projection direction v = 8/||6)2.

The following theorem controls the sine angle risk of the estimated projec-
tion direction ¢ in Step 3 of Algorithm 2 when data has a single change. We
define Pr(:g(s,k,Tﬁ,B, (Jg)geia)) to be the set of data distributions satisfy-
ing (1), (2), (3) and (4). For any P € P, we write v(P) = 6/||6||2 where § is the
difference between post-change and pre-change means.

Theorem 1. For a given grouping (Jy)ge(c), let p» = mingeq) |Jy| and suppose
further that there exists a universal constant Cy > 0, such that max;cp, {9 : j €
Tg} <Ci. Let X ~ P € P,(l%l),(s,k,T,ﬁ,B, (Jg)geicy) be a p xn data matriz, let
0 be the vector of change and let © be as in Step 8 of Algorithm 2 with input X,
(Jg)geia) and X > BY2(14/8log(nG) /p.). Then there exists C > 0, depending
only on C4, such that

1/2
Ck } 1 (10)

sup lP’p{ sin Z(9,v) > 17207 | S TG

PePL) (s,km9,B,(Ty) gela))

We remark that the condition max;cpy [{g:j € Jy}| < C1 is to control the
extent of overlapping between different groups. Specifically, it requires that each
coordinate can belong to at most Cy groups. In the special case when all groups
Jy are disjoint, which is often true in practical applications, then it suffices to
take Cy = 1.

We note that, when A = BY2(1 4 /8log(nG)/p.), with high probabil-
ity, the sine angle loss in (10) has an upper bound that is proportional to
Bk'/2n=1/27-19~1 similar to what has been previously observed in Wang and
Samworth (2018, Proposition 1). However, Theorem 1 reveals an interesting in-
teraction between the ¢, sparsity k and the group sparsity s when all groups are
of comparable size. Specifically, for A = B'/2(1+ ,/8log(nG)/p,) and assuming
that maxgec(q py S P+, then we can simplify (10) to obtain that

E{sin Z(3,v)} < \/ Bik ;il‘;ﬁ(”@}.

In other words, the risk upper bound undergoes a phase transition as the number
of coordinates per group increases above a log(nG) level. Similar phase transi-
tions have been previously observed in the context of high-dimensional linear
model where the regression coefficients satisfy a group sparsity assumption (see,
e.g. Cai et al., 2019, Theorem 3).

We now turn our attention to a minimax lower bound of the estimation risk of
the oracle projection direction. Theorem 2 below shows that the phase transition
observed in Theorem 1 is not due to the specific proof techniques employed but
rather an intrinsic feature of the problem.
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Theorem 2. Suppose s >0, k > 0 and a grouping (Jg)ge(a) satisfy that Ty N
Ty =0 forall g # ¢', min{k, (s—1)log(G/s)} > 20, and Zizlp(g_,._H) >k/2,
where p1y < pay < -+ < Py are order statistics of py,...,pg. Let ¥ = BI,.
Then for some universal constant ¢ > 0, we have

B{k + slog(G/s)}
nT? ’

inf sup EpL(3(X),v(P)) > c\/
v Pe'P,(,/l‘;,(s,k:,T,ﬂ,B,(jg)ge[G])

where the infimum is taken over the set of all measurable functions v of the data
X.

The condition that Y7_, P(G—r+1) > k/2 is to ensure that the upper bound k
on the {y-sparsity is not too loose in the sense that k is not too much larger than
the cardinality of the union of the largest s groups. If we assume that log(G/s) =<
log(n), 7 < 1 and maxge(g) Py S P+, then the lower bound in Theorem 2 matches
the upper bound of Theorem 1 up to universal constants, when all groups are
non-overlapping. We remark that the upper and lower bounds in Theorems 1
and 2 do not match in their dependence on the parameter 7. As Proposition 11
shows, this suboptimality is unlikely due to the convex relaxation carried out
in (8) since the same 7 dependence appears in the risk upper bound of the
(computationally infeasible) optimiser of (6).

After obtaining guarantees on the quality of the projection direction estima-
tor, we now provide theoretical guarantees of the overall change-point proce-
dure. We note that the projection direction estimator v is dependent on the
CUSUM panel T. While this dependence is observed to be very weak in prac-
tice, it creates difficulties in analysing the projected CUSUM series ¢ ' T" in Step
4 of Algorithm 2. As such, for theoretical convenience, we will instead analyse
a sample-splitting version of the algorithm. Specifically, we split the data into
X® and X®) | consisting of odd and even time points respectively, as described
in Algorithm 4. We use X to estimate the projected direction 9(*) and then
project X(?) along this direction to locate the change-point. Theorem 3 below
provides a performance guarantee for the estimated location of the change-point
of this sample-splitting version of our procedure.

Theorem 3. Given data matriz X ~ P € PT(:,))(S, k, 7,9, B, (Jg)gec)) let 2 be

the output from the Algorithm 4 with input X and X > BY/?(14-4/ps *8log(nQ)).
There exist universal constants C, C' > 0 such that, if n > 12 is even, z is even,
and

CVRA <1,
dry/n ~

(11)

then for any A1 > v B, we have

1 C/)\% 8 A2
LIPS _ S _ —X3/(4B)
P{n|z z| < 5 } >1 3 (BA1 4+ 1)e™n log n.

If we choose \y = C+\/Bloglogn for a sufficiently large absolute constant
C > 0, then Theorem 3 shows that the location estimator Z/n converges to
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Algorithm 4: Change-point estimation procedure: sample splitting ver-
sion
Input: X € RPX™ and A >0
1 Define X(1) ag X;}t) = X, 2t—1 and X(2) ag Xj(.? = Xj 2.
2 Compute T — T(XM) and T? «— T(X@) as in (5).
3 Solve

M(l) c argmax{(T(l), M) — )\”M”grp}
MeS

using either the closed-form solution in (9) if groups are non-overlapping, or
Algorithm 1.
4 Let © be the leading left singular vector of MO,
5 Estimate z by £ = 2argmax; <y<p,, 1 \(f)(l))TTt@)L where Tt<2) is the tth column of
T(2),
Output: 2

z/n at a rate of % in probability. This rate is minimax optimal even for

the problem of estimating a single change in mean in a univariate series; see
Proposition 6. While Theorem 3 concerns primarily with the estimation task,
we remark that the argument used in its proof can be easily adapted to derive
a testing procedure with good theoretical guarantees. Specifically, given data
matrix X ~ P € Py (s, k,7,9,%, (Jy)ge[c)), We are interested to test the null
hypothesis Hy : 6§ = 0 against the alternative Hy : 6 # 0. We construct a test
based on the dual norm to the || - ||gp norm defined in (7). More precisely, for
any R € RP*™ and a grouping (Jy)ge(c) of [p], we define

R0, = J2R : 12
1R gype Imax maxp, [R7,.¢ll2 (12)
It can be seen from Lemma 7 that [| - [[grp« is indeed dual to || - [|grp. For any

A > 0, we define a test 1) such that

UAX) = L7 (X) [l grpe 22}

The following Corollary shows that with an appropriately chosen testing
threshold A, the test ¥, define above has good size and power controls.

Corollary 4. Given data matriv X ~ P € Pp (s, k, 7,9, B, (Jy)geia))- Let k
be the total number of coordinates with change and ||0||2 be the magnitude of the

change. Fix A > Bl/2(1 +4/4pi ! log(nG)).

o Ifs=0, then Pp(ya(X) =1) <1/(nG).
o If0> VSR then Pp(y =1) > 1—1/(nG).

n

Our single change-point theory can be applied iteratively to show that the
groupInspect algorithm in in Algorithm 3 can consistently estimate both the
number and the locations of the true change-points. In line with Theorem 3, we
consider a sample-splitting version of Algorithm 3, which we call Algorithm Al-
gorithm 3’, where we use Algorithm 4 in place of Algorithm 2 in line 6 of
Algorithm 3.
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Theorem 5. Given data matriz X ~ P € 737(112,(5, k, 7,9, B,(Jg)ge(c))- Let Z be

the output from the Algorithm 3 with input X and X = BY/?(1+4/8ps * log(nG)),

Q and B =n7/10. Let 7/n > C'Blogn/¥?. There exist universal constants C,
C" > 0 such that, if n > 12 is even, z is even, and

CV Bk (1 n 810g(nG)) <1, (13)
dr/nT D
then,
'B1 1 7
]P’(ﬁ =v and |2 — 2] < % Vie [1/]) >1—pe T M/36_ pyar R

5. Numerical studies

In this section, we provide some simulation results to demonstrate the empir-
ical performance of the groupInspect method. In all our numerical studies,
unless otherwise specified, we will assume that data are generated according
to (1), (2), (3) and (4). In all simulations, we do not assume that the covariance
matrix ¥ is known. Instead, we estimate the variance in each row using the mean
absolute deviation of successive differences of the observations. We then stan-
dardise the data by the estimated row standard deviation. The groupInspect
procedure is then applied to the standardised data assuming that X is a well-
conditioned matrix with all diagonal entries equal to 1.

5.1. Theory validation

We first show that the practical performance of the groupInspect procedure
is well captured by the theoretical results in Theorems 1 and 2. There are
two related measures of the signal sparsity in our problem, which are the total
number of coordinates of change k and the total number of groups with a change
s. We conduct two sets of simulation experiments fixing one of these sparsity
measures and varying the other. Specifically, for n = 1000, p € {600, 1200, 2400}
and ¥ € {1,2,4,8,16} and ¥ = I,,, we split the p coordinates into disjoint groups
of p. coordinates per group, where p, is allowed to vary over all divisors of 60.
In the first set of experiments, we fix k = 60 so that s = k/p, varies with p,
whereas in the second set of experiments, we fix s = 3 so that k = sp, varies
with p.. The vector of change is constructed so that the magnitude of change
is equal across all coordinates of change. We will use the theoretical choice of
tuning parameter A for both sets of experiments here. Figure 1 shows how the
sin @ loss, averaged over 100 Monte Carlo repetitions, varies with p,, for different
choices of p and ¥ in both settings.

In the left panel of Figure 1, where the number of signal coordinates k is
fixed, we see that the average loss decreases as p, increases. Furthermore, at a
log-log scale, and for relatively large signal sizes of ¢ € {4, 8,16}, we see the loss
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F1G 1. Average loss (over 100 repetitions) of groupInspect for varying elements per group px,
plotted on a log-log scale. Left panel: k = 60 and s = k/p«. Right panel: s = 3 and k = sp«.
Other parameter: n = 1000.

curves follow an initial linear decreasing trend as p, increases before plateauing
eventually. This is in agreement with the two terms contributing to the loss
described in Theorem 1. Specifically, for small p,, we expect the second term
of (10) to dominate and the loss decreases at a rate approximately proportional
to 1/,/p. initially. For large p,, we expect the first term of (10) to dominate
and the loss will have minimal dependence on p,. In the right panel of Figure 1,
where the number of signal groups s is fixed, the average loss increases with p,,
as expected from our theory. It appears that for s = 3 studied here, the first
term of (10) is dominant and the average loss increases linearly at the log-log
scale with respect to p..

We further remark that in both panels of Figure 1, the average loss for large
p« shows equally spaced separation for the signal size ¥ in the dyadic grid
{1,2,4,8,16}. This is in good agreement with the 1/0 dependence of expected
loss given in Theorem 1. Finally, we note that the ambient dimension p has
minimal effect on the loss curves, for all signal strengths studied here. Again,
this is predicted by our theory as the dimension p enters the mean loss in (10)
only through the log(nG) = log(pn/ps«) expression in the second term.

5.2. Practical choice of tuning parameter

The theoretical choice of A turns out to be conservative in practical use. In this
subsection, we will perform numerical simulations to suggest a suitable practical
tuning parameter choice. We fix n = 1000, z = 400, s = 3, G € {10,25} and
assume X = I,. The signal size 9 is varied in {1,2,4,8,16} and p is chosen from
{500,1000}. All groups are set to have equal size. We run the groupInspect

algorithm for tuning parameters A\ = a(1 + /4ps * log(nG)), where a is chosen
from a logarithmic sequence of values between 0.1 and 3.

We plot sin 0 loss against a in Figure 2. In most cases, the loss is minimized
when a =~ 1/2, i.e. tuning parameter value is half of the theoretical value. This
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parameter: n = 1000, s = 3.

suggests that when ¥ = I,,, the choice A = 271 (1+,/ 4p; Hlog(n@)) leads to more
accurate estimation in practice. Theorems 1 and 3 suggests that for non-identity
covariance structure, the tuning parameter choice should scale proportional to
the square root of the operator norm of X. It is in general a challenging statistical
problem to estimate the operator norm of the covariance matrix in a high-
dimensional setting. One can in principal use the estimator proposed by Liu,
Gao and Samworth (2021), though we observe that this estimator typically
incurs a large upward bias when the dimension is high in comparison to the
sample size. Moreover, an inspsection of our proof reveals that the presence of
the additional factor B is used to capture some worst-case large deviation bound,
which is often too conservative for a generic covariance Y. In view of the above,

we recommend that practitioners use the same A = 27(1 + y/4p; ' log(n@))

when ¥ is unknown.

5.3. Comparison between different methods

Now, we would like to compare our method with other existing change-point
estimation procedures. As groupInspect is a two-stage procedure that first
estimates a projection direction before localising the change-point on the pro-
jected series, we will investigate its performance both in terms of its accuracy in
estimating the projection direction and the quality of the final change-point lo-
cation estimator. For the former, we compare the estimated projection direction
from groupInspect with that from the inspect algorithm. We measure the
accuracy in terms of the sine angle loss introduced in Section 2. We use the rec-
ommended values for tuning parameters in both methods, i.e., v/27log{plogn}

in inspect as in Wang and Samworth (2018) and 2~(1 + {/4ps ' log(nG)) for
grouplInspect as suggested in Section 5.2.

We fix n = 1000, p = 1000, vary ¢ in {1,2,4,8,16} and set the covariance
matrix to be ¥ = I,,. We consider settings with both non-overlapping groups and
overlapping groups. For the non-overlapping setting, we have G = 10 groups of
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F1G 3. Average loss (over 100 repetitions) comparison between groupInspect and Inspect.
Left panel: non-overlap setting. Right panel: overlap setting

equal size p, = 100, whereas for the overlapping setting, we have G = 19 groups
of size 100 each, where neighbouring groups overlap in exactly 50 coordinates.
Both methods have access to exactly the same data sets and the performance
is averaged over 100 Monte Carlo repetitions.

Figure 3 shows the comparison of the average sine angle loss between inspect
and groupInspect over all signal sizes on a logarithmic scale, in both the non-
overlapping and overlapping settings. In both cases, groupInspect outperforms
the inspect algorithm. From the left panel, we can see that the estimation
accuracy of the projection direction using groupInspect is substantially better
even when the signal is small.

We now turn our attention to the overall change-point localisation accuracy
of the groupInspect procedure. To this end, we compare the mean absolute
deviation of various high-dimensional change-point procedures over 300 Monte
Carlo repetitions using the same data sets. In addition to inspect, we also
compare against the ¢y aggregation procedures of Horvath and Huskova (2012),
the £ aggregation procedure of Jirak (2015), the double CUSUM procedure of
Cho (2016) and a multiscale testing procedure Pilliat et al. (2020). We set n =
1000, p € {500, 1000, 2000}, ¥ € {0.25,0.5,1,2,4} and ¥ = (2-F=*l), ;1. The
simulation results are presented in Table 1. For simplicity, we have only shown
the results for 10 equal-sized non-overlapping groups here, but qualitatively
similar results were obtained in other settings as well. We see that groupInspect
is very competitive over a wide range of dimensions and signal-to-noise ratio
settings, and groupInspect dominates the inspect procedure in all simulation
settings by successfully explointing the group-sparsity structure.

5.4. Multiple change-points simulation

The numerical studies so far have focused mainly on the single change-point es-
timation problem. In this subsection, we investigate the empirical performance
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TABLE 1
Average mean absolute deviation (over 300 repetitions) comparison between different
methods. Other parameters used: n = 1000 with G = 10

p ¥ groupInspect inspect {2-aggregate (oo-aggregate double cusum pilliat

500 0.25 151 158 370 368 364 113
500 0.5 89.6 98.6 271 332 298 102.6
500 1 8.7 14.8 18.5 108 66.8 56.82
500 2 0.95 1.30 1.64 15.9 5.42 19.53
500 4 0.057 0.063 0.080 3.11 0.51 15
1000 0.25 116 147 368 344 385 115
1000 0.5 85 120 309 316 335 102
1000 1 23.4 32.6 41.0 194 110 67.2
1000 2 1.31 1.67 2.04 32.2 7.47 24.36
1000 4 0.09 0.14 0.123 6.29 0.850 15
2000 0.25 106 128 356 356 374 131
2000 0.5 89.6 118 321 344 341 119
2000 1 47.61 55.56 106 283 177 92.91
2000 2 2.91 3.23 3.39 63.3 10.4 39.141
2000 4 0.11 0.160 0.17 9.94 1.32 30.75

of groupInspect in multiple change-point estimation tasks. We will compare
its performance as implemented in Algorithm 3 to that of the inspect algo-
rithms for estimating multiple change-points under different settings. We choose
n = 1200, p € {500,1000}, s € {3,10}, G € {50,100} and ¥ = I,. Each
data series contains three true change-points located at 300, 600 and 900 with
the ¢ norm of the change equal to ¥, 1.5 and 29 respectively. We vary 9
in {0.6,0.8,1,1.2,1.4}. For simplicity, we further assume that the same s co-
ordinates undergo change in all three change-points and that all groups have
10 elements. The total number of coordinates with change k is calculated as
10s. We use the A tuning parameter choice suggested in Section 5.2 for the
groupInspect method and that suggested in Wang and Samworth (2018) for
the inspect algorithm. For the thresholding parameter £ of the wild binary
segmentation recursion used in both groupInspect and inspect, we choose
via Monte Carlo simulation. More precisely, we randomly generate 1000 data
sets from the null model with no change-points and take the maximum absolute
CUSUM statistics from Algorithm 3 and Wang and Samworth (2018, Algorithm
4) as &, and &; respectively. We compare the performance of two algorithms us-
ing the Adjusted Rand index (ARI) of the estimated segmentation against the
truth (Rand, 1971, Hubert and Arabie, 1985).

From Figure 4, we see that the groupInspect algorithm generally performs
much better than the inspect algorithm in the multiple change-point localisa-
tion tasks. The advantage of groupInspect is more pronounced when the signal
is sparser and when the dimension of the data is higher.

To further visualise the output of the two procedures, we plot the estimated
change-point locations for one specific setting (s = 3 and ¢ = 1) of each of the
two panels in Figure 4. The resulting histograms in Figure 5 shows that when
p = 500, groupInspect was better at picking out all three change-points with
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higher accuracies. When p = 1000, inspect was only able to pick out the change
at t = 600 in most of the trials, whereas groupInspect was still able to identify
even the weakest change signal at t = 300 in a substantial fraction of all trials.
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5.5. Real data analysis

In this section, we apply groupInspect to an S&P 500 daily stock return
dataset. The data consist of the logarithmic daily returns (computed from the
adjusted closing prices) of S&P 500 stocks traded during the period of 1 January
2007 to 31 December 2011. We only included the 257 stocks which have continu-
ously traded throughout this this period to construct a multivariate time series
of dimension p = 257 and length n = 1259. We divided the 257 companies into
G = 11 non-overlapping groups according to their Global Industry Classifica-
tion Standard sector memberships. For each stock logarithmic returns, we fitted
an AR(1) model, and then rescaled the residuals by their estimated standard
deviation according to the method described in Section 5.

Figure 6 displays the ten most significant change-points identified by our
groupInspect algorithm. For each change-point, we derived a sector-weighting
vector from the estimated projection direction by groupInspect. Specificially,
given the projection direction & € SP~! for each estimated change-point, and
the grouping (Jy)ge[q), we computed a weight vector @ := (||0z, ||)ge[q)- This
vector gives us information about which sectors had driven the change for each
change-point estimated. For instance, we see from Figure 6 that the the change-
point at 12 Sep 2008 was predominantly driven by price fluctuations in financial
stocks, which coincides with the Federal takeover of Fannie Mae and Freddie
Mac on 7 Sep 2008 and the bankruptcy of Lehman Brothers on 15 Sep 2008. The
change-point identified at 10 Feb 2009, though still heavily weighted on financial
stocks, showed a broader impact across other sectors. This is consistent with the
passing of the American Reovery and Reinvestment Act of 2009 on 13 Feb 2009
sending a general positive signal to the entire economy.

6. Proofs of main results

In this section, we will give the proof of our results in section 4.

6.1. Proof of Theorem 1

Proof. From the definition of the CUSUM transformation in (5), we can explic-
itly write the matrix A :=E(T) = (A4;+);e[p].ten—1] a8

1/ﬁ(n—z)ﬂj if1<t<z,
Aj,t: 7 .
\/”n;tzej ifz<t<n-1.

In particular, we have that A is a rank 1 matrix of the form
A=oy", (14)

with
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By Wang and Samworth (2018, Lemma 3), we have ||v||2 > n7/4, so ||Allop >
n7Y/4. By Lemma 14 with § = (nG) ™%, we have

1
(nG)*

PAIT = Allgrp« > A) <
By Proposition 12, on the event {||T — A||gp, < A}, we have

, . . 32\(C1 k)12
max{sin Z(v,d),sin Z(u, )} < g

as desired. 0
6.2. Proof of Theorem 2
Proof. We will use two different constructions to derive separate lower bounds

of order \/Bslog(G/s)/(nT9?) and /Bk/(nT92) respectively. Without loss of
generality, we may assume that z < n/2.
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For the first bound, let s = s — 1, Gy = G — 1. By the Gilbert—Varshamov
lemma as stated in Massart (2007, Lemma 4.10) (applied with « = 3/4 and 8 =
1/3), we can construct a set Uy of sp-sparse vectors in {0, 1}%°, with cardinality
at least (Go/s0)®0/®, such that the pairwise Hamming distance between any pair
of vectors in Uy is at least so/2. Let € € (0,1) to be chosen later, we can define

a set
1 — €2
U{< 1-e >2UQ€U()}§SGI.

sal/2eu0
We remark that for any pair of distinct u,u’ € U, we have by construction that
€/vV2 < |lu' — ulls < e. We then define a map 9 : R — R? such that for any
uw €U and j € J,, we have ¥(u); = ugp;1/2. Finally, let V = {¢(u) : v € U}.
We note that ||¢(u') — ¢ (u)||2 = ||u' — ul|2. Therefore, for distinct v,v’ € V, we

have
v — ol

V2

Now, for each v € V, we define a distribution P, € ”Pr(:;(s, k, 7,9, B, (Jg)geia)
such that the pre-change mean is —t¢v and the post-change mean is 0 (we check

that P, indeed satisfies the conditions of 'PT(L}%(S, k, 7,9, B, (Jg)eec))). Then for
any distinct v,v’ € V, we have

L(v',v) =4/1— (vTv')? > (15)

€
5 .

21902
D(P,||Py) = 2D(Ny(—v0, B)|[Np(—v"9, B)) < sglv— '3

2192¢2
2B

(16)

By (15) and (16), we can apply Fano’s lemma (Yu, 1997, Lemma 3) to obtain
that

inf up EpL(3(X),v(P)) > inf sup Ep, L(3(X), v)
Y PG,PT(LI,%’(S1k17’ﬁvB!(Jg)gE[G]) vovey
- f{ 3 29262 /(2B) + 10g2}
4 (s0/5)1og(Go/s0) J

By the condition (s — 1)log(G/s) > 20, we have (s¢/5)log(Go/so) > 2log?2.
Moreover, the choice of
Bsglog(Go/s0)

1021992

ensures that (sg/5)log(Go/so) > 229%€?/B. Therefore,

Bslog(G/s)

1
>
- 72 2192

inf sup EpL(9(X),v(P)) >
Y PeP) (s.k 0, B(Ty) geia))

G . (17)

For the second lower bound, let g1,...,gs be the indices of the s groups with
largest cardinalities. By the given condition of the Theorem, we have that k =
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S o1 Pgr = Yorm1 P(G-rt1) = k/2. Let S = Ui_1 Ty, so |S| = k. By Massart
(2007, Lemma 4.7), we can construct a subset Vo of {—1,1}*0 of cardinality

at least e/ 8 such that any two points in the set are separated in Hamming

distance by at least k/4. Construct

/T — 2
V= {v tUg = <~_1/2 ¢ ) for some vy € Vy and vge = 0}.
ko ' “evg

Therefore, for distinct v,v" € V, we have € < |[v/ — v||a < 2¢,then,

I = olls
V2

Following the same derivation as in (16), we have that

L' v) =4/1— (vTv)2 >

ﬁ.
D(P,||P.y) = 2D(N,(~vd, £)|[N, (9, %)

2219262
5

2102
< —

< 2 flo— v <

Again, we can use Fano’s lemma (Yu, 1997, Lemma 3) to obtain that

220%€?/B + log 2
inf supEp, L(0(X),v) > i{l 2 { + 08 }
v oyey \/5 k/8

€ 229%€% /B + log 2
> —<q1- .
V2 k/16

Now, choose € = (kB)Y/2z=1/29=1 /4,/6. Since k > 20, we have k/16 >91og(2)/5,
so that

inf sup EpL(5(X), v(P)) > infsup Ep, L(5(X), 0)
v Pefpfll,)P(S’kv"—#ﬁ’B’(Jg)gE[G]) v ovey

« . 1 [iB
9v2 T 723V 20%

The desired result follows by combining (17) with (18), and noting that z >
nr. 4

>

(18)

6.3. Proof of Theorem 3

Proof. Recall the definition of X and let T7?) = T(X®). Define similarly
p? = (u?), .. .,ugi)) € RP*™ and a random W®) = (Wl(Q), cey WT(L?)) taking
values in RP*™ by M,EZ) = por and Wt(z) = Wy Now, let A® = T(u?)
and E®) = T(W®). We also write X = (6))TX® 5 = (6T W =
@ENTWE A = 6NTA® E = (6W)TE® and T = (6M)TT? for the
one-dimensional projected images. Note that by linearity, we have T = T (X),

A=T(p) and E = T(W),
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Now, conditional on 91, the random variables X1, ... , X,,, are independent
with ~
Xi |60 ~ N, 0?)
and the row vector i undergoes a single change at z(2) = z/2 with magnitude

of change

0= fiue 1 — fae = 0T0
Finally, let 2(2) € arg MAaX] <<, —1 |T}|, so the first component of the output of
the algorithm is 2 = 22(). Consider the set

T = {uecSP:sin/(u,v) < 1/2}.
By Condition (11) and Theorem 1, we have that

1
PoM eT)>1— ——0. 19
(00 ™) 21— (19)
Moreover, on the event {o™ € T}, we have that || > /39/2. Noting that
we have E; | V) ~ N(0,9MTE9M), we have by Wang and Samworth (2018,
Lemma 4) for any A; > VB that

P(|1E|loc = A1) < \/gﬂog 7] (% + 2) e /B < 3)\ e /B logn. (20)
Define Qy := {01 € T,|E|lec < A1}. From (19) and (20), we have P(Q) >
1—n3— 3A\e M/ Blogn.

Notice that the procedure produces the same output if we replace o(1) by
—5(M | hence we may assume without loss of generality that # > 0, which implies
that A; > 0 for all ¢ € [n; — 1]. Condition (11) implies that

\/ﬁT’ﬁ 2 C)\l, (21)

for sufficient large C. Therefore, by Lemma 16 and (21), if we choose C' > 8/+/3,
then for t satisfying |2(?) — t| > ny7/2, we have

2@ (ng —23) - mT-_ V3

Az(2) = 92 7927\/”,7—1922)\1

ni
In particular, we must have on Qg that Ty > T, > A, — A1 > —Ar+ A1 >
—T; for any ¢ € [n — 1]. Hence, arg max;c,_q |T;| = arg MaxX, e, 1] T;.
Since T = A+ E and (A;); and (T}); are respectively maximized at t = 2(?)
and t = 22, We have on the event € that

Az(2) *Aﬁ@) = (Az(z) 7TZA(2) )+(TZ(2) 7TZA(2) )+(T2(2) 7/712(2)) < Eé(z) 7EZ(2) . (22)

Note that on Qg, the right-hand side of (22) is bounded by 2A;. Hence, applying
Lemma 16 to the left-hand side of (22), and using the unimodality of A, if
C' > 24, on the event )y, we have that

|2(2) — 2(2)] - 3v6; _12h 1
niT T O ngr Ot T 2
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By Lemma 15, there exists an event Q; with probability at least 1 — e=*1/(2B)
logn on which
_ _ (2) — 2(2) (2) _ 3(2)
|EZ(2) — E2(2)| <4\ u + 16)\1u. (23)
nT nT

Substituting the improved bound of (23) into the right-hand side of (22), and
again applying Lemma 16 to the left-hand side of (22), we have on Q9N that

9122 — 32 (2) _ 3(2) (2) _ 3(2)
VIET 2 2T A e =2
3 \/nT nr nr

|z2(® 53

When C > 96, from (11), we have 16); |Z(2)7:f(2)‘ < % = Conscquently,
on 9 NNy, we have

C')\?
92 7
as desired. Finally, we compute that the desired event occurs with probability

12— 2] <

1
P(QoNQ)>1—— - B\ + 1)6_/\%/(2B) logn.
ni

as desired. O

6.4. Proof of Corollary 4

Proof. Define A := E(T) and E := T — A. Under null hypothesis where there
is no change in the segment, by Lemma 14, we have that P(||T||grpx > A) =
P(|E[lgrp = A) < 1/(nG).

Under the alternative, we have:

||T||grp* = ||A+E||grp* 2 ||A||grp* - ||E||grp*'
By (14), we have

Al|grp 0~ e = ||0 a 1/2 0 > M
H ng || ||gp H ||oo ;Ié[x]pg || Jg||2 \/E

Also, by definition of v, we have that ||7]ecoc = 1/ @ > /n7/2. Therefore,

for ||0]]2 > %, combining with Lemma 13, we have that with probability at
least 1 — 1/(nG) that ||T||gp > 2A — A= A. O

6.5. Proof of Theorem 5

Proof. Let {z1,...,2,} be the set of true change points, such that 0 =: zp <
21 < -+ <z, <n=:z,41. For each i € [v], define intervals

I} = (21 —n7/3,2; —n7/6) and I = (2 4+ n1/6,2 + n1/3).

?
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These intervals contain at least one integer for nT > 6. For simplicity of expo-
sition, we have ignored various rounding issues in this proof. Now, define the
following event:

Qo == {Vi € [v], Im € [M], s.t. (s, em) € I x TR}
Then, we have

2

v M M
P(Q(C)) < Z H (1 - P((Smuem) € IZL X IZR)> < V(l - %) < Ve_TZM/36-

i=1 m=1

On Qq, for each change point z;, we can find an interval (s,,,e,,] which only
captures one change-point, which is at least n7/6 away from the endpoints s,
and e, of the interval.

We write X (¢ for the submatrix of X obtained by extracting columns in-
dexed in (s,¢€]. Let T .= T(X(el) Alsel .= ET(¢l and Bl .= Tl —
Alsel | Set

O = { max  ||EC) | grpn < )\}.

1<s<e<n
By Lemma 14 and a union bound, we have that

(n—l)G< 1

P(QS) < n? )
() <o < e

Now, for any interval (s,e], we write 2(¢l to be the change-point estimate
of Algorithm 4 applied to data X(*¢I. We define O := {(s,e) : 0 < s < e <
n, zi—1 <8<z <e< z4 for some i € [v] and min{z; — s,e — z;} > n7r/10}

to be the set of intervals (s,e] that captures exactly one true change-point,
which is at least n7/10 away from the boundaries. We then define the event

C'Blogn

Qg = {|2(s,e] + s — Zl| S 192

for all (s,e] € O}.
For a sufficiently large C and C’, by Condition (3) and Theorem 3 applied with
A1 = /16Blog(ntB), together with union bound, we have that
7
P(QS) < —.
( 2) = nr3
We will henceforth work on Q5 N Q1 N Qs.
For any interval (s, e] C (0,n], we define Z(5¢ .= {z; 1 i € [v] and 2; € (s, €]}
and the following subsets of Z(s:¢l:

zlsel . {z € Z(sel min{z — s,e — z} > n7/3},

good "
C”Blogn}

AU {z € 26 min{z — s,e — 2} < 5

where C’ is chosen to be the same constant as in the definition of . We note
that g(;:i and Zé‘;f] respectively contain change-points within (s, e] that are
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well-separated from the boundary and close to the boundary. We will informally
refer to these change-points as “good” and “bad” change-points in (s, e]. On Qy,
for every i € [v], we can associate it with an m; € [M] such that s,,, € ZF and
em; € I. We claim that

(mi:z € 25 CR,.. (24)

good

To see this, we first note that from the definition of Z! and Z}?, and the condition

min{z; — s,e — z;} > nt/3 that for every i with z; € Zézf(]j we have (s, ,€m,] C

(s,e]. On 4, by Condition (13) with a sufficiently large choice of C' > 0 and
the proof of Corollary 4 we have

HT(s,ﬂiw,emfﬁ]||grp* >\

Hence m; € R, establishing the claim. On the other hand, under Condi-

tion (13) for sufficiently large C, we have % < n7/10 = 5. Hence on 4,
for any (s, o] C (s, €] containing only “bad” change-points, i.e. (so, eg] N2>l C
Zéif], we get:

||T(SO+B’EO_B]”grp* <A

as there are no change points within the interval (so + 8, e9 — ]. Thus,
{m € Mse: (Smyem] N Z(sel ¢ Zé;f]} NRse=10 (25)

Given a set Z of estimated change-points, we can partition (0,n] into |Z| + 1
segments. We call these the segments induced by Z. We now prove by induction
that throughout the recursion of NOT, the following statement holds:

For any (s, e] induced by Z, Z(*¢ = Zézoe(]i U Zégj]. (P)
For the base case, at the beginning of the algorithm, we have Z =0, so the
only induced segment by Z is (0,n]. The statement (P) is true since the cloest
change-point from the boundary is at least n7 away. Now assuming that (P)
is true at some stage of the recursion when Z is the set of estimated change-
points so far, we need to show that (P) still holds when a new change-point
is estimated by NOT. This new change-point must be identified from running
NOT on some (s, €] where (s, ] is one of the induced segments by Z. From the

inductive hypothesis, we know that Z(s¢l = Zg(;:é U Zé‘:de]. We note that Zégf(]i
is necessarily nonempty for otherwise by (25) we have My, N R, =  and

hence R = 0, so no new change-point will be identified in (s, e]. Thus, there

exists some ¢ with z; € Zéi’cﬂ and by (24), my € Rs, and hence ey« — sy <
Emy — Smy < n7/3. In particular, we have that (s,,+, em,+] must capture exactly
one change-point (it has to capture at least one change-point by (25) and cannot
capture more than one since two consecutive change-points are spaced at least
nT away), say z;+. On the event Qa, we know that the change-point output 2 of

Algorithm 4 on X (sm*:em=] gatisfies
C'Blogn
92

|2+5m* — Zix| <

(26)
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We now check that the two new segments induced by Z U {2 4 s,,- } still satisfy
(P). For this, it suffices to check that z;«_1, 2z and 241 are either within
% of 2 + s, or at least n7/3 away from it. This can be seen by combin-
ing (26) with the fact that min{z; — z;«_1, 241 — 2+ } > n7. This completes
the induction.

We remark that as a side product of the above inductive argument, we have
shown that if (s, e] N Zg(f)oe(]] # 0, then R . is non-empty and NOT will estimate
a new change-point. Hence, at the end of the recursion, we must have that all
segments induced by Z contains no change-point at least n7/3 away from the
boundaries. In other words, all change-points z1, ..., z, must be at most n7/10
away from the endpoints of one of the induced segments. This, together with
the fact that consecutive change-points (including zo and z,11) are spaced at
least nT away, means that there must be exactly v estimated change-points in
7 at the end of the algorithm. Let 2; < 25 < - -+ < 2, be elements of Z arranged
in an increasing order. Then, since all change-points are “bad” at the end of the
NOT recursion, we must have

max |5 — 2] < C'Blogn
X |2 — 2| < ——5——
i€v] 92

as desired. O

Appendix A: Ancillary results

We collect in this section all ancillary propositions and lemmas used in the
paper. For all results in this section, we assume that we are given a grouping
(Jy)geia of [p] and the associated group norm || - ||grp-

Proposition 6. Fizn € N. Let P, ,,; ., denote the joint distribution of (X;)iem
such that X; ~ N(u;,0?) are independent random variables with pi; = pLlpicay+
,LLR]l{i>z}- Then

iIélf( s)ul[o s Ep. . l2 = 2l(ur — ur)? > co?loglogn.
zZ,pL, MR )EN—1]X

Proof. Suppose n = 2L for some L € N. For ¢ € [L], we define pu(© € R*"
to be the vector whose last 2¢ entries are equal to 1/022~¢loglog,(2n)/60 and
the remaining entries are 0. Gao et al. (2020, Theroem 2.2 and the argument
immediately above its statement) shows that for some universal constant ¢; > 0,
we have

inf sup E,[|fs — p3 > c10” loglog(16n). (27)
B ¢ell]

Let ¢ > 0 be a constant to be chosen later. We assume that the conclusion
of the proposition does not hold, which means that there exists an estimator 2
such that for all z € [n — 1] and g, pr € R, we have

Ep 5 co?loglogn

Pzl < 5. 28
|2 < T (28)
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Let (Zi)ie[zn) be a sequence of 2n independent random variables such that
Zi ~ N(prlg<ozy + uRIl{i>2z},a2). We can apply the estimator 2 on data
Zodd = (21,23, ..., Zan—1) of length n to obtain a changepoint location esti-
mate £(Z,4a), which for notational simplicity, we will denote also as 2 hence-
forth. Now, define

X 1< X 1
f =~ Zzzz‘ and fig := — > Z 2.
=1 i=2+1

Then the vector fi := (firlfi<2sy + AR1{i>2:})icj2n] 15 an estimator of p :=
(EZ;)ici2n)- Without loss of generality, we may assume that 2 > z; the opposite
case can be handled symmetrically. This means that

6 — pl3 = 22(Ar — pe)? +2(2 = 2) (A, — pr)? +2(n — 2)(ir — pr)*  (29)

Using independence between 2 and (Za;)ie[n), we have ir, | Zoaa ~ N(Zpw +
%MR,JQ/é) and fig | Zodd ~ N(,uR,az/(n - 2)) Hence, from (29), we have

7:,2

N 22(2 — 22  222(3—2
E(Hu—u%IZodd):402+(uL—uR)2{ (52 L )}

< 40® + 4, — pr)* (2 — 2).

co?loglogn

Giopm)? o We have

Then, since Ep

Z’HL,MRL% —z| <

(I = pl3) < 40° + 4(ur — ur)*Ep, ;. (2= 2)
< 40? 4 co? loglogn.

EszMLv“R

Now, choosing ¢ = ¢1/2, then for sufficiently large n, the above inequality con-
tradicts (27), which means that (28) cannot hold, thus establishing the desired
conclusion. O

Lemma 7. The norm || - ||grps i a dual to || - ||grp with respect to the inner
product (-,-) on RP*™,

Proof. To prove the lemma, it suffices to show that || M|, , =supg  <1(R, M)
grp* =

for all M € RP*("=1)_ First, for any M € RP*("=1) Jet Mz, ¢ be the tth column
of Mz, . Define R = R(M) such that

1/2
RJ t = pg/ ML797t
" max{||Mg, 4|2, 1}

~ —1/2 1/2IMg, ¢ll2
Then, [|R||gps < Maxge[q) MaXscfn—1)Pg = Py 5T = 1. Hence,

G n—1

= (Mg,1, Mg, 1)
(R M) 2 (RM) = 33 gyl
I Rl|gep, <1 g e Mz,

grp* —

|2
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n—1

Z /2|‘M.7g,t||2 = ||M||grp

On the other hand, for any R such that ||R||gp. < 1, we have ||Rz, ¢[l2 < p_cl,/2
for all g and ¢. Consequently, by the Cauchy—Schwarz inequality,

=3 N Rpa Mg, <Y DT IRyl My, il

g€[G] te[n—1] g€[G] te[n—1]
<D > P IMg,llz = 1M gep,
g€[G] te[n—1]
thus establishing the result. O

Proposition 8. Let § = {M € Rpx(n=1) . ||]\4HF <1}. ForT e Rpx(n— 1)
A >0, we have

T— R*
argmax (T, M) — M| M r}:—,
z%fes {< ) | M][grp HT_R*”F

, . Apy/?
* * _ g
where R* satisfies ijt =Ty, min {—\ITJg,tHF , 1}.

Proof. Define functions h : RP*(—1) x RPX(»=1) 4 R and f,g : RP*(»~1
R such that for M, R € RP*"=1 h(M,R) = (T — AR, M) and f(M) =
inf||g)|,.,. <1 (M, R) and g(R) = supyes h(M, R). By (12) and Lemma 7, we
have that
(T, M) = A[M|lgep = (T, M) =X sup (R, M)
[ Rllgrpx <1
inf ( — AR, M) = f(M).

grp*f

HRH

By the minimax equality theorem (Fan, 1953, Theorem 1), we obtain that

su u inf  h(M,R)= _inf sup h(M,R)= _ inf R).
Me%f( )= Me%\|R||gr1>* ( ) IIRI\grp*SlMeI?S ( ) HRngp*Slg( )

Observe that g(R) = [|T'— AR|r. To find the R* € argmin <1 (|7 — AR|lr,
we consider the G groups individually. For each group g, and in the ¢th column,
if |77, 4[|z < Apg’*, then RY, | =Tz, /X; and if | Tz, o[|2 > Apg/”, then R, , =

/ T7,./T7, |2 Since the minimizer of g(R) is unique, we have that

T — \R*
argmax f(M) = argmax h(M,R*) = —————,
I%IGS f( ) ]%468 ( ) ||T_ )‘R*”F

as desired. O

Lemma 9. For any A, B € RP*™, we have (A, B) < ||Allgrp || Bl grps-
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Proof. By Cauchy—Schwarz inequality, we have that

(A,B)=> (Ag,1,Bz,0) < > Az, llel B, lle

g:t g€[G] teln]
<( X e ) (e, 5Bl ) = 1AL Bl
g€[Gl.te[n]
g€[Gl.te[n]
as desired. O
Lemma 10. Let p, = |J,| and suppose further that there exists a universal

constant C1 > 0, such that max;cp, {9 : j € Jy}| < C1. Then, for any M €
RPX™, we have || M|lgp < (C1n 3, pg) "2 M]lr-

Proof. Define m withm gz, + = ||[Mz, +||r. Then by applying the Cauchy-Schwarz
inequality twice, we have

IMllgrp = D 252> 1M, el < Y (pg) 2|1 M, e

9€[G] t=1 9€[G]

1/2 1/2 1/2
<vi(Tn) (S iir) < (en X n) 1Mk,
9€(G]

g9€[G] g9€[G]
as desired. |

The following proposition establishes a sine angle loss upper bound for the
(computationally infeasible) optimiser of (6). We see that the risk bound has
essentially the same form as that given in Theorem 1.

Proposition 11. For a given grouping (Jy)gseia), let p» = mingeg)|J,y| and
suppose further that there exists a universal constant Cy > 0, such that max ;e
{g:j €Ty} <Cr Let X ~ P e P)(s,k, 7,9, B,(Ty)ecicy) be apxn data
matriz, let § be the vector of change and let © € argmaxzcsp—1 |4(5)10<s 15772
Let X\ > BY?(1 + \/4log(nG)/p.). Then, with probability at least 1 — == we

nG
have that 12
. W 8201 Ak
Sin Z('U, 'U) S W
Proof. Let A,~ be defined as in the proof of Theorem 1. Let u := 7/||v||2 and
@ :=TT90/||T"9|]2. Then, by the basic inequality, we have that:

(30)

@7, T) =T 0| > ||IT vl > v Tu= (vu",T).

Combining with Wang and Samworth (2018, Lemma 2), we have:

2

16]1211vl2
2

P —
= 110ll2llvll2

lou" —da"||E = (A=T,vu" —o0") + (T,ou” —da"))

(A—T,ou" —d0")
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2
< A= T grp |Jou — D0
— ||9H2||’YH2” ||grp H ||grp
Since vu' — 94" has at most 2k rows with non-zero entries, By Lemmas 10

and 14, for the choice of A in the proposition, we have with probability at least

1—1/(nG) that

2V/2X\(Cnk)'/?
1611211712

Consequently, by the same argument as in the proof pf Proposition 12 we have

2v2X(Cink)'/? - 8vV2A(C1 k)12
16ll2livll2 = w29

as required. O

T AaTy2
=0t g <

||uv |luv” — 04" ||p.

sin Z(v,0) < |lou’ — 04" ||r <

Proposition 12. Let p, = |J,| and suppose further that there exists a universal
constant C1 > 0, such that max;cpy {9 : j € Ty} < C1. Let A be a rank one
matriz with A = dvu' for 6 > 0, ||v|lz2 = |lullz = 1 and Zg:vjﬁéopg < k.

Suppose T € RP*(=1) satisfies || T — Allgrps < X for some X > 0, and let
S={M e RP*"=1 . |M||p < 1}. Then, for any

M € argmax {(T, M) — A|| Mg}
MeS

we have 12
N AN(Cynk
Jou™ — Wy < XL

and

SA(Cynk)'/?

—

Proof. Define Gy = {g : vz, # 0}. Since vu! € 8, from the basic inequality, we
have

max{sin Z(v,d),sin Z(u, )} <

(T, UUT) - /\”U“Tngp < (T, M> - )‘HM”grp- (31)

When ||A—T||grp« < A, or equivalently, pg_1/2||AJq,t —T7,¢ll2 < Aforall g € [G]
and t € [n— 1], we have by Wang and Samworth (2018, Lemma 2) and (31) that

o™ — M||E < 3<A, vu' — M) < §(<T, vu" — M)+ (A—T,vu" — M))

)
2) T v T W
< —= 5 (HUU ngp ”Mnger”UU *MngP)
4N(Cink)/? «
=2 S T Mgl < R T i,
gEgo te[n—1]

where we used Lemma 9 in the penultimate inequality and Lemma 10 in the
final bound. This proves the first claim of the proposition, and the second claim
follows from the first by the same argument as used in Wang and Samworth
(2018, online supplement (18) and (19)). O
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Lemma 13. Suppose ¥ € R¥? s a symmetric positive semidefinite matriz and
let E ~ N(0,X). Then we have for any 6 > 0 that

P(|E|* > tr(2) + 2/[Sl|r v/log(1/6) + 2||Z|op log(1/5)) < &

Proof. Let ¥ = UT AU be the eigendecomposition of ¥, such that U € R¥*? is

orthogonal and A = diag(A1(X),...,A¢(X)) is a diagonal matrix with eigen-
iid

values of E on its diagonal. Hence, there exist Zi,...,Z4 ~ N(0,1) such
that |E|3 = |[UE|3 = Z;l 1 Aj(2)Z7. Applying Laurent and Massart (2000,

Lemma 1), we have with probability at least 1 — ¢ that

d 1/2

d
B2 < 37 +2(ZA§(2)> \/log(l/(?)+21}1Ef(/\j(2)log(1/5)

j=1
< tr(%) + 2[|Z]|p v/1og(1/6) + 2[|5|op log(1/6)
as desired. O

Lemma 14. Suppose 3 € RP*P 4s a symmetric positive semidefinite matrix
with |E|lop < B. Let W = (Wh,...,W,) be an p x n random matriz with
independent columns Wy ~ Np(0,X). Define E := T(W). Let pg = |T,| with
P« = Mingeigpy- Then for any 6 € (0,1) and A = Bl/2(1 +4/2p ! log(l/é)),
we have that

P([Ellgrps > A) < (n—1)G6.

Proof. By the definition of the CUSUM transformation 7 in (5), we have that
Eg,+~ N(0,X7, 7). By a union bound, we have

P(|Elgpe > A) < Y > BllEg,.l3 > peX®)

g€[G] te[n—1]
21og(1/6) >
<3 3 Btz > By (1420 )
QG[G]tG[n 1 pg
Z Z (|Ejg,t §>B(pg+2 pglog(1/5)+210g(1/5))>
g€[G] te[n—1]

<D D PIEglE > tr(2,.4,) + 2127,.7,IlrViog(1/6)

g€[G] te[n—1]

+2(27,.7,lop log(1/6))
< (n—1)Gé.

as desired, where we used the fact that ||X7, 7 [lop < [|X]lop < B in the penul-
timate inequality and Lemma 13 in the final bound. O

Lemma 15. Let W = (Wq,...,W,,) be a p x n random matriz with W; i

Ny (0,X) and E = T(W) = (E1,...,En_1). Suppose |Z|lop < B and that
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min(z,n—z) > n7 and |z—t| < n7/2. For a deterministic vector v € RP and any
A1 > 0, there exists an event Q1 with probability at least 1 — 16e~A1/(4B) logn
such that on this event, we have

—t —t
WTE, — v By < 220/ + 8\ .
nt nt

Proof. Define event

s t
o ::{ W= v
r=1 r=1

Since v Wy,..., 0T W, id N(0,v" ¥v), with v Xv < B, by Wang and Samworth

(2018, Lemma 5), for any « > 0, and m € N, we have

< A/ |s — ¢, forOgtSnandse{O,z,n}}.

IP’( max |—= -l > uBl/2> < fe~u’/4 log m. (32)
1<t<m

Applying the above bound four times, we have

P(Qf) < 4(3*)‘5/(43){210gn +logz+log(n — 2)} < 16e~*i/(4B) logn.

It hence suffices to show that on €21, the desired inequality holds. By symmetry,
we may assume without loss of generality that ¢ < z. From the definition of the
CUSUM transformation in (5), we have

v E,—v B =] n_z< Z’UTW ZUTW>
_\/%(%ZUTWT—;;NWT>
s (e 3 ew)
r=t+1

*Wz(nn—z)‘\/ o) Z”TW Z”TW)

(33)

On the event Q1,

z

T z—t| ¢ T
S S EE ) S B SR
r=t+1 r=1 r=t+1
—1
<2 NV MVE —E<20uvE — 1 (34)
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Similarly, we have on ; that
< — —|— MVE <20 Ve

-
v W, — v

S e <

Noticing that £ 30" v W, =30 v W, =2t 5" o TW, =S oW,

we can blmllarly bound the left-hand side above by 2A\1y/n — t. Therefore, on
4, we have

+ n t
— ZUTW,. — Zv
n r=1 r=1

| < 20 min{vt,vn —t}

§2A1min{ﬁ,,/n—z+%}. (35)

By the mean value theorem, there exists £ € [t, z] such that

e e el

V2(z —t)
~ min{(z — n7/2)3/2, (n — 2)3/2}

Combining (33), (34), (35) and (36), we have on € that

(36)

t) 232X (z — t)min {2, (n — z + n7/2)1/2}

’vTEz — ’UTEt’ <2\ n(z —

z(n—z) min{(z — n7/2)3/2 (n — 2)3/2}
< 2van [ e 2
nt nr
as desired. 0

Lemma 16. Suppose w= (f1,...,1n) has a single change point at z, in the
sense that g = --- = p, = p and poy1 = - = p, = p@. Let A =T (p) =
(A1,..., A4,). Deﬁne 0 = puM — u?. Then for any v € RP, and |z —t| < n1/2,
we have

2 |z—t
TA, —vTA| > —="—(v"9).
v v t*3\/€\/ﬁ(v )

Proof. Observe that A is a rank one matrix given by (14). Hence, v' A =
(vT8)y . The desired result is then a consequence of Wang and Samworth (2018,
Lemma 7). O

Appendix B: Extensions to sub-Gaussian distributions
iid

In the previous sections, we assumed that X; = u; + W;, for Wy,..., W, ~
N,(0,%). In this session, we discuss how the previous results can be generalised
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to settings where Wy, ... W, are independent sub-Gaussian random vectors.
Adpoting notation from Zhu, Wang and Samworth (2022), for any random vec-
tor U in RP, we write

E(lwTU|9)Y/1
Ul := sup sup ————,
Y2 s qeN Va
._ [w"Ully,
¥iT w:gg_1 (wTVar(U)w)/2

1U] = [Var™2(U)U |y,

For sub-Gaussian data, Lemma 17 can be used in place of Lemma 14 to derive
the equivalent result of Theorem 1 for the sub-Gaussian data.

Lemma 17. Let W = (Wy,...,W,) be a pxn random matriz with independent
columns Wy satisfying |[We|ly; < L and ||Var(Wy)|lop < B fort € [n—1]. Define
E = T(W). Let py = |Jy| with p. = minge;gpy. There erists a universal
constant C' > 0 such that for any § € (0,1), we have

1
]P’{|E||grp* > 0L31/2<1 + M)} <4,

P

Proof. By the definition of the CUSUM transformation 7 in (5), we can write
E, as B, = Zse[n] asWs for a contrast vector a = (ay,...,a,)’ such that
|all2 = 1. For each ¢ € [n], Since ||W;|lys < L, we have for any v € SP~! that
oW, /{vT Var(W;)v}'/2||,, < L. Therefore, by Vershynin (2012, Proposition
5.10), there exists a constant Cy > 0 such that for every ¢t € [n — 1] we have

S asv Wy
(vT Var(W;)v)1/2

< C\L.

)
E
ey Bl

E =
1] vesp—1 (UTVM(Wt)U)I/Q vesr-1

2

Then, we can bound || Ey||y, by:

1Edllys < | Eellys IZllep” < CLLBY2.

Define S271 := {v € SP7! : supp(v) C J,} and let Ny € SE~! be a 1/2-net
of the set SP~!. By Vershynin (2012, Lemma 5.2), we can choose N such that
|Ng| < 5Ps. Obseve that

sup v'E; < sup v E, + sup lu" By

||Ejg t||2
vESg 'UG./\/g u.||u\|2<_1/2,supp(u)_:t7_q

1
= sup v' B, + §||qu,t||2 <2 sup v' E;.
vENy vEN,

Hence, by a union bound and a tail bound of sub-Gaussian random variables,
we have we have for some universal constant Co > 0 that

P(||Eg, tlls > ) < P( sup v By > g) < 5Paem /(C2LPB)
vEN,
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By another union bound, we have

{1l > 203272 (14 G

D
<> Y ]P><||Ejg,t||2 > CQLBl/Q,/ngHog(nG/(s))
g€[G] te[n—1]
< Z (n— 1)51%6*2179*10%(”@'/5) <4,
9€[G]
as desired. O

Lemma 19 below can be used in place of Lemma 15 to establish the equivalent
of Theorem 3 for the sub-Gaussian data. To prove Lemma 19, we first establish
Lemma 18.

Lemma 18. Let Wy,..., W, be independent centered sub-Gaussian random
variables with max; |Wi||y, < K fort € [n]. Define Zy :=t=/2 3! _| W,.. Then
forn >5 and u > 0, we have for some universal constant C > 0 that

> ) < 26—/ (CK?) )
]P)(fg?gxn Zy > u) < 2e logn

Proof. Define S; := Zf«:l W,. Then, (S;); is a martingle and (e5*); is a non-
negative sub-martingle. Then, by a union bound, we have

[log,(n+1)]
IP( Z, > ) < P Z, > )
mxsze)< 3, Pl Bz
=
Then by Doob’s martingle inequality and Vershynin (2012, Lemma 5.9), we have
for some universal constant C; > 0 that

[log, (n+1)] .
. i—1)/2
]P’( max Z; > u) < Z inf IP( max et > 2 A")
2i-1<t<2i — A>0 \2i-i<t<2
=

Mogy (n-+1)] o
. . — J—
< E inf Ee*%2i ¢ 2 Au

A>0
=
[log, (n+1)] , _
< inf ecl,\227*11<26—2<]*1>/2,\u
o - A>0
j=1

[logy(n+1)]
_ Z o u’/(4CK?) < 9~ /(4C1K?) log 7,
j=1
where in the final step, we used the fact that n > 5. The desired result follows
by taking C' = 4C}. O
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Lemma 19. Let W = (Wy,...,W,,) be a pxn random matriz with columns sat-
isfying max; |Wi|ly; < L and E =T (W) = (E1,...,Ey_1). Suppose min(z,n—

z) > n1 and |z —t| < nt/2. For a deterministic vector v and Ay = L/CBlogn,
we have with probability at least 1 — 161% that

—1 —t
W E, — v By < 2V2M/ —— + 81~
nTt nTt

Proof. By a similar argument as in the proof of Lemma 17, we have for all
r € [n] and v € SP~! that ||vT W, |y, < LB'/2. Define event

s t
Qq = { ZUTWT—ZUTWT
r=1 r=1

Then, by Lemma 18, for any u > 0, and m € N, we have

t
1
]P’( max |— E vTWT
1<t<m|+\/t —

Applying the above bound four times, we have

< Ai/|s — 1, for0<t<nands€{0,z,n}}.

> /\1) < 4e=2/(CL*B) log m.

P(25) < e/ CE ) 2 10gn + log 2 + log(n — 2)}

< 166N/ (CL*B) gy < 101087
n

It hence suffices to show that on €2y, the desired inequality holds. This deter-
ministic calculation follows verbatim from the proof of Lemma 15. O

Appendix C: Extensions to temporal dependence

In this section, we consider the case when the columns of X are not independent.
We assume that Wy, ..., W, are stationary and let K (u) = Cov(W;, Wiy,,). We
further assume that the dependence is short-ranged in the sense that:

n—1

> K(u)
u=0

The oracle projection direction does not change in this case, the following
Lemma can be used in place of Lemma 14 to establish the equivalent result of
Theorem 1 for data with short-ranged time-dependence.

< B". (37)

op

Lemma 20. Suppose ¥ € RP*P 4s a symmetric positive semidefinite matrix
with |E|lop < B. Let W = (Wh,...,W,,) be an p x n random matric with
dependent columns Wy ~ N,(0,%) satisfying equation (37). Define E := T (W).
Let pg = |J,| with p, = minge(q pg. Then for any 0 € (0,1) and X = v/2B* (1 +

2pi ' log(1/6)), we have that

P Elgrps > ) < (n — 1)G.
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Proof. Fixt € [n—1] and define k = (k1,...,k,) " €R" by, = — /2t 1o+
1/ ﬁﬂ{wt} (for simplicity, we have suppressed the ¢ dependence in the def-

inition of k). Then we have E; = Y ' kW, ~ N(0,X*) for some positive
semidefinite matrix $* € RP*P, For any v € SP~!, we have

n

v X% = Var(v' By) = Z Z Fory Firy 0| K (1 — 1|0

ri=1ro=1
n—1 n—u
<2 Z ’UTK(U)'U Z KoKt
u=0 r=1

2wt e <o
u=0

nt n(n —t)

Consequently, we have ||X*||,p < 2B*. Then, following the proof of Lemma 14
and B with 2B*, we can obtaine the desired result. O
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