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Researchers havewidely used exploratory factor analysis (EFA) to learn the latent structure underlying
multivariate data. Rotation and regularised estimation are two classes of methods in EFA that they often use
to find interpretable loading matrices. In this paper, we propose a new family of oblique rotations based on
component-wise L p loss functions (0 < p ≤ 1) that is closely related to an L p regularised estimator. We
develop model selection and post-selection inference procedures based on the proposed rotation method.
When the true loading matrix is sparse, the proposed method tends to outperform traditional rotation
and regularised estimation methods in terms of statistical accuracy and computational cost. Since the
proposed loss functions are nonsmooth, we develop an iteratively reweighted gradient projection algorithm
for solving the optimisation problem. We also develop theoretical results that establish the statistical
consistency of the estimation, model selection, and post-selection inference. We evaluate the proposed
method and compare it with regularised estimation and traditional rotation methods via simulation studies.
We further illustrate it using an application to the Big Five personality assessment.
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Researchers have widely used exploratory factor analysis (EFA) to learn the latent struc-
ture underlying multivariate data. A major problem in EFA is identifying an interpretable factor
structure among infinitely many equivalent solutions that give the same data distribution, where
two equivalent solutions differ by a rotation transformation (see Chapters 10–12, Mulaik, 2009).
Mathematically, we aim to find a sparse solution for which many entries of the loading matrix are
exactly or approximately zero so that each factor can be interpreted based on a small number of
manifest variables whose loadings on the factor are not close to zero. This idea dates back to the
seminal discussion on simple factor structure in Thurstone (1947).

We can classify methods for obtaining sparse loading structures into two categories – rotation
and regularised estimationmethods.A rotationmethod involves two steps. In the first, we obtain an
estimate of the loading matrix. Typically, but not necessarily, a maximum likelihood estimator is
used in this step (Bartholomew et al., 2011) , under some arbitrary but mathematically convenient
constraints that avoid rotational indeterminacy. In the second step, we rotate the estimated loading
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matrix to minimise a certain loss function where a smaller loss function value tends to imply a
more interpretable solution. Researchers have proposed different rotation methods that differ by,
first, whether the factors are allowed to be correlated, and second, the loss function for measuring
sparsity. A rotation method is called an orthogonal rotation when the factors are constrained to
be uncorrelated and an oblique rotation otherwise. Different loss functions have been proposed
for orthogonal and oblique rotations, including varimax (Kaiser, 1958) , oblimin (Jennrich
& Sampson, 1966) , geomin (Yates, 1987) , simplimax (Kiers, 1994) , and component-wise
loss (Jennrich, 2004, 2006) , among many others. Among the existing rotation methods, we draw
attention to the monotone concave Component Loss Functions (CLFs; Jennrich, 2004, 2006)
due to their desired theoretical properties and superior performance in recovering sparse loading
matrices. Specifically, Jennrich (2004, 2006) provided some theoretical guarantees to the CLFs
when the true loading matrix has a perfect simple structure and further found that the CLFs are
often more accurate in recovering sparse loading matrices than other rotation methods under both
orthogonal and oblique settings.

In recent years, several regularised estimation methods have been proposed for EFA (e.g.,
Geminiani et al., 2014; Jin et al., 2017; Trendafilov, 2018; Yamamoto et al., 2021). Slightly
different from rotation methods, a regularised estimation method simultaneously estimates the
model parameters and produces a sparse solution. It introduces a least absolute shrinkage and
selection operator (LASSO; Tibshirani, 1996) type sparsity-inducing regularisation term into the
loss function for parameter estimation, where the regularisation term imposes sparsity on the
estimated loadings. It typically obtains a sequence of candidate models by varying the weight of
the regularisation term in the loss function. The final model is chosen from the candidate models,
often using an information criterion.

In this paper, we propose a new family of oblique rotations based on component-wise L p

loss functions, for 0 < p ≤ 1. We show the proposed loss functions to be special cases of
monotone concave CLFs and that they thus share the same theoretical properties. We note that
Jennrich (2004, 2006) considered the L1 loss function but not the L p loss functions with p < 1.
With the proposed rotations, we solve several previously unaddressed problems regarding rotation
and regularised estimation methods. First, we establish the statistical consistency of the rotated
solution. More specifically, we provide conditions under which the rotated solution converges to
the true sparse loading matrix as the sample size goes to infinity. These conditions also provide
insights into the choice of p. Seemingly straightforward, this consistency result requires some
refined analysis and, to our best knowledge, such results have not been established for other
rotation methods. In particular, the theoretical results for the CLFs in Jennrich (2004, 2006) were
established concerning the population loading matrix rather than its estimate. Second, we address
the difficulty of establishingwhether regularised estimationmethods outperform rotationmethods
or vice versa. To gain some insights into this question, we theoretically show that the proposed
rotation method can be viewed as the limiting case of a regularised estimator when the weight of
the regularisation term converges to zero. In addition, to compare the two methods in terms of
model selection, we develop a hard-thresholding procedure that conducts model selection based
on a rotated solution. Through computational complexity analysis and simulation studies, we find
that the proposed method achieves similar statistical accuracy as regularised estimation given a
reasonable sample size and is computationally faster. Third, monotone concave CLFs, including
the proposed L p loss functions, are not smooth everywhere. Consequently, the traditional gradient
projection algorithms are no longer applicable. Jennrich (2004, 2006) bypassed the computational
issue by replacing a CLF with a smooth approximation and pointed out potential issues with
this treatment. We propose an Iteratively Reweighted Gradient Projection (IRGP) algorithm that
may better solve this nonsmooth optimisation problem. Finally, uncertainty quantification for the
rotated solution affects the interpretation of the factors and, thus, is vital in EFA.However, the delta
method, which is used to obtain confidence intervals for rotation methods with a smooth objective
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function (Jennrich, 1973) , is not applicable due to the nonsmoothness of the current loss functions.
That is, the delta method requires the loss function to be smooth at the true loading matrix,
which is not satisfied for monotone concave CLFs. We tackle this problem by developing a post-
selection inference procedure that gives asymptotically valid confidence intervals for loadings in a
rotated solution.We evaluate the proposed method and compare it with regularised estimation and
traditional rotation methods via simulation studies. We further illustrate it using an application to
the Big Five personality assessment.

The rest of the paper is structured as follows. In Sect. 1 we propose L p criteria for oblique
rotation, and draw a connection with regularised estimation. In Sect. 2 we discuss statistical
inferences based on the proposed rotation method and establish their asymptotic properties, and
in Sect. 3 we develop an iteratively reweighted gradient projection algorithm for solving the
optimisation problem associated with the proposed rotation criteria. We evaluate the proposed
method via simulation studies in Sect. 4 and an application to the Big Five personality assessment
in Sect. 5. We conclude this paper with discussions on the limitations of the proposed method
and future directions in Sect. 6. Proof of the theoretical results, additional simulation results, and
further details of the real application are given in the supplementary material.

1. L p Rotation Criteria

1.1. Problem Setup

We consider an exploratory linear factor model with J indicators and K factors given by

X|ξ ∼ N (�ξ ,�), (1)

where X is a J -dimensional vector of manifest variables, � = (λ jk)J×K is the loading matrix, ξ
is a K -dimensional vector of common factors, and� = (ωi j )J×J denotes the residual covariance
matrix. It is assumed that the common factors are normally distributed with variances fixed to
1, i.e, ξ ∼ N (0,�), where � ∈ R

K×K has diagonal entries φkk , k = 1, . . . , K , equal to 1
and is symmetric positive definite, denoted by � � 0. The manifest variables are assumed to
be conditionally independent given ξ , i.e., the off-diagonal entries of � are set to 0. To simplify
the notation, we use θ = (�,�,�) to denote all of the unknown parameters. The model in (1)
implies the marginal distribution of X

X ∼ N (0,�(θ)), (2)

where �(θ) = ���′ + �. Without further constraints, the parameters in (2) are not identifiable
due to rotational indeterminacy. That is, two sets of parameters θ and θ̃ = (�̃, �̃, �̃) give the
same distribution for X if ���′ = �̃�̃�̃

′
and � = �̃. Note that the normality assumptions

above are not essential. We adopt them for ease of writing, and the development in the current
paper does not rely on these normality assumptions. Throughout this paper, we assume that the
number of factors K is known.

An oblique rotation method is a two-step procedure. In the first step, one obtains an estimate
of the model parameters, under the constraints that � = I and other arbitrary but mathematically
convenient constraints that fix the rotational indeterminacy. Note that due to the rotational inde-
terminacy, we can always constrain � = I and absorb the dependence between the factors into
the loading matrix �. We can obtain the estimate using any reasonable estimator for factor anal-
ysis, such as the least-square (Jöreskog & Goldberger, 1972) , weighted-least-square (Browne,
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1984) , and maximum likelihood estimators (Jöreskog, 1967) . We denote this estimator by
θ̂ = (Â, I, �̂). In the second step, we find an oblique rotation matrix T̂, such that the rotated
loading matrix �̂ = ÂT̂′−1 minimises a certain loss function Q that measures the sparsity level
of a loading matrix. We will propose the functional form of Q in the sequel. Here, an oblique
rotation matrix T satisfies that T is invertible and (T′T)kk = 1, k = 1, . . . , K . Consequently, any
rotated solution (ÂT′−1,T′T, �̂) is still in the parameter space and gives the same distribution
for X. More precisely, we let

M ={T ∈ R
K×K : rank(T) = K , (T′T)kk = 1, k = 1, . . . , K } (3)

be the space for oblique rotation matrices, where rank(·) gives the rank of a matrix. Then the
oblique rotation problem involves solving the optimisation

T̂ ∈ argmin
T∈M

Q(ÂT′−1
), (4)

and the rotated solution is given by (ÂT̂′−1, T̂′T̂, �̂). Equivalently, the rotated loading matrix �̂

satisfies

(�̂, �̂) ∈ argmin
�,�

Q(�), such that ���′ = ÂÂ′,� � 0, and φkk = 1, k = 1, . . . , K . (5)

As explained in Remark 1, the minimiser of (4), or equivalently that of (5), is not unique.

Remark 1. Let D1 be the set of all K × K permutation matrices and D2 be the set of all K × K
sign flip matrices. For any D1 ∈ D1, D2 ∈ D2, and K × K matrix T, TD1 is a matrix whose
columns are a permutation of those of T and,TD2 is a matrix whose kth column is either the same
as the kth column of T or the kth column of T multiplied by −1. Let T̂ be one solution to the
optimisation problem (4). It is easy to check that T̂D1D2 also minimises the objective function
(4), for anyD1 ∈ D1 andD2 ∈ D2. The resulting loading matrix is equivalent to �̂ up to a column
permutation and column sign flips.

We conclude the problem setup with two remarks.

Remark 2. The rotation problem not only applies to the linear factormodel, but also other settings,
such as item factor analysis (Chen et al., 2019; Chen et al., 2021; Reckase, 2009) and machine
learning models such as the stochastic blockmodel and latent Dirichlet allocation (see Rohe &
Zeng, 2022). These models are all latent variable models involving manifest variables X, latent
variables ξ , a parameter matrix �, and possible other model parameters. The parameter matrix �

connects X and ξ , playing a similar role to the loading matrix in the linear factor model. We can
view these models as extensions of the linear factor model to more general variable types (e.g.,
binary or categorical) with more flexible assumptions on the distribution of (X, ξ). We can apply
the rotation method to learn an interpretable � in these models.

Remark 3. Although in the current paper we focus on oblique rotations, we note that the proposed
criteria can be easily extended to orthogonal rotation, as the latter can be viewed as a special case
of the former when� is fixed to be an identify matrix. That is, given a loss function Q, orthogonal
rotation solves the problem

min
�

Q(�), such that ��′ = ÂÂ′.
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1.2. Proposed Rotation Criteria

Jennrich (2004, 2006) proposed a family of monotone concave CLFs for the choice of Q in
(4), taking the form

Q(�) =
J∑

j=1

K∑

k=1

h(|λ jk |), (6)

where � = (λ jk)J×K and h is a concave and monotone increasing function that maps from
[0,∞) to [0,∞). This family of loss functions is appealing for several reasons. First, a CLF takes
a simple form that does not involve products of loadings and their higher-order polynomial terms.
Second, the monotone concave CLFs have desirable properties. In particular, Jennrich (2006)
proved that a monotone concave CLF is minimised by loadings with a perfect simple structure
when such a loading structure exists. Third, simulation studies in Jennrich (2004, 2006) showed
that these loss functions tend to outperform traditional rotationmethods (e.g., promax, simplimax,
quartimin, and geomin) when the true loading matrix is sparse.

Two examples of h are given in Jennrich (2004, 2006), including the linear CLF where
h(|λ|) = |λ| and the basic CLF where h(|λ|) = 1 − exp(−|λ|). However, there does not exist a
full spectrum of monotone concave CLFs for dealing with true loading matrices with different
sparsity levels. To fill this gap, we propose a general family of monotone concave CLFs that we
name the L p CLFs. More specifically, for each value of p ∈ (0, 1], the loss function takes the
form

Qp(�) =
J∑

j=1

K∑

k=1

|λ jk |p. (7)

Proposition 1 below shows that this choice of h yields a monotone concave CLF.

Proposition 1. The absolute value function h(x) = |x |p, p ∈ (0, 1] is monotonically increasing
and concave on the interval [0,∞).

Under very mild regularity conditions, any L p CLF is uniquely minimised by a loading
matrix of perfect simple structure, when such a loading matrix exists. We say the minimiser is
unique when all the minimisers of the loss function are equivalent up to column permutation and
sign flip transformations (see Remark 1 for these transformations). We summarise this result in
Proposition 2 below. This result improves Theorem 1 of Jennrich (2006), as the uniqueness of the
perfect simple structure is not established in Jennrich (2006) for the L1-criterion.

Proposition 2. Suppose that the true loading matrix�∗ has perfect simple structure, in the sense
that each row has at most one non-zero entry. Further suppose that �∗ is of full column rank, i.e.,
rank(�∗) = K. Then, for any oblique rotation matrix T ∈ M,

Q p(�
∗T′−1

) ≥ Qp(�
∗),

where the two sides are equal if, and only if, T′−1 = D1D2 for D1 ∈ D1 and D2 ∈ D2; see
Remark 1 for the definitions of D1 and D2.
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Why do we need the loss functions with p < 1, given that the choice of p = 1 is already
available in Jennrich (2004, 2006)? This is because different L p CLFs may behave differently
when the true loading matrix does not have a perfect simple structure but still contains many zero
loadings. Such a loading structure is more likely to be recovered by an L p CLF when p < 1 than
by the L1 CLF. In what follows, we elaborate on this point. Let �∗ be the true sparse loading
matrix and �∗ be the corresponding covariance matrix for the factors. For the true loading matrix
�∗ to be recovered by an L p CLF, a minimum requirement is that

Qp(�
∗) = min

�
Qp(�), such that there exists � � 0, φkk = 1, k = 1, ..., K , �∗�∗�∗′ = ���′.

(8)

In other words, �∗ needs to be a stationary point of Qp. In Fig. 1 we give the plots for |x |p with
different choices of p and their derivatives when x > 0. We note that when p < 1 the derivative
of |x |p converges to infinity as x approaches zero. The smaller the value of p, the faster the
convergence speed is. On the other hand, when p = 1, the derivative of |x | takes the value one for
any x > 0. Therefore, when �∗ is sparse but does not have a perfect simple structure, it is more
likely to be a stationary point of Qp for p < 1 than Q1. We illustrate this point by a numerical
example, where

(�∗)′ =
(
1.20 0 0.15 0 0.25 1.05 0.18
0 0.27 0 1.04 0.15 1.29 0.11

)

and �∗ is set to be an identity matrix. Note that a 2× 2 oblique rotation matrix can be reparame-
terised by

T(θ1, θ2) =
(
cos(θ1) sin(θ2)
sin(θ1) cos(θ2)

)

for θ1, θ2 ∈ [0, 2π). In Fig. 2 we show the contour plots of Qp(�
∗(T(θ1, θ2))

−1′
), with p = 0.5

and 1, respectively. The point (0, 0), which is indicated by a black cross, corresponds to � = �∗,
and the point indicated by a red point corresponds to the � matrix such that Qp(�) is minimised.
As we can see, when p = 0.5, the loss function is minimised by �∗. On the other hand, when
p = 1, the minimiser of the loss function is not �∗ and the resulting solution does not contain as
many zeros as �∗.

We emphasise that due to the singularity of the L p function near zero when p < 1, the
optimisation for Qp tends to be more challenging with a smaller value of p. This is also reflected
by the contour plots in Fig. 2, where we see Q0.5 is very non-convex, even around the minimiser.
On the other hand, Q1 seems locally convex near the minimiser. Therefore, although the L p-
rotation with p < 1 may be better at recovering sparse loading matrices, its computation is more
challenging than the L1-rotation. Thus, the choice of p involves a trade-off between statistical
accuracy and computational cost. We have noticed that despite the above counter example, the L1

criterion tends to give similar results as other L p criteria (p < 1) in most simulation and real-data
settings that we have encountered. Considering its computational advantage, we recommend users
to always start with the L1 criterion. Some smaller p values (e.g., p = 0.5) may be tried in order
to validate the L1-rotation result. More guidance on the choice of p can be found in Sect. 6. We
discuss the computation of the proposed rotation criteria in Sect. 3.

Finally, we remark that when the true loading matrix is sparse but does not have a perfect
simple structure, rotation criteria with a smooth objective function (e.g., quartimin and geomin)
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Figure 1.
Panel (a): Plots of |x |p , for different choices of p. Panel (b): Plots of the derivative of |x |p , for different choices of p.

Figure 2.
Plots of contours of |�∗T−1′ |p , where T = [cos(θ1), sin(θ2); sin(θ1), cos(θ2)]. Panel (a): p = 0.5. Panel (b): p = 1.

typically cannot exactly recover the true sparse loading matrix, even when the true loading matrix
can be estimated without error. This is due to the fact that a smooth objective function does
not discriminate well between zero parameters and close-to-zero parameters. Thus, such rotation
criteria do not favour exactly sparse solutions (i.e., with many zero loadings) and only tend to
yield approximately sparse solutions (i.e., many small but not exactly zero loadings). Numerical
examples illustrating this point are given in Jennrich (2004, 2006) and a new numerical example
and associated simulation results are in Appendix H of the supplementary material.

1.3. Connection with Regularised Estimation

The proposed rotation criteria have a close connection with regularised estimators for EFA. In
what follows, we establish this connection. Recall that the proposed procedure relies on an initial
estimator of the loading matrix for which � is constrained to be an identity matrix. We further
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require it to be an M-estimator (Chapter 5, van der Vaart, 2000), obtained by minimising a certain
loss function, denoted by L(�(θ)). Note that all the popular EFA estimators areM-estimators. For
instance, when the maximum likelihood estimator is used, then the loss function to be minimised
is

L(�(θ)) = log det(�(θ)) + tr(�(θ)−1S),

where S = (
∑N

i=1 xix


i )/N is the sample covariance matrix.

Now we introduce an L p regularised estimator based on the loss function L(�(θ)) in the
form

θ̂γ,p ∈ argmin
θ

L(�(θ)) + γ

J∑

j=1

K∑

k=1

|λ jk |p, (9)

where γ > 0 is a tuning parameter and the covariancematrix� is estimated rather than constrained
to be an identity matrix. We note that the minimiser of (9) is also not unique due to column
permutation and sign flips similar to the non-uniqueness of optimisation (4). We denote the set of
minimisers as

Ĉγ,p = argmin
θ

L(�(θ)) + γ

J∑

j=1

K∑

k=1

|λ jk |p.

Note that the regularisation term takes the same form as the L p CLF. It is used to impose sparsity
on the estimate of the loading matrix. When p = 1, it becomes a LASSO-regularised estimator
that has been considered in, for example, Choi et al. (2010), Hirose and Yamamoto (2014, 2015),
Jin et al. (2018), and Geminiani et al. (2021). The regularised estimator (9) is similar in spirit
to L p-regularised regression (Lai & Wang, 2011; Mazumder et al., 2011; Zheng et al., 2017) ,
where the L p regularisation with p < 1 has been shown to better recover sparse signals under
high-dimensional linear regression settings while computationally more challenging (Zheng et
al., 2017) .

As summarised in Proposition 3 below, we can view the proposed L p rotation solution as a
limiting case of the L p-regularised estimator when the tuning parameter γ converges to zero.

Proposition 3. Consider a fixed p ∈ (0, 1] and a fixed dataset. Suppose that for any sufficiently
small γ > 0, Ĉγ,p only contains n = 2K K ! elements that are equivalent up to column permutation
and sign flips of the loading matrix, where K ! denotes K factorial that counts the number of all
possible permutations and 2K gives the total number of sign flip transformations. Furthermore,

assume that for any sufficiently small γ > 0, one can label the elements of Ĉγ,p, denoted by θ̂
(i)
γ,p,

i = 1, ..., n, such that there exists a sufficiently small constant δ > 0, θ̂
(i)
γ,p is a continuous and

bounded function of γ in (0, δ), for each i . Then the limit

θ̂
(i)
0,p = (�̂

(i)
0,p, �̂

(i)
0,p, �̂

(i)
0,p) = lim

γ→0
θ̂

(i)
γ,p

exists, and θ̂
(i)
0,p satisfies that (�̂

(i)
0,p, �̂

(i)
0,p) solves the optimisation problem (5) and �̂

(i)
0,p = �̂,

where θ̂ = (Â, I, �̂) minimises the loss function L(�(θ)).
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We now discuss the implications of this connection. First, if we have a numerical solver
for the regularised estimator (9), then we can obtain an approximate solution to the L p-rotation
problem (5) by using a sufficiently small tuning parameter γ . Second, thanks to this connection,
the choice between regularised estimation and rotation becomes the choice of the tuning parameter
in regularised estimation. Note that the tuning parameter γ corresponds to a bias-variance trade-
off in estimating the model parameters θ . As γ increases, the bias of the regularised estimator
also increases and the variance decreases. In applications where the sample size is large relative
to the number of model parameters, the optimal choice of the tuning parameter is often close to
zero. In that case, it is a good idea to use the rotation method, as the regularised estimator under
the optimal tuning parameter may not be substantially more accurate than the rotation solution
and searching for the optimal tuning parameter can be computationally costly. We further discuss
this point in a simulation study in Sect. 4. We will discuss the computation of these methods in
Sect. 3.

2. Statistical Inference and Asymptotic Theory

2.1. Estimation Consistency

We establish the statistical consistency of the proposed estimator based on the L p rotation.
Suppose the true parameter set that we aim to recover is (�∗,�∗,�∗), where the true loading
matrix �∗ is sparse. To emphasise the dependence on the sample size, we attach the sample
size N as a subscript to the initial estimator in the first step of the rotation method; that is,
θ̂N = (ÂN , I, �̂N ). We require the initial estimator to be consistent, in the sense that

C1. ÂN Â′
N

pr→ �∗�∗�∗′ and �̂N
pr→ �∗, where the notation “

pr→" denotes convergence in
probability.

This requirement easily holds when the linear factor model is correctly specified and the loss
function L(�(θ)) is reasonable (e.g., the negative log-likelihood). In addition, we require that the
EFA model is truly a K -dimensional model, in the sense that condition C2 holds.

C2. rank(�∗�∗�∗′
) = K .

For the L p rotation estimator to be consistent, for a specific value of p ∈ (0, 1], we further
require that the true loading matrix uniquely minimises the L p CLF, in the sense of condition C3
below.

C3. (�∗,�∗) ∈ argmin�,� Qp(�) such that ���′ = �∗�∗�∗′
. In addition, for any other

(�†,�†) ∈ argmin�,� Qp(�) such that ���′ = �∗�∗�∗′
, there exist D ∈ D1 and

D̃ ∈ D2, such that �†DD̃ = �∗ and D̃−1D−1�†(D−1)′(D̃−1)′ = �∗. Recall that D1
and D2 are the sets of column permutation and sign flip transformations, respectively,
which we gave in Remark 1.

Condition C3 tends to hold when the true loading matrix contains many zeros, as the L p

loss function is a good approximation to the L0 function that counts the number of non-zero
elements. In particular, according to Proposition 2, condition C3 is guaranteed to hold when �∗
has a perfect simple structure, i.e., if it has at most one non-zero loading in each row. As we
discussed in Sect. 1.2, this condition is more likely to hold for a smaller value of p, when there are
cross-loadings. Conditions C1 through C3 guarantee the estimation consistency of the L p rotation
estimator, up to column permutation and sign flips. We summarise this result in Theorem 1 below.
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Theorem 1. Suppose that for a given p ∈ (0, 1] conditions C1 through C3 hold. Then there exist
DN ∈ D1 and D̃N ∈ D2, such that �̂N ,pDN D̃N

pr→ �∗ and D̃−1
N D−1

N �̂N ,p(D
−1
N )′(D̃−1

N )′ pr→ �∗,
where

(�̂N ,p, �̂N ,p) ∈ argmin
�,�

Qp(�), such that ���′ = ÂN Â′
N .

2.2. Model Selection

The interpretation of the factors relies on the sign pattern of the loading matrix, so that we
can interpret each factor based on the associated manifest variables and their directions (positive
or negative associations). Learning this sign pattern is a model selection problem. A regularised
estimatormay seem advantageous as it yields simultaneous parameter estimation andmodel selec-
tion. We note that, however, we can easily achieve model selection with a rotation method, using
a Hard-Thresholding (HT) procedure. Similar HT procedures have been proven to be successful
in the model selection for linear regression models (Meinshausen and Yu, 2009).

More precisely, let �∗ =
(
sgn(λ∗

jk)
)

J×K
denote the true sign pattern of �∗, where sgn(x)

returns the sign of a scalar satisfying that

sgn(x) =
⎧
⎨

⎩

1 if x > 0,
0 if x = 0,

−1 if x < 0.

Given the L p rotation estimator �̂N ,p =
(
λ̂

(N ,p)
jk

)

J×K
, the HT procedure estimates the pattern

of �∗ by �̂N ,p =
(
sgn(λ̂(N ,p)

jk ) × 1{|λ̂(N ,p)
jk |>c}

)

J×K
, where c > 0 is a pre-specified threshold. If

we choose the threshold c properly, then �̂N ,p consistently estimates �∗. We state this result in
Theorem 2 below.

C4. The threshold c lies in the interval (0, c0), where c0 = min{|λ∗
jk | : λ∗

jk �= 0}.
Theorem 2. Suppose that for a given p ∈ (0, 1] conditions C1 through C4 hold. Then there exist
DN ∈ D1 and D̃N ∈ D2, such that the probability P(�̂N ,pDN D̃N = �∗) converges to 1 as the
sample size N goes to infinity.

In practice, the value of c0 is unknown and thus cannot be used for choosing the threshold
c. Instead, we choose c based on the Bayesian Information Criterion (BIC; Schwarz, 1978). We
summarise the steps of this procedure in Algorithm 1 below, where we simplify the notation for
ease of exposition.

When the candidate values of c are chosen properly (i.e., C includes values that are below
c0), then Theorem 2 implies that with probability tending to one, the true model will be in the
candidate models. Together with the consistency of BIC for parametric models (Shao, 1997;
Vrieze, 2012) , the true non-zero pattern can be consistently recovered. We remark that it may
not be a good idea to manually select c or use some default thresholds. Unless there is very
good substantive knowledge about the latent structure, it is very likely to under- or over-select
c, leading to high false-positive and false-negative errors. Even with the proposed procedure, the
selection consistency is only guaranteed when the sample size goes to infinity. For a finite sample,
the false-positive and false-negative errors likely exist and thus we should look at the selected
model with caution. Furthermore, we note that the BIC is not the only information criterion that
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Algorithm 1
Hard-thresholding for model selection based on L p rotation

Input: A sequence of candidate thresholds C, observed data, and the rotated loading matrix
�̂ = (λ̂ jk)J×K given by the L p CLF criterion.

For each value of c ∈ C, we perform the following two steps:

Step 1: Obtain the corresponding selected loading structure �̂c =
(
sgn(λ̂ jk) × 1{|λ̂ jk |>c}

)

J×K
.

Step 2: Fit a Confirmatory Factor Analysis (CFA) model based on �̂c using the maximum likelihood
estimator, in which the (i, j)th loading parameter satisfies the sign constraint implied by the corresponding
entry of �̂c. Calculate the BIC value for this CFA model, denoted by BICc.

Obtain ĉ = argminc∈C BICc.

Output: The selected sign pattern �̂ĉ.

leads to model selection consistency (Nishii, 1984) , but it is probably the most commonly used
information criterion with consistency guarantee. Another commonly used information criterion
is the Akaike Information Criterion (AIC) which tends to over-select and thus does not guarantee
model selection consistency (Shao, 1997) .

2.3. Confidence Intervals

Often, we are not only interested in the point estimate of the underlying sparse loading
matrix, but also in quantifying its uncertainty. We typically achieve uncertainty quantification by
constructing confidence intervals for the loadings of the rotated solution. Traditionally, we can
do this by establishing the asymptotic normality of the rotated loading matrix using the delta
method, which involves calculating the partial derivatives of a rotation algorithm using implicit
differentiation (Jennrich, 1973) . Unfortunately, this procedure is no longer suitable if the true
loadingmatrix is sparse and the loss function is not differentiable with respect to the zero loadings.

Motivated by a simple but nevertheless well-performing post-selection inference procedure
in regression analysis (Zhao et al., 2021) , we propose a procedure for constructing confidence
intervals for individual loading parameters of the rotated solution. More precisely, this procedure
runs a loop over all the manifest variables, j = 1, ..., J . Each time, the procedure obtains the
confidence intervals for the loading parameters of manifest variable j by fitting a CFA model
whose loading structure is determined by the selected sign pattern of the remaining J −1manifest
variables. More precisely, the loading parameters of the CFA model satisfy the sign constraints
imposed by the selected sign pattern �̂ĉ from Algorithm 1, for all the items except for j . We
impose no constraint on the loading parameters of item j . We obtain confidence intervals for the
loading parameters of item j based on the asymptotic normality of the estimator for this CFA
model. We summarise this procedure in Algorithm 2 below.

Inwhat follows, we establish the consistency of confidence intervals given byAlgorithm 2. To
emphasise that the statistics inAlgorithm2depend on the sample size N , we attach N as a subscript
or superscript when describing this consistency result. We require the following conditions:

C5. The selected sign pattern �̂N is consistent. That is, there exist DN ∈ D1 and D̃N ∈ D2,
such that the probability P(�̂N ,pDN D̃N = �∗) converges to 1 as the sample size N
goes to infinity.

Thanks to the consistency of BIC selection, and when we have chosen the candidate thresholds
properly, condition C5 holds if �̂N is obtained by Algorithm 1.
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Algorithm 2
Post-selection confidence intervals

Input: The selected sign pattern �̂ = (γ̂ jk)J×K , observed data, and significance level α ∈ (0, 1).

For each manifest variable s = 1, ..., J , we perform the following two steps:

Step 1: Obtain a CFA model whose loadings λ jk satisfy the constraints that sgn(λ jk) = γ̂ jk for all j �= s
and for all k.
Step 2: Fit the CFA model and obtain the (1 − α)-confidence intervals for parameters λs1, ..., λsK using a
standard inference procedure for CFA (e.g., based on the maximum likelihood estimator). We denote these
confidence intervals by (lsk , usk). If the CFA model in Step 1 is not identifiable, we let the confidence
intervals be (−∞, ∞).

Output: Confidence intervals (lsk , usk), s = 1, ..., J, k = 1, ..., K .

C6. For eachmanifest variable s = 1, ..., J , theCFAmodelwhose loadingparameters satisfy
sgn(λ jk) = sgn(λ∗

jk) for all j �= s is identifiable, and using the same procedure in Step
2 of Algorithm 2 leads to consistent confidence intervals for λs1,..., λsK . That is, let
(l∗(N )
sk , u∗(N )

sk ) be the resulting confidence interval for λsk , then P(λ∗
sk ∈ (l∗(N )

sk , u∗(N )
sk ))

converges to 1 − α, as the sample size N goes to infinity.

Note that C6 is a condition imposed on the sign pattern of the true loading matrix. It essentially
requires that the factors can be identified by the sign pattern of any (J −1)-subset of the manifest
variables. Given an identified CFA model, we can easily construct the consistent confidence
intervals based on the asymptotic normality of any reasonable estimator of the CFA model, e.g.,
the maximum likelihood estimator. Under conditions C5 and C6, the following theorem holds.

Theorem 3. Suppose that conditions C5 andC6 hold for the selected sign pattern �̂N and the true
model, whereDN ∈ D1 and D̃N ∈ D2 are from condition C5. Suppose we input �̂N , observed data
from the true model, and significance level α into the true model, and obtain output (l(N )

sk , u(N )
sk ),

s = 1, ..., J, k = 1, ..., K. Then we have P(λ
∗(N )
sk ∈ (l(N )

sk , u(N )
sk )) converges to 1 − α, for all

s = 1, ..., J, k = 1, ..., K, where λ
∗(N )
sk are entries of �∗(N ) = �∗D̃−1

N D−1
N . Note that �∗(N ) is

equivalent to �∗ up to column permutation and sign flips.
We remark that under the conditions of Theorem 3, all the CFA models fitted in Step 2 of

Algorithm 2 should be identifiable for sufficiently large N. However, in practice, it may happen
that some CFAmodels are not identifiable, either due to the sample size not being large enough or
the regularity conditions C5 or C6 not holding. In such cases, we set the corresponding confidence
intervals to be (−∞,∞) as a conservative choice.

3. Computation

3.1. Proposed IRGP Algorithm

We now discuss the computation for the proposed rotation. Recall that we aim to solve the
optimisation problem

T̂ ∈ argmin
T∈M

Qp(ÂT′−1
),
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where Qp is the L p CLF defined in (7). Note that this objective function is not differentiable
when ÂT′−1 has zero elements, as the L p function is not smooth at zero. Consequently, standard
numerical solvers fail, especially when the true solution is approximately sparse. To solve this
optimisation problem, we develop an IRGP algorithm that combines the iteratively reweighted
least square algorithm (Ba et al., 2013; Daubechies et al., 2010) and the gradient projection
algorithm (Jennrich, 2002) .

Similar to Jennrich (2006), the IRGP algorithm also solves a smooth approximation to the
objective function Qp(ÂT′−1

). That is, we introduce a sufficiently small constant ε > 0, and
approximate the objective function by Qp,ε(ÂT′−1

), where

Qp,ε(�) =
J∑

j=1

K∑

k=1

(ε2 + λ2jk)
p
2 .

As we discuss in the sequel, the ε is introduced to make the computation more robust. The
IRGP algorithm alternates between two steps – (1) function approximation step and (2) Projected
Gradient Descent (PGD) step. More precisely, let Tt be the parameter value at the t th iteration.
The function approximation step involves approximating the objective function by

Gt (T) =
J∑

j=1

K∑

k=1

w
(t)
jk

(
(ÂT′−1

) jk

)2
, (10)

where the weights w
(t)
jk are given by

w
(t)
jk = 1

((Â(T′
t )

−1)2jk + ε2)1−p/2
.

Here ε > 0 is a pre-specified parameter that is chosen to be sufficiently small. We provide some
remarks about this approximation. First, the small tuning parameter is chosen to stabilise the
algorithm when certain Â(T′

t )
−1) jks are close to zero. Without ε, the weight w

(t)
jk can become

very large, resulting in an unstable PGD step. Second, supposing that (Â(T′
t )

−1) jk �= 0 for all j
and k, then Gt (Tt ) ≈ Qp(Â(T′

t )
−1) when ε is sufficiently small, i.e., the function approximation

and the objective function value are close to each other at the current parameter value. Lastly, this
approximation is similar to the E-step of the Expectation-Maximisation algorithm (Dempster et
al., 1977) ; see Ba et al. (2013) for this correspondence.

ThePGDstep involves updating the parameter value basedon theGt (T)via projectedgradient
descent. This step is similar to the update in each iteration of the gradient projection algorithm for
oblique rotations (Jennrich, 2002).WecanperformPGDonGt (T), as this function approximation
is smooth in T. More precisely, we define a projection operator as

Proj(T) = T(diag(T′T))−
1
2 , (11)

where (diag(T′T))− 1
2 is a diagonal matrix whose i th diagonal entry is given by 1/

√
(T′T)i i . This

operator projects any invertible matrix into the space of oblique rotation matrices M as defined
in (3). The PGD update is given by

Tt+1 = Proj(Tt − α∇Gt (T)), (12)
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Algorithm 3
IRGP algorithm for L p rotation

Input: The initial loading matrix estimate Â, parameter ε > 0, and an initial value T0.

For iterations t = 0, 1, 2, ..., we iterate between the following two steps:

Step 1: Construct Gt (T) using equation (10).
Step 2: Obtain Tt+1 using equation (12), where the step size α is chosen by line search.

Stop when the convergence criterion is met. Let tmax be the final iteration number.

Output: Ttmax .

where α > 0 is a step size chosen by line search and ∇Gt (T) is a K × K matrix whose (i, j)th
entry is the partial derivative of Gt (T) with respect to the (i, j)th entry of T. We summarize the
IRGP algorithm in Algorithm 3.

Under reasonable regularity conditions (Ba et al., 2013) , every limit point of {Tt }∞t=1 will be

a stationary point of the approximated objective function Qp,ε(ÂT′−1
). In addition, the algorithm

has local linear convergence when p = 1 and super-linear convergence when 0 < p < 1.
We remark on the choice of initial value T0 when 0 < p < 1. As discussed previously in

Sect. 1.2, when 0 < p < 1, the objective function Qp(ÂT′−1
) is highly non-convex and thus

may contain many stationary points. To avoid the algorithm getting stuck at a local optimum, the
choice of T0 is important. When solving the optimisation for a smaller value of p, we recommend
using the solution from a larger value of p as the starting point (e.g., p = 1).

3.2. Comparison with Regularised Estimation

To compare the computation of the proposed rotation method and that of regularised esti-
mation, we also describe a proximal gradient algorithm for the L1 regularised estimator. The
proximal algorithm is a state-of-the-art algorithm for solving nonsmooth optimisation problems
(Parikh & Boyd, 2014) . We can view it as a generalisation of projected gradient descent. As we
will discuss below, each iteration of the algorithm can be computed easily. In principle, we can
also apply the proximal algorithm to the L p regularised estimator, for 0 < p < 1. However, it
is computationally much more costly than the case when p = 1, and thus, will not be discussed
here.

The L1 regularised estimator, also referred to as the LASSO estimator, solves the following
optimisation problem:

min
θ

L(�(θ)) + γ

J∑

j=1

K∑

k=1

|λ jk |.

To apply the proximal gradient algorithm, we reparameterise the covariance matrix � by T′T,
where we let T be an upper triangular matrix to ensure its identifiability. We also reparameterise
the diagonal entries of the diagonal matrix � by v = (v1, ..., vJ ), where vi = log(ωi i ). With
slight abuse of notation, we can write the optimisation problem as

min
�,T,v

L(�(�,T, v)) + γ

J∑

j=1

K∑

k=1

|λ jk |.
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Algorithm 4
Proximal gradient algorithm for L1 regularised estimation.

Input: The initial values �0, T0, and v0.

For iterations t = 0, 1, 2, ..., we iterate between the following two steps:

Step 1: Calculate the gradients of L(�(�,T, v)) with respect to �, T, and v, respectively, at (�t ,Tt , vt ).
Denote these gradients by ∇Lt,� ∇Lt,T, and ∇Lt,v.
Step 2: Update the parameters by

�t+1 = Proxα,γ (�t − α∇Lt,�),

Tt+1 = Proj(Tt − α∇Lt,T),

and

vt+1 = vt − α∇Lt,v.

Recall that the operator Proj(·) is defined in (11), and α is a step size chosen by line search.

Stop when the convergence criterion is met. Let tmax be the final iteration number.

Output: (�tmax ,Ttmax , vtmax ).

We define a proximal operator for the loading matrix as

Proxα,γ (�̃t ) = argmin
�

1

2

J∑

j=1

K∑

k=1

(λ jk − λ̃
(t)
jk )

2 + αγ

J∑

j=1

K∑

k=1

|λ jk |, (13)

where α > 0 is the step size and �̃t = (λ̃
(t)
jk )J×K is the value of � from the previous step in the

proximal gradient algorithm. Note that (13) has a closed-form solution given by soft-thresholding
(Parikh&Boyd, 2014) thatwe can easily compute.We summarise the proximal gradient algorithm
in Algorithm 4 below.

Under suitable conditions, this proximal gradient algorithm converges to stationary points of
the objective function and has a local linear convergence rate (Karimi et al., 2016) .We notice that
when p = 1, Algorithms 3 and 4 have similar convergence properties. However, their per-iteration
computational complexities are different. In particular, Algorithm 4 involves parameters� and v,
which substantially increases its computational complexity. In fact, the per-iteration complexity
for Algorithm 3 is O(K 3 + K 2 J ), while that for Algorithm 4 is O(J 3 + J 2K + K 2 J + K 3).
The difference can be substantial when J is much larger than K . We give the derivation of these
computational complexities in the supplementary material.

4. Simulation Study

4.1. Study I

In this study, we evaluate the performance of L0.5 and L1 rotations and compare them with
some traditional rotation methods and L1-regularised estimation. We consider several traditional
oblique rotation methods, including the oblimin, quartimin, simplimax, geomin, and promax
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methods. These methods have been considered in the simulation studies in Jennrich (2006). They
are implemented using the GPArotation package (Bernaards & Jennrich, 2005) in R.

Settings. We consider two simulation settings, one with J = 15 manifest variables and
K = 3 factors, and the other with J = 30 and K = 5. The first setting has nine manifest variables
each loading on a single factor (three variables for each factor), and six manifest variables each
loading on two factors. The second setting has 15 manifest variables each loading on a single
factor (three variables for each factor), 10 manifest variables each loading on two factors, and
5 manifest variables each loading on three factors. We give the true model parameters in the
supplementary material. By numerical evaluations, the true loading matrices satisfy condition
C3 for both L0.5 and L1 criteria. Under each setting, we consider three sample sizes, including
N = 400, 800, and 1600. For each setting and each sample size, we run B = 500 independent
replications.

Evaluation criteria.We evaluate the proposed method from three aspects. First, we compare
all estimators in terms of accuracy of point estimation. Second, we compare the proposed method
and the L1-regularised estimator in terms of their model selection accuracy. Finally, we examine
the coverage rate of the proposed method for constructing confidence intervals.

When evaluating the performance of different estimators, we take into account the indeter-

minacy due to column permutations and sign flips. Let �̃
(b)

be the loading matrix estimate given
by a rotation or regularised estimation method in the b-th replication. We then find

�̂
(b) = argmin

�

{‖� − �∗‖2 : � = �̃
(b)

DD̃,D ∈ D1, D̃ ∈ D2},

which is the one closest to the true loading matrix �∗ among all the loading matrices that are

equivalent to �̃
(b)

. Our evaluation criteria are constructed based on �̂
(b)

:

1. The accuracy of point estimation is estimated by the mean squared error (MSE):

MSE = ||�̂(b) − �∗||2F
J K

,

where �̂
(b)

is obtained by a certain rotation or regularisation method in the b-th repli-
cation.

2. The model selection accuracy is assessed using the area under the curve (AUC) from the
corresponding receiver operating characteristic (ROC) curve. For each threshold c, we
compute the average true positive rate (TPRc), which is the proportion of successfully
identified non-zero elements in the true loading matrix:

TPRc = 1

B

B∑

b=1

∑
j,k 1{λ̂(b,c)

jk �=0,λ∗
jk �=0}

∑
j,k 1{λ∗

jk �=0}
, (14)

where {λ̂(b,c)
jk }J×K = �̂

(b,c)
is the estimated loading matrix in the b-th replication

from a CFA model based on �̂c using the maximum likelihood estimator. Similarly, we
calculate the average true negative rate (TNRc), which is the success rate of identifying
zero elements:

TNRc = 1

B

B∑

b=1

∑
j,k 1{λ̂(b,c)

jk =0,λ∗
jk=0}

∑
j,k 1{λ∗

jk=0}
. (15)
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Figure 3.
The MSE (for loadings) as a function of the tuning parameter γ in the LASSO-regularised estimator. a 15× 3 settings. b
30 × 5 settings. The dots at γ = 0 correspond to the L1 rotation solutions.

The AUC is consequently calculated by plotting TPRc against 1 − TNRc by varying
the threshold c. We also use the overall selection accuracy, i.e., the true selection rate
(TR), to evaluate the model selection procedure described in Algorithm 1. The TR is
calculated as

TR = 1

B

B∑

b=1

∑
j,k 1{λ̂(b,ĉ)

jk �=0,λ∗
jk �=0} + ∑

j,k 1{λ̂(b,ĉ)
jk =0,λ∗

jk=0}
J K

,

where ĉ is the BIC selected threshold value from Algorithm 1. Correspondingly, we
calculate the TPR and TNR of the selected model as

TPR = TPRĉ and TNR = TNRĉ.

3. The entry-wise 95% confidence interval coverage rate (ECIC) is calculated to evaluate
the performance of our post-selection confidence interval procedure in Algorithm 2. For
each entry of the loading matrix, the empirical probability of the true loading falling
within the estimated confidence interval is calculated as

ECIC jk =
∑B

b=1 1{λ∗(N )
jk ∈(l(N )

jk ,u(N )
jk )}

B
.

Results on point estimation. In Table 1, we present theMSE of the estimated loadingmatrix,
for both simulation settings and N ∈ {400, 800, 1600}. In the first five rows we show the results
based on traditional oblique rotation criteria, followed by the results of the proposed L p loss
function for two choices of p, and finally those of the LASSO estimator for five choices of γ .
For both settings and all sample sizes, geomin performed the best among the traditional rotation
methods. The geomin results were very similar to those of L p rotation and the LASSO estimator
with sufficiently small tuning parameter γ . For the LASSO estimator, the MSE increased as γ

increased. For L p rotation, we observed only very small differences between p = 0.5 and p = 1.
In addition, their MSEs were close to those of the LASSO estimator with γ = 0.01 and γ = 0.05.

Results on model selection. In Table 2, we present the AUC, TR, TPR, and TNR for the
L p rotations and the LASSO estimator with different tuning parameters. For both scenarios and
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Table 1.
MSE obtained by using different rotation criteria under various settings, Study I.

15 × 3 30 × 5
N = 400 N = 800 N = 1600 N = 400 N = 800 N = 1600

Oblimin 0.012 0.007 0.004 0.012 0.008 0.006
GeominQ 0.010 0.005 0.002 0.010 0.005 0.002
Promax 0.013 0.007 0.005 0.014 0.009 0.007
L0.5 rotation 0.011 0.005 0.003 0.009 0.005 0.002
L1 rotation 0.010 0.005 0.003 0.010 0.004 0.002
LASSO, γ = 0.01 0.009 0.004 0.002 0.008 0.003 0.002
LASSO, γ = 0.05 0.009 0.006 0.005 0.007 0.005 0.004
LASSO, γ = 0.1 0.017 0.015 0.014 0.012 0.011 0.010
LASSO, γ = 0.2 0.079 0.076 0.074 0.038 0.034 0.032
LASSO, γ = 0.5 0.244 0.244 0.244 0.144 0.149 0.150

all sample sizes, the AUC and TR were very similar for the rotation estimator with p = 0.5 and
p = 1. The AUC of the LASSO estimator with a small tuning parameter is similar to that of the
L1 rotation method. We noted that the model selection performance was poor for the LASSO
estimator when γ became large. This is due to the presence of many false negative selections (i.e.,
non-zero loading parameters selected as zeros), as a result of over-regularisation.

Results on confidence intervals. In Fig. 4,we showboxplots of theECIC for the L p rotations,
for p = 0.5 and p = 1 and N ∈ {400, 800, 1600}. For both p = 0.5 and p = 1, the ECIC jks
are close to the 95% nominal level, supporting the consistency of the proposed procedure for
constructing confidence intervals.

Some remarks. The computation for the proposed L p rotation is fast. On a single core of a
data science workstation,1 the mean time for solving the L1 rotation criterion is within 0.29s for
the 15× 3 settings and within 0.54s for the 30× 5 settings. Using the L1 solution as the starting
point, the mean time for solving the L0.5 criterion is within 0.13s for 15 × 3 settings and within
0.36s for the 30 × 5 settings. Under the current simulation settings, condition C3 is satisfied by
both the L0.5 and L1 criteria, in which cases the two criteria tend to perform similarly. As we will
show in Sect. 4.2 below, the performance of the two criteria can be substantially different when
C3 holds for one criterion but not the other. In addition, we see that the LASSO estimator with a
small tuning parameter performed similarly to the L1 rotation method.We expected this, since the
L1 rotation solution can be viewed as the limiting case of the LASSO estimator when the tuning
parameter goes to zero. The LASSO estimator performed poorly for large tuning parameters, due
to the bias brought by the regularisation. This bias-variance trade-off is visualised in Fig. 3. The
two panels in Fig. 3 correspond to the 15 × 3 and 30 × 5 loading matrix settings, respectively.
For each panel, the x-axis shows the tuning parameter γ , and the y-axis shows the MSE (for
the loading matrix) of the corresponding LASSO estimator. The dots at γ = 0 correspond to
the L1 rotation solutions, as the L1-rotation estimator is the limit of the LASSO estimator when
γ converges to zero (see Proposition 3). As γ increases, the estimation bias increases, and the
variance decreases, which results in a U-shaped curve for the MSE – a well-known phenomenon
in statistical learning theory (see Chapter 2, Hastie et al., 2009). However, the U-shaped curves
in Fig. 3 are very asymmetric – the MSE only decreases slightly before increasing. This means
that the estimators with small γ values including the rotation solution have similar estimation
accuracy to the optimal choice of the tuning parameter (i.e., the value of γ at which the MSE

1CPU configuration: Intel Xeon 6246R 3.4GHz 2933MHz.



XINYI LIU ET AL.

Table 2.
The AUC, TR, TPR, and TNR for the L p-based rotation estimator and the regularised estimator, Study I.

15 × 3 30 × 5
AUC TR TPR TNR AUC TR TPR TNR

N = 400

L0.5 rotation 0.996 0.979 0.979 0.978 0.988 0.964 0.937 0.977
L1 rotation 0.997 0.979 0.979 0.979 0.988 0.964 0.937 0.977
LASSO, γ = 0.01 0.997 0.981 0.979 0.983 0.989 0.967 0.941 0.979
LASSO, γ = 0.05 0.997 0.984 0.979 0.988 0.992 0.971 0.944 0.985
LASSO, γ = 0.1 0.992 0.983 0.973 0.991 0.987 0.970 0.937 0.986
LASSO, γ = 0.2 0.869 0.848 0.784 0.905 0.903 0.917 0.800 0.975
LASSO, γ = 0.5 0.500 0.534 0.001 1.000 0.520 0.683 0.075 0.987

N = 800
L0.5 rotation 1.000 0.993 0.992 0.993 0.998 0.986 0.980 0.990
L1 rotation 1.000 0.993 0.993 0.992 0.998 0.987 0.981 0.990
LASSO, γ = 0.01 1.000 0.992 0.992 0.993 0.998 0.989 0.983 0.992
LASSO, γ = 0.05 1.000 0.993 0.992 0.993 0.999 0.990 0.985 0.993
LASSO, γ = 0.1 0.996 0.992 0.988 0.995 0.995 0.989 0.979 0.994
LASSO, γ = 0.2 0.880 0.862 0.816 0.902 0.919 0.932 0.824 0.987
LASSO, γ = 0.5 0.500 0.533 0.000 1.000 0.506 0.672 0.024 0.996

N = 1600
L0.5 rotation 1.000 0.997 0.999 0.995 1.000 0.996 0.996 0.996
L1 rotation 1.000 0.997 0.999 0.995 1.000 0.996 0.996 0.996
LASSO, γ = 0.01 1.000 0.997 1.000 0.995 1.000 0.996 0.997 0.996
LASSO, γ = 0.05 1.000 0.997 0.999 0.996 1.000 0.997 0.998 0.996
LASSO, γ = 0.1 0.998 0.997 0.995 0.999 0.998 0.996 0.993 0.997
LASSO, γ = 0.2 0.886 0.870 0.831 0.904 0.929 0.941 0.838 0.993
LASSO, γ = 0.5 0.500 0.533 0.000 1.000 0.501 0.668 0.003 0.999

curve achieves the minimum value). In that case, it may not be worth searching for the optimal
tuning parameter, as constructing a LASSO solution path is typically computationally intensive.
Instead, using the rotationmethod or aLASSOestimatorwith a sufficiently small tuning parameter
is computationally more affordable and yields a sufficiently accurate solution.

4.2. Study II

In this study we compare the L0.5 and L1 rotations, under a setting where condition C3 holds
for the L0.5 rotation but not the L1 rotation. We chose the setting to somewhat exaggerate the
differences, in order to show the consequence of misspecifying p.

Setting and evaluation criteria. The true loadingmatrix is of dimension J = 18 and K = 3.
Each item is set to load on two factors, so that no item has a perfect simple structure. Given the
loading structure, the model is identifiable as a confirmatory factor analysis model. We present
the true model parameters in the supplementary material. By grid search, we checked that C3
holds for the L0.5 criterion but not the L1 criterion. We chose the sample size to be N = 3000.
Similar to Study I, we compare the two rotation criteria using the MSE, AUC, TR, TPR, and TNR
by running B = 500 independent replications.

Results. We present the results in Table 3. The L0.5 criterion performed better in terms of
both point estimation and model selection, as its MSE was lower and the AUC, TR, TPR, and
TNR were higher. In particular, we noted that the L0.5 rotation achieved a much higher TNR than
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Figure 4.
Boxplots of ECIC jk . The label 0 means that λ∗

jk = 0 and the label 1 means that λ∗
jk �= 0.

Table 3.
The MSE, AUC, TR, TPR, and TNR for the L p-based rotation estimator, Study II.

MSE AUC TR TPR TNR

L0.5 rotation 0.003 0.984 0.954 0.943 0.974
L1 rotation 0.025 0.953 0.865 0.936 0.725

the L1 rotation, meaning that the L1 rotation tended to make many false positive selections (i.e.,
zero loading parameters selected as non-zeros), as a consequence of violating condition C3.

5. An Application to the Big Five Personality Test

We illustrate the proposed method through an application to the Big Five personality test. We
consider the Big Five Factor Markers from the International Personality Item Pool (Gold-
berg, 1992) , which contains 50 items designed to measure five personality factors, namely
Extraversion (E), Emotional Stability (ES), Agreeableness (A), Conscientiousness (C), and Intel-
lect/Imagination (I). Each item is a statement describing a personality pattern like ”I am the life
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Table 4.
Estimated correlation matrices based on L0.5 and L1 rotations, Big Five personality test.

p = 0.5 p = 1
E ES A C I E ES A C I

E 1 1
ES 0.154 1 0.184 1
A 0.193 −0.017 1 0.197 −0.001 1
C 0.016 0.010 0.023 1 0.022 0.148 0.038 1
I 0.050 0.018 −0.005 −0.046 1 0.161 0.040 0.023 −0.019 1

of the party” and ”I get stressed out easily”, designed to primarily measure one personality fac-
tor. We can divide the 50 items into five equal-sized groups, with each group mainly measuring
one personality factor. Responses to the items are on a five-level Likert scale, which we treat as
continuous variables in the current analysis.

Although the Big Five personality test was designed to have a perfect simple structure, cross-
loadings are often found in empirical data (e.g., Gow et al., 2005). To better understand the loading
structure of this widely used personality test, we applied the proposed L0.5 and L1 rotations to
a dataset2 on this test. To avoid possible complexities brought by measurement non-invariance,
we selected the subset of male respondents from the United Kingdom, which has a sample size
N = 609. In the analysis, the number of factors is set to be K = 5.

After applying the proposed rotations, we further adjusted the estimates by column permu-
tation and sign flip transformations, so that the resulting factors correspond to the E, ES, A, C,
and I factors, respectively. We give our results in Tables 4 through 7. In Table 4 we show the esti-
mated covariance matrices from the two rotations. The estimated correlation matrices from the
two criteria are similar to each other. In particular, all the signs of the correlations are consistent,
except for the correlation between A and I, in which case both correlations are close to zero. In
addition, for each pair of factors, the correlations obtained by the two criteria are close. The sign
pattern of the correlations between the Big Five factors is largely consistent with those found in
the literature (e.g., Booth & Hughes, 2014; Gow et al., 2005).

In Tables 5 through 7 we show the estimated loading parameters and the corresponding 95%
confidence intervals obtained from the L0.5 rotation. We indicate by asterisks the loadings that
are significantly different from zero according to the 95% confidence intervals. The results of the
L1 rotation are similar and thus we give them in the supplementary material. In Tables 5, 6 and 7,
the items are labelled based on the personality factor that they are designed to measure, and their
scoring keys.3 The estimated loadingmatrix is largely consistentwith the International Personality
Item Pool (IPIP) scoring key, where all the items have relatively strong loadings on the factors that
they are designed to measure, and the signs of the loadings are consistent with the scoring keys.
The confidence intervals shed additional light on the uncertainty of each loading. Specifically, we
notice that many loadings are statistically insignificantly different from zero, suggesting that the
true loading structure is sparse. There are also items with fairly strong cross-loadings.

2The dataset is downloaded from: http://personality-testing.info/_rawdata/.
3Positively scored items are indicated by “(+)” and negatively scored items are indicated by “(−)".

http://personality-testing.info/_rawdata/
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Table 5.
Part I: Point estimates and confidence intervals constructed by L0.5, Big Five personality test. The loadings that are
significantly different from zero according to the 95% confidence intervals are indicated by asterisks.

E ES A C I

E1(+) 0.887* −0.069 −0.068* 0.004 0.066
(0.795, 0.984) (−0.158, 0.005) (−0.182,−0.016) (−0.113, 0.059) (−0.030, 0.140)

E2(−) −0.851* 0.131* 0.003 0.047 0.001
(−0.969,−0.765) (0.049, 0.228) (−0.057, 0.126) (−0.021, 0.168) (−0.071, 0.118)

E3(+) 0.780* 0.276* 0.204* 0.142* −0.107*
(0.703, 0.879) (0.190, 0.344) (0.121, 0.277) (0.060, 0.220) (−0.200,−0.042)

E4(−) −0.914* −0.058 −0.022 0.002 0.105*
(−1.022,−0.844) (−0.139, 0.012) (−0.075, 0.077) (−0.066, 0.094) (0.050, 0.205)

E5(+) 0.898* −0.024 0.155* 0.100 0.064
(0.814, 0.991) (−0.116, 0.034) (0.060, 0.212) (−0.001, 0.155) (−0.016, 0.140)

E6(−) −0.754* −0.001 −0.088 −0.061 −0.123*
(−0.854,−0.662) (−0.066, 0.106) (−0.163, 0.010) (−0.152, 0.027) (−0.200,−0.023)

E7(+) 1.119* −0.078* 0.083* 0.092* −0.042
( 1.025, 1.228) (−0.187,−0.019) (0.002, 0.174) (0.005, 0.184) (−0.175, 0.002)

E8(−) −0.724* −0.086 0.028 0.115* −0.051
(−0.829,−0.634) (−0.173, 0.002) (−0.036, 0.142) (0.026, 0.208) (−0.129, 0.056)

E9(+) 0.862* 0.051 0.000 −0.010 0.226*
(0.751, 0.958) (−0.048, 0.136) (−0.110, 0.075) (−0.127, 0.067) (0.110, 0.301)

E10(−) −0.828* −0.117* −0.049 −0.126* 0.020
(−0.935,−0.745) (−0.189,−0.021) (−0.124, 0.046) (−0.212,−0.036) (−0.043, 0.132)

ES1(−) −0.132* −0.971* 0.006 0.001 −0.101
(−0.215,−0.028) (−1.065,−0.869) (−0.117, 0.082) (−0.133, 0.054) (−0.175, 0.003)

ES2(+) 0.147* 0.671* 0.001 −0.029 0.082
(0.039, 0.220) (0.587, 0.768) (−0.066, 0.112) (−0.113, 0.064) (−0.008, 0.170)

ES3(−) −0.186* −0.780* 0.231* 0.063 0.046
(−0.277,−0.095) (−0.880,−0.696) (0.128, 0.306) (−0.041, 0.138) (−0.008, 0.170)

ES4(+) 0.225* 0.565* 0.002 0.110* 0.006
(0.116, 0.314) (0.468, 0.664) (−0.071, 0.122) (0.024, 0.224) (−0.105, 0.090)

ES5(−) 0.013 −0.473* −0.042 −0.152* −0.226*
(−0.075, 0.137) (−0.566,−0.356) (−0.163, 0.046) (−0.272,−0.059) (−0.337,−0.125)

ES6(−) −0.130* −0.806* 0.257* −0.088* −0.130*
(−0.205,−0.023) (−0.903,−0.716) (0.147, 0.328) (−0.223,−0.039) (−0.209,−0.033)

ES7(−) 0.022 −0.962* −0.112* −0.124* 0.004
(−0.051, 0.119) (−1.051,−0.867) (−0.224,−0.050) (−0.244,−0.064) (−0.073, 0.089)

ES8(−) 0.000 −1.131* −0.135* −0.169* 0.000
(−0.085, 0.100) (−1.227,−1.029) (−0.258,−0.075) (−0.294,−0.103) (−0.078, 0.095)

ES9(−) −0.033 −0.862* −0.293* 0.097 −0.016
(−0.134, 0.048) (−0.949,−0.764) (−0.394,−0.211) (−0.002, 0.183) (−0.095, 0.082)

ES10(−) −0.344* −0.837* 0.069 −0.172* 0.104*
(−0.439,−0.256) (−0.930,−0.742) (−0.026, 0.157) (−0.284,−0.101) (0.032, 0.206)
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Table 6.
Part II: Point estimates and confidence intervals constructed by L0.5, Big Five personality test. The loadings that are
significantly different from zero according to the 95% confidence intervals are indicated by asterisks.

E ES A C I

A1(−) 0.003 −0.127* −0.778* 0.010 0.045
(−0.114, 0.087) (−0.201,−0.011) (−0.875,−0.669) (−0.095, 0.103) (−0.060, 0.136)

A2(+) 0.439* −0.007 0.557* −0.038 0.035
(0.361, 0.526) (−0.097, 0.054) (0.464, 0.626) (−0.132, 0.024) (−0.042, 0.113)

A3(−) 0.193* −0.575* −0.566* −0.130* 0.134*
(0.080, 0.286) (−0.663,−0.456) (−0.691,−0.479) (−0.265,−0.054) (0.026, 0.230)

A4(+) 0.013 0.001 0.979* −0.002 −0.002
(−0.035, 0.144) (−0.102, 0.038) (0.895, 1.050) (−0.081, 0.047) (−0.051, 0.083)

A5(−) −0.155* −0.039 −0.815* −0.012 0.090*
(−0.250,−0.091) (−0.102, 0.049) (−0.894,−0.724) (−0.085, 0.069) (0.017, 0.170)

A6(+) −0.059 −0.182* 0.717* 0.002 0.014
(−0.159, 0.020) (−0.272,−0.105) (0.629, 0.811) (−0.101, 0.070) (−0.063, 0.110)

A7(−) −0.367* −0.089* −0.733* 0.043 0.036
(−0.456,−0.300) (−0.159,−0.015) (−0.800,−0.639) (−0.023, 0.125) (−0.032, 0.115)

A8(+) 0.111* −0.038 0.692* 0.085* 0.025
(0.039, 0.185) (−0.128, 0.010) (0.617, 0.771) (0.010, 0.152) (−0.035, 0.107)

A9(+) 0.123* −0.110* 0.751* 0.066 0.110*
(0.040, 0.199) (−0.204,−0.054) (0.668, 0.836) (−0.018, 0.137) (0.041, 0.195)

A10(+) 0.439* 0.071 0.321* 0.133* 0.045
(0.354, 0.517) (−0.010, 0.143) (0.245, 0.402) (0.043, 0.201) (−0.037, 0.121)

C1(+) 0.105 0.111 −0.037 0.695* 0.129*
(−0.001, 0.179) (−0.005, 0.177) (−0.099, 0.088) (0.597, 0.785) (0.055, 0.238)

C2(−) 0.080 −0.201* 0.107 −0.670* 0.142*
(−0.014, 0.194) (−0.284,−0.073) (−0.028, 0.177) (−0.800,−0.585) (0.013, 0.217)

C3(+) 0.023 0.007 0.114* 0.407* 0.280*
(−0.080, 0.082) (−0.094, 0.065) (0.050, 0.210) (0.315, 0.482) (0.213, 0.378)

C4(−) −0.123* −0.613* 0.048 −0.544* −0.039
(−0.202,−0.036) (−0.671,−0.495) (−0.057, 0.114) (−0.656,−0.483) (−0.149, 0.018)

C5(+) 0.074 0.057 0.000 0.782* −0.052
(−0.005, 0.188) (−0.051, 0.158) (−0.041, 0.163) (0.687, 0.882) (−0.133, 0.061)

C6(−) 0.021 −0.195* 0.045 −0.718* 0.087
(−0.085, 0.130) (−0.276,−0.058) (−0.090, 0.128) (−0.848,−0.625) (−0.028, 0.188)

C7(+) −0.129* −0.128* 0.110* 0.520* 0.042
(−0.225,−0.047) (−0.236,−0.059) (0.041, 0.220) (0.427, 0.608) (−0.015, 0.166)

C8(−) −0.000 −0.284* −0.242* −0.549* −0.000
(−0.086, 0.097) (−0.349,−0.166) (−0.361,−0.179) (−0.654,−0.466) (−0.119, 0.063)

C9(+) 0.031 −0.003 0.123* 0.722* −0.076
(−0.061, 0.129) (−0.140, 0.060) (0.059, 0.248) (0.623, 0.816) (−0.157, 0.034)

C10(+) −0.001 −0.006 0.127* 0.528* 0.235*
(−0.110, 0.057) (−0.120, 0.046) (0.070, 0.236) (0.433, 0.605) (0.170, 0.338)
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Table 7.
Part III: Point estimates and confidence intervals constructed by L0.5, Big Five personality test. The loadings that are
significantly different from zero according to the 95% confidence intervals are indicated by asterisks.

E ES A C I

I1(+) 0.085 0.001 −0.046 0.009 0.621*
(−0.020, 0.145) (−0.102, 0.067) (−0.148, 0.014) (−0.088, 0.078) (0.537, 0.713)

I2(−) −0.000 −0.222* −0.087* −0.020 −0.581*
(−0.052, 0.120) (−0.289,−0.119) (−0.183,−0.014) (−0.103, 0.071) (−0.675,−0.498)

I3(+) 0.076 −0.152* 0.024 −0.000 0.587*
(−0.028, 0.137) (−0.244,−0.087) (−0.061, 0.095) (−0.103, 0.063) (0.503, 0.670)

I4(−) 0.023 −0.204* −0.154* 0.008 −0.572*
(−0.027, 0.145) (−0.269,−0.101) (−0.228,−0.062) (−0.074, 0.098) (−0.663,−0.487)

I5(+) 0.240* 0.068* −0.058 0.189* 0.575*
(0.131, 0.272) (0.003, 0.139) (−0.130, 0.002) (0.095, 0.240) (0.501, 0.648)

I6(−) −0.217* −0.001 −0.047 0.020 −0.505*
(−0.275,−0.104) (−0.065, 0.102) (−0.120, 0.046) (−0.053, 0.119) (−0.597,−0.421)

I7(+) 0.076 0.168* −0.035 0.117* 0.449*
(−0.018, 0.123) (0.089, 0.226) (−0.100, 0.036) (0.032, 0.176) (0.376, 0.520)

I8(+) −0.014 −0.163* −0.108* −0.003 0.656*
(−0.163, 0.023) (−0.262,−0.082) (−0.198,−0.020) (−0.130, 0.058) (0.572, 0.769)

I9(+) −0.056 −0.213* 0.239* 0.097* 0.260*
(−0.153, 0.008) (−0.305,−0.148) (0.157, 0.317) (0.006, 0.167) (0.188, 0.350)

I10(+) 0.246* −0.004 −0.000 0.107* 0.680*
(0.130, 0.276) (−0.108, 0.039) (−0.072, 0.067) (0.009, 0.159) (0.606, 0.761)

6. Concluding Remarks

In this paper we propose a new family of oblique rotations based on component-wise L p loss
functions (0 < p ≤ 1) and establish the relationship between the proposed rotation estimator
and the L p regularised estimator for EFA. We develop point estimation, model selection, and
post-selection inference procedures and establish their asymptotic theories. We also develop an
iteratively reweighted gradient projection algorithm for the computation.4 We demonstrate the
power of the proposed method via simulation studies and an application to Big Five personality
assessment.

We note that the proposed procedures do not rely on the normality assumption of the EFA
model, though we make such an assumption in the problem setup for ease of exposition. Specif-
ically, in the rotation, we only need to obtain a consistent initial estimator for EFA in the sense
of condition C1, which we can obtain with any reasonable loss function for factor analysis. In
the model selection, only the BIC uses the likelihood function based on the normal model. Note
that the likelihood function is a valid loss function under the linear factor model, even if the
normality assumption does not hold (Chapter 7, Bollen, 1989). Therefore, the BIC still yields
consistent model selection under the misspecification of the normality assumption (Machado,
1993) . Finally, the confidence intervals are based on the asymptotic distributions of CFAmodels.
If we use a robust method (i.e., a sandwich estimator) for computing the asymptotic variance,
then the resulting confidence intervals are valid when the normality assumption does not hold.

As each value of p ∈ (0, 1] leads to a sensible rotation criterion, which L p criterion should
we use?We do not recommend trying too many values of p. From the previous discussion, we see
that there is a statistical and computational trade-off underlying the choice of p. Theoretically, a

4The R code for the proposed method is available from https://github.com/yunxiaochen/Lp_rot1129

https://github.com/yunxiaochen/Lp_rot1129
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smaller value of p is more likely to recover a sparse loadingmatrix, but the associated optimisation
problem is computationallymore challenging. The L1 criterion is the easiest to compute. Although
we gave an example earlier in which the L1 criterion fails to recover the sparest loading structure,
the L1 criterion can accurately recover the true loading structure under most simulation settings.
For several real-world datasets we have encountered, different p values also give very similar
results. We thus believe that the L1 criterion is robust and recommend users to always start with
the L1 criterion. To check the result of the L1 criterion, users may try some smaller p values (e.g.,
p = 0.5) and compare their results with the L1 result in terms of model fitting and substantive
interpretations. If they give similar results, then the best fitting solution should be reported. If the
result from a smaller p value substantially differs from the L1 result, then the value of p should
be further decreased until the result stabilises. Computationally, when solving the optimisation
with a smaller value of p, we recommend using the solution from the previous larger value of p
as the starting point, so that the algorithm is less likely to get stuck at a local optimum.

Our complexity analysis and simulation results suggest that obtaining a solution path for
the L1-regularised estimator has little added value over the L1 rotation when the sample size is
reasonably large. That is, obtaining the solution path of the regularised estimator is computa-
tionally more intensive, while the best tuning parameter is often very close to zero and thus the
corresponding solution is very similar to the rotation solution. Therefore, when the sample size is
reasonably large, we do not recommend running a solution path for the L1 regularised estimator to
learn the loading structure in EFA. Instead, users can obtain a point estimate by either applying the
L1 rotation or running the L1 regularised estimator with a single small tuning parameter. Model
selection can be done by applying hard-thresholding to this point estimate. Furthermore, although
an L p regularised estimator is mathematically well-defined with p < 1, algorithms remain to be
developed for its computation. On the other hand, L p rotation can be computed by the proposed
IRGP algorithm for all p ∈ (0, 1]. However, when the sample size is small and the number of
items is large, the regularised estimators may outperform their rotation counterparts. In that case,
an optimally tuned regularised estimator may be substantially more accurate than those with very
small tuning parameters or the rotation-based estimator, and thus, better learn the sparse loading
structure.

The current work has several limitations that require future investigation. First, the way the
confidence intervals are constructedmay be improved. That is, accuratemodel selection (condition
C5) and identifiability conditions on the true model (condition C6) are required for the confidence
intervals to have good coverage rate, while the uncertainty in the model selection step is not
taken into account in the proposed procedure. Consequently, although the proposed confidence
intervals are shown to be asymptotically valid, they may not perform well when the sample size
is small. This issue may be addressed by future researchers developing bootstrap procedures for
constructing confidence intervals, as such procedures may still be valid even when the objective
function is nonsmooth (Sen et al., 2010).

The current theoretical results only consider a low-dimensional setting where the numbers of
manifest variables and factors are fixed and the sample size goes to infinity. As factor analysis is
commonlyusedby those analysinghigh-dimensionalmultivariate data, it is of interest to generalise
the current results to a high-dimensional regime where the numbers of manifest variables, factors,
and observations all grow to infinity (Chen & Li, 2022; Chen et al., 2019, 2020; Zhang et al.,
2020). In particular, it will be of interest to see how the rotation methods work with the joint
maximum likelihood estimator for high-dimensional factor models (Chen et al., 2019, 2020).

Finally, as is an issue with any simulation study, we can only examine a small number of
simulation settings, and thus, may not be able to provide a complete picture of the proposed
methods. Future researchers need to investigate more simulation settings by varying the numbers
of manifest variables, factors, and observations, the sign pattern of the true loading matrix, and
the generation mechanism of the true model parameters.
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