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Abstract 

Objectives 

Ranking metrics in network meta-analysis (NMA) are computed separately for each outcome. Our aim is 
to 1) present graphical ways to group competing interventions considering multiple outcomes and 2) use 
conjoint analysis for placing weights on the various outcomes based on the stakeholders’ preferences.  

Study design and setting 

We used multidimensional scaling (MDS) and hierarchical tree clustering to visualize the extent of 
similarity of interventions in terms of the relative effects they produce through a random effects NMA. 
We reanalyzed a published network of 212 psychosis trials taking three outcomes into account: reduction 
in symptoms of schizophrenia, all-cause treatment discontinuation and weight gain. 

Results 

Conjoint analysis provides a mathematical method to transform judgements into weights that can be 
subsequently used to visually represent interventions on a two-dimensional plane or through a 
dendrogram. These plots provide insightful information about the clustering of interventions.  

Conclusion 

Grouping interventions can help decision makers not only to identify the optimal ones in terms of benefit-
risk balance but also choose one from the best cluster based on other grounds such as cost, 
implementation etc. Placing weights on outcomes allows considering patient profile or preferences. 
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1. Introduction 

Network meta-analysis (NMA) synthesizes both direct and indirect evidence resulting in more precise 
effect estimates and allowing making inference for the relative effectiveness between pairs of 
interventions that have never been compared head-to-head1,2. Two of the most important outputs of an 
NMA are the estimated relative effects and a ranking of the competing interventions. Suppose that we 

have 𝑇𝑇 interventions. There is a total of  �𝑇𝑇2� = 𝑇𝑇(𝑇𝑇−1)
2

 relative effects for all possible pairs of interventions 

that can be represented through a league table. Ranking of the competing interventions for any outcome 
of interest is very appealing but also very controversial and prone to misinterpretations (e.g., does not 
consider the risk of bias of the included trials and the confidence one should place on the NMA findings)3,4. 
Several graphical and quantitative metrics have been developed for ranking interventions. Such measures 
utilize the distribution of relative effects to estimate probabilities for any intervention assuming any 
possible rank. The most commonly used measures are SUCRA values and P-scores4–6. The two outputs, 
relative effects and ranking, are highly dependent and PRISMA checklist for reporting NMAs state that 
ranking metrics may exaggerate small differences in relative effects and should be considered along with 
the corresponding estimates of pairwise comparisons7.  

Ranking metrics have been developed for a single outcome. Systematic reviews are encouraged to report 
both on efficacy and safety outcomes.  Chaimani et al suggested using multidimensional scaling techniques 
(MDS) to visualize the level of similarity among interventions for a single outcome8. Veroniki et al 
presented the rank-heat plot, a simple graphical approach to present treatment ranking including multiple 
outcomes9. Mavridis et al extended the P-score methodology to allow for multiple outcomes and modified 

What is new 

Key findings 

• Methods were suggested to visually group interventions considering multiple outcomes placing 
weights on outcomes based on stakeholder’s preferences 

What this adds to what is known 

• Provides a framework to rank/group interventions considering both benefits and harms, 
patients/stakeholders preferences and patient profiles  

What is the implication, what should change now 

• Grouping interventions allows us choosing alternative interventions or select one based on 
information outside the systematic review (e.g., cost, implementation, side-effects for which we do 
not have data for). 

• Weighing outcomes allows a clinician to consider patient profiles and/or preferences  
 

 



P-scores to measure the mean extent of certainty that each intervention is better by another intervention 
by a certain amount, e.g. the minimum important clinical difference10. This research focuses on treatment 
effects but does not consider that patients have different profiles and preferences, and the benefit-harm 
balance of treatment options may differ accordingly.  

We focus on ranking visualization methods when multiple outcomes are considered, and we use 
multidimensional techniques to map interventions and represent them spatially with an aim to see how 
they cluster together. More specifically, we consider that the estimated relative treatment effects reflect 
distances between interventions and we use MDS to place interventions on a two-dimensional plane so 
that between-treatment distances are preserved satisfactorily. Chung and Lumley were the first ones to 
attempt a similar analysis in a NMA setting for investigating inconsistency between direct and indirect 
effect estimates11. This approach offers an important advantage compared to other methods in the 
literature since it provides a visual representation of the similarity of interventions. We can map these 
interventions so that the distances between them reveal their similarity in terms of magnitude of effects 
on multiple outcomes, allowing us to visualize which interventions group together. Additionally, we 
address the important question of weighting the various outcomes considering patients’ profile and 
characteristics and incorporating these weights in the derived rankings.  We present some ideas on how 
preferences can be quantified using regression methods that have been employed in the field of 
marketing. 

2. Methods 
 

2.1. Illustrative example 

We will use a network of 212 randomized controlled trials (RCTs) and 43049 participants comparing 15 
antipsychotic drugs and placebo12. The primary outcome was the mean overall change in symptoms of 
Schizophrenia measured in some standardized scale and secondary outcomes involve all-cause 
discontinuation (which is seen as a measure of acceptability) and weight gain. Efficacy and weight gain are 
continuous outcomes and are measured in the Standardized Mean Difference (SMD) scale whereas 
acceptability is dichotomous and is measured in the Odds Ratio (OR) scale. In instances where we had to 

combine the two outcomes, we transformed summary ORs to SMDs using 𝑆𝑆𝑆𝑆𝑆𝑆 = √3
𝜋𝜋

log𝑂𝑂𝑂𝑂13. More 
details about the ranking methods employed in this published NMA can be found in the original publication 
12.  

2.2. Placing weights on outcomes using conjoint analysis 

Different stakeholders such as clinicians, policy makers and patients may have different views on the 
importance of outcomes and result in different intervention hierarchies. Additionally, physicians weigh 
outcomes differently depending on the patient’s profile and baseline risk.  

In marketing, a series of statistical methods have been developed to determine how people value different 
attributes of a product (feature, function, price etc.). Conjoint analysis has been suggested to determine a 
limited combination of attributes that are important for a product14. Such methods have also been used 
in health care; i.e. to determine which attributes of treatments for prostate cancer are more important to 
men15 or to assess patients’ preferences for a range of disease-modifying therapy attributes in multiple 
sclerosis16.   



We can use regression methods to determine which outcomes are most important. Suppose that the three 
outcomes in our example take three possible categorical values. For example, an antipsychotic can either 
have high, medium, or low efficacy, acceptability, and weight gain. A full-factorial design would consist of 
33 = 27 possible combinations. Stakeholders would be asked to put a preference score (e.g., from 1 to 
10) or rank each of the 27 combinations. Table 1 shows such a hypothetical example from two individuals 
(one clinician and his/her patient) who put a preference score to the 27 designs.  

Then, choosing one category (in the case “low” for Efficacy (𝐸𝐸𝑙𝑙𝑙𝑙𝑙𝑙) and Acceptability (𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙) and “high” for 
Weight (𝑊𝑊ℎ𝑖𝑖𝑖𝑖ℎ)) as a reference category for each outcome, a regression model of the following type is fit  

𝑦𝑦 = 𝑏𝑏𝑜𝑜 + 𝑏𝑏1𝐸𝐸𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑏𝑏2𝐸𝐸ℎ𝑖𝑖𝑖𝑖ℎ + 𝑏𝑏3𝐴𝐴𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑏𝑏4𝐴𝐴ℎ𝑖𝑖𝑖𝑖ℎ + 𝑏𝑏5𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑏𝑏6𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

The regression coefficients, b’s, are called part-worth utilities and show the preference for a particular 
attribute of an outcome. All variables assume value 1 if a scenario has the relative attribute and zero 
otherwise. To compute the relative weight of each outcome, we estimate for each outcome the difference 
between the largest and smallest part-worth utility (note that for the reference category the utility is zero), 
then the weight of each outcome is the relative share of these numbers.  

2.3. Multidimensional scaling (MDS), hierarchical tree clustering (HTS) and Individual Differences 
Multidimensional Scaling (IDMDS) 

Multidimensional scaling (MDS) aims to reveal the structure of the data by plotting points preferably in 
one or two dimensions17,18   The input data for MDS is in the form of a distance matrix representing the 
distances between pairs of objects. A classic example of its use is when we have a matrix of metric 
distances (e.g., in kilometers) among cities of a country and then MDS is used to reconstruct the actual 
map of the country in a two-dimensional plane. In this example, there is no ambiguity in the definition of 
a distance between two cities and in the requirement of a two-dimensional map. Where in general there 
is a degree of arbitrariness in the definition of a distance between pairs of objects and lack of knowledge 
on the number of dimensions needed18. In this work, we consider that the distance between two 
interventions reflects the relative effect for this pair of interventions. We can subsequently weigh this 
effect by its standard error. MDS is not a clustering algorithm per se, but a data reduction method. Once 
applied, we subsequently explore visually how points (treatments) cluster together. Technical information 
about the use of MDS in this context is given in the supplementary material. 

 

Along with mapping treatments on a two-dimensional graph, we can also use hierarchical tree clustering 
(HTS) to build a hierarchy of clusters of the competing interventions and depict them using a dendrogram. 
For both MDS and HTS there are a variety of algorithms and software. Their comparison is beyond the 
scopes of this manuscript. For MDS we used the majorization algorithm as described in de Leeuw and 
Mair19 and for HTC we used agglomerative complete linkage clustering.  

To map the distances among objects perceived by different people, individual differences 
multidimensional scaling has been developed where instead of one distance matrix for a set of objects we 
have many17,19. We consider the same logic here but instead of one 𝑇𝑇 × 𝑇𝑇 league matrix for a single 
outcome we have several 𝑇𝑇 × 𝑇𝑇 matrices for the various outcomes of interest. We used R library SMACOF 
to conduct the analyses19,20. Note that the league table and the corresponding 95% confidence intervals 



are standard outputs of the netmeta library in R21,22. More details are included in the supplementary 
material. 

3. Results 
Employing ranking methods to the Schizophrenia dataset  

We start by focusing on each outcome separately and Figure 1 shows the three-way scatter plot for the 
SUCRA values for the three outcomes, as these were derived from the original publication12. If we focus 
on reduction in symptoms and all-cause discontinuation, we see that antipsychotics clozapine, 
amisulpride, olanzapine, risperidone and paliperidone form a distinct class of drugs taking the five top 
ranks in both outcomes. It is also noteworthy that although haloperidol performs satisfactorily on efficacy 
(7th rank), it performs poorly on acceptability (15th rank). If we include weight gain, things are getting 
blurred. Clozapine and olanzapine perform poorly on weight gain and only amisulpride performs well in 
all three outcomes. 

 

Figure 1: Three-way scatter plot for the SUCRA values for efficacy, acceptability, and weight gain. 

 

 

We present a unidimensional configuration of the antipsychotics’ efficacy in the left-hand side graph of 
Figure 2. Horizontal axis can be safely interpreted as showing efficacy with horizontal differences among 
drugs representing their differences in efficacy. We see that placebo lies far away from the rest of the 
drugs and that four drugs (CLO, AMI, OLA, RIS) seem to be slightly more effective than most of the 
remaining drugs. This configuration clearly reflects differences in treatment effects and/or ranking metrics 
such as SUCRA and p-score values. The stress value (a goodness-of-fit measure for MDS with values less 
than 0.2 considered acceptable) was 0.01, an indication that observed and expected distances are almost 
identical. In the right-hand side of Figure 2 we present the output from a hierarchical clustering in the form 
of a dendrogram where we see that drugs group in three or four clusters. Placebo is placed alone, an 



indication that antipsychotics work as a whole. There is a group formed by clozapine, amisulpride, 
olanzapine and risperidone (or one may consider that clozapine forms a cluster on its own) and the rest of 
the antipsychotics formed a third group. In this Figure, we used complete-linkage clustering but we 
repeated the analysis using various agglomerative hierarchical clustering methods (those available in R 
function hclust23) and all methods produced either the same three distinct classes or considered clozapine 
to form a cluster on its own.  

Figure 2: Unidimensional representation of efficacy using MDS (left-hand side plot). Horizontal axis 
refers to efficacy. Hierarchical tree clustering of the interventions considering efficacy alone (right-hand 
side plot). 

 

We can use IDMDS to visualize antipsychotics considering multiple outcomes. Figure 3 shows the group 
configuration when only efficacy and acceptability are considered (left-hand side plot) and for all three 
outcomes (right-hand side plot). In the former case, we can safely assume that the horizontal axis shows 
differences in efficacy with small values showing more efficacious antipsychotics while the vertical axis 
shows differences in acceptability with smaller values showing better antipsychotics. The stress value was 
estimated to be 0.02. Efficacy and acceptability are positively correlated, and results are not much 
different than those derived from considering only efficacy. Five interventions (clozapine, amisulpride, 
olanzapine, risperidone and paliperidone) seem to form a cluster, placebo is alone, and the rest of 
antipsychotics have similar performance, forming a third cluster. Things become more complicated when 
we consider weight (right-hand side plot). In this case, differences among the five best antipsychotics have 
increased with olanzapine moving far away from the rest of the cluster. As expected, it is more difficult to 
interpret axes, though we may argue that small values in the horizontal axis show antipsychotics that score 



high on efficacy and acceptability and differences in the vertical axis reflect differences in effect estimates 
in weight gain. Ideally, we are looking for antipsychotics placed on the left top corner (e.g. AMI). The stress 
value was estimated to be 0.21 suggesting that the fit has deteriorated when all outcomes are considered.  

 

Figure 3: Group configuration using two dimensions for the efficacy and acceptability (left-hand side 
plot) and all three outcomes (right-hand side plot) 

 

 

We repeat the analysis assuming different weights for each outcome. We consider the weights derived 
from the conjoint analysis of the ranking of two hypothetical stakeholders depicted in Table 1. Table 2 
shows the estimated part-worth utilities for each attribute. We used the R library “radiant”24 to estimate 
and produce Figures (Figure 4) of the estimated part-worth utilities. The relative importance stakeholder 
1 (the clinician) places on each outcome are 57.4% for efficacy, 28.7% for acceptability and 13.8% for 
weight gain. The corresponding relative importance for the second stakeholder are 40.6%, 14.6% and 
44.8% respectively. The cluster dendrograms of the antipsychotics under the two scenarios are presented 
in Figure 5. The left-hand side plot shows the dendrogram for the first stakeholder (clinician) whereas the 
right-hand side plot shows dendrogram for the second stakeholder (patient). In the left-hand side plot, 
clozapine, olanzapine, amisulpride, risperidone and paliperidone are close together although clozapine 
and olanzapine do much worse in weight. This is because the first stakeholder puts little emphasis on 
weight (13.8%). In the right-hand side plot, amisulpride moves away from its previous cluster and it is 
closer to antipsychotics who perform well in weight and moderately well in the other two outcomes.  

 



Table 1: Full 
factorial design 
and preference 
scores for two 

hypothetical 
respondents (a 
clinician and a 
patient) who 
scored each of the 
possible 27 
profiles with a 
score from one to 
ten. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scenarios Efficacy Acceptability Weight Clinician Patient 

Profile 1 High High Low 10 10 

Profile 2 High High Medium 10 9 

Profile 3 High High High 9 4 

Profile 4 High Medium Low 9 10 

Profile 5 High Medium Medium 9 8 

Profile 6 High Medium High 7 3 

Profile 7 High Low Low 7 9 

Profile 8 High Low Medium 5 6 

Profile 9 High Low High 4 3 

Profile 10 Medium High Low 8 8 

Profile 11 Medium High Medium 7 7 

Profile 12 Medium High High 6 2 

Profile 13 Medium Medium Low 7 7 

Profile 14 Medium Medium Medium 7 5 

Profile 15 Medium Medium High 6 2 

Profile 16 Medium Low Low 5 6 

Profile 17 Medium Low Medium 4 5 

Profile 18 Medium Low High 3 2 

Profile 19 Low High Low 3 5 

Profile 20 Low High Medium 3 4 

Profile 21 Low High High 2 1 

Profile 22 Low Medium Low 2 4 

Profile 23 Low Medium Medium 2 3 

Profile 24 Low Medium High 1 1 

Profile 25 Low Low Low 1 3 

Profile 26 Low Low Medium 1 1 

Profile 27 Low Low High 1 1 



Figure 4: Part-worth utilities as derived from the ratings of the clinician and the patient. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Conjoint analysis results (part-worth utilities) for the two hypothetical individuals.  

 

 

Coefficient/stakeholder Clinician (respondent 1) 
estimate Standard error t-value p-value 

𝛽𝛽0 (intercept) -0.74 0.39 -1.93 0.07 
𝛽𝛽1 (efficacy-medium) 4.11 0.36 11.55 <0.001 
𝛽𝛽2 (efficacy-high) 6.00 0.36 16.85 <0.001 

𝛽𝛽3 (acceptability-medium) 2.11 0.36 5.93 <0.001 
𝛽𝛽4 (acceptability-high) 3.00 0.36 8.43 <0.001 
𝛽𝛽5 (weight gain-medium) 1.00 0.36 2.81 0.01 
𝛽𝛽6 (weight gain-high) 1.44 0.36 4.06 <0.001 

Coefficient/stakeholder Patient (respondent 2) 
estimate Standard error t-value p-value 

𝛽𝛽0 (intercept) -0.89 0.46 -1.94 <0.001 
𝛽𝛽1 (efficacy-medium) 2.33 0.43 5.50 <0.001 
𝛽𝛽2 (efficacy-high) 4.33 0.43 10.21 <0.001 

𝛽𝛽3 (acceptability-medium) 0.78 0.43 1.83 0.08 
𝛽𝛽4 (acceptability-high) 1.56 0.43 3.66 0.002 
𝛽𝛽5 (weight gain-medium) 3.22 0.43 7.59 <0.001 
𝛽𝛽6 (weight gain-high) 4.78 0.43 11.25 <0.001 

Clinician Patient 



Figure 5: Hierarchical tree clustering assuming different weights for each outcome. Relative weights for 
the hypothetical clinician (let-hand side plot) are 57.4% for efficacy, 28.7% for acceptability and 13.8% 
for weight gain. Relative weights for the hypothetical patient (right-hand side plot) are 40.6% for 
efficacy, 14.6% for acceptability and 44.8% for weight gain. 

 

4. Discussion 

Recommending an intervention is a complex issue in which both efficacy and safety should be considered. 
Multidimensional scaling offers a series of graphical methods that help us identify groups of interventions 
with similar performance.  

We can borrow techniques used in marketing for evaluating the importance of products’ attributes to 
assess the importance of outcomes. These methods provide a formal method by which preferences can 
be transformed to mathematical quantities.  

There are certain risks and limitations associated with the suggested methodology. Using MDS and HTC 
for mapping treatments considering multiple outcomes is straightforward.  However, relative effects and 
ranking metrics, do not include assessments of the quality of the evidence. Even interventions with large 
and precise effects scoring high on ranking metrics are not necessarily preferable if most information 
about them comes from low quality trials. Researchers using NMA results should consider the confidence 
placed on the relative effects25,26. Ideally, we are interested in treatments that not only rank high on the 
outcomes of interest, but they are also informed mainly by studies at low risk of bias26.  

A mere mapping of the similarity of treatments across multiple outcomes makes the unrealistic 
assumption that all outcomes are equally important for all patients. Assigning weights to outcomes is much 
trickier and should be applied with caution after having completed the systematic review. There are many 
subjective elements in the process that make the use of outcome weights within a systematic review 
problematic. Different researchers are expected to have different views and, additionally, these views 



cannot be universally applied as patients have different profiles and baseline characteristics. Hence, we 
would not be able to generalize the results of the systematic review had we weighed outcomes within the 
systematic review.  

Health professionals are encouraged to consider patient preferences to increase patient satisfaction and 
get better health outcomes. Our method provides a tool to consider patient outcome preferences for 
treatment recommendation but is not free of risks. Patient preferences may be unreasonable, differ 
considerably from those of their physician or with evidence-based guidelines and clinical practice27. 
Moreover, in clinical practice, it is not sufficient to give a questionnaire to patients to elicit their 
preferences. Patients should be sufficiently and unbiasedly informed about their condition, available 
treatment, and possible risks before expressing their preferences. 

There are also some mathematical limitations. When employing the IDMDS, it is plausible that there is 
some dependence across outcomes. In most NMAs, relative effects are estimated separately for each 
outcome and between outcomes correlation is unknown unless one has the individual patient data. This 
is a general problem that concerns the vast majority of NMAs. We should also bear in mind that the 
resulting configuration is arbitrary, and axes have subjective interpretations. As a result, there is a 
subjective component on determining the clustering of interventions. Caution is needed when outcomes 
that favor different interventions are equally weighted as this was the case with our example and Figure 
5. In such cases, interventions that do well in one of the two outcomes will cluster together even if they 
support different outcomes. Therefore, one should look at the actual relative effects (as PRISMA guidelines 
suggest) to understand which clusters of interventions are giving the best results.  

Outcomes may also be heavily correlated (for example systolic and diastolic blood pressure) and in such a 
case we kind of use the same information twice. We expect outcomes to be correlated but caution is 
needed to avoid using very similar outcomes when employing these methods. One could argue that this 
was the case with efficacy and acceptability in our example and using one of them would suffice.   

Conjoint analyses requires a careful design to elicit the appropriate information from each stakeholder. 
There are various methods in marketing that are used to elicit customers’ preferences (e.g., conjoint 
analysis, discrete choice experiments). A comparison or description of those is beyond the scope of this 
manuscript. Ideally, the method should include questions tailored to each health condition. Here, for 
illustration purposes, we considered a simple example, with straightforward outcomes and attributes, but, 
in practice, attributes of outcomes or questions being put forward to stakeholders must be carefully 
designed. Some outcome scales are not easily understood by patients and any categorization of outcome 
values cannot hold universally as people have different baseline values (e.g., for example a clinician may 
consider that weight gain is not important, but it can be very important to an obese person with serious 
health problems). Once we have established a clustering of interventions one could decide between 
competing interventions on other grounds (e.g., cost, other adverse effects for which we do not have data, 
patient’s reaction to an intervention). 
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Supplementary material 

 

Description of how multidimensional scaling is used for clustering interventions in network meta-analysis 
(NMA) 

MDS is used to represent the distance matrix on a configuration (e.g., Cartesian coordinate system) in a 
small number of dimensions such as that distances on the configuration represent approximately, the 
original distance matrix. For N=1,2 and 3, we can visualize the resulting points in a scatter plot. 

Suppose that we have a connected network of 𝑇𝑇 interventions and we employ NMA to estimate the 𝑇𝑇(𝑇𝑇−1)
2

 
relative effects 𝜇𝜇𝑖𝑖𝑖𝑖  with 𝑖𝑖, 𝑗𝑗 = 1, … ,𝑇𝑇 & 𝑗𝑗 > 𝑖𝑖. We will use MDS to group the 𝑇𝑇  interventions in terms of 

the 𝑇𝑇(𝑇𝑇−1)
2

 relative effects and their corresponding 95% confidence intervals or standard errors 𝑠𝑠𝑖𝑖𝑖𝑖. A 
league table can be viewed as a distance matrix by considering the absolute estimated relative effects 
�𝜇̂𝜇𝑖𝑖𝑖𝑖�, making it symmetrical (�𝜇̂𝜇𝑖𝑖𝑖𝑖�=�𝜇̂𝜇𝑗𝑗𝑗𝑗�)  and placing zeros in the diagonal (|𝜇̂𝜇𝑖𝑖𝑖𝑖| = 0 ∀ 𝑖𝑖 = 1, … ,𝑇𝑇)  . We 
have fitted a NMA model assuming consistency. The consistency equation ensures that 𝜇̂𝜇𝑖𝑖𝑖𝑖 = 𝜇̂𝜇𝑖𝑖𝑖𝑖 + 𝜇̂𝜇𝑘𝑘𝑘𝑘 ↔
�𝜇̂𝜇𝑖𝑖𝑖𝑖� = �𝜇̂𝜇𝑖𝑖𝑖𝑖 + 𝜇̂𝜇𝑘𝑘𝑘𝑘� ≤ |𝜇̂𝜇𝑖𝑖𝑖𝑖| + �𝜇̂𝜇𝑘𝑘𝑘𝑘� ∀ 𝑖𝑖, 𝑗𝑗,𝑘𝑘 = 1, … ,𝑇𝑇, 𝑖𝑖 ≠ 𝑗𝑗 ≠ 𝑘𝑘. Hence, relative effects define a metric 
that measures the distance between the relevant interventions. We use MDS to map the interventions in 
a sub-dimensional space (e.g., two-dimensional) and cluster them in groups. We find the configuration 

(set of coordinate values) 𝑚𝑚𝑖𝑖𝑖𝑖  by minimizing  
∑ 𝑤𝑤𝑖𝑖𝑖𝑖�𝑚𝑚𝑖𝑖𝑖𝑖−𝜇𝜇�𝑖𝑖𝑖𝑖�

2
𝑖𝑖<𝑗𝑗

∑ 𝑚𝑚𝑖𝑖𝑖𝑖
2

𝑖𝑖<𝑗𝑗
, also known as stress function, and using 

𝑤𝑤𝑖𝑖𝑖𝑖 = 1/𝑠𝑠𝑖𝑖𝑖𝑖. Stress values lower than 0.2 are generally considered good with the lower the stress value 
the lower the difference between the observed distances (relative effect sizes) and the expected ones 
derived from the MDS configuration. 

How to use the suggested methodology in practice 

The whole methodology depends on methods that have been established in the statistical literature. For 
example, for researchers familiar with R, one can use 

- The netmeta library to take the league matrix with all pairwise relative effects and the 
corresponding standard errors. If we have an object of class netmeta, the component TE.random 
gives the estimated overall relative treatment effects for all pairs of treatments for the random-
effects model and the component seTE.random gives the corresponding standard errors (replacing 
“random” with “fixed” would give the corresponding results for the fixed effect model).  

- The smacof library to conduct multidimensional scaling (command mds) or individual differences 
multidimensional scaling (command smacofIndDiff). 

- The command hclust to conduct hierarchical cluster analysis on a set of dissimilarities  
- The conjoint library to conduct a conjoint analysis to estimate part-worth utilities and 

subsequently use them to estimate the relative importance of outcomes.  
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