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Toward a taxonomy of trust for probabilistic machine
learning
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Probabilistic machine learning increasingly informs critical decisions in medicine, economics, politics, and
beyond. To aid the development of trust in these decisions, we develop a taxonomy delineating where trust
in an analysis can break down: (i) in the translation of real-world goals to goals on a particular set of training
data, (ii) in the translation of abstract goals on the training data to a concrete mathematical problem, (iii) in the
use of an algorithm to solve the stated mathematical problem, and (iv) in the use of a particular code imple-
mentation of the chosen algorithm. We detail how trust can fail at each step and illustrate our taxonomy with
two case studies. Finally, we describe awide variety of methods that can be used to increase trust at each step of
our taxonomy. The use of our taxonomy highlights not only steps where existing research work on trust tends to
concentrate and but also steps where building trust is particularly challenging.
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“Science, at its core, is a social phenomenon. It is a reflection of
people, of our relationships, and of our institutions. When we
provide inputs to the algorithm, when we program the device,
when we design, test, and research, we are making human choices
—choices that bring our social world to bear in a new and powerful
way.” — Alondra Nelson, Deputy Director for Science and Society,
White House Office of Science and Technology Policy, 2021.

INTRODUCTION
Machine learning (ML) in general, and probabilistic methods in
particular, are increasingly used to make major decisions in
science, the social sciences, and engineering, with the potential to
profoundly affect individuals’ day-to-day lives. For instance, prob-
abilistic methods have driven knowledge of the spread and effects of
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (1–
3), underlie election predictions at the Economist (4, 5), and can
guide our understanding of the efficacy of microloans in alleviating
poverty (6). Given the large and growing impact of probabilisticML,
it behooves us to make sure that its outputs are useful for its users’
stated purposes.
There are many potential points, though, where a data analysis

pipeline may break down. This issue becomes especially pressing as
statistics and ML workflows grow increasingly complex to face
modern challenges. These challenges arise not only from the
sheer size of the data but also from the inherent difficulty of the
problems being studied. "Big data" are messy data: confounded
data rather than random samples, observational data rather than ex-
periments, and available data rather than direct measurements of
underlying constructs of interest. To make relevant inferences
from big data, we need to extrapolate from sample to population,
from control to treatment group, and from measurements to

latent variables. All of these steps require modeling. In addition,
big data need big models: latent-variable models for psychological
states or political ideologies, differential equation models in phar-
macology, dynamic image analysis, and so forth. To meet modern
challenges, we often fit models that are on the edge of our ability to
compute and interact with in the real world. These models typically
contain many assumptions and decision points. Also, we are often
pushed to adjust for more factors to capture the complexity of our
world. However, models that adjust for lots of factors are hard to
estimate. Fitting big models to big data requires scalability, so we
must often turn to approximations such as Markov chain Monte
Carlo, variational inference, and expectation propagation.
As this pipeline becomes more elaborate, there are more poten-

tial points of failure. But other complex endeavors succeed thanks,
in large part, to extensive infrastructure: e.g., software engineering
has testing and construction has scaffolding. It is similarly necessary
to build an infrastructure to support the trustworthy creation and
deployment ofmethods in probabilisticML. To this end, there exists
a large literature addressing concerns of trust in data science, with
key words including reproducibility, replicability, theoretical guar-
antees, stability, and interpretability.
To a new reader, it may not be obvious how these concerns relate

to each other and what new work is needed in this area. In the
present paper, we develop a “taxonomy of trust,” splitting the prob-
abilistic ML workflow (or data analysis pipeline or inferential chain)
into distinct constituent parts where trust can fail. Just as testing in
software engineering benefits from modularity, we hope that the
modularity of our taxonomy can facilitate more targeted work on
trust concerns. We will use our taxonomy to highlight concerns
that are relatively well studied and those that could benefit from
more attention.
We start by delineating our focus as it relates to probabilistic ML

and trust. Then, we lay out our taxonomy and illustrate its parts with
two case studies. Finally, we use our taxonomy to organize and
discuss different approaches to growing trust in a data analysis, in-
cluding existing work on reproducibility and replicability.
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OUR FOCUS
We here focus on probabilisticMLmethods. Following the textbook
Machine Learning: a Probabilistic Perspective, “we define machine
learning as a set of methods that can automatically detect patterns
in data, and then use the uncovered patterns to predict future data,
or to perform other kinds of decision making under uncertainty”
(7). Furthermore, in accordance with (7, 8), we describe an ML
method as probabilistic when it uses the tools of probability
theory to handle uncertainty in the decision-making process, as
in our examples.
In what follows, we concentrate on trust in the quality of deci-

sions that are made using the results of a data analysis. We focus on
the extent to which informed experts can trust these decisions; these
experts could include the original data analysts—as well as peer data
analysts in academia, industry, journalism, other forms of public
service, or an independent capacity. Further stakeholders typically
rely on experts to vouch for the products of a data analysis, so our
trust focus remains relevant to these stakeholders as well.
Trust of lay consumers in a data analysis, though, may also rely

on other factors. For instance, the broader sociopolitical climate can
influence a broader sense (or lack) of trust in the scientific commu-
nity and its outputs, but a discussion of these relationships is outside
the scope of the present work. We point the interested reader to re-
sources on human trust in artificial intelligence (AI) (9, 10), trust in
computing (11), and trust more generally (12). Likewise, concerns
about privacy and security are important and related to trust in the
use of data and its artifacts (13, 14) but are outside our purview.

WHERE TRUST CAN BREAK DOWN
We next turn to understanding where trust in the decisions made
from a probabilistic ML analysis can fracture. Figure 1 gives a visu-
alization of our taxonomy of trust; this graphic provides a map of
how probabilistic ML analyses interact with the real world. We first
give a high-level overview of its steps, then describe how it shows
where trust can break down in a data analysis, and finally give
two case studies as examples.
We typically embark upon a data analysis because we seek to

make an impact on our understanding of the world or generate
future decision recommendations. From this perspective, an analy-
sis is designed with “future real-world goals” in mind (upper left of
Fig. 1). The data analyst then follows a rough workflow (on the left
side of the figure) to turn this abstract goal into a concrete set of
actions, which correspond to the numbered steps (arrows) in Fig. 1.
1) To serve these real-world goals, data must be gathered and

processed for analysis. At this point, the analyst has reduced the
problem to “training-data real-world goals.”
2) The analyst chooses a model and expresses the real-world

problem as a mathematical problem. The analyst has now reduced
the problem to concrete “mathematical goals.”
3) The analyst chooses particular “algorithms” to solve themath-

ematical problem.
4) The analyst runs the algorithm in practice using some partic-

ular “code (implementation).”
We see the outputs of this workflow on the right side of Fig. 1.

The analyst runs their code and obtains a particular mathematical
output. The output on the training data at hand is interpreted in the
context of the real-world goal. Finally, the learned model is applied

Fig. 1. Diagram illustrating steps where trust can break down in a data analysis workflow. See the section “Where trust can break down” for a detailed description of
the (nonitalicized) steps. See the section “Building trust” for a discussion of the italicized connectors, which include many of the characteristics of Schwartz et al. (83) for
cultivating trust in AI systems.
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to future real-world outputs to make substantive conclusions and
decisions.
Each numbered step in Fig. 1 in turn represents a point where

trust can break down in a data analysis.
1) Researchers typically face constraints in the cost of gathering,

processing, or analyzing data, so the dataset is necessarily a limited
representation of the world. In choosing to approach our abstract
question with a particular analysis of a particular set of data, we
trust that the results from our data analysis are relevant to conclu-
sions and decisions we will make at other places or times.
2) Essentially, all models are misspecified. In choosing to express

our problem with a model and mathematical formalism, we are
trusting that the model and formalism adequately capture the sub-
stantive goals of the analysis.
3) Algorithms are often supported by theory but based on as-

sumptions that may not be perfectly achieved in practice. In choos-
ing to solve our mathematical problem with a particular algorithm,
we are trusting that the algorithm accomplishes the particular math-
ematical goal.
4) Code is a precise way to manifest an algorithm, but it is diffi-

cult to avoid bugs and conceptual errors, especially in large and
complex code bases. In choosing to execute our algorithm via
code, we are trusting that the code is faithful to the algorithm.

Case study: Microcredit efficacy
We use an example from applied economics that one of us has
worked on (6) to demonstrate how the steps of Fig. 1 relate to
trust in a data analysis.
Future real-world goals
Economists and policymakers would like to know if programs pro-
moting microcredit (small loans in developing countries) have an
overall beneficial effect—and, if they do, to use that information
to inform decisions on subsidizing or disbursing microcredit
across many potential locations. A related question of interest to
economists is whether, in a given context, expanding access to the
services offered by local microlenders would be beneficial for a local
population.
Step 1: Future real-world goals to training-data real-
world goals
We analyzed data from seven different microfinance programs, each
located in a different country. The countries range from Mexico to
Mongolia, Bosnia to the Philippines. The programs encompassed
for-profit banks, government programs, and non-governmental or-
ganizations. Each individual dataset has been used to understand
local efficacy of expanding access to microloans. In (6), we com-
bined data across different settings and even somewhat different
loan products to assess the geographically broader question of ex-
panding microcredit in new locations.
In each of the individual studies, microcredit access was assigned

in a randomized controlled trial (RCT) to prevent selection bias on
the part of the microlender or borrowers from confounding the es-
timate of the effect of microcredit.
Moreover, researchers in each case decide what “beneficial”

means, then what variables to measure to capture it, and further
how to measure these variables using surveys or other tools. In
the microcredit RCTs, the researchers all considered small-business
profits as an outcome, but only five of the seven studies considered
household consumption, and even fewer considered other compo-
nents of well-being such as community health. All of these variables

were carefully conceptualized and measured; e.g., on the basis of
contextual knowledge and previous research, someone decides
whether, in rural Mexico, goats count as consumption or as invest-
ment. Some of the studies also recorded contextual covariates or
characteristics of households to understand how they affect micro-
credit efficacy, but the relative importance of different factors in
driving household outcomes (and thus likely moderating the
effects of credit) such as consumption or business profits is itself
an open research question.
Trust. Trust could break down in this step if the particular data

analysis proved not to be useful for making future decisions. A re-
searcher almost always makes choices that trade off the practicality
and feasibility of collecting data and running the analysis against
accurately capturing the state of the world. On the data collection
side, there is an unending set of outcomes and characteristics of
homes or small businesses that researchers could collect, but for
time and funding reasons, the list must usually be limited.
The preference for randomized trials of microcredit reflects a

desire to estimate unconfounded treatment effects even without
being able to do any covariate adjustment, which partially addresses
this concern, but might at times result in greater noise or less rep-
resentative sample sizes and thus greater extrapolation error.
Finally, the use of multiple studies provides hope that the results

will generalize more than any single study, but full generalization
relies on the assumption that the studies we have cover relevant
aspects of a broader population of contexts in which we might
make policy. And even if this assumption is satisfied, all studies
occur in the past, but the policy decision gets made in the future;
it is necessary to trust that the inference remains applicable under
the new circumstances or to make assumptions allowing appropri-
ate adjustments to make this extrapolation.
Step 2: Training-data real-world goals to mathematical goals
The original RCT papers and the later meta-analysis all required a
statistical model and choice of inference procedure. Economists
often choose linear models for their interpretability. We chose a hi-
erarchical linear model to allow partial pooling across the different
studies, reflecting both their shared information and idiosyncrasies.
Moreover, we took a Bayesian approach and provided a prior as part
of the model.
We reported Bayesian posterior summaries such as posterior

means and variances. Given a hierarchical model and nonconjugate
priors, these summaries must be approximated. So the mathemati-
cal goal is to report accurate approximations of these quantities for
the particular chosen model.
Trust. Trust could break down in this step because we know that

models are essentially always misspecified in practice. Linear
models of conditional mean dependence are highly interpretable
but cannot capture nonlinear trends that may exist (and can be cap-
tured by other models). Even if the policy intervention is represent-
ed by a binary variable, linearity in raw household outcomes is
incompatible with linearity in log space, and the distinction
matters for extrapolating to new settings. Focusing on the mean
itself is an influential choice; the mean effect of microcredit may
be positive even if just a small portion of people actually benefit
and even if some are harmed. In contrast, what we might really
wish to understand is whether many people benefit from microcre-
dit or the community as a whole experiences net benefit. Moreover,
reporting a posterior mean and variance alone, without additional
visualizations, can hide posterior multimodality, heavy tails, or
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other distributional features that might cause us to pause and dig
deeper into an analysis.
Step 3: Mathematical goals to algorithms
We chose to approximate the Bayesian posterior mean and variance
summaries using Hamiltonian Monte Carlo (HMC) (15). In related
work (16), we have considered variational Bayesian (VB) approxi-
mations of these posterior quantities instead; in the latter case, we
used mean-field VB approximations (17) and linear response cor-
rections (18, 19).
Trust. Trust could break down in this step if the algorithm did not

accomplish the mathematical goal. For instance, Markov chain
Monte Carlo (MCMC) estimates of posterior expectations will con-
verge to their exact values when an algorithm is run for enough
time. However, despite a large literature on mixing rates, there are
typically no concrete, computable bounds on performance after
running a particular MCMC algorithm for a particular finite
time. Analogously, VB will return a match to the exact posterior
when used with a sufficiently large family of distributions and
enough computation time. But in practice, the family of approxi-
mating distributions is typically limited, and the Kullback-Leibler
(KL) divergence between the approximating and true posterior
will be strictly greater than zero. Even moderate KL divergence
values can correspond to arbitrarily large discrepancies between
exact and reported posterior means and variances (20). While
there is work on using more expressive families of distributions in
VB, these face practical challenges and typically lack computable
guarantees on quality.
Step 4: Algorithms to code
As increasingly complex methods are used for data analysis, a prac-
titioner will often turn to existing software packages. Here, we used
Stan for HMC (21). Giordano et al. (16) developed new code for VB.
Trust. Trust could break down in this step if there are bugs in the

code. There is robust software engineering guidance on how to test
code, including unit testing. Data analysts often rely on a software
package for implementation and thus, to some extent, often out-
source much (but certainly not all) of the establishment of trust
in this step. Fitting themodel in Stan, a well-tested probabilistic pro-
gramming language, gave us confidence in the inferential part of
our computation. However, there is still the entire data and analysis
pipeline to consider. Recall the infamous Excel error in (22); see
(23) and (24).

Case study: Election forecasting
We similarly walk through the parts of our taxonomy, and how they
relate to trust, with an example from our development of a public
poll-aggregation algorithm for election forecasting.
Future real-world goals
In spring 2020, one of us collaborated with a political science grad-
uate student and a data journalist at the Economist magazine to
produce an ongoing state-by-state and national-level forecast of
the upcoming U.S. presidential election (4, 5). The forecast auto-
matically updated as new polls arose during the campaign.
Step 1: Future real-world goals to training-data real-
world goals
A particular challenge of this problem is incorporating diverse
sources of data: national polls, state polls, economic statistics, and
past state and national election results, as well as knowledge reflect-
ing political science understanding of day-to-day changes in voting
behavior and survey responses.

Trust. By analogy to the microcredit example, trust could break
down in this step if the data used in the model were deemed incom-
plete in the sense that there are other available data that could be
used to noticeably improve the forecast. For example, a forecast
based entirely on national polls would have problems staying up
to date with the latest state poll results. Particularly relevant to the
2016 and 2020 elections were concerns about poll bias due to non-
response; for instance, we might be concerned that fewer Republi-
cans responded to polls, especially in key swing states.
Step 2: Training-data real-world goals to mathematical goals
Constructing the model was more difficult than you might think.
The probability distributions representing the underlying public
opinion and survey data had to serve as a bridge connecting poll
and economic data, political science understanding, and statistical
structure (sampling error, nonsampling error, and variation of
opinion over time in the 50 states).
Concretely, we started with an existing forecasting model in po-

litical science (25), which in turn was based on earlier models for
poll aggregation and election forecasting. The unique feature of
our approach compared to other forecasts for the 2020 election
was fitting a single model combining information from national
polls, state polls, and economic and political fundamentals based
on previous election outcomes.
Challenges in setting up this model included the following. We

wanted to account for nonsampling error at both the state and na-
tional levels, including possible systematic biases favoring one party
or the other; our error terms did not correct for biases, but they
should allow the model to express forecasts with appropriate uncer-
tainty. We aimed to capture a time series of opinion changes during
the campaign. We wanted to interpret the historical predictive
power of economic fundamentals in the context of increasing polit-
ical polarization. In addition, we aimed to acknowledge unique fea-
tures of the 2020 campaign. A particular statistical challenge arose
in modeling the correlations of polling errors and opinion trends
across states; there was nothing like the amount of data available
to estimate a 50 × 50 covariance matrix from any purely empirical
procedure, so we knew that strong assumptions would be necessary.
Trust. Trust could break down in this step if any of these strong

assumptions or modeling choices could be replaced with other rea-
sonable choices and lead us to substantively different conclusions.
Some of our initial modeling choices regarding between-state cor-
relations were flawed, as we noticed after seeing some predictive in-
tervals that seemed implausible. Unfortunately, we noticed some of
these errors only after the forecast went live, and we were forced to
reboot our model and publicly explain our changes.
Step 3: Mathematical goals to algorithms
As with the microcredit case study, we used HMC to approximate
and summarize the Bayesian posterior distribution on election out-
comes and other posterior quantities of interest for political under-
standing. The dataset and model were small enough and our time
scale was gentle enough (requiring updates every day, not every
hour or minute) that there was no need to use a fast shortcut
algorithm.
Trust. As discussed in the previous example, trust could break

down if the approximation quality were poor.
Step 4: Algorithms to code
We used R and Stan for HMC; we also compiled and cleaned survey
and election data.
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Trust. Our general experience with Stan allowed us to trust its
computation, so the main concerns with the code were in the R
scripts we wrote to prepare the data, set up covariance matrices,
and postprocess the inferences.

BUILDING TRUST
Above, we have seen a number of ways that trust can break down
across the taxonomy. But crucially, there are also many ways for re-
searchers to build trust. We next place existing work into our tax-
onomy. We start from the bottom of Fig. 1 and work our way up. In
particular, the italicized vertical connectors in Fig. 1 give terms
related to trust for the corresponding step. The horizontal connec-
tors show terms that describe matching between goals and outputs
at this level.
While we hope to highlight ways that analysts and researchers

can grow trust, we do not intend to suggest the existence of a
perfect analysis or a foolproof solution—just as we might improve
software engineering through testing, but we do not expect even the
most careful testing to entirely eliminate bugs. Likewise, we try to
distinguish between tools that are available to most analysts and
tools that would require an unusually large monetary expense,
time budget, compute cost, or other resources.

Algorithms and code
Fidelity
Trusting code to faithfully represent an algorithm ("fidelity") is
sometimes considered prosaic and perhaps even outside the
purview of the data scientist, especially when using standard soft-
ware packages. Nonetheless, this step forms the bedrock of the anal-
ysis; if trust breaks down here, trust in the entire analysis will fail.
Indeed, bugs in data analyses have led to unsupported justification
for treatment of patients in clinical trials, as discussed in (26), and
influential but unsupported economic policy advice, as discussed in
(23) and (24).
Reproducibility
The name of the core issue here varies widely across the literature. In
the present paper, we follow the usage of Conclusion 3-1 of the Na-
tional Academies report on “Reproducibility and Replicability in
Science” (27) and label an analysis as "reproducible" if identical
results are achieved when the same data are analyzed again with
the same code. Despite this definition seeming somewhat limited,
many data analyses (including some of our own in busy research
projects) do not meet this standard. For instance, some data analy-
ses do not provide code. Some do not even describe their algorithm
in enough detail for the reader to produce equivalent code (28).
Moreover, unequal computing resources can form a barrier to ac-
tually checking reproducibility in practice; some modern analyses
require resources enjoyed only by a handful of large companies
(29). Even with full descriptions and code and adequate resources,
checking reproducibility can be challenging and time-consuming.
For instance, the rapid advances of the ML field give rise to contin-
ually changing software packages and dependencies; even when the
precise set of dependencies used by a project is known, setting up
the same ecosystem can be burdensome. In addition, probabilistic
methods often take advantage of randomness; without access to the
random seed, two separate runs of the same code in the same envi-
ronment may yield different results.

Supporting reproducibility
Nonetheless, these observations suggest clear ways to build trust at
this step, via open community engagement, code sharing, and data
sharing. Even when using standard software packages, analysts typ-
ically write their own code wrappers to call these packages for the
specific data and model at hand, and this new code needs to be
checked. Heil et al. (30) propose a gold standard where data analysts
set up a single command that exactly reproduces the full analysis
and a silver standard that requires easy access to package dependen-
cies and any random seeds. Modern computational tools that
manage models (31) and aid reproducibility (32) can help research-
ers achieve the gold standard. It might be easy to overlook code that
goes into data preprocessing, but this code is part of an analysis
pipeline too; for instance, NASA failed to detect ozone reduction
for much of the 1970s and 1980s (despite having appropriate
sensors) due to an unexpected side effect of data preprocessing
(33). Gebru et al. (34) propose “datasheets for datasets” to fully
detail data provenance, including any processing that may have
gone into their creation. Permissive open licensing at every step of
the pipeline can encourage reproducibility and proper attribution
(35, 36).
Case study
During the election forecasting case study above, we opened up the
process and results to a wide audience. Publication and daily
updates in the Economist meant that thousands of readers would
see each forecast. We made data and code publicly available and
conveniently accessible (in this case, on GitHub). This ready
access allowed outsiders to download the code, run our analysis
themselves, and explore places where something could be going
wrong. Outside readers did find problems, which we were able to
track down to bugs and conceptual problems with our model. In
addition, the sense of public responsibility motivated us to check
carefully when forecasts did not look right.

Mathematical goals
Theoretical guarantees
At this level, we want to understand whether our algorithm achieves
our stated mathematical goals. Often research will abstract the algo-
rithm away from the code; for example, a researcher might establish
theoretical guarantees on how well a particular algorithm can be ex-
pected to achieve a goal such as accuracy or compute time. These
guarantees can help build trust. However, they typically cannot be
entirely relied upon to ensure accuracy. The exact set of assump-
tions needed for the guarantee may not hold in practice or may
not be possible to verify exactly in practice. A large amount of re-
search concentrates at this level. For instance, it is standard for any
paper addressing Bayesian posterior approximation to come sup-
ported by theory. We likely see this abundance of research since
the question of whether an algorithm achieves a precise mathemat-
ical goal has a relatively objective answer.
Checking the algorithm via the code
Practical checks at this level can examine the actual instantiation of
the algorithm in code. Analysts might check the performance of the
algorithm-code pair on representative problems or provide post hoc
checks on the results of the algorithm-code pair when run on the
dataset at hand. For instance, as we have seen in the case studies,
a sufficiently complex Bayesian analysis typically aims to approxi-
mate summaries of the posterior. Geweke (37), Cook et al. (38), and
Talts et al. (39) present simulation-based methods for checking the
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accuracy of a Bayesian approximation algorithm (via its implement-
ed code). We and others have also developed methods for checking
approximate computation on a particular dataset of interest; e.g.,
Yao et al. (40) and Huggins et al. (20) have presented methods
for evaluating variational inference. These new approaches can
help to identify mismatch between the mathematical goals and
the joint implementation of the algorithm and code.
Case study
In the election forecasting case study, we simulated fake polling data
and then saw how well the fitting procedure could recover the
assumed parameters and underlying time series. The check pro-
ceeded as follows: (i) set hyperparameters of the chosen model to
fixed, reasonable values; (ii) simulate time series of national and
state public opinion using the generative time series including the
between-state correlation matrix assumed under the model; (iii)
simulate national and state polls at the same sample sizes and
dates (in days before the election) as in the 2016 campaign but
with data generated according to the simulated underlying time
series plus error, including both sampling and nonsampling error;
and (iv) fit the model to these simulated data. It is no surprise that
we should be able to roughly recover the hyperparameters and time
series, but given the complexity of the model, it is useful to check
and also to get a sense of the precision of the recovery.

Training data and real-world goals
To build trust at this level, we want to ensure that our mathematical
goals are meeting our real-world data analysis goals, at least on our
training data. Building trust here presents a new challenge relative to
previous levels; in particular, we must now ask what it means to
perform well on real-world goals. The answer to this question is
necessarily more open to multiple perspectives and context depen-
dent than the mathematical problem an analyst reduces this ques-
tion to in step 2. Indeed, analysts often reduce the more abstract and
ill-defined real-world problem to a standard mathematical problem
not only to apply familiar data analysis tools but also to avoid claims
that the analyst is lacking objectivity; see table 1 in (41) and the sur-
rounding text for a discussion of how multiple perspectives and
context dependence relate to descriptions of subjectivity and objec-
tivity in an analysis. We emphasize the distinction in character
between this level and previous levels with the color of connectors
in Fig. 1.
The challenge of this level need not be due to communication

difficulties between a data analyst and a domain expert. In both
of our case studies, a single person is both a data analyst and a
domain expert. Yet there remain fundamental challenges.
Proxy measures to assess performance
We often choose proxy measures to assess performance of a
method, so we might wonder how stable our results are to these
choices. We may choose proxies when questions in the social sci-
ences, sciences, and engineering are difficult to operationalize di-
rectly or when these questions might require substantial new
modeling and inference development. For example, we might use
a mean effect to understand the efficacy of microcredit because a
mean is straightforward and standard to capture via a linear
model, even though it might be more appropriate to judge the
effect of microcredit by the proportion of people to whom it is ben-
eficial. As another example, many methods default to prediction
with simple losses when the real-life goal or loss is difficult to quan-
tify. For instance, 0-1 loss is a common choice of convenience in

classification problems, but real-life classification loss is typically
both unbalanced and difficult to quantify precisely. Prediction is
generally an easy (statistical or mathematical) problem precisely
because it is defined in terms of a clear ground truth that we can
compare our predictions to. However, even problems that are nat-
urally framed as prediction, such as medical diagnosis, may be mis-
translated into a concrete optimization problem; e.g., consider a
model for detecting cancerous skin lesions that inadvertently
trains on surgical ink markings (42).
These proxy measures of performance form part of a larger phe-

nomenon in scientific research. Hard questions often get translated
into questions that are easier to answer but possibly substantively
further from the question we want to ask. At its core, this critique
is related to the question of how problem formulation can affect sci-
entific outcomes (43). Relatedly, it is important to consider whether
we care about prediction or explanation (44). A particular analyst’s
real-world goals might be best addressed by optimizing a black box
that makes highly accurate predictions. A different analyst might be
best served by constructing a more interpretable model with strong
explanatory power. A third analyst might best do something
in between.
Proxy measures of performance can have fairness implications.

For instance, an economic intervention can have positive average
effects while benefiting only a small part of the population that is
already well off, or medical interventions tested only on men
might expose women to unknown risks. See (45–47) for further dis-
cussion of fairness in ML, currently an active research area.
Stability to model choice
Just as we might choose proxy measures in part out of convenience,
we might choose particular models to use in part out of conve-
nience. In this case, we might ask about the stability of our decisions
under different reasonable modeling choices. Yu (48, 49) has advo-
cated for the importance of stability of many forms, including
stability under model choice, in data analysis.
Different representations or summaries of our data could also be

seen as part of the choice of model, and we are interested in stability
across reasonable choices of summary. As an example, consider
choosing among competing network embeddings. Ward et al.
(50) examine this problem within the framework of Yu and Kumb-
ier’s (51) principles for veridical data science: predicability, com-
putability, and stability. For some problems, we may be interested
in embeddings that preserve particular features of the observed
network or in embeddings that translate to better performance
for some downstream task (e.g., link prediction), rather than in es-
timating a true underlying embedding or even mere features of that
embedding, such as the manifold in which those embeddings lie, as
in (52, 53).
Testing stability to model choice
To test stability to these various choices in practice, Silberzahn et al.
(54) document variations among 29 distinct research teams’ analy-
ses of a shared real-world goal, equipped with shared training data:
whether soccer referees are more likely to give red cards to players
with dark skin tones. Variations in adopted analytic strategies
ranged in breadth from differences in which predictors are included
to how dependent observations are (or are not) adjusted for to stat-
istical modeling assumptions (e.g., linear or logistic regression).
Lower-cost tests of stability or robustness to model choice
Convening multiple research teams for a problem is not always fea-
sible, at least not at first, due to budget and time costs. So we might
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wish to have lower-cost checks usable by a single team. For instance,
in (55), we construct prediction scores as a measure of agreement
between data-generating mechanisms (e.g., comparing preregistra-
tion or pilot data to realized experimental data). We show that mod-
ifications to the predictive model (used to construct the predictions)
adjust the lens through which the prediction scores can pick up on
varying types of differences between the underlying data generating
mechanisms. This check goes beyond the mere reproduction of nu-
merical outputs but more broadly accounts for how the real world
interacts with the inferential chain: how the real world goals are in-
terpreted and formulated as mathematical goals.
Another body of literature looks at quantifying the robustness of

the conclusions of a data analysis to likelihood and prior choice in a
Bayesian analysis (56), with tools to interface with MCMC (57) and
variational methods (19, 58). A tricky aspect of operationalizing this
work is deciding how to mathematically capture a range of reason-
able models; the easiest option is to vary a hyperparameter of a
model (that may control themodel parametrically or nonparametri-
cally) over some range that the analyst deems reasonable. Other
options include visualizations to aid analysts and domain experts
in making appropriate robustness checks (59).
Even the lower-cost tests, though, typically require additional

thought and computation beyond the initial analysis. Moreover,
even the most inexpensive and automated robustness checks are
often not yet part of standard data analysis software or generally
an expected part of a data analysis. Perhaps due both to the chal-
lenge of subjectivity at this level and the additional effort required,
we often do not see checks at this level in individual data analyses.

Future real-world goals
At this level, we want to build trust that the results from our partic-
ular data analysis are relevant to conclusions and decisions we will
make at other places or times.
Replicability and robustness to data variation
Again, building on Conclusion 3-1 in (27), we say that an analysis is
"replicable" if similar results are achieved when the study is repeated
with fresh data. A replicable study does not strictly require repro-
ducibility (or matching of goals and outputs at other levels of
Fig. 1). However, it is hard to imagine how a nonreproducible anal-
ysis could be successfully replicated.
We can still speak of stability and robustness but now to chang-

ing data rather than changingmodel choices. For instance, ultimate-
ly, we wish to apply the conclusions of our microcredit case study to
decide whether to pursue microloans in new places in the future or
in the same places but at necessarily different (future) times. If we
concluded that microcredit alleviated poverty based on our original
data, can we continue to trust these conclusions?
Testing replicability
As in the previous case, the best option for testing replicability is to
run the experiment many times in many different conditions. The
Open Science Collaboration (60) brought replicability to the fore-
front of the scientific discussion via an attempt to replicate 100
high-impact psychological studies. To the extent that teams are
able to run full analyses that may shed light on future use cases,
Mitchell et al. (61) propose “model cards” to document model
details, training data, evaluation data, and evaluation metrics.
However, running a data analysis many times under different cir-
cumstances may be costly, and doing so does not eliminate the
need to make future policy decisions using past analyses. To that

end, there is a need for automated tools that can assess sensitivity
and robustness to data changes that might reasonably reflect
changes we expect to see before applying policy.
Data resampling schemes
Classical tools such as cross-validation and the bootstrap can
provide a notion of sensitivity by rerunning a data analysis many
times. Likewise, when many predictions and a ground truth are
available, researchers can check whether their uncertainty forecasts
are calibrated; that is, one can check whether the proportion of
times an event was predicted agrees with the forecasted uncertainty.
However, these checks rely on an implicit assumption that the data-
generating distribution of future data is fundamentally the same as
that of the data used for the checks. This assumption is often at least
somewhat inappropriate. Recall that we hope to capture and apply
universal truths from a data analysis. We therefore might not apply
decisions from our data analysis to a wildly different context; none-
theless, we still might expect and wish to anticipate small but sub-
stantive changes across datasets of interest. D’Amour et al. (62) have
found that many conclusions of AI analyses do not hold up when
used in real life despite being trained and tested in standard ML
pipelines. In our ownwork, we reasonably expect regional differenc-
es in the effects of microcredit and differences across time in elec-
tions. One option is to use cross-validation variants that respect
temporal or spatial structure (63), but even these variants presup-
pose that future data fit a past trend or symmetry.
Stress tests
D’Amour et al. (62) suggest stress-testing data analyses to explore
performance in practically relevant dimensions and to attempt to
identify potential inductive biases. Ribeiro et al. (64) also suggest
running methods on a variety of meaningful datasets to diagnose
different types of hidden issues. A challenge is finding appropriate
datasets. One option that we have developed and applied to our mi-
crocredit case study is assessing sensitivity of an analysis to drop-
ping a small amount of data (65). If an analysis is driven by a
small proportion of its data, then we might not expect it to gener-
alize well to other scenarios. In theory, this sensitivity can be
checked directly by rerunning the data analysis with every small
proportion of data removed; in practice, this naive approach is as-
tronomically costly on even small datasets. So we develop an ap-
proximation that can be checked directly. In particular, when our
approximation detects sensitivity, it returns the problematic small
subset of data. So the analyst can drop this small data subset and
rerun the analysis at the cost of just one additional data analysis.
Generalizability versus security
The methods above address concerns about the "generalizability" of
an analysis; populations may subtly differ across space or time, and
these changes may in turn affect the efficacy of, e.g., an economic or
medical intervention. A distinct and substantial literature studies
"adversarial examples" generated by a nefarious actor and
methods to counter them (66). We emphasize that one may be con-
cerned about generalizability even when no security concerns or ad-
versaries are present.
Indirect checks
The checks discussed so far at this level try to assess generalizability
directly. Analysts may call on other forms of evidence, though, to try
to understand whether decisions may generalize well from the par-
ticular training data at hand. One form of evidence is "explainabil-
ity." If we know that predictions of cancerous skin lesions are based
on surgical ink markings (42), then we might expect that the
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method will generalize poorly to cases where experts have not
already effectively made the predictions and marked them for us.
By contrast, if the method’s predictions have a convincing
medical explanation, we may be more likely to trust the method
to generalize well to new image sources. We direct the interested
reader to a wide, and actively expanding, literature on explainability
in AI methods, a full accounting of which is outside the scope of the
present work; see, e.g., (67–71).
Another indirect check is to assess whether the model is able to

capture salient aspects of the data that are not directly part of report-
ed summaries. Such Bayesian "model checking" originated with (72)
and (73); this research arose in an era when computations were rel-
atively simple, so the focus was on fit of model to data. In modern
work, Bayesian model checking often assesses whether the joint
model-algorithm-code mechanism does a good job of describing
the available training data, sometimes with additional granulari-
ty (74).
Case study: Microcredit efficacy
We applied exactly the dropping data check described above to our
analysis of microcredit in (75).We hoped that various features of the
analysis would decrease sensitivity: hierarchical Bayesian sharing of
power across datasets, regularization from priors, and a tailored
likelihood meant to more carefully reflect the data-generating
process. However, we still found that the average effects were sensi-
tive to dropping less than 1% of the data, but the estimated variance
in treatment effects across studies was more robust (65).
Case study: Election forecasting
The election forecasting case study used sense checks related to the
ideas above to assess whether its predictions could be trusted to gen-
eralize to the 2020 election. Some months elapsed from the start of
our modeling process and the Economist’s launch of the forecast.
This lag did not come from coding (as code is straightforward in
Stan) or from running the code (the dataset including all polls
was small enough that even without any real efforts at optimization,
the code ran in minutes) but rather from the steps of building and
checking the model. Oncewe had code that compiled and ran, we fit
it to data from 2008, 2012, and 2016; these were earlier elections
where we had a large supply of state and national polls, so we
could mimic the 2020 forecasting we planned to do. Various early
versions of our model produced results that did not make sense; for
example, time trends seemed to vary too much from state to state,
which implied that some variance parameter in our model was too
large so that these time series were insufficiently constrained. This
checking was valuable for its own sake and also because, to do so, we
needed to design graphs whose forms we would use when plotting
models fit to the 2020 campaign data.
Before releasing our predictions to the public in early June, 2020,

we fit the model to the data available up to that point and checked
that the inferences and our summary of them (see Fig. 2) seemed
reasonable, in the sense that they were consistent with our general
understanding of the campaign and election. Any model is only as
good as the data it includes, so even if the fit has no statistical errors,
we would be concerned if it produced forecasts that were far off
from our general beliefs. We also examined the state-by-state fore-
casts from a competing model produced by the Fivethirtyeight.com
team and found some implausible predictions, which we attributed
to issues in how their model handled between-state correla-
tions (76).

During the summer and fall of 2020, we continued to monitor
our forecast. In particular, we were concerned that, months before
election day, the estimated probability of Biden winning the elector-
al college was over 90%, which did not seem to fully capture our
uncertainties. We looked carefully at our code and performed
more simulations, refitting our model under alternative scenarios
such as removing polls from one state at a time, and eventually
we found some bugs in our code and other places where we were
unsatisfied with the model, most notably in our expression of the
between-state correlation matrix. After a couple weeks of testing,
we released an improved model along with a correction note on
the Economist site.
Finally, we compared to the actual election outcomes. We found

that our model performed well but not perfectly. The popular and
electoral vote margins fell within our 90% forecast intervals, with 48
of 50 states predicted correctly. However, the election was closer
than our point forecast, with Biden performing consistently worse
than predicted in almost every state. Polls were off by about 2.5 per-
centage points in two-party vote share across the country; our fore-
cast did not anticipate this error, but it was included as a possibility
in the correlated polling error model. Including a correlated error
term allowed the forecasts to acknowledge nonsampling error but is
no substitute for predicting the direction of the bias.

DISCUSSION
Perfect accuracy is not a requirement for trust. We are able to trust
many of the systems that we interact with in our day-to-day lives
despite their uncertain predictions. Weather predictions are not
always correct, and yet they are still useful; many people are
injured or die in car crashes, and yet we rely on cars to travel
from place to place; we do not expect doctors to be able to compre-
hensively restore us to our previous health, and yet we trust our
doctors. Even for probability models, our thresholds for acceptable
accuracy may depend on the setting or type of model. For example,
much of classical statistics developed out of agricultural settings. As
a result, many statistical models are well aligned with the physical
sciences and essentially act as deterministic or mechanistic
process models with noise. In these models, the error is often
treated like a nuisance parameter and included because we would
not be able to estimate the model otherwise. Other statistical
models are more descriptive and are fundamentally models of var-
iability, such as in economics or the social sciences. A third class of
models is even more disconnected from observable physical pro-
cesses; these discovery or exploratory models are specifically de-
signed to capture fuzziness. Examples include clustering models,
topic models, and other unsupervised learning approaches. We nat-
urally expect different levels of accuracy for models in each of these
classes and, especially for discovery or exploratory models, defining
accuracy can be more difficult.
In our work, we have focused on fostering trust in a Bayesian

context in a way different from the traditional notion of estimating
the posterior probability that a model is true. Rather, we recognize
that our models are assumptions, and trust relates in part to the ro-
bustness of our results and subsequent decisions to many types of
explicit and implicit assumptions. There is also a large non-Baye-
sian literature on evaluating statistical and ML methods via predic-
tive performance [e.g., (77–79)]. These approaches have links to
Bayesian predictive inference (80), just as there are links between

Broderick et al., Sci. Adv. 9, eabn3999 (2023) 15 February 2023 8 of 11

SC I ENCE ADVANCES | R EV I EW
D

ow
nloaded from

 https://w
w

w
.science.org on M

arch 01, 2023

http://Fivethirtyeight.com


deterministic and probabilistic models (81). However, we have
found in applied work that real-world model improvements do
not always show up as clear increases in prediction accuracy (82);
this seeming discrepancy makes sense because a key goal in many
applications is to make decisions that apply outside the scope of
training data.
More generally, we highlight that trust itself is not binary. We

have here laid out a variety of points in an analysis where trust
can fail or be increased, but even at each point, trust lies on a spec-
trum. Heil et al. (30) note that, even at the level of code reproduc-
ibility, there lies a spectrum of trust: from not providing code or
details to providing them but without easy documentation or use
all the way to providing well-documented code that duplicates an
existing analysis with a single command. We analogously argue in
(55) for treating trust as a spectrum, rather than a binary, at other
levels of our present taxonomy. In almost all settings, there will be
some variation (due to different operationalizations of the real
world goals, to stochastic elements in the algorithm, or even to
random number generation in the code), even if only slight.
Instead, we should focus on quantifying how much variation is
present. In (19), we make the distinction between sensitivity and ro-
bustness as follows. Sensitivity measures the (continuous or near-
continuous) degree of change in some reported value due to, e.g.,
changing the model. That is, sensitivity is a well-defined continuous

quantity. However, robustness is a subjective judgment call based
on sensitivity; we say an analysis is nonrobust if a particular ob-
served change is deemed important in that a change in reported
value affects a particular actionable decision. We see a version of
this distinction in our check for dropping data (7) as follows. We
assess sensitivity by computing the biggest change in our reported
quantity of interest across different sizes of dropped data subsets.
Ultimately, an analyst must decide if robustness is a concern by
asking whether the change in data required to see a substantively
different conclusion is too small.
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