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Abstract

This paper considers the detection of change points in parallel data streams, a prob-

lem widely encountered when analyzing large-scale real-time streaming data. Each

stream may have its own change point, at which its data has a distributional change.

With sequentially observed data, a decision maker needs to declare whether changes

have already occurred to the streams at each time point. Once a stream is declared

to have changed, it is deactivated permanently so that its future data will no longer

be collected. This is a compound decision problem in the sense that the decision

maker may want to optimize certain compound performance metrics that concern all

the streams as a whole. Thus, the decisions are not independent for different streams.

Our contribution is three-fold. First, we propose a general framework for compound

performance metrics that includes the ones considered in the existing works as special

cases and introduces new ones that connect closely with the performance metrics for

single-stream sequential change detection and large-scale hypothesis testing. Second,

data-driven decision procedures are developed under this framework. Finally, optimal-
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ity results are established for the proposed decision procedures. The proposed methods

and theory are evaluated by simulation studies and a case study.

Keywords: Large-scale inference, multiple change detection, sequential analysis, multiple

hypothesis testing

1 Introduction

Sequential change detection aims to detect distributional changes in sequentially observed

data. Classical methods focusing on change detection in a single data stream have received

wide applications in various fields, including engineering, education, medical diagnostics and

finance [32, 37–39]. Several metrics have been proposed for evaluating their performance,

under which optimality theory has been established [27, 31, 33, 34]; see [5, 25, 36] for a

review.

The emergence of large-scale real-time streaming data has motivated multi-stream se-

quential change detection problems. One problem concerns detecting a common change

shared by a subset of the streams [8–10, 20, 29, 44]. This problem is commonly seen in

surveillance applications, where each data stream corresponds to a sensor, and the change

point is caused by a failure in a subset of the sensors. A related problem, which has received

much attention recently and will be the focus of the current work, considers a setting that

each stream has its own change point [11–14]. More specifically, a decision maker needs to

declare whether a change has already occurred for each stream at each time point. Once

a stream is declared to have changed, it is deactivated permanently so that its data is no

longer collected. This problem will be referred to as a parallel sequential change detection

problem.

The parallel sequential change detection problem is widely encountered in the real world.

For example, [12, 24] consider an application to a multichannel dynamic spectrum access

problem for cognitive radios. Each cognitive radio channel corresponds to a data stream,
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and the change corresponds to the time at which the primary user of the channel starts

to transmit signals. A false discovery rate (FDR) is proposed to measure the proportion

of false discoveries (i.e., unused channels) among the ones detected as occupied by primary

users. [13, 14] consider monitoring an item pool for standardized educational testing. In

this application, each stream corresponds to a test item that is reused in multiple test

administrations, and the change point corresponds to the time at which the item is leaked to

the public. A certain false non-discovery rate (FNR) is proposed to measure the proportion

of leaked items among the non-detections (i.e., items that are not detected as having leaked).

There are many other potential applications, such as the detection of credit card fraud [15],

for which each stream corresponds to a credit card account, and the change point corresponds

to a fraud event.

We note that it is often not a good idea to run a single-stream change detection procedure

independently on individual streams. This is because the decision maker may want to control

a certain compound risk that concerns all the streams as a whole, such as the FDR and

FNR measures. Consequently, each decision at one time point requires all the up-to-date

information from all the streams, making the parallel sequential change detection a challenge.

Several methods have been proposed in [12–14] to control the above compound risk mea-

sures in parallel sequential change detection problems. However, these methods, along with

their theoretical properties, are established under relatively restrictive model assumptions

and for specific risk measures. Specifically, [12] proposes a method based on the Benjamini-

Hochberg method [6] for FDR control and establishes its asymptotic results. However, no

results are given on the method’s optimality. Under a Bayesian setting, [13] and [14] propose

methods for controlling a certain FNR measure at all time points. As shown in [13], under

a geometric change point model and assuming the same pre- and post- change distribution

for all the streams, this method maximizes the expected number of remaining streams at

all time points while controlling the FNR to be no greater than a pre-specified tolerance

level. However, it is unclear whether this optimality theory can be extended to more general
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models and other sensible risk measures.

The parallel sequential change detection problem is also closely related to the sequential

multiple testing problem. The latter can be viewed as a special case when a stream can only

change at the beginning of the process or never change. Several methods have been proposed

for the sequential multiple testing problem, controlling compound risks. Specifically, [2],

[3], and [41] consider controlling a familywise error rate, an FDR/FNR, and a generalized

familywise error rate, respectively. While the risk measures may be relevant, their methods

and theoretical results can hardly be extended to the current change detection problem.

This work provides a unified decision theory framework for parallel sequential change

detection problems under general classes of change point models and performance measures.

A computationally efficient sequential method is developed under the proposed framework.

Two optimality criteria are introduced, for which the proposed method is shown to be optimal

under suitable conditions.

Our contributions are summarized below:

• We propose a general class of performance metrics to evaluate the sequence procedures.

This class of metrics not only includes existing metrics as special cases (e.g., FDR [12]

and the local FNR metric [13]) but also introduces new metrics that are closely related

to the metrics for single-stream change detection and multiple hypothesis testing. See

Section 2.4 and Section 4.3 for more examples.

Thanks to the generality of these performance metrics, the proposed method can also

be used to solve problems considered in [3, 40, 41] for sequential multiple testing. See

Section 4.3 for a discussion on the connections with several recent works [1–3, 40, 41].

• We propose a sequential procedure (Algorithms 1–4) that is easy-to-implement and is

data-driven. It automatically adapts to various model settings when controlling the risk

measures to a pre-specified tolerance level, without requiring additional Monte Carlo

simulation or bisection search commonly used in sequential problems to determine
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decision boundaries (see, e.g., [4]).

• We provide two optimality criteria for the parallel sequential change detection prob-

lem, including the local and uniform optimalities. The local optimality concerns the

maximization of a utility measure in the next step, and uniform optimality refers to the

maximization of the utility measure at all time. We show that the proposed method

is locally optimal under very mild conditions and uniformly optimal under stronger

conditions (Theorems 1–3).

We note that the precise characterization of the conditions for uniform optimality

requires the analysis of stochastic processes on a special non-Euclidean space. To this

end, we develop new analytical tools for comparing vectors and stochastic processes

with different dimensions, possibly due to early stopping. This analytical tool may be

useful in the theoretical analysis of other sequential decision problems.

The remainder of the paper is organized as follows. In Section 2, we describe the change

point models, the class of parallel sequential change detection methods, a general class of

performance metrics, and the optimality criteria. We also provide examples of generalized

performance metrics. In Section 3, we propose a parallel change detection method (Algo-

rithms 1 and 2) and provide a simplified version of this method under mild conditions on

the performance measures (Algorithms 3 and 4). Section 4 provides theoretical results for

the proposed methods including their optimality properties and the connection with recent

works. In Sections 5 and 6, we evaluate the performance of the proposed method through

simulation studies and a case study. Concluding remarks and future directions are given

in Section 7. For space reasons, all the proofs of the theoretical results and part of the

simulation results are postponed to the Appendix in the supplementary material.
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2 Problem Setup

2.1 Model Assumptions

Consider the case where there areK ≥ 2 data streams, and let ⟨K⟩ denote the set {1, · · · , K}.

At each time epoch t ∈ Z+ = {1, 2, · · · }, an observation Xk,t is obtained from the kth

data stream, for k ∈ ⟨K⟩. Each data stream k is associated with a change point τk ∈

{0} ∪ {∞} ∪ Z+ for k ∈ ⟨K⟩. Under a Bayesian parallel change point model, the change

points τ1, · · · , τK are assumed to be independent and identically distributed (i.i.d.) with

P(τk = s) = πs (1)

for s ∈ {0} ∪ {∞} ∪ Z+ and k ∈ ⟨K⟩. Given (τ1, · · · , τK), {Xk,t}t∈Z+ are independent for

k ∈ ⟨K⟩, and have conditional density

Xk,t|τk, {Xk,s}1≤s≤t−1 ∼


pk,t if t ≤ τk

qk,t if t ≥ τk + 1

(2)

with respect to some baseline measure. That is, Xk,t are independent given the change

points, and follow pre- and post- change density functions pk,t and qk,t, respectively. In

particular, τk = ∞ corresponds to the case where the change point never occurs to the kth

stream. That is, Xk,t follows the pre-change density function pk,t for all t ∈ Z+.

2.2 Parallel Sequential Change Detection Procedures

A decision maker sequentially observes data from the parallel data streams and determines

whether change points have already occurred to these data streams at each time. Once a

change point is declared, the corresponding data stream is deactivated and its data are no

longer collected. This decision process is characterized by an index set process St ⊂ ⟨K⟩

for t ∈ Z+, where k ∈ St if and only if the decision maker has not declared a change in
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Figure 1: A flowchart of a sequential decision in D

the kth stream at time t yet (i.e., stream k is active at time t). Specifically, the available

information at time t is contained in the historical data Ht = {{Xk,s}k∈Ss,1≤s≤t, {Ss}1≤s≤t}

and, equivalently, the induced information σ-field Ft = σ(Ht). At each time t, the decision

maker selects the index set St+1 ⊂ St based on the current information Ft. That is, St+1

is measurable with respect to Ft. Denote by D the set of all such compound sequential

decisions. A graphical illustration of the decision process is given in Figure 1.

We make a few remarks on the information filtration and the decision process. First, we

require S1 = ⟨K⟩, meaning that all the streams are initially active and data from all the

streams are collected at time 1. Second, {Ss}1≤s≤t is measurable with respect to Ft, meaning

that the decision history is tracked in the current information. Third, {Xk,s}k∈Ss,1≤s≤t is

measurable with respect to Ft, indicating that Xk,s is observed if and only if stream k is

active at time s and s ≤ t (i.e., k ∈ Ss). Fourth, St+1 is required to be measurable with

respect to Ft, meaning that the decision maker selects the active streams for time t+1 based

on all the information available at time t. Lastly, St+1 is required to be a subset of St for all

t ∈ Z+, meaning that the deactivation of streams is permanent. That is, no future data will

be collected at a stream, once a change is declared at that stream.

Remark 1. Although described in a different way, the class of sequential decisions defined

above is equivalent to that in [12]. In [12], a parallel sequential procedure is defined through

a sequence of stopping times {Tq}q≥1 along with a sequence of index sets {Dq}q≥1. At each

stopping time Tq, a decision maker declares change points for streams in Dq and exclude

those streams from the future decision process. Then, the sequences {Tq}q≥1 and {Dq}q≥1
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Figure 2: An example of a parallel sequential change detection procedure where K = 3,
stream 2 is deactivated at time t = 2, stream 3 is deactivated at time t = 3, and no more
stream is deactivated before t = 6. As a result, S1 = S2 = {1, 2, 3}, S3 = S4 = {1, 2},
S5 = S6 = {1}. Correspondingly, T1 = 2, T2 = 4, and T3 > 6.

can be represented using the sequence {St}t≥1 as Tq = min{t > Tq−1 : St \ St+1 ̸= ∅} and

Dq = STq \ STq+1 where T0 = 0, q = 1. An example where K = 3 is given in Figure 2 for a

graphical illustration.

Another way to understand a compound sequential change detection procedure is to

view it as a sequence of mappings δ = (d1, d2, · · · , dt, · · · ), where each dt determines St+1

according to the historical information Ht. That is, dt is a measurable function with respect

to Ft and St+1 = dt(Ht) satisfying that dt(Ht) ⊂ St for all t ∈ Z+.

2.3 Generalized Performance Measures and Optimality Criteria

Ideally, a perfect sequential change detection procedure collects all the pre-change streams

in the set St at each time point (i.e., St = {k : τk ≤ t}). However, this is not achievable

by any sequential decision because τks are unobserved. To this end, we consider a general

class of performance measures to compare the performance of different sequential decisions.

We assume each sequential decision is associated with a risk process, denoted by {Rt}t∈Z+ ,

and a utility process, denoted by {Ut}t∈Z+ . The risk process is used to quantify the loss

of a sequential decision at time t due to the false detections of pre-change streams and/or

the non-detection of post-change streams, while the utility process is used to reward the

correct decisions. Our goal is to find a good sequential decision that has a relatively small
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Rt and a relatively large Ut at every time point. Below, we first give formal statements of

the optimality criteria, and then introduce several examples of Rt and Ut in Section 2.4,

followed by additional discussions.

Let

Wk,t = P(τk < t | Ft) (3)

be the posterior probability that the change point τk has already occurred at time t for the

k-th stream given the information up to time t. Under the Bayesian setting, Wk,t is also the

best estimator (under the squared error loss) of 1(τk < t), where 1(·) denotes the indicator

function. A simple iterative updating rule is derived to calculate Wk,t at each time, which

will be discussed in Section 3.

Throughout the paper, we consider risk and utility processes that are functions of ({Wk,t}k∈St , St, St+1).

That is, there are pre-specified functions {rt}t∈Z+ and {ut}t∈Z+ such that

Rt = rt({Wk,t}k∈St , St, St+1), (4)

and

Ut = ut({Wk,t}k∈St , St, St+1). (5)

Let α ∈ R denote a pre-specified tolerance level, and let

Dα = {δ ∈ D : Rt(δ) ≤ α a.s., for all t = 1, 2, · · · } ,

where Rt(δ) denotes the risk process associated with the sequential decision δ, and D denotes

the entire set of parallel sequential detection procedures described in Section 2.2. The set

Dα collects all sequential decisions that control the risk process to be no greater than the

tolerance level α at all time points.

We note that risk process {Rt}t∈Z+ is an adaptive stochastic process with respect to the

information filtration {Ft}t∈Z+ . It is easy to verify that E[Rt(δ)] ≤ α for δ ∈ Dα. That is,
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the expected risk is also controlled below or equal to the same tolerance level. In addition,

any weighted average of Rt(δ) across different time points are also controlled. We provide

additional discussion and theoretical results regarding this point in Section 4.3.

The following regularity assumptions over the risk and utility functions are imposed

throughout the paper.

Assumption 1. For any {Wk,t}k∈St and St, minS∈{∅,St} rt({Wk,t}k∈St , St, S) ≤ α. In addi-

tion, the utility function ut is bounded at each time t.

The assumption on rt guarantees that the class of sequential decisions controlling the

risk process at a pre-specified level is non-empty, i.e., Dα ̸= ∅. The boundedness assumption

on ut is a mild condition to ensure the integrability of the utility process.

Given a pre-specified tolerance level α and sequences of functions {rt}t∈Z+ and {ut}t∈Z+ ,

we define two optimality criteria for sequential decisions in Dα.

Definition 1 (Uniform Optimality). A sequential decision δ∗ ∈ Dα is called uniformly

optimal if

E (Ut (δ
∗)) = sup

δ∈Dα
E (Ut(δ)) ,

for all t ∈ Z+, where Ut(δ
∗) and Ut(δ) denote the utility process associated with sequential

decisions δ∗ and δ, respectively.

Definition 2 (Local Optimality). A sequential decision δ∗ = (d∗1, d
∗
2, · · · , d∗t , · · · ) ∈ Dα is

called locally optimal at time t, if

E(Ut(δ∗)) ≥ E(Ut(δ))

for any δ = (d1, d2, · · · , dt, · · · ) ∈ Dα satisfying ds = d∗s, for s = 1, . . . , t− 1.

Wemake a few remarks on the above optimality criteria. First, in most applications, there

is a trade-off between minimizing the risk and maximizing the utility. That is, a sequential
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decision that has relatively small risk tends to have relatively small utility at the same

time. Thus, we define both uniform and local optimality through constrained optimization

problems, where the overall goal is to find a sequential decision so that its corresponding

risk process is controlled to be no greater than the tolerance level while the expected utility

is no less than any other sequential decisions that control the risk process at the same level.

Second, a uniformly optimal sequential decision has the largest expected utility among all

decisions in Dα at every time point. In contrast, a locally optimal sequential decision only

has the largest expected utility at a given time point t given the decisions at previous time

points. Thus, uniform optimality is a stronger notion than local optimality. A sequential

decision that is locally optimal at every time point does not necessarily imply that it is

also uniformly optimal. In later sections, we show that locally optimal sequential decisions

exist under very weak assumptions on the risk and utility measures, while uniformly optimal

sequential decisions only exist under stronger assumptions of the change point model and

the performance measures. Third, we assume the same tolerance level α for every time t

for ease of presentation. Our methods and theory can be easily extended to the class of

sequential decisions whose risk is controlled at different levels at different time points. That

is, {δ ∈ D : Rt(δ) ≤ αt for all t} for a sequence of constants αt. We can see this by redefining

the risk process as Rt − αt and replacing αt by 0.

2.4 Examples of Generalized Performance Measures

We start with several examples of performance measures in the forms of (4) and (5), which

are motivated by common risk measures in the literature of multiple hypotheses testing

[6, 17–19]. All of the risk measures discussed in this section satisfy Assumption 1 for α ≥ 0.

For the consistency of notation, the sum over an empty set is defined to be 0 (i.e.,∑
i∈∅ ai = 0), and the product over an empty set is defined to be 1 (i.e.,

∏
i∈∅ ai = 1).
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Example 1 (Local family-wise error rate (LFWER)). Consider the event

E1,t = {There exists k ∈ ⟨K⟩ such that τk < t, k ∈ St+1}, (6)

which happens when at least one false non-detection occurs at time t. Because E1,t is not

directly observed, we consider the its posterior probability given the information up to time

t,

LFWERt := P(E1,t|Ft) = 1−
∏

k∈St+1

(1−Wk,t). (7)

Example 2 (Generalized local family-wise error rate (GLFWER)). Given m ≥ 1, we con-

sider the event

Em,t = {|{k ∈ ⟨K⟩ such that τk < t, k ∈ St+1}| ≥ m}. (8)

This event happens when false non-detections occur in at least m data streams. Its posterior

probability given information up to time t is

GLFWERm,t := P(Em,t|Ft) (9)

=1−
m−1∑
j=0

∑
I⊂St+1

|I|=j

(∏
i∈I

Wi,t

) ∏
k∈St+1\I

(1−Wk,t). (10)

In addition, GLFWERm,t = 0 if St+1 = ∅.

Comparing (7) with (9), we can see that GLFWER extends LFWER by allowing for more

false non-detections. Under a large-scale setting with many data streams, it may be more

sensible to use GLFWER with its m value chosen based on the total number of streams K

to achieve a balance between false detections and false non-detections. Similar risk measures

have been proposed for sequential multiple testing [41].

Example 3 (Local false non-discovery rate (LFNR)). Local false non-discovery rate (LFNR)
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is defined in [13], which extends the concept of LFNR in multiple testing to parallel sequential

change detection. It is defined as follows. First, the false non-discovery proportion (FNP)

is defined as

FNPt :=

∑
k∈St+1

1 (τk < t)

|St+1| ∨ 1
. (11)

FNP describes the proportion of post-change streams among the active ones. Then, the local

false non-discovery rate (LFNR) at time t is defined as the Bayes estimator (i.e., posterior

mean) of FNPt given information up to time t. That is,

LFNRt := E(FNPt | Ft) =

∑
k∈St+1

Wk,t

|St+1| ∨ 1
. (12)

Compared with LFWER and GLFWER, LFNR depends on Wk,ts in a linear rather than

multivariate polynomial form. In addition, LFNR is scalable under a large-scale setting in

the sense that the same tolerance level α ∈ (0, 1) can be used as K grows large.

Example 4 (Local False Discovery Rate (LFDR)). False discovery proportion (FDP) and

local false discovery rate (LFDR) are defined by replacing τk < t and St+1 with τk ≥ t and

St \ St+1 respectively in (11) and (12). That is,

FDPt :=

∑
k∈St\St+1

1 (τk ≥ t)

|St \ St+1| ∨ 1
, (13)

and

LFDRt := E(FDPt | Ft) =

∑
k∈St\St+1

(1−Wk,t)

|St \ St+1| ∨ 1
. (14)

Similar to LFNR, LFDR also has the appealing feature of scalability for large K. The

difference between LFNR and LFDR lies in whether focusing on false detections or false

non-detections.

In [12], an aggregated version of false discovery rate (AFDR)1 is considered, which can

1In [12], this risk measure is referred to as ‘false discovery rate (FDR)’. Here, we name it as AFDR to
distinguish it from LFDR.
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be viewed as the expectation of a weighted average of LFDR at different time points. More

discussions on the connection between LFDR and AFDR will be provided in Section 4.

Next, we provide two examples of performance measures motivated by single-stream

sequential change detection. Denote by Nk the detection time of the kth stream,

Nk = sup {t : k ∈ St} . (15)

Note thatNk plays a similar role as the stopping time in the standard single-stream sequential

change detection problem. Indeed, Nk is a stopping time with respect to {Ft}t∈Z+ for all

k ∈ ⟨K⟩.

Example 5 (Incremental Average Run Length (IARL)). We define the incremental run

length (IRL) aggregated over different streams as

IRLt : =
K∑
k=1

{τk ∧Nk ∧ (t+ 1)} −
K∑
k=1

{τk ∧Nk ∧ t}

=
K∑

k∈St+1

1(τk > t)

(16)

IRL indicates the total number of pre-change streams being used at a given time. We refer

to its posterior mean as the incremental average run length (IARL), defined as

IARLt := E(IRLt | Ft) =
∑
k∈St+1

{1− g(Wk,t)}, (17)

where

g(Wk,t) = P(τk ≤ t|Ft) = π̄−1
t πt +

(
1− π̄−1

t πt
)
Wk,t, (18)

π̄s = P
(
τk ≥ s

)
= π∞ +

∑∞
l=s πl, and the proof for equation (18) is given in Appendix E.

IRL and IARL are closely related to the average run length to false alarm (ARL2FA)

that is commonly used to measure the propensity for making a false detection in a single-
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stream sequential change detection problem. Specifically, taking summation of IRLt over t,

we obtain
t−1∑
s=0

IRLs =
K∑
k=1

(
τk ∧Nk ∧ t

)
, (19)

which is the total run length from different data streams up to the change point by time t.

Moreover, we have

E(
t−1∑
s=0

IARLs) = E(
t−1∑
s=0

IRLs) =
K∑
k=1

E
(
τk ∧Nk ∧ t

)
. (20)

Thus, the sum of the expected value of IARL across time leads to the total averaged run

length up to the change point.

Example 6 (Incremental Average Detection Delay (IADD)). We define the incremental

detection delay (IDD) aggregated over all the streams as

IDDt : =
K∑
k=1

{(Nk ∧ (t+ 1)− τk − 1)+ − (Nk ∧ t− τk − 1)+}

=
∑
k∈St+1

1(τk < t).

(21)

IDD counts the total number of post-change streams that are active at a given time. We refer

to its posterior mean as the incremental average detection delay (IADD), defined as

IADDt := E(IDDt | Ft) =
∑
k∈St+1

Wk,t. (22)

IDD and IADD are incremental-and-compound versions of detection delay and average

detection delay (ADD), which are commonly used to measure false non-detection in single-

stream sequential change detection [43]. Specifically, by taking summation over t, we have

t−1∑
s=0

IDDs =
K∑
k=1

(Nk ∧ t− τk − 1)+ (23)
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and

E
( t−1∑
s=0

IADDs

)
= E

( K∑
k=1

(Nk ∧ t− τk − 1)+
)
. (24)

Among the above examples, LFWER, GLFWER, and LFNR are error rates for false

non-detections, LFDR is an error rate for false detections, IARL estimates the number of

pre-change streams that are active, and IADD estimates the number of post-change and

active streams. Because a small value of LFWER (or GLFWER/LFNR/IADD) and a

large value of IARL (or minus LFDR) is desired, we could choose the risk process Rt ∈

{LFWERt,GLFWERt,LFNRt, IADDt} and the utility process Ut ∈ {IARLt,−LFDRt}, or

Rt ∈ {LFDRt,−IARLt} and Ut ∈ {−LFWERt,−GLFWERt,−LFNRt,−IADDt}. Note

that in the above examples, there is a trade-off between Rt and Ut. That is, if one declares

detection at more data streams, then the corresponding LFWER, GLFWER, LFNR, and

IADD tend to be smaller and IARL and minus LFDR tend to be smaller as well. Thus, the

optimality criteria (Definitions 1 and 2) formulated through constrained optimization are

reasonable.

The choices of Rt and Ut should be application-driven. In practice, we suggest to choose

the risk process Rt with a known range so that the tolerance level is easy to specify. For

example, LFWER, GLFWER, LFNR, and LFDR represent certain probability/expected

proportions that are known to be between [0, 1]. Thus, they are sensible choices of Rt, for

which setting the tolerance level α ∈ [0, 1] is relatively straightforward.

3 Proposed Sequential Decision Procedures

In this section, we first provide a formula for computing the posterior probability Wk,t =

P(τk < t|Ft), which is a key quantity in computing the risk and utility measures. Then, we

present our proposed sequential decisions for controlling the risk process at a given level,

followed by a simplified version of the algorithm to reduce the computational complexity.
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3.1 Recursive Formula for Wk,t

Recall πs = P(τk = s) and π̄s = P
(
τk ≥ s

)
. Let

Qk,t = π̄−1
t

t−1∑
s=0

πs

t∏
r=s+1

qk,r (Xk,r)

pk,r (Xk,r)
with Qk,0 = 0. (25)

Given Qk,t and Xk,t+1, Qk,t+1 can be computed using the recursive formula

Qk,t+1 = π̄−1
t+1

(
π̄tQk,t + πt

)
Lk,t+1, (26)

where we define Lk,t+1 = qk,t+1 (Xk,t+1) /pk,t+1(Xk,t+1). Then, we obtain

Wk,0 = 0 and Wk,t =
Qk,t

Qk,t + 1
. (27)

The above recursive equations (26) and (27) are extensions of classic results in single-

stream Bayesian sequential change detection problems [35]. Their rigorous justifications are

given in Appendix E.

3.2 Proposed Sequential Decision for Unstructured Risk and Util-

ity

We first propose a one-step selection rule to select St+1, given St and {Wk,t}k∈St so that the

risk Rt is controlled to be no greater than α. This one-step selection rule goes over all 2|St|

possible subsets of St, and then select the one which attains the highest utility Ut. Algorithm

1 implements this idea. According to Assumption 1, {S : γS ≤ α and S ⊂ St} ≠ ∅. Thus,

St+1 in line 3 of the above algorithm is well-defined. The next proposition states that the

above one-step selection rule can control the risk process at any given level.

Proposition 1. Under Assumption 1, the index set St+1 selected by Algorithm 1 satisfies

1If the solution is not unique, St+1 can be any one of the solutions.
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Algorithm 1 One-step selection rule at time t.

1: Input: Tolerance level α, the current index set St, and posterior probabilities {Wk,t}k∈St ,
where Wk,t = P (τk < t | Ft) is computed according to (27).

2: For all S ⊂ St, compute γS = rt({Wk,t}k∈St , St, S) and µS = ut({Wk,t}k∈StSt, S).
3: Output:

St+1 =argmax
S

µS subject to γS ≤ α and S ⊂ St.
1

Rt ≤ α a.s.

Note that Proposition 1 does not require any assumptions on Rt and Ut except for

Assumption 1, which ensures the existence of the set St+1 in the last line of Algorithm 1.

Next, we combine Algorithm 1 at different time points to obtain a sequential decision in

Dα. At each time t, this sequential decision selects St+1 using Algorithm 1 and deactivates

data streams that are not in the index set. Algorithm 2 below implements this idea.

Algorithm 2 Proposed sequential decision δP.

1: Input: Tolerance level α.
2: Initialize: set t = 1, St = ⟨K⟩ and compute Wk,t for k ∈ St using equations (26) and

(27).
3: Select: input α, St and (Wk,t)k∈St to Algorithm 1, and obtain St+1.
4: Update: deactivate streams in St \ St+1. If St+1 = ∅, stop; otherwise, update

{Wk,t+1}k∈St+1 using equations (26) and (27).
5: Iterate: set t = t+ 1 and return to line 2.
6: Output: {St}t≥1.

Proposition 2. Under Assumption 1, δP ∈ Dα. That is, the proposed sequential decision

given by Algorithm 2 controls the risk process at level α at every time point.

3.3 Simplified Sequential Decision for ‘Monotone’ Risk

At each time t, directly applying Algorithm 1 requires evaluating and comparing the risk and

utility associated with 2|St| subsets, which is computationally intensive when |St| is large.

In many cases where the risk and utility satisfy additional monotonicity assumptions, this

algorithm can be simplified, reducing the computational complexity significantly. In this
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section, we provide one such assumption, under which the proposed sequential decision only

requires evaluating and comparing the risks associated with |St|+ 1 subsets.

Assumption 2. For all non-empty S0 ⊂ ⟨K⟩, w = (w1, · · · , w|S0|) ∈ [0, 1]|S0|, S ⊂ S0,

i ∈ S, j ∈ S0 \ S, and wi ≥ wj, we have rt(w, S0, S) ≥ rt(w, S0, (S \ {i}) ∪ {j}) and

ut(w, S0, S) ≤ ut(w, S0, (S \ {i}) ∪ {j}).

Under Assumption 2, Rt tends to become larger and Ut tends to become smaller if we

keep streams with relatively smaller posterior probability active. Under this assumption,

Algorithm 1 can be simplified to the following Algorithm 3, and it also controls Rt to be

below a pre-specified level α. As will be discussed in Corollary 1, all the risk and utility

measures presented in Examples 1 – 6 satisfy this assumption.

The following Algorithm 3 selects St+1 so that streams with relatively large posterior

probabilities are detected and those with relatively small posterior probabilities are kept ac-

tive. The cut-off point for the detection is decided by maximizing the utility while controlling

the risk at time t. Because Algorithm 3 restricts St+1 to be a subset of streams with relatively

small posterior probability, it only involves evaluating and comparing the risk and utility

functions associated with |St|+ 1 subsets, and, thus, reduces the computational complexity

to the order O(|St| log(|St|)).

Note that under Assumption 1, {n : γn ≤ α} ̸= ∅. Thus, the forth line of the above

Algorithm 3 is well-defined. The following Algorithm 4 gives an overall sequential decision

rule δS by adopting Algorithm 3 at every time point.

Proposition 3. Under Assumptions 1, the sequential decision δS given by Algorithm 4 sat-

isfies δS ∈ Dα.

2If Wki,t = Wkj ,t for 1 ≤ i < j ≤ n, we choose ki < kj to avoid additional randomness because of ties.
3If the solution is not unique, we choose n∗ to be the largest solution.
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Algorithm 3 Simplified one-step selection rule.

1: Input: Tolerance level α, the current index set St, and posterior probabilities {Wk,t}k∈St .

2: Arrange posterior probabilities in an ascending order2, i.e.

Wk1,t ≤ Wk2,t ≤ · · · ≤ Wk|St|,t
.

3: For n = 1, . . . , |St| , compute

γn = rt({Wk,t}k∈St , St, {ki}ni=1)

and
µn = ut({Wk,t}k∈St , St, {ki}ni=1).

For n = 0, compute γ0 = rt({Wk,t}k∈St , St,∅) and µ0 = ut({Wk,t}k∈St , St,∅).
4: Set n∗ ∈ {0, · · · , |St|} as the solution to the problem3

n∗ = argmax
n

µn subject to γn ≤ α.

5: Output: St+1 = {k1, . . . , kn∗} if n∗ ≥ 1 and St+1 = ∅ if n∗ = 0.

Algorithm 4 Simplified decision procedure δS.

1: Input: Tolerance level α.
2: Initialize: set t = 1. St = ⟨K⟩ and compute Wk,t for k ∈ St using equations (26) and

(27).
3: Select: input α, St and (Wk,t)k∈St to Algorithm 3, and obtain St+1.
4: Update: deactivate streams in St \ St+1. If St+1 = ∅, stop; otherwise, update

{Wk,t+1}k∈St+1 using equations (26) and (27).
5: Iterate: set t = t+ 1 and return to Step 3.
6: Output: {St}t≥1.
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4 Theoretical Properties of Proposed Methods

In this section, we first show that the proposed sequential decision δS is locally optimal under

very weak assumptions in Section 4.1. Then, we show that the simplified sequential decision

δS is uniformly optimal under stronger model assumptions and additional monotonicity as-

sumptions on risk and utility measures in Section 4.2. We also provide theoretical results on

aggregated risk and utility measures of the proposed methods in Section 4.3.

4.1 Local Optimality Results

The following two theorems show that the proposed sequential decision δP is locally optimal

under Assumption 1 while δS is locally optimal under Assumptions 1 and 2. That is, they

satisfy Definition 2.

Theorem 1. Under Assumption 1, the sequential decision δP described in Algorithm 2 is

locally optimal.

Theorem 2. Under Assumptions 1 and 2, the sequential decision δS described in Algorithm

4 is locally optimal.

The next corollary applies the above results to examples given in Section 2.4.

Corollary 1. If α > 0 and Rt ∈ {LFWERt,GLFWERt,LFNRt, IADDt}, Ut ∈ {IARLt,−LFDRt},

or Rt = LFDRt and Ut ∈ {−LFWERt,−GLFWERt,−LFNRt,−IADDt}, then the simplified

sequential decision δS is locally optimal.

If α < 0 and Rt = −IARLt and Ut ∈ {−LFWERt,−GLFWERt,−LFNRt,−IADDt},

then the simplified sequential decision δS is locally optimal.

4.2 Uniform Optimality Results

In this section, we show that the proposed sequential decision rule δS defined in Algorithm 4 is

uniformly optimal under stronger assumptions. We note that the uniform optimality results
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developed in the current work are non-trivial extensions of those in [13]. In particular, we

consider a general class of risk and utility measures while [13] only allows the risk measure to

be LFNR. Moreover, time-heterogeneous pre/post- change distributions and non-geometric

priors for the change points are allowed in the current work. These extensions require a

delicate analysis of a special class of monotone functions and stochastic processes defined

over a non-Euclidean space.

The assumptions for establishing the uniform optimality results include monotonicity

assumptions on the risk and utility processes and assumptions on the pre- and post- change

distributions. We point out that the monotonicity assumptions are made on functions over

a special non-Euclidean space

So =
K⋃
k=1

{(v1, · · · , vk) : 0 ≤ v1 ≤ · · · vk ≤ 1} ∪ {∅}, (28)

which contains ordered vectors of different dimensions. Thus, the definition of monotonicity

is non-standard.

Specifically, for functions maps So to R, we define two types of monotonicity.

Definition 3 (Entrywise increasing functions). A function f : So → R is “entrywise increas-

ing”, if f(u) ≤ f(v) for all m ∈ ⟨K⟩, u = (u1, · · · , um),v = (v1, · · · , vm) ∈ So, satisfying

uj ≤ vj for 1 ≤ j ≤ m. In addition, a function f is “entrywise decreasing” if −f is

“entrywise increasing”.

Definition 4 (Appending increasing functions). A function f : So → R is “appending

increasing”, if for all m ∈ ⟨K⟩, u = (u1, · · · , um) ∈ So, f(u1, · · · , uk) ≤ f(u), for all k ≤ m.

In addition, f(∅) ≤ f(u1) for u1 ∈ [0, 1].

For each vector v = (v1, · · · , vm), denote its order statistic by [v] = (v(1), · · · , v(m)). That

is, [v] is a permutation of v satisfying v(1) ≤ · · · ≤ v(m). We can see that if vk ∈ [0, 1] for all

k ∈ ⟨K⟩, then [v] ∈ So.
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Assumption 3. There exists a measurable function r̃t : So → R such that rt({Wk,t}k∈St , St, St+1) =

r̃t
(
[{Wk,t}k∈St+1 ]

)
. In addition, r̃t is entrywise increasing and appending increasing.

Assumption 4. There exists a measurable function ũt : So → R such that ut({Wk,t}k∈St , St, St+1) =

ũt
(
[{Wk,t}k∈St+1 ]

)
. In addition, ũt is entrywise decreasing and appending increasing.

Assumption 5. The pre- and post-change distributions {pk,t}t≥1 and {qk,t}t≥1 are the same

for different k ∈ ⟨K⟩. That is, p1,t = . . . = pK,t and q1,t = . . . = qK,t for all t.

Theorem 3. Under Assumptions 1, 3, 4 and 5, the sequential decision δS described in

Algorithm 4 is uniformly optimal.

Proof. The proof is involved that requires monotone coupling for stochastic processes living

on the space So. It is given in Appendix D.

We make several remarks on the above theorem. First, under Assumptions 3 and 4,

risk and utility measures are symmetric functions (Wk,t)k∈St+1 . These assumptions rule

out the cases (e.g., LFDR defined in Example 4) where the risk also depends on Wk,ts for

k /∈ St+1, without which the uniform optimal solution may not exist (see Counterexample 1

below). Second, under the monotonicity assumptions that r̃ts are entrywise increasing, the

risk process tends to be larger if the posterior probability of the change points associated

with the selected streams is larger. It is also appending increasing, meaning that the risk

tends to be larger if more streams are kept active. Similarly, the utility process tends to

be larger if fewer streams are kept active and the posterior probabilities associated with

the selected streams are smaller. Third, we require the pre- and post- stream distributions

pk,t and qk,t to be identical for different streams. In this case, the process {Wk,t}t∈Z+ has

identical distribution for different k and contributed in a symmetric way to the risk and

utility processes.

For most of applications, it is easy to check Assumptions 1 and 5. In some cases, addi-

tional efforts are needed to verify monotonicity assumptions described in Assumptions 3 and

4. Below we provide sufficient conditions for the monotonicity conditions. Note that the risk
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and utility measures described in Examples 1, 2, 3, 5, and 6 are all symmetric multivariate

polynomials of the posterior probabilities. Thus, we restrict the analysis to the polynomial

case in the next proposition.

Proposition 4 (Polynomial case). Let r̃ : So → R be a function in the following form

r̃(u) =
∞∑
p=0

1(dim(u) = p)

p∑
k=1

Cp,k
∑

i1<i2<···<ik

k∏
j=1

uij . (29)

Note that r̃(∅) = 0. If r̃(·) satisfies

r̃(ui,p−i) ≤ r̃(ui−1,p−i+1), for all i ∈ ⟨p⟩ and p ≥ 1, (30)

where ⟨p⟩ = {1, · · · , p} and ui,p−i denotes the p dimensional vector whose first i elements

are 0 and last p− i elements are all 1, then r̃ is entrywise increasing.

Moreover, if r̃ satisfies (30) and

r̃(ui,p−i) ≤ r̃(ui+1,p−i), for all i ∈ {0, · · · , p} and p ≥ 0, (31)

then r̃ is also appending increasing.

Remark 2. The inequalities (30) and (31) are equivalent to

p−i∑
k=1

Cp,k

(
p− i− 1

k − 1

)
≥ 0, for i = 0, · · · , p− 1, (32)

p−i∑
k=1

(Cp+1,k − Cp,k)

(
p− i

k

)
≥ 0, for i = 0, · · · , p, (33)

and all p ≥ 0. We leave the rigorous justification for the above statements in Appendix D.

Now we apply the uniform optimality result in Theorem 3 to performance measures

described in Examples 1, 2, 3 and 5.
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Corollary 2. If α > 0, Rt ∈ {LFNRt,LFWERt,GLFWERt, IADDt}, and Ut = IARLt, then

under Assumption 5, δS is uniformly optimal.

We point out that LFDRt described in Example 4 does not satisfy the assumptions made

in Theorem 3. Thus, we do not have uniform optimality results for it. Indeed, if Rt = LFDRt,

then the uniformly optimal sequential decision may not exist. A counterexample is given

below.

Counterexample 1. Let K = 3, pk,t(x) = (0.01)x(0.99)1−x, qk,t(x) = (0.99)x(0.01)1−x, and

P(τk = l) = 1/3 for k = 1, 2, 3, x = 0, 1, l = 0, 1, 2, and t ≥ 1. That is, the pre- and post-

change distributions are Bernoulli distributions with parameters 0.01 and 0.99, respectively,

and τks are uniformly distributed over {0, 1, 2}. We further assume that the tolerance level

α = 0.51, the risk process Rt = LFDRt (see Example 4) and the utility process Ut = −IADDt

(see Example 6).

In this setting, there does not exist a sequential decision achieving the maximum of the

expected utility at both times 1 and 2. This implies that there is no uniformly optimal

sequential decision. We leave detailed calculation in Appendix D.

4.3 Implications on Aggregated Risk

Let {at}t≥1 be a sequence of non-negative random variables satisfying
∑∞

t=1 at = 1, and

{bt}t≥1 be a sequence of non-negative constants. Consider the following aggregated risk

(AR) and aggregated utility (AU),

AR = E
( ∞∑
t=1

atRt

)
and AU = E

( ∞∑
t=1

btUt
)
. (34)

The aggregated risk and utility metrics defined above provide a summary of the performance

across time. These types of risk and utility measures are considered in many recent works

on multi-stream sequential change detection and hypothesis testing, including [3, 12, 40, 41].
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The next proposition shows that if the risk process is controlled at the desired tolerance

level at every time point, then the aggregated risk is also controlled at the same level.

Proposition 5. Let δ ∈ Dα and AR(δ) be the corresponding aggregated risk defined in (34).

Then, AR(δ) ≤ α.

Note that the reverse statement does not hold. That is, the aggregated risk being con-

trolled does not imply the risk at each time t being controlled.

The next proposition shows that a uniformly optimal sequential decision also maximizes

the aggregated utility.

Proposition 6. Suppose that δ is uniformly optimal in Dα. Then, for the aggregated utility

defined in (34),

AU(δ) = sup
δ′∈Dα

AU(δ′),

where AU(δ) and AU(δ′) denote the aggregated utility associated with δ and δ′, respectively.

Next, we use Propositions 5 and 6 to make a connection between the current results

and recent works on the sequential multiple testing and parallel sequential change detection

[12, 13, 40].

4.3.1 Controlling generalized error rates in multi-stream sequential hypothesis

testing

Note that if π0 + π∞ = 1 (i.e., change points either occur at the beginning or never occur),

the sequential change point detection problem reduces to a sequential multiple hypotheses

testing problem, where the goal is to choose between Hk
0 and Hk

1 for k = 1, · · ·K,

Hk
0 : Xk,t ∼ pk,t for all t against H

k
1 : Xk,t ∼ qk,t for all t,

under a Bayesian setting, where P(Hk
0 holds) = π∞ and P(Hk

1 holds) = π0. In addition, we

assume that Xk,t are jointly independent.
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Let m ≥ 1. We define the generalized family-wise error rate (GFWER) as

GFWERm := P(Em,T ), (35)

where T is a stopping time and the event Em,t is defined in (8). GFWERm can be viewed as a

generalized family-wise error rate measuring type-II errors in sequential multiple hypotheses

testing, which takes a similar form as the generalized type-II error rate in [1, 2, 40, 41].

Specifically, if we reject Hk
0 at time t if and only if k ∈ St+1. Then,

Em,t =
{ K∑
k=1

1(Hk
1 holds and Hk

0 is chosen at time t) ≥ m
}

in the context of multiple hypotheses testing.

The next corollary of Proposition 5 shows that the proposed method δS controls the

GFWER in the perspective of the hypothesis testing problem.

Corollary 3. Given the tolerance level α, consider the sequential decision δS in Algorithm 3

with the risk process Rt = GLFWERm,t defined in Example 2 and any utility process. Then,

the generalized family-wise error rate GFWERm defined in (35) is also controlled to be no

greater than α for any stopping time T .

Note that the above Corollary 3 holds for any stopping time T . In particular, if we let

T grow to infinity, then Corollary 3 states that the GFWER accumulated over all the time

points is controlled to be no greater than α. If we let T = T1 as defined in Remark 1, then

different data streams are stopped at the same detection time T1. In this case, the proposed

sequential procedure belongs to the class of sequential multiple testing procedures described

in [41].
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4.3.2 Controlling aggregated false discovery rate

The aggregated false discovery rate (AFDR) is considered in [12],

AFDR = E

∑N̄−1
t=1

∑K
k=1 1 (τk ≥ t, Nk = t)(∑N̄−1

t=1

∑K
k=1 1 (Nk = t)

)
∨ 1

 , (36)

where N̄ is a positive integer that is referred to as a ‘deadline’. The next proposition states

that any decision that controls LFDRt at every time also controls AFDR asymptotically.

Proposition 7. Let Rt = LFDRt and δ ∈ Dα. Assume that there exist a sequence of

constants {Ct}t≥1 and a sequence of random variables {At}t≥1 such that K−1
∑K

k=1 1 (Nk = t)

converges to Ct in probability and FDPt converges to At in probability for all t ≥ 1 as K

grows to infinity. Then, limK→∞AFDR(δ) ≤ α. That is, AFDR is controlled to be no greater

than α asymptotically.

4.3.3 Maximizing total average run length

Let the total average run length (TARL) be

TARL =
K∑
k=1

(τk ∧Nk), (37)

where Nk is defined in (15). TARL aggregates IRLt across different time points, and can

be viewed as an extension of the classic ARL2FA to multi-stream problems. The next

corollary of Proposition 6 shows that the proposed method also maximizes TARL under

certain conditions.

Corollary 4. Under Assumptions 5, and Rt ∈ {LFNRt,LFWERt,GLFWERt, IADDt},

E(TARL(δS)) = sup
δ∈Dα

E(TARL(δ)),

where δS is obtained from Algorithm 4 by letting Ut = IARLt, and TARL(δS) and TARL(δ)
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denote the the total average run length (TARL) of the decision δS and δ, respectively.

5 A Simulation Study

In this section, we study the performance of the proposed sequential decision δS defined in

Algorithm 4 through a simulation study. We choose Rt = LFDRt and Ut = −IADDt in the

simulation study and let the tolerance level α = 0.1. We also compare the performance of

the proposed method with the MD-FDR method proposed in [12].

We also conduct a simulation study where Rt = LFNRt. For space reason, we leave it to

the appendix in the supplementary materials.

We let pk,t(x) = (2π)−1/2e−
x2

2 and qk,t(x) = (2π)−1/2e−
(x−1)2

2 for all k and t. In addition,

let π∞ = 0.2, and πt = 0.1 · 0.8 · (0.9)t for t ≥ 0. That is, we set the pre- and post-change

probability distributions to be the Gaussian distributions N (0, 1) and N (1, 1), respectively,

and set the prior distribution for the change point τk to be a mixture of a point mass at

infinity and a geometric distribution.

We assess and compare the performance of two sequential decisions. The first sequential

decision is the the proposed method δS described in Algorithm 4 with Rt = LFDRt (defined

in Example 4) and Ut = −IADDt (defined in Example 6). With this choice of Rt and Ut,

line 4 in Algorithm 3 can be simplified as

n∗ = arg min
n=0,1,...,|St|

{n : γn ≤ α}.

The other sequential decision is the MD-FDR method developed in [12]. Following the MD-

FDR method, the risk measure AFDR defined in (36) is guaranteed to be no greater than

the tolerance level α.

We first compare the proposed method with the MD-FDR method in terms of their FDPt

(defined in (13)) and IDDt (defined in (21)) for fixed K = 500 with 1000 independent Monte

Carlo simulations. The averaged FDPt and IDDt across the 1000 replications are plotted in
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Figures 3 and 4 as functions of t. According to Figure 3, the averaged FDPt of both methods

are below 0.1 for all t with a trend of first increasing and then decreasing as t increases. The

FDPt of the proposed method has a plateau near 0.1 for t ∈ [5, 20]. In addition, the FDPt of

the proposed method is larger than that of the MD-FDR method, which suggests that the

proposed method is less conservative while still controlled under the target tolerance level.

Figure 4 compares the averaged IDDt of the proposed method and the MD-FDR method for

different t. It displays that, for both methods, IDDt first increases and then decreases as t

increases. The proposed method has a lower averaged IDDt than the MD-FDR method for

all t, indicating a smaller detection delay.

Next, we compare the two methods in terms of aggregated performance measures. In

particular, we consider the aggregated risk AFDR defined in (36), where we set the deadline

parameter N̄ = 500. For aggregated utility, we consider the the total average detection delay

(TADD), defined as

TADD = E
( N̄−1∑
s=0

IDDs

)
= E

( N̄−1∑
s=0

IADDs

)
, (38)

where IDDs is defined in (23). Then, we let the aggregated utility be AU = −TADD. A

higher utility, which corresponds to a lower TADD, reflects a quicker detection of the changes.

Tables 1 and 2 compare the two methods in terms of their aggregated risk AFDR and

the aggregated utility TADD, respectively, which are estimated based on a Monte Carlo

simulation with 1000 replications. From Table 1, we can see that both the proposed method

and MD-FDR method control AFDR below the tolerance level α = 0.1, while the MD-FDR

method is more conservative. We also note that as K grows larger, AFDR of the proposed

method is approaching α = 0.1. From Table 2, we can see that the TADD of the proposed

method is significantly less than that of the MD-FDR method, indicating that the proposed

method detects changes faster than the MD-FDR method, when the AFDR of both methods

are controlled at the same level. An interesting observation is that TADD of both methods
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Figure 3: FDPt averaged over 1000 Monte Carlo simulations at K = 500
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Figure 4: IDDt averaged over 1000 Monte Carlo simulations at K = 500

scale with K as K grows. That is, TADD/K seems to converge to a constant as K grows

large. Specifically, for the proposed method, TADD/K is around 3.9. For the MD-FDR

method, TADD/K is around 6.5 for large K.

Overall, these results suggests that the proposed method is less conservative and adapts

better to the tolerance level than the MD-FDR method.
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K Proposed method MD FDR method
10 7.0× 10−2 (3× 10−3) 2.8× 10−2 (2× 10−3)
100 8.6× 10−2 (9× 10−4) 2.4× 10−2 (5× 10−4)
200 9.2× 10−2 (7× 10−4) 2.4× 10−2 (4× 10−4)
500 9.6× 10−2 (5× 10−4) 2.3× 10−2 (2× 10−4)
1000 9.8× 10−2 (3× 10−4) 2.4× 10−2 (2× 10−4)

Table 1: Estimated AFDR (standard deviation in parenthesis)

K Proposed method MD FDR method
10 45.8 (0.5) 61.4 (0.5)
100 413.8 (1.3) 650 (1.7)
200 799.8 (1.9) 1304.1 (2.4)
500 1964.9 (3.0) 3264 (3.7)
1000 3891.4 (4.0) 6535.3 (5.2)

Table 2: Estimated TADD (standard deviation in parenthesis)

6 A Case Study: Multi-Channel Spectrum Sensing in

Cognitive Radios

In this section, we conduct a case study on a multi-channel spectrum sensing problem for

cognitive radios, following the settings described in [12]. Cognitive radios are radios that

can dynamically and automatically adjust their operational parameters according to the

environment so that the spectrum is utilized more efficiently [22, 30]. To make the most out

of a spectrum, a cognitive user is allowed to use the idle spectrum band when the primary

user is not transmitting. However, when the primary user starts transmission, the cognitive

user should detect the change and vacate the spectrum band as soon as possible. The

detection of the transmission of the primary user can be formulated as a sequential change

detection problem, where the transmission time corresponds to the change point [12, 24].

We consider a multi-channel spectrum sensing problem for cognitive radios, where there

are K independent frequency channels assigned to K independent primary users. The cog-

nitive users monitor the spectrum bands and collect signal samples sequentially. The dis-

tribution of the signals will change when a primary user starts transmission. As soon as
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the change is detected, the cognitive user vacates the spectrum band, so that the primary

user can use it without interference. Here, each channel corresponds to a data stream, and

the time that a primary user starts transmission corresponds to a change point in that data

stream. Our goal is to have a sequential decision that can detect the transmission of the

primary user at each channel quickly to reduce the interference, while controlling the false

discovery rate, which corresponds to the expected proportion of unoccupied channels among

the detected ones.

Specifically, we assume that Xk,t is the signal collected from the kth cognitive user at

time t, τk is the time when the k-th primary user starts transmission, and Xk,ts and τks

follow the change point model described in (1) and (2). For the change point τk, we further

assume that

πt = (1− π∞)θ(1− θ)t

with π∞ = 0.1 and θ = 0.05. That is, τk follows a mixture distribution of a point mass at

infinity and a geometric distribution.

For the pre- and post- change distributions, we assume

Xk,t =


Yk,t, if t ≤ τk

Yk,t + Zk,t, if t > τk

,

where Yk,t denotes a Gaussian white noise and Zk,t denotes the faded received primary ra-

dio signal at the cognitive user’s end. We further assume that Yk,t ∼ CN (0, σ2), Zk,t ∼

CN (0, λk), and Yk,ts and Zk,ts are independent, where CN (0, σ2) and CN (0, λk) denote the

circularly-symmetric complex Gaussian distributions with mean 0 and the complex variance

σ2 and λk, respectively. Note that a complex random variable has a circularly-symmetric

complex Gaussian distribution with a variance σ2 if its real and imaginary parts are indepen-

dent and identically distributed univariate Gaussian random variables with the mean zero

and the variance σ2/2.
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Under this model, Xk,t has the distribution

Xk,t ∼


CN (0, σ2), if t ≤ τk

CN (0, σ2 + λk), if t > τk

.

Notice that in this setting, the streams share the same pre-change distribution, but have

different post-change distributions characterized by their different variances. The above

distribution assumptions are commonly adopted in the literature [12, 24].

In this case study, we assume σ2 = 2 and sample independent λks from a uniform distribu-

tion over [1, 2]. We then treat λk as known parameters. Here, we sample λk from an interval

to mimic the practical situation where the signals sent by the primary users may experience

channel attenuation at the cognitive user’s end, which results in a range of variance-distinct

post-change signals.

Let the tolerance level α = 0.1. We compare the performance of the proposed sequential

decision following Algorithm 3 (with Rt = LFDRt and Ut = −IADDt) and the MD-FDR

method proposed in [12]. We also consider the aggregated risks AFDR (defined in (36)) and

the aggregated utility TADD (defined in (38)).

Figures 5 and 6 show the averaged FDPt and IDDt for different t based on a Monte Carlo

simulation with 1000 replications. We see that FNPt of both methods are below 0.1 with a

peak at around t = 12 and t = 42, respectively. According to Figure 5, the averaged FNPt

of the MD-FDR method appears to be smaller than that of the proposed method for time

t < 50, while both of them decline at a similar rate after time t = 50. For larger t, the

averaged FNPt of both methods are close to zero. According to Figure 6, the averaged IDDt

of the MD-FDR method is larger than that of the proposed method for all t, which suggests

that the proposed method detects changes more quickly than that of the MD-FDR method.

Tables 3 and 4 show the AFDR and TADD for both methods forK ∈ {10, 100, 200, 500, 1000}.

According to the tables, the AFDR of both methods are controlled to be less than α = 0.1,
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Figure 5: FDPt averaged over 1000 Monte Carlo simulations at K = 100 in Case Study
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Figure 6: IDDt averaged over 1000 Monte Carlo simulations at K = 100 in Case Study
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K Proposed method MD FDR method
10 6.7× 10−2 (3× 10−3) 3.2× 10−2 (2× 10−3)
100 8.5× 10−2 (9× 10−4) 2.9× 10−2 (6× 10−4)
200 9.0× 10−2 (7× 10−4) 2.9× 10−2 (4× 10−4)
500 9.5× 10−2 (4× 10−4) 2.8× 10−2 (2× 10−4)
1000 9.7× 10−2 (3× 10−4) 2.8× 10−2 (2× 10−4)

Table 3: Estimated AFDR in case study (standard deviation in parenthesis)

K Proposed method MD FDR method
10 122.1 (1.2) 162 (1.4)
100 1115.8 (3.7) 1708.5 (4.6)
200 2178.2 (5.1) 3434.8 (6.6)
500 5293.4 (8.1) 8609.4 (10.4)
1000 10460.1 (11.3) 17246.7 (14.8)

Table 4: Estimated TADD in case study (standard deviation in parenthesis)

with the AFDR of the MD-FDR method smaller than that of the proposed method for all

K. This indicates that the proposed method is less conservative in controlling FDR-type

of risks, when compared with the MD-FDR method. Moreover, the proposed method has

a much smaller TADD that that of the MD-FDR method for all K, indicating that the

proposed method has a smaller detection delay.

7 Conclusions

The parallel sequential change detection problem is widely encountered in the analysis of

large-scale real-time streaming data. This study introduces a general decision theory frame-

work for this problem, covering many compound performance metrics. It further proposes a

sequential procedure under this general framework and proves its optimal properties under

reasonable conditions. Simulation and case studies evaluate the performance of the proposed

method and compare it with the method proposed in [12]. The results support the theoret-

ical developments and also show that the proposed method outperforms in our simulation

studies and case study.

The current study can be extended in several directions. First, the current parallel
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sequential change detection framework may be extended to account for multiple types of

decisions, including alerting the changes without stopping the streams and diagnosis of the

post-change distribution upon stopping, which is also known as the sequential change diagno-

sis [16, 28]. Second, in many applications, the post-change distribution of data is challenging

to obtain. Also, it is sometimes difficult to specify a prior distribution for the change points.

In these cases, it is desirable to formulate the problem in a non-Bayesian decision theory

framework, and develop a flexible parallel sequential change detection method that is ro-

bust for unknown post-change distributions under this framework. Third, we assume that

the change points are independent for different data streams. For some applications, it is

reasonable to extend the methods to the case where the change points are dependent. For

example, the change points may be driven by the same event [44] or propagated by each

other [45].
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Appendix

A An additional simulation study

In this simulation study, we let pk,t(x) = (2π)−1/2e−
x2

2 and qk,t(x) = (2π)−1/2e−
(x−1)2

2 for all

k and t and π∞ = 0.2, and πt = (t+2)!/(2 t!) · 0.8 · (0.1)3(0.9)t for t ≥ 0. In addition, we set

K = 100 and consider the risk process Rt = LFNRt (see Example 3) and the utility process

Ut = IRLt (see Example 5).
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Figure 7: FNPt averaged over a Monte Carlo simulation with 1000 replications at K = 100
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Figure 8: IRLt averaged over 1000 Monte Carlo simulations at K = 100

We plot the averaged risk measure FNPt and the averaged utility measure of the proposed
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method δS defined in Algorithm 4 in Figures 7 and 8 based on a Monte Carlo simulation

with 1000 replications. From Figure 7 we can see that the averaged FNPt is below 0.1 with

a peak at around t = 27, which is consistent with Proposition 3. From Figure 8 we can see

that IRLt is decreasing to 0 as t increases.

B Proof of Results in Section 3

Proof of Proposition 1. According to the second and third lines of Algorithm 1, St+1 output

by Algorithm 1 belongs to the set {S : γS ≤ α and S ⊂ St}. Thus, Rt = rt({Wk,t}k∈St , St, St+1) =

γSt+1 ≤ α.

Proof of Proposition 2. For each t, St+1 is obtained through Algorithm 1. Thus, Rt(δP) ≤ α

a.s. for all t ∈ Z+, according to Proposition 1. This implies δP ∈ Dα.

Proof of Proposition 3. Under Assumption 1, St+1 is obtained by Algorithm 3 satisfies Rt =

rt({Wk,t}k∈St , St, St+1). According to the third and fourth lines of Algorithm 3, it satisfies

Rt = rt({Wk,t}k∈St , St, St+1) ≤ α. Thus, δS ∈ Dα.

C Proof of Results in Section 4.1

Proof of Theorem 1. First, we know that δP ∈ Dα according to Proposition 2.

Next, we compare the proposed sequential decision δP = (d∗1, d
∗
2, · · · , d∗t , · · · ) with an

arbitrary sequential decision δ = (d1, d2, · · · , dt, · · · ) ∈ Dα satisfying ds = d∗s, for s =

1, · · · , t− 1. Let {S∗
t }t∈Z+ be the index set of active streams following δP at all time points,

and St+1 be the set selected by δ at time t+1. Note that both δP and δ select S∗
1 , · · · , S∗

t as

the index sets at time 1, · · · , t, according to the assumption that ds = d∗s for s = 1, · · · , t−1.

According to the second and third line of Algorithm 1, S∗
t+1 satisfies ut({Wk,t}k∈S∗

t
, S∗

t , S
∗
t+1) =

maxS⊂S∗
t
ut({Wk,t}k∈S∗

t
, S∗

t , S) subject to γS ≤ α. Because δ ∈ Dα, and the index set selected

by δ and δP at time t are both S∗
t , we have Rt(δ) = γSt+1 ≤ α a.s. This further implies
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ut({Wk,t}k∈S∗
t
, S∗

t , S
∗
t+1) ≥ ut({Wk,t}k∈S∗

t
, S∗

t , St+1). That is, Ut(δP) ≥ Ut(δ). The proof is

completed by taking expectation on both sides.

Proof of Theorem 2. First, according to Theorem 1, the sequential decision δP obtained from

Algorithm 2 is locally optimal. Thus, to show δS obtained from Algorithm 4 is also locally

optimal, it suffices to show that δS is a special case of δP under Assumption 2. Let {S∗
t }t∈Z+

be the index set of active streams following the decision δS at every time. For each t, it is

sufficient to show that S∗
t+1 = {k1, · · · , kn∗} obtained in the forth line of Algorithm 3 also

solves the optimization problem in the third line of Algorithm 1. To see this, it is sufficient

to show

ut({Wk,t}k∈S∗
t
, S∗

t , St+1) ≤ ut({Wk,t}k∈S∗
t
, S∗

t , S
∗
t+1) (39)

for any set St+1 ⊂ St satisfying γSt+1 ≤ α.

Recall that k1, · · · , k|S∗
t | are chosen so that Wk1,t ≤ · · · ≤ Wk|S∗t |

,t. We discuss two cases:

St+1 = {k1, · · · , kn} for some n ∈ {0, · · · , |S∗
t |}; and St+1 ̸= {k1, · · · , kn} for all n. In what

follows, we show that (39) holds for both cases.

Case 1: St+1 = {k1, · · · , kn} for some n ∈ {0, · · · , |S∗
t |}.

In this case, γn = rt({Wk,t}k∈S∗
t
, S∗

t , {k1, · · · , kn}) ≤ α. Recall that n∗ obtained in

the forth line of Algorithm 3 satisfies µn∗ = maxn′:γn′≤α µn′ . Thus, µn∗ ≥ µn. We com-

plete the proof of (39) in Case 1 by recalling that µn∗ = ut({Wk,t}k∈S∗
t
, S∗

t , S
∗
t+1) and

µn = ut({Wk,t}k∈S∗
t
, S∗

t , St+1).

Case 2: St+1 ̸= {k1, · · · , kn} for all n.

Let n = |St+1|. In this case, there exists h ∈ {0, · · · , n} and 2 ≤ j1 < j2 < · · · < jn−h such

that St+1 = {k1, · · · , kh, kh+j1 , kh+j2 , · · · , kh+jn−h} (we set k0 = 0 for the ease of presentation).

Note that Wkh+j1
≥ Wkh+1

, kh+j1 ∈ St+1, and kh+1 /∈ St+1. According to Assumption 2,
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we have

rt({Wk,t}k∈S∗
t
, S∗

t , St+1)

≥rt({Wk,t}k∈S∗
t
, S∗

t , St+1 \ {kh+j1} ∪ {kh+1})

=rt({Wk,t}k∈S∗
t
, S∗

t , {k1, · · · , kh+1, kh+1+j2 , · · · , kh+jn−h}).

(40)

That is, the risk evaluated at {k1, · · · , kh+1, kh+j2 , · · · , kh+jn−h} is no greater than at {k1, · · · , kh, kh+j1 , · · · , kh+jn−h}.

With similar arguments, we have

rt({Wk,t}k∈S∗
t
, S∗

t , {k1, · · · , kh+1, kh+j2 , · · · , kh+jn−h})

≥ · · ·

≥rt({Wk,t}k∈S∗
t
, S∗

t , {k1, · · · , kn}).

(41)

Combining (40) and (41), we obtain

rt({Wk,t}k∈S∗
t
, S∗

t , St+1) ≥ rt({Wk,t}k∈S∗
t
, S∗

t , {k1, · · · , kn}). (42)

Recall that rt({Wk,t}k∈S∗
t
, S∗

t , St+1) ≤ α. Thus, the above inequality also implies

γn = rt({Wk,t}k∈S∗
t
, S∗

t , {k1, · · · , kn}) ≤ α. (43)

Next, we consider ut({Wk,t}k∈S∗
t
, S∗

t , St+1). By replacing rt with ut and ‘≥’ with ‘≤’ in (40)

– (42), we obtain ut({Wk,t}k∈S∗
t
, S∗

t , St+1) ≤ ut({Wk,t}k∈S∗
t
, S∗

t , {k1, · · · , kn}) under Assump-

tion 2. This implies ut({Wk,t}k∈S∗
t
, S∗

t , St+1) ≤ µn. According to equation (43) and the proof

in Case 1, we have µn ≤ µn∗ = ut({Wk,t}k∈S∗
t
, S∗

t , S
∗
t+1). Combining these inequalities, we

obtain (39).

Proof of Corollary 1. We start with the proof of the first statement of the corollary. Ac-

cording to (7) – (22), we have LFWERt = GLFWERt = LFNRt = IARLt = IADDt = 0
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if St+1 = ∅, and LFDRt = 0 if St+1 = St. In addition, according to the definition,

LFWERt,GLFWERt,LFNRt, and LFDRt fall into the interval [0, 1], and IADDt and IARLt

belong to [0, K]. Thus, Assumption 1 is verified for α > 0.

Next, we show that ifRt ∈ {LFWERt,GLFWERt,LFNRt, IADDt} and Ut ∈ {IARLt,−LFDRt}

then Assumption 2 is satisfied. Without loss of generality, we assume S0 = [n], where

1 ≤ n ≤ K. Also, assume w = (w1, · · · , wn) ∈ [0, 1]n, S ⊂ [n], i ∈ S, j ∈ [n] \ S, and

wi ≥ wj. We consider different choices of Rt and Ut below.

If Rt = GLFWERt, we apply the next lemma, whose proof is postponed to Appendix D

on page 65.

Lemma 1. For u = (u1, . . . , up),v = (v1, . . . , vp) ∈ [0, 1]p, then

1−
m−1∑
l=0

∑
I⊂⟨p⟩
|I|=l

(∏
q∈I

uq
) ∏
k∈⟨p⟩\I

(1− uk) ≤ 1−
m−1∑
l=0

∑
I⊂⟨p⟩
|I|=l

(∏
q∈I

vq
) ∏
k∈⟨p⟩\I

(1− vk)

if 0 ≤ uk ≤ vk ≤ 1 for all k ∈ ⟨p⟩.

We apply the above lemma with u = (wk)k∈S = (u1, . . . , u|S|), and v = (wk)k∈(S\{i})∪{j} =

(v1, . . . , v|S|). Since 0 ≤ ur ≤ vr ≤ 1 for all r ∈ [|S|], we obtain

1−
m−1∑
l=0

∑
I⊂[|S|]
|I|=l

(∏
q∈I

uq
) ∏
k∈[|S|]\I

(1− uk) ≤ 1−
m−1∑
l=0

∑
I⊂[|S|]|I|=l

(∏
q∈I

vq
) ∏
k∈[|S|]\I

(1− vk).

It follows that rt(w, [n], S) = 1 −
∑m−1

l=0

∑
I⊂S
|I|=l

(∏
q∈I wq

)∏
k∈S\I(1 − wk) ≥ 1 −∑m−1

l=0

∑
I⊂(S\{i})∪{j}

|I|=l

(∏
q∈I wq

)∏
k∈(S\{i})∪{j}\I(1− wk) = rt(w, [n], (S \ {i}) ∪ {j}).

If Rt = LFNRt, we have rt(w, [n], (S \ {i}) ∪ {j}) =
∑
k∈(S\{i})∪{j} wk

|S|∨1 =
∑
k∈S wk+wi−wj

|S|∨1 ≤∑
k∈S wk
|S|∨1 = rt(w, [n], S).

If Rt = IADDt, we have rt(w, [n], S) =
∑

k∈S wk =
∑

k∈(S\{i})∪{j}wk + wi − wj ≥∑
k∈(S\{i})∪{j}wk = rt(w, [n], (S \ {i}) ∪ {j}).

If Ut = IARLt, then ut(w, [n], S) =
∑

k∈S{1 − g(wk)} =
∑

k∈(S\{i})∪{j}{1 − g(wk)} −
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g(wi) + g(wj) ≤
∑

k∈(S\{i})∪{j}{1 − g(wk)} = ut(w, [n], (S \ {i}) ∪ {j}), where we used the

fact that g(wi) ≥ g(wj).

If Ut = −LFDRt, then ut(w, [n], S) = −(|[n] \ S| ∨ 1)−1
∑

k∈[n]\S(1− wk) = −(|[n] \ S| ∨

1)−1
∑

k∈[n]\(S\{i}∪{j})(1 − wk) + wi − wj ≤ −(|[n] \ S| ∨ 1)−1
∑

k∈[n]\(S\{i}∪{j})(1 − wk)− =

ut(w, [n], (S \ {i}) ∪ {j}).

Since LFWERt is a special case of GLFWERt where m = 1 in Example 2, if Rt =

LFWERt, we also have rt(w, [n], S) ≤ rt(w, [n], (S \ {i}) ∪ {j}). The proof for the other

set of Rt and Ut can be obtained similarly by flipping their signs. We omit the repetitive

details.

D Proof of Results in Section 4.2

D.1 Proof sketch for Theorem 3

The proof of Theorem 3 is involved. In this section, we provide a high level summary of steps

in proving Theorem 3 and an overview of the supporting lemmas in Appendix D.2–D.4. We

will wrap up these supporting results and provide the proof of Theorem 3 in Appendix D.5.

In Appendix D.2, we define a special partial order relationship ‘≼’ over the space So =

∪Kk=1{(v1, · · · , vk) : 0 ≤ v1 ≤ · · · vk ≤ 1} ∪ {∅} so that one can compare vectors in So even

when they have different dimensions. We also study monotone functions in terms of this

special partial order relation. It turns out that the concepts of ‘entrywise monotonicity’ and

‘appending monotonicity’ (defined in Definitions 3 and 4) of functions are closely related to

their monotonicity in terms of the partial order ‘≼’. In particular, we show that the utility

function ũt(·) is a decreasing function over So. See Lemma 3 for more details.

Let δ∗ denotes the proposed method. Heuristically, if we could argue that [W δ∗

Sδ
∗
t ,t

] ≼

[W δ
Sδt ,t

] for all decision δ ∈ Dα all t, then Theorem 3 is proved by combining this with the

assumption Ut(δ) = ũt([W
δ
Sδt+1,t

]) and that ũt(·) is decreasing. However, this statement does

not hold almost surely for the stochastic processes [W δ∗

Sδ
∗
t ,t

] and [W δ
Sδt ,t

]. Instead, we show

43



this stochastic version of this statement using concepts such as stochastic ordering. That

is E(g([W δ∗

Sδ
∗
t ,t

]) ≤ E(g([W δ
Sδt ,t

])) for any increasing functions over So. The main analysis

is carried out through induction using supporting lemma developed in Appendix D.3 and

Appendix D.4.

In particular, in Appendix D.3, we study the monotonicity (in terms of the partial order

‘≼’) of the proposed one-step selection rule. We show that the proposed decision induces a

monotone mapping over So (Lemma 7). We also show that the order statistic of the posterior

probability of the remaining stream will become larger by following decisions other than the

proposed one (Lemma 6). Roughly, these result suggests that proposed method tends to make

[WSt,t] ‘smaller’ at the ‘current time’, when compared with other methods. In Appendix D.4,

we show several stochastic ordering results regarding the process [WSt,t] following different

decisions. In particular, Lemma 13 states that [WSt+s,t+s] is stochastically increasing in [WSt,t]

following the proposed method. Lemma 12 states that [WSt+1,t+1] becomes ‘stochastically

larger’ if we follow another method that also controls the risk for one step, when compared

with the proposed method.

We note that the proof of the results in Appendix D.4 follows similar ideas of that in

[13] with the following main differences. First, [13] only allows geometric priors and time-

homogeneous pre-/post- change distributions, which leads to homogeneous Markov chains

{Wk,t}t≥0 for different k. Under the current settings, we allow a general class of prior

distributions and time-heterogeneous of pre/post-change distributions. As a result, {Wk,t}t≥0

are still Markov chains for different k, but their transition kernels will be time-heterogeneous.

Second, [13] only considers the risk measure LFNR while we need to take care of a range

of more complicated risk and utility functions. To address the additional challenges, we

leverage results in Appendix D.2 and D.3 to perform detailed analysis on the risk and utility

processes.
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D.2 Partial order spaces and monotone mapping

In this section, we first introduce the classic definition of partial order spaces, then define

a partial order relation over the space So. After that, we provide several useful supporting

lemmas connecting the proposed sequential decision with processes over So.

Definition 5. A partially ordered space (or pospace) (S,≼) is a topological space S with a

closed partial order ≼. That is, ‘≼’ satisfies 1) u ≼ u for all u ∈ So; 2) u ≼ v and v ≼ u

implies that u = v; 3) u ≼ v and v ≼ w imply that u ≼ w, and the set {(u,v) ∈ S2
o : u ≼ v}

is a closed set.

Recall So is defined as

K⋃
k=1

{(v1, · · · , vk) : 0 ≤ v1 ≤ · · · vk ≤ 1} ∪ {∅},

where ∅ denotes the vector with zero dimension. The elements in So are order statistics of

elements in the following space Su.

Su =
K⋃
k=1

[0, 1]k ∪ {∅}.

It is easy to verify that for u ∈ Su, [u] ∈ So, and
[
u
]
= u for any u ∈ So.

We define a partial order relation over So. Let the function dim(·) denote the dimension

of a vector.

Definition 6. For u = (u1, · · · , udim(u)),v = (v1, · · · , vdim(v)) ∈ So, u ≼ v if dim(u) ≥

dim(v) and ui ≤ vi for i = 1, . . . , dim(v). In addition, u ≼ ∅ for all u ∈ So.

The next lemma states that (So,≼) is a polished partial order space.

Lemma 2 (Lemma F.1 in [13]). (So,≼) is a partially ordered polish space equipped with a

closed partial order ≼.
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Next, we present the definition for monotone functions mapping from a partial order

space to another one.

Definition 7. Let (S1,≼S1) and (S2,≼S2) be two partially ordered polish spaces. For a

function f : S1 → S2, f is said to be increasing if f(u) ≼S2 f(v) for all u,v ∈ S1 satisfying

u ≼S1 v. In addition, a function f is said to be decreasing if −f is increasing.

In particular, a function f : So → R is said to be increasing, if f(u) ≤ f(v) for all u ≼ v,

where ‘≤’ refers to the typical ‘smaller or equal’ relation over real numbers; a function

g : So → So is said to be increasing, if g(u) ≼ g(v) for all u ≼ v.

The next lemma presents the connection between monotone functions with respect to

the partial order ≼ and its entrywise and appending monotonicity.

Lemma 3. If a function f : So → R is entrywise decreasing and appending increasing,

then f is decreasing with respect to the partial order relation ‘≼’. In particular, the utility

function ũt(·) is a decreasing function over So in terms of ‘≼’.

Proof. For u ≼ v with u,v ∈ So, there are two cases: 1) dim(u) = dim(v) and ui ≤ vi for

i = 1, . . . , dim(u); and 2) dim(u) ≥ dim(v) and ui ≤ vi for i = 1, . . . , dim(v). For the first

case, f(u) ≥ f(v) because f is entrywise decreasing. For the second case, f(u1, . . . , udim(v)) ≥

f(v) because f in entrywise increasing. In addition, since f is appending decreasing, f(u) ≥

f(u1, . . . , udim(v)). Combining these two inequalities, we arrive at f(u) ≥ f(v).

D.3 Property of the one-step selection rule in Algorithm 3

Recall that Rt = r̃t([WSt+1,t]) in Assumption 3. We define two related maps It : So →

{0, · · · , K} and Jt : So → So below. For any u =
(
u1, . . . , udim(u)

)
∈ So, if dim(u) = 0, we

define It(u) = 0, otherwise we define It(u) as

It(u) = sup{n ∈ {0, . . . , dim(u)} : r̃t({ui}ni=1) ≤ α}, (44)
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and

Jt(u) =


(
u1, · · · , uIt(u)

)
if It(u) ≥ 1

∅ otherwise .

(45)

It in (44) is well-defined, thanks to the following lemma.

Lemma 4. Under Assumptions 1 and 3, r̃t(∅) ≤ α.

Proof. Under Assumption 3, rt({Wk,t}k∈St , St,∅) = r̃t(∅) and rt({Wk,t}k∈St , St, St) = r̃t
(
[{Wk,t}k∈St ]

)
.

Again by Assumption 3, r̃t is appending increasing, thus, r̃t(∅) ≤ r̃t
(
[{Wk,t}k∈St ]

)
. It

follows that minS∈{∅,St} rt({Wk,t}k∈St , St, S) = r̃t(∅). Hence, Assumption 1 implies that

r̃t(∅) ≤ α.

Next, we show the connection between the maps It and Jt and Algorithm 3.

Lemma 5. Under Assumptions 1, 3, and 4, if we input WSt,t = u and an arbitrary index

set St satisfying |St| = dim(u) in Algorithm 3, then the selected St+1 satisfies

|St+1| = It([u]) and [WSt+1,t] = Jt([u]) (46)

Proof. We first show that µn defined in line 3–4 of Algorithm 3 is non-decreasing in n. Recall

that, µn = ũt
(
[Wk,t]k∈{ki}ni=1

)
= ũt

(
[u]1, . . . , [u]n

)
for n = 1, . . . , |St|, and µ0 = ũt(∅), where

[u]k denotes the kth element of the order statistics [u]. According to Assumption 4, ũt is

appending increasing. Thus, µ0 ≤ µ1 ≤ . . . ≤ µ|St|.

Next, we show that |St+1| = It([u]). Recall that St+1 =
{
k1, . . . , kn∗

}
if n∗ ≥ 1 and

St+1 = ∅ if n∗ = 0 from the line 5 in Algorithm 3, where k1, . . . , kn∗ satisfy Wk1,t ≤ Wk2,t ≤

· · · ≤ Wkn∗ ,t and are obtained in the line 2 of Algorithm 3.

Let n∗∗ = It([u]). Comparing St+1 output by Algorithm 3 and the definition of It, we

have n∗ ≤ n∗∗. On the other hand, we have µn∗ ≥ µn∗∗ according to lines 3–4 of Algorithm 3.

Because µn is non-decreasing in n, this implies n∗ ≥ n∗∗ or (µn∗ = µn∗∗ and n∗ < n∗∗). Note
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that the latter case (µn∗ = µn∗∗ and n∗ < n∗∗) is not possible due to footnote 3. Thus,

n∗ ≥ n∗∗ and, consequently, |St+1| = It([u]).

The second equation in (46) holds due to the definition of Jt and lines 2 and 5 in Algo-

rithm 3.

The following lemma compares the posterior probability associated with the proposed se-

quential decision rule and that of another sequential rule so that the risk process is controlled

at the desired level.

Lemma 6. Let u = (u1, . . . , um) ∈ Su. Under Assumptions 1, 3, and 4, if {k1, . . . , kl} ⊂

{1, . . . ,m} satisfies r̃t([u
′]) ≤ α for u′ = (uk1 , . . . , ukl) and l ≥ 1, then Jt([u]) ≼ [u′]. In

addition, if Jt([u]) = ∅, then no nonempty u′ = (ui)i∈A ∈ Su with A ⊂ {1, . . . ,m} such that

r̃t([u
′]) ≤ α.

Proof. We first show the “In addition” part by contradiction. Suppose there exists u′ =

(uk1 , . . . , ukl) ∈ Su (l ≥ 1) such that {k1, . . . , kl} ⊂ {1, . . . ,m} and r̃t([u
′]) ≤ α. Because [u]

is the order statistic of u, [u]i ≤ [u′]i for i = 1, · · · , l. Combining this with the assumption

that r̃t is entrywise increasing, we arrive at r̃t([u]1, . . . , [u]l) ≤ r̃t([u
′]) ≤ α. This implies

It([u]) ≥ l, which contradicts with Jt([u]) = ∅.

For the first part of the lemma, for any u′ = (uk1 , . . . , ukl) with l ≥ 1 which satisfies

{k1, . . . , kl} ⊂ {1, . . . ,m} and r̃t([u
′]) ≤ α, to show Jt([u]) ≼ [u′], it suffices to show It(u) ≥ l

and [u]i ≤ uki for i = 1, . . . , l. Similar to the previous arguments, since [u]i ≤ [u′]i for

i = 1, · · · , l, and the function r̃t is entrywise increasing, r̃t(([u]1, . . . , [u]l)) ≤ r̃t([u
′]) ≤ α,

which implies It([u]) ≥ l.

Lemma 7. Under Assumptions 1, 3, and 4, the mapping Jt(u) is increasing in u with respect

to the partial order relation ‘≼’. That is, for any u ≼ v ∈ So, Jt(u) ≼ Jt(v).

Proof. If v = ∅, then Jt(v) = ∅. It follows that Jt(u) ≼ ∅ = Jt(v). We then assume v ̸= ∅

in the rest of the proof. Assume v = (v1, . . . , vdim(v)), dim(v) ≥ 1 and u ≼ v.
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Recall that Jt(u) = (u1, · · · , uIt(u)) and Jt(v) = (v1, · · · , vIt(v)), it is sufficient to show

It(u) ≥ It(v) and ui ≤ vi for i = 1, . . . , It(v).

According to the definition of the partial order relation, dim(u) ≥ dim(v) and ui ≥ vi

for i = 1, 2, · · · , dim(v). Also note that It(v) ≤ dim(v). This implies that It(v) ≤ dim(u)

and ui ≤ vi for i = 1, 2, . . . , It(v).

Next we show It(u) ≥ It(v) by contradiction. If on the contrary It(u) < It(v), then

It(u) + 1 ≤ It(v) ≤ dim(v). Since r̃t is entrywise increasing under Assumption 3, we have

r̃t((u1, . . . , uIt(u)+1)) ≤ r̃t((v1, . . . , vIt(u)+1)). (47)

Because r̃t is appending increasing and It(u) + 1 ≤ It(v),

r̃t
(
(v1, . . . , vIt(u)+1)

)
≤ r̃t

(
(v1, . . . , vIt(v))

)
. (48)

According to the definition of It(v), we have r̃t
(
(v1, . . . , vIt(v))

)
≤ α. Combining this with

(47) and (48), we obtain r̃t
(
(u1, . . . , uIt(u)+1)

)
≤ α. This contradicts with the definition of

It(u).

D.4 Monotone coupling of stochastic processes living on So

In this section, we first introduce the definition and classic results on stochastic dominance

and coupling over a partial order space (see, e.g., [23, 26, 42] for more details). Then, we

present results for several stochastic processes living on So which are useful for comparing

the proposed sequential decision with other decisions.

Definition 8. Let (S,≼) be a partially ordered polish space. Assume X, Y are two S-valued

random variables. X is stochastically dominated by Y (denoted by X ≼st Y ) if for all

increasing, bounded and measurable functions f : S → R, E(f(X)) ≤ E(f(Y )).

Let
d
= denote that random variables on both sides have the same distribution. The next
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result [26] connects coupling with stochastic ordering.

Fact 1 (Strassen’s theorem for a polish pospace). Let (S,≼) be a polish partially ordered

space, and let X and Y be S-valued random variables. Then, X ≼st Y if and only if there

exists a coupling (X̂, Ŷ ) such that X̂
d
= X and Ŷ

d
= Y and X̂ ≼ Ŷ a.s.

Next we introduce the ‘monotonicity’ of a Markov kernel over a pospace.

Definition 9. Let K1, K2 be two transition kernels over a partially ordered polish space

(S,≼). K1 is said to be stochastically dominated by K2 (denoted by or K1 ≺st K2) if

K1(u, ·) ≼st K2(v, ·)

for all u ≼ v. Moreover, if K ≺st K, then the kernel K is said to be stochastically monotone.

Lemma 8. The process {Wk,t}t≥1 defined in (26) and (27) is a Markov chain. Moreover, if

Assumption 5 holds, {Wk,t}t≥1 have the same transition kernel for different k ∈ {1, · · · , K}.

Denote by Kt(·, ·) this transition kernel of {Wk,t}t≥1 at time k. Then, Kt are stochastically

monotone for t ≥ 1.

Proof. Combining equations (26) and (27), we have a recursive formula for Wk,t

Wk,t+1 =
Lk,t+1

Lk,t+1 +
π̄t+1

π̄t

1−Wk,t
πt
π̄t

+(1−πt
π̄t

)Wk,t

. (49)

Recall that Lk,t+1 = qk,t+1

(
Xk,t+1

)
/pk,t+1(Xk,t+1). From the right-hand side of (49) we

knowWk,t+1 is a function ofWk,t and Xk,t+1. For Xk,t+1, conditioning onWk,1,Wk,2, . . . ,Wk,t,

its density function is g(Wk,t)qk,t+1(·) + (1 − g(Wk,t))pk,t+1(·), which is determined by Wk,t.

Thus, Wk,t+1 only depends on Wk,t, given Wk,1,Wk,2, . . . ,Wk,t, which further implies that

{Wk,t}t≥1 is a Markov chain.

Next, from the above argument we know the probability density function of Xk,t+1 con-

ditioning onWk,t is g(Wk,t)qk,t+1(·)+(1−g(Wk,t))pk,t+1(·), which is independent of the index
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k given Wk,t under Assumption 5. This, combined with (49), implies that the conditional

probability of Wk,t+1 given Wk,t is independent of the index k. That is, all the streams share

the same transition kernel Kt(·, ·). In the rest of the proof, we show that the kernels Kt are

stochastically monotone, for which we extend the proof of Lemma F.9 in [13].

Under Assumption 5, pk,t = pt and qk,t = qt for all k for some functions pt and qt.

We first describe a random variable Mt+1(x), which we will see to have the distribution

Kt(x, ·). Let ζt(x) = π̄−1
t πt +

(
1 − π̄−1

t πt
)
x. For x ∈ (0, 1), first generate a random vari-

able Zt+1(x) with the density ζt(x)qt+1(·) + (1− ζt(x))pt+1(·). and then compute Lt+1(x) =

qt+1(Zt+1(x))/pt+1(Zt+1(x)) and let Mt+1(x) = (Lt+1(x) +
π̄t+1

π̄t
1−x

πt
π̄t

+(1−πt
π̄t

)x
)−1Lt+1(x). From

this generation process, we can see thatMt+1(x) has the same distribution asWk,t+1|Wk,t = x.

That is, Mt+1(x) has the density function Kt(x, ·).

Next, to show the kernelKt(x, ·) is stochastically monotone, by Definition 9, it is sufficient

to show Kt(x, ·) ≤st Kt(x
′, ·) for any x, x′ with 0 ≤ x ≤ x′ ≤ 1. Because ζt(x) is increasing

in x and according to Lemma F.6 in [13], we have Lt+1(x) ≤st Lt+1(x
′). Combine this result

with Fact 1, there exists a coupling (L̂t+1, L̂
′
t+1) such that L̂t+1

d
= Lt+1(x), L̂

′
t+1

d
= Lt+1(x

′)

and L̂t+1 ≤ L̂′
t+1 a.s. Let M̂t+1 = (L̂t+1 + π̄t+1

π̄t
1−x

πt
π̄t

+(1−πt
π̄t

)x
)−1L̂t+1 and M̂ ′

t+1 = (L̂′
t+1 +

π̄t+1

π̄t
1−x′

πt
π̄t

+(1−πt
π̄t

)x′
)−1L̂′

t+1. Then, we have M̂t+1 = (L̂t+1 + π̄t+1

π̄t
1−x

πt
π̄t

+(1−πt
π̄t

)x
)−1L̂t+1 ≤ (L̂′

t+1 +

π̄t+1

π̄t
1−x

πt
π̄t

+(1−πt
π̄t

)x
)−1L̂′

t+1 ≤ (L̂′
t+1+

π̄t+1

π̄t
1−x′

πt
π̄t

+(1−πt
π̄t

)x′
)−1L̂′

t+1 = M̂ ′
t+1 a.s. By Fact 1, this inequality

implies Mt+1(x) ≤st Mt+1(x
′), which further implies Kt(x, ·) ≤st Kt(x

′, ·).

For the ease of presentation, let Sδt and Hδ
t denote the active set St and the historical

information following the decision δ. Similarly, we let W δ
k,t = P(τk < t|Hδ

t ) be the posterior

probability for the change point to occur before time t at the k-th stream, following the

decision δ. We also letW δ
S,t =

(
W δ
k,t

)
k∈S denote the vector of posterior probability associated

with the subset S ⊂ {1, · · · , K} of data streams following the decision δ.

Lemma 9. Under Assumption 5, for any sequential decision δ, [W δ
Sδt+1,t+1

] is independent of

Hδ
t given [W δ

Sδt+1,t
]. In addition, the conditional density of [W δ

Sδt+1,t+1
] at v given [W δ

Sδt+1,t
] = u
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with dim(u) = m is

Kt(u,v) :=

∑
π∈Γm

∏m
l=1Kt(ul, vπ(l)) if dim(v) = m ≥ 1

1 if dim(v) = m = 0

0 otherwise,

(50)

where Γm represents the set of all permutations over [m]. Kt is a transition kernel on So×So.

Proof. The proof follows that of Lemma F.10 in [13] by replacing the time-homogeneous

kernel K in Lemma F.10 in [13] with Kt.

Lemma 10. Under Assumption 5, Kt(u, ·) ≼st Kt(u
′, ·) for u,u′ ∈ So with u ≼ u′, and

t ≥ 1.

Proof. The proof follows that of Lemma F.12 in [13] by replacing K in Lemma F.12 in [13]

by Kt and replacing K in Lemma F.12 in [13] with Kt.

Next, we compare several decisions described below. Let δS = (d∗1, d
∗
2, · · · ), be the pro-

posed sequential decision, and δ = (d1, d2, . . .) be an arbitrary decision procedure. Let ψt be

an operator over the space of sequential decisions, and for each decision δ,

ψt ◦ δ = (d1, d2, . . . , dt−1, d
∗
t , . . .). (51)

That is, ψt maps δ to another sequential decision rule which makes the same decision as δ

at time 1, 2, · · · , t− 1 and switch to the proposed δS at time t and afterwards.

In what follows, we will compare ψt0 ◦ δ and ψt0+1 ◦ δ for a fixed t0 and an arbitrary

δ ∈ Dα. For the ease of presentation, we write

δ1 = ψt0 ◦ δ = (d1, d2, . . . , dt0−1, d
∗
t0
, . . .). (52)
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and

δ2 = ψt0+1 ◦ δ = (d1, d2, . . . , dt0−1, dt0 , d
∗
t0+1, . . .). (53)

Note that ψt0+1 ◦ δ1 = δ1. Also, δ2 turn to the proposed method δS one time unit later than

δ1.

The next lemma provides the transition kernel for the posterior probability process fol-

lowing the decision δ1.

Lemma 11. Under Assumptions 1, 3, 4 and 5, For any t0 ≥ 1 and s ≥ 0, [W δ1

S
δ1
t0+s+1,t0+s+1

]

is conditionally independent of Hδ1
t0+s given [W δ1

S
δ1
t0+s

,t0+s
]. In addition, the conditional density

of [W δ1

S
δ1
t0+s+1,t0+s+1

] at v given [W δ1

S
δ1
t0+s

,t0+s
] = u is K̃t0+s(u,v) := Kt0+s(Jt0+s(u),v).

Proof. Under Assumptions 1, 3 and 4, Lemmas 5 and 9 hold. Then, the proof follows similar

arguments as that of Lemma F.13 in [13] by replacing K in Lemma F.13 in [13] with Kt0+s,

K in Lemma F.13 in [13] with Kt0+s, and Lemmas D.2 and D.10 in [13] with Lemmas 5 and

9, respectively. The rest of the proof is omitted to avoid repetitions.

The next lemma compares the decisions δ1 and δ2 at time t0+1 conditional on the history

up to time t0, where δ1 and δ2 are given in (52) and (53), respectively.

Lemma 12. Let δ1 and δ2 be defined in (52) and (53). Then, Hδ1
t0 = Hδ2

t0 a.s. Moreover,

let ht0 be in the support of Hδ1
t0 and Hδ2

t0 . Then,
[
W δ1

S
δ1
t0+1,t0+1

]
is stochastically dominated by[

W δ2

S
δ2
t0+1,t0+1

]
, i.e.,

[
W δ1

S
δ1
t0+1,t0+1

]
≼st

[
W δ2

S
δ2
t0+1,t0+1

]
, conditional on Hδ1

t0 = ht0, under Assump-

tions 1, 3– 5.

Proof. From the definition of δl and Hδl
t , we have the iterative formula Sδlt = dt−1(H

δl
t−1)

and Hδl
t = {Hδl

t−1, {Xk,t}k∈Sδlt , {S
δl
t }} for t = 1, · · · , t0 and l = 1, 2. Also, for t = 1, Sδlt =

{1, · · · , K}. By induction, we have Hδ1
t = Hδ2

t for t = 1, · · · , t0. In particular, Hδ1
t0 = Hδ2

t0 .

This proves the first part of the lemma.

We proceed to prove that [W δ1

S
δ1
t0+1,t0+1

] is stochastically dominated by [W δ2

S
δ2
t0+1,t0+1

] condi-

tional on Hδ1
t0 = ht0 . By Lemma 9, we can see that [W δ1

S
δ1
t0+1,t0+1

] is independent of the history
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Hδ1
t0 given [W δ1

S
δ1
t0+1,t0

] = u. Also, given the history Hδ1
t0 = ht0 , [W

δ1

S
δ1
t0+1,t0

] is a deterministic

function of the history ht0 and the sequential decision δ1. Let wt0+1 := [W δ1

S
δ1
t0+1,t0

]
∣∣Hδ1

t0 = ht0 .

Then [W δ1

S
δ1
t0+1,t0+1

]|[W δ1

S
δ1
t0+1,t0

] = wt0+1 has the conditional probability density Kt0(wt0+1, ·).

Similarly, assume that w′
t0+1 := [W δ2

S
δ2
t0+1,t0

]|Hδ2
t0 = ht0 . Then, [W

δ2

S
δ2
t0+1,t0+1

]
∣∣[W δ2

S
δ2
t0+1,t0

] = w′
t0+1

has the conditional probability density Kt0(w
′
t0+1, ·).

According to the above arguments it suffices to show Kt0(wt0+1, ·) ≼st Kt0(w
′
t0+1, ·) to

prove the lemma. According to Assumption 5 and Lemma 10, it suffices to show thatwt0+1 ≼

w′
t0+1. Next we compare wt0+1 and w′

t0+1 under two cases: w′
t0+1 = ∅ and w′

t0+1 ̸= ∅. If

w′
t0+1 = ∅, then wt0+1 ≼ ∅ = w′

t0+1 holds due to the definition of the partial order. If

w′
t0+1 ̸= ∅, since given the history Hδ1

t0 = ht0 , [W
δ1

S
δ1
t0
,t0
] is a deterministic function of the

history ht0 , let wt0 denote [W δ
Sδt0

,t0
]|Hδ

t0
= ht0 . According to Lemma 5, wt0+1 = Jt0(wt0). By

Lemma 6, we have wt0+1 ≼ w′
t0+1.

The above Lemma 12 shows that the decision δ1 can select streams with ‘smaller’ posterior

probabilities and the order statistics of these posterior probabilities remains ‘stochastically

smaller’ one time unit further.

Specifically, given the history at t0, at time t0 + 1, the ordered posterior probabilities of

the remaining stream are “stochastically smaller” following δ1 when compared with that of

δ2. Next, we provide results on combining comparison results on consecutive time points.

We need the following result concerning the composition of stochastic monotone transition

kernels, which is a corollary of Proposition 1 in [23].

Fact 2 (Strassen’s theorem for Markov chains over a polish pospace). Assume {Xt}t≥0 and

{Yt}t≥0 are two Markov chains over a partially ordered pospace (S,≼). Denote by {KX,t}t≥0

and {KY,t}t≥0 their transition kernels respectively.
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Assume that KX,t ≺st KY,t for all t ≥ 0, where ‘≺st’ is defined in Definition 9. and let

KX,0:n := KX,0 ◦KX,1 ◦ · · · ◦KX,n,

KY,0:n := KY,0 ◦KY,1 ◦ · · · ◦KY,n,

where ◦ denotes the composition of Markov kernels (see, e.g., [21] for the definition of com-

position of Markov kernels).

Then, for all n ≥ 0, KX,0:n ≺st KY,0:n.

Next, we will show for any sequential decision δ and t0 ≥ 1, the transition kernel of the

conditional distribution of
[
W

ψt0◦δ

S
ψt0

◦δ
t0+s

,t0+s

]
given

[
W

ψt0◦δ

S
ψt0

◦δ
t0

,t0

]
is stochastically monotone for all

s ≥ 0.

Lemma 13. Under Assumptions 1, 3, 4 and 5, For any sequential decision δ, t0 ≥ 1, and

any bounded, decreasing and measurable function f : So → R, the function

E
[
f(
[
W

ψt0◦δ

S
ψt0

◦δ
t0+s

,t0+s

]
)|
[
W

ψt0◦δ

S
ψt0

◦δ
t0

,t0

]
= w

]
(54)

is decreasing in w and is a measurable function.

Proof. For any sequential decision δ and t0 ≥ 1, let Ys =
[
W

ψt0◦δ

S
ψt0

◦δ
t0+s

,t0+s

]
for s ≥ 0. By

Lemma 11, we can see that {Ys}s≥0 is a Markov chain with the transition kernels {K̃t0+s}s≥0.

By Lemma 7, Jt0+s(u) ≼ Jt0+s(v) for any u,v ∈ So satisfying u ≼ v. This further implies

Kt0+s(Jt0+s(u), ·) ≼st Kt0+s(Jt0+s(v), ·) according to Lemma 10. By Lemma 11, we arrive at

K̃t0+s(u, ·) ≼st K̃t0+s(v, ·) for any u ≼ v. That is, K̃t0+s is stochastically monotone for all

s ≥ 0.

Note that for any s ≥ 0, Ys conditional on Y0 has the composite transition kernel K̃t0 ◦

K̃t0+1 ◦ · · · ◦ K̃t0+s. Thus, according to Fact 2, such composite transition kernel K̃t0 ◦ K̃t0+1 ◦

· · · ◦ K̃t0+s is also stochastically monotone. That is, for any w,w′ ∈ So satisfying w ≼ w′, we

have for all s ≥ 0 Ys|Y0 = w ≼st Ys|Y0 = w′. By Definition 8, we further have E(f(Ys)|Y0 =
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w) ≥ E(f(Ys)|Y0 = w′), for any bounded, decreasing and measurable function f , which

implies that E(f(Ys)|Y0 = w) is decreasing in w.

Let ht be in the support of Hδ
t and ht = {xk,l, sl, for k ∈ sl, 1 ≤ l ≤ t}.

Lemma 14. Assume Assumptions 1, 3 and 4 hold. For any t0 ≥ 1, let δ be an arbitrary

sequential decision in the class Dα. Then,

E(Ut0(δ) | Hδ
t0
) = ũt0([W

δ
Sδt0+1,t0

]), a.s. (55)

where Ut0(δ) denotes the utility at time t0 following the sequential decision δ. Moreover, let

δ1 be defined in (52). Then, E(Ut0(δ) | Hδ
t0
) ≤ E(Ut0(δ1) | Hδ

t0
) a.s.

Proof. According to the definition of Ut in (5) and Assumption 4, we can see (55), which

proves the first part of the lemma.

For the rest of the lemma, it is sufficient to show ũt0([W
δ
Sδt0+1,t0

]) ≤ ũt0([W
δ1

S
δ1
t0+1,t0

]). Ac-

cording to Lemma 3, ũt(·) is decreasing. Thus, we only need to show [W δ1

S
δ1
t0+1,t0

] ≼ [W δ
Sδt0+1,t0

],

which is our focus for the rest of the proof.

Denote by Sδ1t0+1 and Sδt0+1 the index set at time t0 + 1 following δ1 and δ, respectively.

According to the definition of δ1, S
δ1
t0+1 is obtained by Algorithm 3 with the input W δ1

S
δ1
t0
,t0

and Sδ1t0 . This further implies that [W δ1

S
δ1
t0+1,t0

] = Jt0([W
δ1

S
δ1
t0
,t0
]) according to Lemma 5. Note

that [W δ1

S
δ1
t0
,t0
] = [W δ

Sδt0
,t0
], so [W δ1

S
δ1
t0+1,t0

] = Jt0([W
δ
Sδt0

,t0
]), and it is sufficient to show

Jt0([W
δ
Sδt0

,t0
]) ≼ [W δ

Sδt0+1,t0
]. (56)

On the other hand, δ ∈ Dα, so r̃t0([W
δ
Sδt0+1,t0

]) = Rt0(δ) ≤ α. According to 6 (with

u replaced by [W δ
Sδt0

,t0
] and u′ replaced by W δ

Sδt0+1,t0
), there are two possible cases: 1)

Jt0([W
δ
Sδt0

,t0
]) = ∅ and and [W δ

Sδt0+1,t0
] = ∅; or 2) dim(Jt0([W

δ
Sδt0

,t0
])) ≥ 1 and Jt0([W

δ
Sδt0

,t0
]) ≼

[W δ
Sδt0+1,t0

]. We can see that in both cases (56) holds, which completes the proof.
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D.5 Proof of Theorem 3

Proof of Theorem 3. Theorem 3 is implied by the following stronger result, which will be

the focus of the proof: for any t0 ≥ 1, s ≥ 0, and any δ ∈ Dα,

E(Ut0+s(δ) | Hδ
t0
) ≤ E(Ut0+s(ψt0 ◦ δ) | Hδ

t0
) a.s. (57)

where Ut0+s(δ) denotes the utility at time t0 + s following sequential decisions δ and ψt0 ◦ δ

is defined in (51). Notice that H
ψt0◦δ
t0 = Hδ

t0
a.s. If the above equation (57) is proved,

Theorem 3 follows by setting t0 = 1 in (57) and taking expectation on both sides.

In the rest of the proof, we show that (57) holds by induction on s.

For the base case s = 0, the equation (57) holds for all t0 ≥ 1 according to Lemma 14.

Now we assume the induction assumption (57) holds for s = s0 and all t0 ≥ 1 and all

decisions δ ∈ Dα. That is,

E(Ut0+s0(δ)|Hδ
t0
) ≤ E(Ut0+s0(ψt0 ◦ δ)|Hδ

t0
) a.s. (58)

for all δ, and t0 ≥ 1. In the rest of the proof, we show that (57) also holds for s = s0 + 1

and all t0 ≥ 1 to complete the induction.

First, by replacing t0 with t0+1 in (58), we obtain E(Ut0+s0+1(δ) | Hδ
t0+1) ≤ E(Ut0+s0+1(ψt0+1◦

δ) | Hδ
t0+1) a.s.. Taking conditional expectation E(·|Hδ

t0
) on both sides, we arrive at

E(Ut0+s0+1(δ) | Hδ
t0
) ≤ E(Ut0+s0+1(ψt0+1 ◦ δ) | Hδ

t0
) a.s. (59)

Next, we consider Ut0+s0+1(δ1) where we recall δ1 = ψt0 ◦ δ. According to the definition
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of Ut0+1+s0(·), we have

Ut0+s0+1(δ1) = ũt0+s0+1(
[
W δ1

S
δ1
t0+s0+2,t0+s0+1

]
), (60)

where ũ(·) is defined in Assumption 4. According to Lemma 5,

[
W δ1
St0+s0+2,t0+s0+1

]
= Jt0+s0+1

([
W δ1

S
δ1
t0+s0+1,t0+s0+1

])
.

Combining the above two equations, we arrive at

Ut0+s0+1(δ1) = ũt0+s0+1

(
Jt0+s0+1

([
W δ1

S
δ1
t0+s0+1,t0+s0+1

]))
. (61)

Note that ψt0+1 ◦ δ1 = δ1. We further write the above equation as

Ut0+s0+1(ψt0+1 ◦ δ1)

=ũt0+s0+1

(
Jt0+s0+1

([
W

ψt0+1◦δ1

S
ψt0+1◦δ1
t0+s0+1 ,t0+s0+1

]))
=:φ(

[
W

ψt0+1◦δ1

S
ψt0+1◦δ1
t0+s0+1 ,t0+s0+1

]
),

(62)

where we define the function φ = ũt0+s0+1 ◦ Jt0+s0+1 as the composition of ũt0+s0+1 and

Jt0+s0+1. According to Lemma 3, ũt0+s0+1(·) is a decreasing function. By Lemma 7, Jt0+s0+1(·)

is an increasing mapping. Thus, the function φ(·) is a decreasing function over So. Applying

Lemma 13 (with f replaced by φ, w replaced by u, s replaced by s0, t0 replaced by t0 + 1,

δ replaced by δ1) to Ut0+s0+1(ψt0+1 ◦ δ1) = φ
([
W

ψt0+1◦δ1

S
ψt0+1◦δ1
t0+s0+1 ,t0+s0+1

])
, we can see that

ϕ(u) := E
[
Ut0+s0+1(ψt0+1 ◦ δ1) |

[
W

ψt0+1◦δ1

S
ψt0+1◦δ1
t0+1 ,t0+1

]
= u

]
(63)

is decreasing and bounded function in u for u ∈ So. We point out that we also used the

assumption that ũt0+s0+1(·) is bounded (see Assumptions 1 and 4) in order to apply Lemma
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13. We further simplify the above equation using the fact that ψt0+1 ◦ δ1 = δ1 and obtain

that

ϕ(u) = E
[
Ut0+s0+1(δ1) |

[
W δ1

S
δ1
t0+1,t0+1

]
= u

]
(64)

is decreasing in u and it is a bounded function.

Now, we consider E(Ut0+s0+1(δ1) | Hδ
t0
). By law of total expectation, we have

E(Ut0+s0+1(δ1) | Hδ
t0
)

=E
(
E
(
Ut0+s0+1(δ1) |

[
W δ1

S
δ1
t0+1,t0+1

])
| Hδ

t0

)
=E
(
ϕ
([
W δ1

S
δ1
t0+1,t0+1

])
| Hδ

t0

)
.

(65)

Recall that δ2 = ψt0+1 ◦ δ. Similar to the derivations in (60)–(65) with δ1 replaced by δ,

we also obtain

E(Ut0+s0+1(δ2) | Hδ
t0
) = E

(
ϕ
([
W δ2

S
δ2
t0+1,t0+1

])
| Hδ

t0

)
, (66)

where we used the fact that ψt0+1 ◦ δ2 = δ2 in the derivations.

According to Lemma 12,
[
W δ1

S
δ1
t0+1,t0+1

]
is stochastically dominated by

[
W δ2

S
δ2
t0+1,t0+1

]
. Com-

bining this result with that ϕ(·) is a bounded, decreasing and measurable function, we arrive

at

E
(
ϕ
([
W δ2

S
δ2
t0+1,t0+1

])
| Hδ

t0

)
≤ E

(
ϕ
([
W δ1

S
δ1
t0+1,t0+1

])
| Hδ

t0

)
. (67)

Combining the above inequality with (65) and (66), and noting that δ1 = ψt0 ◦ δ and δ2 =
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ψt0+1 ◦ δ, we arrive at

E(Ut0+s0+1(ψt0+1 ◦ δ) | Hδ
t0
)

≤E(Ut0+s0+1(ψt0 ◦ δ) | Hδ
t0
) a.s.

(68)

Finally, by combining equations (59) and (68) we have

E(Ut0+s0+1(δ) | Hδ
t0
) ≤ E(Ut0+s0+1(ψt0 ◦ δ) | Hδ

t0
) a.s. (69)

holds for all t0 and all decision δ ∈ Dα. In other words, we proves that (57) holds for

s = s0 + 1 and all t0 ≥ 1 and δ ∈ Dα, which completes the induction.

D.6 Proof of Propositions 4–7, Remark 2, Corollary 2–4, Lemma 1

and Counterexample 1

The proof of proposition 4 is based on the following lemma.

Lemma 15. Let f : [0, 1]p → R be a differentiable function satisfying that ∂jf(u1, · · · , up)

is continuous and does not depend on uj for all j ∈ ⟨p⟩. Then,

sup
u∈[0,1]p

f(u) = max
u∈{0,1}p

f(u), (70)

Proof. Since the function f on [0, 1]p is a continuous function over a compact set, the supre-

mum on the left-hand side of (70) is attainable. Because supu∈[0,1]p f(u) ≥ maxu∈{0,1}p f(u),

to show (70), it suffices to show that supu∈[0,1]p f(u) ≤ maxu∈{0,1}p f(u) which is equivalent

to f(u) ≤ maxu∈{0,1}p f(u), for any u ∈ [0, 1]p.

To verify this, we compare function values coordinate-wise iteratively. For any u =

(u01, . . . , u
0
p) ∈ [0, 1]p, we first look at the first cooridate u01. Under the assumption that
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∂
∂uj
f(u) is continuous and does not depend on uj, it follows that

f(u01, u
0
2, . . . , u

0
p) ≤ f(1, u02, . . . , u

0
p)

≤ max
u1∈{0,1}

f(u1, u
0
2, . . . , u

0
p),

(71)

if ∂
∂u1
f(u)|u2=u02,...,up=u0p ≥ 0. Similarly,

f(u01, u
0
2, . . . , u

0
p) ≤ f(0, u02, . . . , u

0
p)

≤ max
u1∈{0,1}

f(u1, u
0
2, . . . , u

0
p),

(72)

if ∂
∂u1
f(u)|u2=u02,...,up=u0p ≤ 0. Without loss of generality, assume f(1, u02, · · · , u0p) ≥ f(0, u02, · · · , u0p).

Then, we look at the second coordinate u02 for (1, u02, . . . , u
0
p). With similar arguments, we

have

max
u1∈{0,1}

f(u1, u
0
2, . . . , u

0
p)

=f(1, u02, u
0
3, . . . , u

0
p)

≤ max
u1,u2∈{0,1}

f(u1, u2, u
0
3, . . . , u

0
p).

(73)

We continue similar reasoning for the third to p-th coordinates. At the end, we arrive at

f(u01, u
0
2, . . . , u

0
p) ≤ maxu1∈{0,1} f(u1, u

0
2, · · · , u0p) ≤ · · · ≤ maxu∈{0,1}p f(u), which completes

the proof.

Proof of Proposition 4. We start with showing that (30) implies r̃ is entrywise increasing.

It suffices to show that for each p ≥ 1, if u = (u1, · · · , up) ∈ So, v = (v1, · · · , vp) ∈ So,

and ui ≤ vi for all i ∈ ⟨p⟩, then r̃(u) ≤ r̃(v). We define a composite function η : Su → R

as η(u) := r̃([u]). We can see that η extends the domain of r̃ to the unordered space Su.

Because η(u) = r̃(u) for u ∈ So, to show r̃ is entrywise increasing, it suffices to show that

for each p ≥ 1, if u = (u1, · · · , up) ∈ [0, 1]p, v = (v1, · · · , vp) ∈ [0, 1]p, and ui ≤ vi for all

i ∈ ⟨p⟩, then η(u) ≤ η(v). Note that for u ∈ [0, 1]p, η is twice differentiable. Thus, it suffices
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to show that for all p ≥ 1 and all i ∈ ⟨p⟩, ∂iη(u) ≥ 0 for all u ∈ [0, 1]p.

Note that for each p ≥ 1, u = (u1, · · · , up), η(u) =
∑p

k=1Cp,k
∑

i1<···<ik

∏k
j=1 uij with the

partial derivatives and second derivatives

∂

∂i
η(u) =Cp,1 + Cp,2

∑
l ̸=i

ul + Cp,3
∑
i1,i2 ̸=i
distinct

ui1ui2 + . . .

+ Cp,p
∑

i1,i2,···ip−1 ̸=i
distinct

ui1ui2 · · ·uip−1 ,

∂

∂i∂j
η(u) =C ′

p,2 + C ′
p,3

∑
l /∈{i,j}

ul + C ′
p,4

∑
i1,i2 /∈{i,j}
distinct

ui1ui2 + . . .

+ C ′
p,p

∑
i1,i2,···ip−1 /∈{i,j}

distinct

ui1ui2 · · ·uip−2 ,

for some constants Cp,1, Cp,2, . . . , Cp,p and C ′
p,2, . . . , C

′
p,p. We can see that for each j ∈ ⟨p⟩,

∂ijη(u) does not depend on ui. Applying Lemma 15 to −∂iη for u ∈ [0, 1]p, we have

infu∈[0,1]p ∂iη(u) = minu∈{0,1}p ∂iη(u). Note that ∂iη(u) = η(u1, · · · , ui−1, 1, ui+1, · · · , up) −

η(u1, · · · , ui−1, 0, ui+1, · · · , up). Thus,

inf
u∈[0,1]p

∂iη(u)

= min
u∈{0,1}p

{η(u1, · · · , ui−1, 1, ui+1, · · · , up)

− η(u1, · · · , ui−1, 0, ui+1, · · · , up)}.

(74)

Since η is symmetric in its arguments, the right-hand side of the above equation is the same

as minl∈⟨p⟩{η(ul−1,p−l+1) − η(ul,p−l)}, where we recall ul,p−l is the vector whose first l-th

elements are 0’s and the l + 1-th to p-th elements are 1’s. Thus,

inf
u∈[0,1]p

∂iη(u) = min
l∈⟨p⟩

{η(ul−1,p−l+1)− η(ul,p−l)}. (75)

According to (30), the right-hand side of the above equation is non-negative. Thus, infu∈[0,1]p ∂iη(u) ≥
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0, which completes the proof of the first part of the proposition.

We proceed to the proof of the ‘Moreover’ part. To show r̃ is appending increasing, it is

sufficient to show that for all p ≥ 0 u = (u1, . . . , up) ∈ [0, 1]p and up ∈ [0, 1]

η(u) ≤ η(u1, . . . , up, up+1).

With similar arguments as those for (75), for each p ≥ 0,

inf
u∈[0,1]p

{η(u, 0)− η(u)} = min
0≤i≤p

{η(ui+1,p−i)− η(ui,p−i)}. (76)

According to (31), the right-hand side of the above equation is non-negative. Thus,

inf
u∈[0,1]p

{η(u, 0)− η(u)} ≥ 0,

which implies η(u) ≤ η(u, 0) ≤ η(u, up+1) for all up+1 ∈ [0, 1].

Proof of Remark 2. First, a direct calculation gives r̃(ui,p−i) =
∑p−i

k=1Cp,k
(
p−i
k

)
. Plugging this

equation in (30), for i = 1, · · · , p, we can see that (30) is equivalent to

0 ≤ Cp,1 ≤ . . . ≤
p−1∑
k=1

Cp,k

(
p− 1

k

)
≤

p∑
k=1

Cp,k

(
p

k

)
.

The above inequalities are equivalent to
∑p−i

k=1Cp,k

[(
p−i
k

)
−
(
p−i−1
k

)]
≥ 0, for i = 0, . . . , p−1.

By the Pascal’s triangle, we simplify the above inequalities as
∑p−i

k=1Cp,k
(
p−i−1
k−1

)
≥ 0, for i =

0, · · · , p − 1. Combining the above equations and inequalities for i = 0, ..., p and obtain∑p−i
k=1Cp,k

(
p−i
k

)
⩽
∑p−i

k=1Cp+1,k

(
p−i
k

)
which is further simplified as

∑p−i
k=1

(
Cp+1,k−Cp,k

)(
p−i
k

)
≥

0.

Proof of Corollary 2. First note that Assumption 1 is verified in the proof of Corollary 1.

Thus, it suffices to show that the risk process Rt satisfies Assumption and 3 and the utility

process Ut satisfies and 4.
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From their definitions in Example 1, 2, and 3 and 5 respectively, we can see they are all

symmetric in their arguments and functions of their ordered statistics
[
WSt+1,t

]
. We define a

function ξ : So → R such that Rt and Ut are both in the form of ξ
([
WSt+1,t

])
for any choice

of St+1.

We start with verifying that Rt ∈ {LFNRt,GLFWERt,LFWERt} satisfies Assumption 3.

If Rt = LFNRt, by the definition in Example 3, we have ξ(u) =
∑dim(u)
i=1 ui

dim(u)∨1 . for u =

(u1, . . . , udim(u)) ∈ So. Clearly, ξ is entrywise increasing. To see ξ is also appending increas-

ing, first we can see that ξ(∅) = 0 < u1 = ξ(u1) for any u1 ∈ [0, 1]. For u = (u1, . . . , up) ∈ So

with dim(u) = p ≥ 1 and up+1 ≥ up, ξ(u) =
∑p
i=1 ui
p

≤
∑p+1
i=1 ui
p+1

= ξ(u, up+1). Thus, ξ is ap-

pending increasing.

For Rt = GLFWERt, by the definition in Example 2,

ξm(u) = 1−
m−1∑
j=0

∑
I⊂[dim(u)]

|I|=j

(∏
i∈I

ui

) ∏
k∈[dim(u)]\I

(1− uk) (77)

for u = (u1, . . . , udim(u)) ∈ So. Clearly, ξm(u) is a polynomial function of u as defined in

Proposition 4. To show ξm is entrywise increasing and appending increasing, we only need

to verify (30) and (31) by Proposition 4. We use the following arguments to avoid tedious

calculations.

We revisit the definition of GLFWERm,t = P(Em,t|Ft). It is the conditional probability

of the event that there are at least m false non-detection errors given the information filtra-

tion Ft. Note that P(Em,t|Ft) = P(Em,t|
[
WSt+1,t

]
) and P(Em,t|Ft) = ξm(

[
WSt+1,t

]
). Thus,

ξm(u) = P
(
Em,t|

[
WSt+1,t

]
= u

)
. Then, ξm(u

i,p−i) = P
(
Em,t|W1,t = · · · = Wi,t = 0,Wi+1,t =

· · · = Wp,t = 1, St+1 = ⟨p⟩
)
due to the symmetry of GLFWER. Recall Wk,t = P(τk < t|Ft) =

P(τk < t|Xk,1, · · · , Xk,t). Note that Wk,t = 1 is equivalent to τk < t a.s. and Wk,t = 0

is equivalent to τk ≥ t a.s. Thus, we further have ξm(u
i,p−i) = P

(
Em,t|τ1 ≥ t, · · · , τi ≥

t, τi+1 < t, · · · , τp < t, St+1 = ⟨p⟩
)
. Note that if τ1 ≥ t, · · · , τi ≥ t, τi+1 < t, · · · , τp < t

and St+1 = ⟨p⟩, then |k : τk < t and k ∈ St+1| = p − i. On the other hand, recall
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Em,t = {|k : τk < t and k ∈ St+1| ≥ m}. Thus,

ξm(u
i,p−i) = 1(p− i ≥ m) a.s. (78)

Based on the above equation, we have ξm(u
i,p−i) = 1(p − i ≥ m) ≤ 1(p − i + 1 ≥ m) =

ξm(u
i−1,p−i+1) for all i ∈ ⟨p⟩. This verifies (30). Moreover, ξm(u

i,p−i) = 1(p − i ≥ m) =

ξm(u
i+1,p−i) for all 0 ≤ i ≤ p. This verifies (31).

Since LFWERt is a special case of GLFWERt where m = 1, we also have (30) and (31)

verified for Rt = LFWERt.

Now, we proceed to the utility process Ut. For Ut = IARLt, by the definition in Example

5, ξ(u) =
∑dim(u)

i=1 1− g(ui). for u = (u1, . . . , udim(u)) ∈ So, where the function g is defined in

(18). Because g is an increasing function bounded between 0 and 1, ξ is entrywise decreasing

and appending increasing.

Proof of Lemma 1. Let fm : [0, 1]p → R be a function such that

fm(u) = 1−
m−1∑
j=0

∑
I⊂⟨p⟩
|I|=j

(∏
i∈I

ui

) ∏
k∈⟨p⟩\I

(1− uk)

for u = (u1, · · · , up) ∈ [0, 1]p. Then, fm(u) = ξm([u]) for u ∈ [0, 1]p for ξm defined in (77),

and ξm is entrywise increasing from the proof of Corollary 2. Also, for any u = (u1, · · · , up) ∈

[0, 1]p and v = (v1, · · · , vp) ∈ [0, 1]p satisfying uk ≤ vk for all k ∈ ⟨p⟩, we have [u] ≼ [v].

Thus, fm(u) = ξm([u]) ≤ ξm([v]) = fm(v) if uk ≤ vk for all k.

Proof of Counterexample 1. Denote by H the collection of all possible values of Ht for all

t. Denote by A the collection of all the subsets of {1, 2, . . . , K}. Then, the problem is

formulated through a Markov Decision Process (MDP) with the state H and the action

space A and the optimal solution can be obtained by backward induction.

We define a value function V
(r)
t : H → R and an action-value function Q

(r)
t : H×A → R

as follows. Recall that Ht = {Xk,l, k ∈ Sl, Sl, 1 ≤ l ≤ t}. Denote by ht, xk,l, and sl
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the realization of Ht, Xk,l and Sl, respectively. For any 0 ≤ t ≤ r, the value function

ht 7→ V
(r)
t (ht) is defined as

V
(r)
t (ht) = max

δ∈Dα
E(Ur|Ht = ht) (79)

for all ht ∈ H. Of note, E(Ur) = V
(r)
0 (∅) is the quantity we would like to maximize.

For any 0 ≤ t ≤ r, we define the action-value function Q
(r)
t (·, ·) as

Q
(r)
t (ht, s) = max

δ∈Dα
E(Ur|Ht = ht, St+1 = s) (80)

for all (ht, s) ∈ (H,A). According to the definition of Ut in (5), for t = r

Q(r)
r (hr, s) = E(Ur|Hr = hr, Sr+1 = s)

= ur({wk,r}k∈sr , sr, s),
(81)

where sr and {wk,r}k∈sr are the realization of Sr and {Wk,r}k∈sr given that Hr = hr. Note

that sr and {wk,r}k∈sr are determined by hr.

According to Proposition 3.1 in [7], the following optimality equations hold for for 0 ≤

t ≤ r − 1

V
(r)
t (ht) = max

s⊂st
rt(wst,t,st,s)≤α

Q
(r)
t (ht, s), (82)

and

Q
(r)
t (ht, s) = E

(
V

(r)
t+1(Ht+1)

∣∣Ht = ht, St+1 = s
)
. (83)

Combining (82) and (83) yields a backward induction equation for V
(r)
t (ht):

V
(r)
t (ht) = max

s⊂st
rt(wst,t,st,s)≤α

E
(
V

(r)
t+1(Ht+1)

∣∣Ht = ht, St+1 = s
)
. (84)

By solving the above optimality equations, we are able to enumerate all sequential de-

cisions that maximize E(U1) and E(U2). We omit the detailed calculation for the ease of
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presentation. In particular, for r = 1, any sequential decision that maximizes E(U1) selects

S2 as

S2 =



{1} or {2} if XS1,1 = (0, 0, 1)

{1} or {3} if XS1,1 = (0, 1, 0)

{2} or {3} if XS1,1 = (1, 0, 0)

{1, 2, 3} if XS1,1 = (0, 0, 0)

∅ if XS1,1 ∈
{(1, 1, 1), (0, 1, 1),

(1, 0, 1), (1, 1, 0)}

(85)

Of note, our proposed method is one such decision. On the other hand, for r = 2, any

the sequential decision that maximizes E(U2) selects S2 as

S2 =



{1, 2, 3} if XS1,1 ∈ {(0, 0, 1), (0, 1, 0), (1, 0, 0)}

{1, 2, 3} if XS1,1 = (0, 0, 0)

∅ if XS1,1 ∈
{(1, 1, 1), (0, 1, 1),

(1, 0, 1), (1, 1, 0)}

(86)

Note that S1 = {1, 2, 3}, so the S2 described above is well-defined.

Because it is not possible for a sequential decision to satisfy both equations (85) and

(86), we conclude that there is no sequential decision in Dα that maximizes E(Ur) for both

r = 1 and r = 2. Thus, the uniformly optimal sequential decision does not exist.

Proof of Proposition 5. According to the definition of Dα, δ ∈ Dα implies Rt(δ) ≤ α a.s. for

all t ∈ Z+. Thus, AR(δ) = E
(∑∞

t=1 atRt

)
≤ αE

(∑∞
t=1 at

)
= α, where the last equation is

due to
∑∞

t=1 at = 1.

Proof of Proposition 6. AU(δ′) = E
(∑∞

t=1 btUt(δ
′)
)
=
∑∞

t=1 btE
(
Ut(δ

′)
)
≤
∑∞

t=1 btE
(
Ut(δ)

)
=

AU(δ) for any δ′ ∈ Dα, where the second last inequality is due to the assumption that δ is

uniformly optimal, and the last equation is obtained based on the definition of aggregated
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risk.

Proof of Corollary 3. By comparing the definition of GFWERm with that of GLFWERm,t

defined in (9), we have GFWERm = E(RT ) = E
(∑∞

t=1 1(T = t)Rt

)
. The proof is completed

by applying Proposition 5 with at = 1(T = t).

Proof of Proposition 7. Note that

N̄−1∑
t=1

E
( K−1

∑K
k=1 1

(
Nk = t

)
K−1

[
{
∑N̄−1

s=1

∑K
k=1 1(Nk = s)} ∨ 1

]FDPt)
=

N̄−1∑
t=1

E
( Gt

K

MK ∨ 1
FDPt

)
,

(87)

where we define Gt
K = K−1

∑K
k=1 1

(
Nk = t

)
, MK =

∑N̄−1
t=1 Gt

K = K−1
∑N̄−1

t=1

∑K
k=1 1

(
Nk =

t
)
, and M =

∑N̄−1
t=1 Ct. For each t, because

GtK
MK∨1FDPt →

Ct
M∨1At in probability as K goes

to infinity and
GtK

MK∨1FDPt ∈ [0, 1], we have

lim
K→∞

E
( Gt

K

MK ∨ 1
FDPt

)
= E

( Ct
M ∨ 1

At
)
=

Ct
M ∨ 1

E
(
At
)

(88)

according to the dominated convergence theorem. For E(At), by dominated convergence

theorem again, we have

lim
K→∞

E(FDPt) = E(At). (89)

Combining the above two equations, we obtain

lim
K→∞

E
( Gt

K

MK ∨ 1
FDPt

)
=

Ct
M ∨ 1

lim
K→∞

E(FDPt). (90)

On the other hand, by following a sequential decision in Dα, we have E(FDPt|Ft) ≤ α a.s.,

which implies E(FDPt) ≤ α. This, combined with (90), implies

E
( Ct
M ∨ 1

At
)
≤ α

Ct
M ∨ 1

. (91)
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Combining (87), (88) and (91), we further have

lim
K→∞

N̄−1∑
t=1

E
( Gt

K

MK ∨ 1
FDPt

)
≤

N̄−1∑
t=1

α
Ct

M ∨ 1
. (92)

Since
∑N̄−1

t=1
GtK

MK∨1 = 1(MK ̸= 0) ≤ 1 for all K, we have
∑N̄−1

t=1
Ct
M∨1 ≤ 1. Combine this with

(87) and (92), we arrive at limK→∞ AFDR(δ) = limK→∞
∑N̄−1

t=1 E
( GtK
MK∨1FDPt

)
≤ α, which

completes the proof.

Proof of Corollary 4. According to the definition of IRLt in Example 5, TARL =
∑∞

s=0 IRLs.

This implies E(TARL) = E(
∑∞

s=0 E(IRLs|Fs)) = E(
∑∞

s=0 IARLs). According to Corollary 2,

δS is uniformly optimal when Ut = IARLt. We complete the proof by letting bt = 1 for all t,

Ut = IARLt and AU(δ) = TARL(δ) in Proposition 6.

E Proofs of equations (26) and (27)

Proof of Equation (26). If t = 0, then Qk,1 = π̄−1
1 π0Lk,1. Next, we consider the case where

t ≥ 1. Let Lk,(s+1):t :=
∏t

r=s+1

qk,r

(
Xk,r

)
pk,r

(
Xk,r

) . Then,
Qk,t+1 =

qk,t+1

(
Xk,t+1

)
pk,t+1

(
Xk,t+1

)[ t−1∑
s=0

πs
π̄t+1

Lk,s+1:t +
πt
π̄t+1

]
= Lk,t+1

[ t−1∑
s=0

π̄t+
π̄t+1

πs
π̄t+

Lk,(s+1):t +
πt
π̄t+1

]
We complete the proof by combining the above equation with the the definition of Qk,t.

Proof of Equation (27). By definition and Bayes formula,

Wk,t = {
t−1∑
s=0

πs

s∏
r=1

pk,r(Xk,r)
t∏

r=s+1

qk,r(Xk,r)}·{
t−1∑
s=0

πs

s∏
r=1

pk,r(Xk,r)
t∏

r=s+1

qk,r(Xk,r)+π̄t

t∏
r=1

pk,r(Xk,r)}−1.

This is further simplified as Wk,t =
∑t−1
s=0 πsLk,(s+1):t∑t−1

s=0 πsLk,(s+1):t+π̄t
=

∑t−1
s=0

πs
π̄t
Lk,(s+1):t∑t−1

s=0
πs
π̄t
Lk,(s+1):t+1

=
Qk,t
Qk,t+1

.
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Proof of Equation (18).

g(Wk,t) =
{ t−1∑
s=0

P
(
τk = s

) s∏
r=1

pk,r
(
Xk,r

) t∏
r=s+1

qk,r
(
Xk,r

)
+ P

(
τk = t

) t∏
r=1

pk,r
(
Xk,r

)}
·
{ t−1∑
s=0

P
(
τk = s

) s∏
r=1

pk,r
(
Xk,r

) t∏
r=s+1

qk,r
(
Xk,r

)
+ P

(
τk ≥ t

) t∏
r=1

pk,r
(
Xk,r

)}−1

By the definition of L1,(s+1):t, we simplify the above result as g(Wk,t) =
∑t−1
s=0 πsLk,(s+1):t+πt∑t−1
s=0 πsLk,(s+1):t+π̄t

.

Then in light of the relationship between Qk,t and Wk,t, we further simplify it to g(Wk,t) =

Qk,t+
πt
π̄t

Qk,t+1
=

Wk,t
1−Wk,t

+
πt
π̄t

Wk,t
1−Wk,t

+1
= Wk,t +

πt
π̄t

(
1−Wk,t

)
= πt

π̄t
+
(
1− πt

π̄t

)
Wk,t.
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