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Abstract

In this article, we propose a novel pessimism-
based Bayesian learning method for optimal dy-
namic treatment regimes in the offline setting.
When the coverage condition does not hold,
which is common for offline data, the existing so-
lutions would produce sub-optimal policies. The
pessimism principle addresses this issue by dis-
couraging recommendation of actions that are
less explored conditioning on the state. However,
nearly all pessimism-based methods rely on a key
hyper-parameter that quantifies the degree of pes-
simism, and the performance of the methods can
be highly sensitive to the choice of this parame-
ter. We propose to integrate the pessimism prin-
ciple with Thompson sampling and Bayesian ma-
chine learning for optimizing the degree of pes-
simism. We derive a credible set whose boundary
uniformly lower bounds the optimal Q-function,
and thus we do not require additional tuning of
the degree of pessimism. We develop a gen-
eral Bayesian learning method that works with
a range of models, from Bayesian linear basis
model to Bayesian neural network model. We de-
velop the computational algorithm based on vari-
ational inference, which is highly efficient and
scalable. We establish the theoretical guaran-
tees of the proposed method, and show empiri-
cally that it outperforms the existing state-of-the-
art solutions through both simulations and a real
data example.

1 INTRODUCTION

Due to heterogeneity in patients’ responses to the treat-
ment, one-size-fits-all strategy may no longer be optimal
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(Jiang et al., 2017). Precision medicine aims to iden-
tify the most effective treatment strategy based on indi-
vidual patient information. For example, for many com-
plex diseases, such as cancer, mental disorders and dia-
betes, patients are usually treated at multiple stages over
time based on their evolving treatment and clinical covari-
ates (Sinyor et al., 2010; Maahs et al., 2012). Dynamic
treatment regimes (DTRs) provide a useful framework of
leveraging data to learn the optimal treatment strategy by
incorporating heterogeneity across patients and time (Mur-
phy, 2003). Formally, a DTR is a sequence of decision
rules, where each rule takes the patient’s past information
as input, and outputs the treatment assignment. An opti-
mal DTR is the one that maximizes patient’s expected clin-
ical outcomes. DTRs generally follow an online learning
paradigm, where the process involves repeatedly collect-
ing patient’s response to the assigned treatment. In medical
studies, however, it is often impractical to constantly col-
lect such interactive information. This prompts us to study
the problem of learning optimal DTRs in an offline setting,
where the data have already been pre-collected. In this ar-
ticle, we propose a novel Bayesian learning approach using
a pessimistic-type Thompson sampling for finding DTRs.

1.1 Related Work

Statistical methods for DTRs. There is a vast literature
on statistical methods for finding optimal DTRs, which,
broadly speaking, includes Q-learning, A-learning and
value search methods. See Tsiatis et al. (2019); Kosorok
and Laber (2019) for an overview. See also Robins (2004);
Qian and Murphy (2011); Zhang et al. (2013); Chakraborty
and Murphy (2014); Zhao et al. (2015); Chen et al. (2016);
Shi et al. (2018a,b); Qi et al. (2020); Chen et al. (2020);
Zhang (2020); Cai et al. (2021); Qiu et al. (2021); Zhou
et al. (2021); Qi et al. (2022), and the references therein.
However, most existing methods rely on a positivity as-
sumption in the offline data, which essentially requires the
probability of each treatment assignment at each stage is
uniformly bounded away from zero. In the observational
data, such an assumption could easily fail, as certain treat-
ments are prohibited in some scenarios. Therefore, apply-
ing these methods may produce sub-optimal DTRs.
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Offline reinforcement learning (RL). Built on Markov
decision process (MDP), Offline RL learns an optimal pol-
icy from historical data without any online interaction (Pru-
dencio et al., 2022). It is thus highly relevant for precision
medicine type applications. However, many RL algorithms
rely on a crucial coverage assumption, which requires the
offline data distribution to provide a good coverage over the
state-action distribution induced by all candidate policies.
This assumption may be too restrictive and may not hold
in observational studies. To address this challenge, the pes-
simism principle has been adopted that discourages recom-
mending actions that are less explored conditioning on the
state. The solutions in this family can be roughly classified
into two categories, including model-based algorithms (see
e.g., Kidambi et al., 2020; Yu et al., 2020; Uehara and Sun,
2021; Yin et al., 2021), and model-free algorithms (see
e.g., Fujimoto et al., 2019; Kumar et al., 2019; Wu et al.,
2019; Buckman et al., 2020; Kumar et al., 2020; Rezaei-
far et al., 2021; Jin et al., 2021; Xie et al., 2021; Zanette
et al., 2021; Bai et al., 2022; Fu et al., 2022). The main
idea of the model-based solutions is to penalize the reward
or transition function whose state-action pair is rarely seen
in the offline data, whereas the main idea of the model-
free ones is to learn a conservative Q-function that lower
bounds the oracle Q-function. Nevertheless, most of these
solutions either require a well-specified parametric model,
or rely on a key hyperparameter to quantify the degree of
pessimism. It is noteworthy that the performance of those
solutions can be highly sensitive to the choice of the hyper-
parameter; see Section 2.2 for more illustration. In addi-
tion, many algorithms are developed in the context of long
or infinite-horizon Markov decision process. Their gen-
eralizations to medical applications with non-Markovian
and finite-horizon systems remain unknown. Finally, we
note that there is concurrent work by Jeunen and Goethals
(2021) that adopts a Bayesian framework for offline con-
textual bandit. However, their method requires linear func-
tion approximations, and cannot handle complex nonlinear
systems, nor more general sequential decision making.

Thompson sampling. Thompson sampling (TS) is a popu-
lar Bayesian approach proposed by Thompson (1933) that
randomly draws each arm according to its probability of
being optimal, so to balance the exploration-exploitation
trade-off in the online contextual bandit problems. It has
demonstrated a competitive performance in empirical ap-
plications. For instance, Chapelle and Li (2011) showed
that TS outperforms the upper confidence bound (UCB) al-
gorithm in both synthetic and real data applications of ad-
vertisement and news article recommendation. The success
of TS can be attributed to the Bayesian framework it adopts.
In particular, the prior distribution serves as a regularizer to
prevent overfitting, which implicitly discourages exploita-
tion. In addition, actions are selected randomly at each time
step according to the posterior distribution, which explic-
itly encourages exploration and is useful in settings with

delayed feedback (Chapelle and Li, 2011).

Bayesian machine learning. Bayesian machine learning
(BML) is a paradigm for constructing machine learning
models based on the Bayes theorem, and has been success-
fully deployed in a wide range of applications (see, e.g.,
Seeger, 2006, for a review). Popular BML methods include
Bayesian linear basis model (Smith, 1973), variational au-
toencoder (Kingma and Welling, 2013), Bayesian random
forests (Quadrianto and Ghahramani, 2014), Bayesian neu-
ral network (Blundell et al., 2015), among many others.
An appealing feature of BML is that, through posterior
sampling, the uncertainty quantification is straightforward.
In contrast, the frequentist methods for uncertainty quan-
tification that are based on asymptotic theories can be
highly challenging with complex machine learning models,
whereas those based on bootstrap can be computationally
intensive with large datasets.

1.2 Our Proposal and Contributions

In this article, we propose a novel pessimism-based
Bayesian learning approach for offline optimal dynamic
treatment regimes. We integrate the pessimism principle
and Thompson sampling with the Bayesian machine learn-
ing framework. In particular, we derive an explicit and uni-
form uncertainty quantification of the Q-function estimator
given the data, which in turn offers an alternative way of
constructing confidence interval without having to specify
a parametric model or tune the degree of pessimism, as re-
quired by nearly all existing pessimism-based offline RL
and DTR algorithms. Compared to the RL and DTR algo-
rithms without pessimism, our method yields a better deci-
sion rule when the coverage condition is seriously violated,
and a comparable result when the coverage approximately
holds. Compared to the RL and DTR algorithms adopt-
ing pessimism, our method achieves a more consistent and
competitive performance. Theoretically, we show that the
regret of the proposed method depends only on the estima-
tion error of the optimal action’s Q-estimator, and we pro-
vide the explicit form of its upper bound in a special case of
parametric model. The resulting bound is much narrower
than the regret of the standard Q-learning algorithm that
depends on the uniform estimation error of the Q-estimator
at each action. Methodologically, our approach is fairly
general, and works with a range of different BML models,
from simple Bayesian linear basis model to more complex
Bayesian neural network model. Scientifically, our pro-
posal offers a viable solution to a critical problem in pre-
cision medicine that can assist patients to achieve the best
individualized treatment strategy. Finally, computationally,
our algorithm is efficient and scalable to large datasets, as it
adopts a variational inference approach to approximate the
posterior distribution, and does not require computationally
intensive posterior sampling method such as Markov chain
Monte Carlo (Geman and Geman, 1984).
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Our method shares a similar spirit as TS, in that we also
adopt a Bayesian framework for uncertainty quantifica-
tion and exploration-exploitation trade-off. We also remark
that, although the concepts of pessimism, TS and BML
are not completely new, how to integrate them properly is
highly nontrivial, and is the main contribution of this arti-
cle. First of all, in the online setting, TS randomizes over
actions to address the exploration-exploitation dilemma.
However, randomization contradicts the pessimistic prin-
ciple in the offline setting. To address this issue, we bor-
row the idea from the Bayesian UCB method (Kaufmann
et al., 2012) for online bandits and generalize it to offline
sequential decision making. Second, although posterior
sampling allows one to conveniently quantify the pointwise
uncertainty of the estimated Q-function at a given individ-
ual state-action pair, it remains challenging to lower bound
the Q-function uniformly for any state-action pair. Devel-
oping a uniform credible set is crucial for implementing
the pessimism principle. Our proposal provides an effec-
tive solution with a uniform uncertainty quantification.

2 PRELIMINARIES

2.1 Bayesian Machine Learning

Let p(o|w) denote a machine learning model indexed by
w that parameterizes the probability mass or density func-
tion of some random variable O, and let Dn = {oi}ni=1

denote a set of i.i.d. random samples. BML treats w as a
random quantity, and learns the entire posterior distribution
p(w|Dn) of w given the data Dn based on the Bayes rule,
by combining the likelihood function p(Dn|w) and a prior
distribution p(w) that reflects prior knowledge about w.
Once the posterior distribution of w is learned, a commonly
used point estimator for w is the posterior mean denoted by
ŵ = E(w | Dn). One can then make the prediction by us-
ing ŵ and the likelihood function. Alternatively, one can
also make the prediction by using the posterior mean of the
model output. We next consider two specific examples.

Bayesian Linear Basis Model (BLBM). BLBM is an ex-
tension of the classical Bayesian linear model (Lindley and
Smith, 1972), and models the distribution of a response Y
given X = x as yi = wTϕ(xi) =

∑K
j=1 wjϕj(xi) + ϵi,

where ϕ(x) = {ϕ1(x), · · · , ϕK(x)}⊤ is a set of K basis
functions, w = (w1, . . . , wn)

T is the weight vector, and
the error ϵi follows a Gaussian distribution. Since the pos-
terior distribution can be explicitly derived, BLBM is easy
to implement in practice. However, it might suffer from
potential model misspecification in high-dimensional com-
plex problems.

Bayesian Neural Network (BNN). BNN learns the pos-
terior distribution of the weight parameter w in a neural
network. However, exact Bayesian inference is generally
intractable due to the extremely complex model structure.

Blundell et al. (2015) proposed to approximate the exact
posterior distribution p(w|Dn) by a variational distribution
q(w|θ) whose functional form is pre-specified, and then es-
timate θ by minimizing the Kullback-Leibler (KL) diver-
gence, KL[q(w|θ)||p(w|Dn)]. In practice, q(w|θ) can be
set to a multivariate Gaussian distribution, and the param-
eters are updated based on Monte Carlo gradients. Blun-
dell et al. (2015) developed an efficient computational algo-
rithm, and showed BNN achieves a superior performance
in numerous tasks.

2.2 The Pessimism Principle

In the offline setting, when the coverage condition is not
met, the classical DTR and RL methods may yield sub-
optimal policies. This is because some states and actions
are less covered in the data, whose corresponding Q-values
are difficult to learn, resulting in large variances and ulti-
mately sub-optimal decisions. To address this issue, most
existing offline RL methods adopt the pessimistic strategy,
and derive the policies to avoid uncertain regions that are
less covered in the data. Particularly, model-free offline
RL methods learn a conservative Q-estimator that lower
bounds the Q-function during the search of the optimal pol-
icy. We next briefly review a state-of-the-art solution of this
type, the pessimistic value iteration method (PEVI) of Jin
et al. (2021) based on linear models.

Consider a contextual bandit setting, where the offline data
Dn consists of n i.i.d. realizations {si, ai, ri}ni=1 of the
state, action and reward tuple {S,A,R}, where si collects
the baseline covariates of the ith instance, ai is the action
received, and ri is the corresponding reward. We assume
R is uniformly bounded and a larger value of R indicates a
better outcome. Denote the space of the covariates and ac-
tions by S and A, respectively. In addition to estimating the
conditional mean of the reward given the state-action pair,
i.e., Q(S,A) = E(R|S,A), Jin et al. (2021) proposed to
also learn a ξ-uncertainty quantifier Γ, such that the event

Ω =
{
|Q̂(s, a)−Q(s, a)| ≤ Γ(s, a) for all (s, a)

}
(1)

holds with probability at least 1 − ξ for any ξ > 0, where
Q̂ is an estimator of Q. Instead of computing the greedy
policy with respect to Q̂ as in the standard methods, they
proposed to choose the greedy policy that maximizes the
lower bound Q̂ − Γ, and showed that the regret of the re-
sulting policy is upper bounded by E[Γ(S, π∗(S))], where
π∗ is the true optimal policy. Note that this bound is much
narrower than E[maxa Γ(S, a)], i.e., the regret bound with-
out taking pessimism into account. They further showed
that the resulting policy is minimax optimal in linear finite
horizon MDPs without the coverage assumption.

Despite its nice theoretical properties, it is challenging to
implement PEVI in practice due to the construction of a
proper Γ that meets the requirement in (1). Jin et al. (2021)
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Figure 1: A toy example comparing the PEVI method of Jin et al. (2021) under different values of c and our proposed
method PBL.

only developed a construction of Γ under a linear MDP
model, and it cannot be easily generalized to more com-
plex machine learning models. Even in the linear model
case, their construction relies on a hyperparameter c, and
the resulting policy can be highly sensitive to the choice
of c. Actually, this is common for many pessimism-based
RL methods, which often involve some hyperparameter to
quantify the degree of pessimism, and the performances
rely heavily on the tightness of this uncertainty quantifier.
We consider the following toy example to elaborate.

A toy example. Suppose we model Q via a linear function:
f(s, a, w) = w⊤ϕ(s, a), where w ∈ Rp is the coefficient
of the linear basis function ϕ and is estimated by a ridge
regression following Jin et al. (2021). They set

Γ(s, a) = cp[ϕ(s, a)TΛ−1ϕ(s, a)]1/2
√
log(2dn/ξ), (2)

for some constant c > 0, where Λ =∑n
i=1 ϕ(si, ai)ϕ(si, ai)

T + λI , λ is the ridge param-
eter, and I is the identity matrix. The choice of c in (2) is
crucial for the performance, as a small c would fail to meet
the requirement in 1 when the data coverage is inadequate,
and a large c would over-penalize the Q-function when
the coverage is sufficient. Figure 1 compares the regret
of our method and PEVI, where there are two treatments
{1, 2} and a two-dimensional state S = (S1, S2). The
reward R is generated from a Gaussian distribution with
mean (0.8 + 0.2A)(S1 + 2S2) and variance σ2, and the
behavior is generated according to an ϵ-greedy policy that
combines a uniformly random policy with a pretrained
optimal policy. In this example, ϵ characterizes the level
of the coverage, and we consider two levels ϵ = 0.95
where sub-optimal actions are less explored, and ϵ = 0.5
where the coverage holds. We vary the noise level σ, and
compare our proposed method and PEVI under varying
choices of c = {0, 1, 2, 5, 10}. It is seen that PEVI is
highly sensitive to c under different values of ϵ and σ. By
contrast, our proposed method takes a significance level

as the input, which is fixed to 0.9 or 0.95 to ensure (1)
holds with a large probability, and it achieves a much more
stable performance.

3 BAYESIAN LEARNING WITH
PESSIMISM

3.1 Basic Idea: Offline Contextual Bandit

As discussed earlier, the success of the pessimism-based
methods relies crucially on the uniform uncertainty quan-
tification of the Q-function estimation. Existing solutions
require a hyperparameter to properly quantify the degree
of pessimism, whereas the choice of such a parameter can
be difficult. To address this challenge, and to make the
pessimism approach more generally applicable in the of-
fline setting, we propose a data-driven procedure and de-
rive the uniform uncertainty quantification, without requir-
ing specific models or tuning the degree of pessimism when
searching for the optimal decision rules. We first illustrate
our idea through a single-stage contextual bandit problem
in this section, and discuss the dynamic setting of dynamic
treatment regimes in the next section.

Suppose we observe the data Dn = {si, ai, ri}ni=1. Mo-
tivated by Thompson sampling, we propose to model the
conditional reward distribution given the state-action pair
by p(r|s, a, w), and estimate the model parameter w ∈ Rp

under a Bayesian framework. Specifically, we first ap-
ply BML to obtain the posterior distribution p(w|Dn), and
construct a credible set W given the posterior, such that
P (w ∈ W|Dn) ≥ 1 − α, where 1 − α ∈ (0, 1) is the
user-specified coverage rate, which usually takes the fixed
value of 0.9 or 0.95. Next, instead of choosing an action
that maximizes the conditional mean function

f(s, a, w) =

∫
r

p(r|s, a, w)dr,
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with a randomly drawn w as in the online setting, we con-
struct the lower bound of the credible set for f(s, a, w),
denoted by fL(s, a), by solving the following chance con-
straint optimization problem,

minimize
w∈W

f(s, a, w),

subject to P(w ∈ W|Dn) ≥ 1− α.
(3)

Although our credible set is constructed using Bayesian in-
ference, Proposition 1 in Section 4 guarantees that, by the
Bernstein-von Mises theorem, the solution fL(s, a) to (3)
provides a valid asymptotic lower bound for Q(s, a) uni-
formly over (s, a) ∈ S ×A from a frequentist perspective.

Note that the optimization in (3) may not be straightfor-
ward. First, it requires to specify the credible set W that
satisfies the coverage constraint. This can be challenging
for complex nonlinear models where the exact Bayesian
inference is intractable. Second, it can be computationally
difficult to optimize the objective function f(s, a, w) with
the inequality constraint.

To address the first challenge, we adopt the variational
inference approach, and parameterize the posterior func-
tion using a Gaussian distribution N (ŵ, Σ̂). The Gaus-
sian model is correctly specified for BLBM, and provides a
valid approximation for a large number of nonlinear models
(Wang and Blei, 2019). Under the Gaussian approximation,
the posterior distribution of (w− ŵ)⊤Σ̂−1(w− ŵ) follows
a χ2 distribution with the degree of freedom p, based on
which we can easily construct W .

To address the second challenge, we note that it is relatively
straightforward to evaluate the objective function at feasi-
ble points. Therefore, we propose a sampling-based algo-
rithm that first randomly collects N samples from the pos-
terior distribution, denoted as {w1, . . . , wN}. Among these
sampling points, we compare the objective values that sat-
isfy the quadratic constraint in (4), and select the smallest
one, denoted by w∗. This yields the following optimization
problem,

minimize
j∈{1,··· ,N}

f(s, a, wj),

subject to (wj − ŵ)⊤Σ̂−1(wj − ŵ) ≤ χ2
1−α(p),

(4)

where χ2
1−α(p) is the (1−α)th quantile of the χ2 distribu-

tion.

We denote the final solution by f̂L(s, a) = f(s, a, w∗).
Proposition 2 in Section 4 shows that this solution f̂L(s, a)
based on the Gaussian approximation and Monte Carlo
sampling provides a valid uniform lower bound for Q-
function estimation.

Finally, we output the greedy policy with respect to
f̂L(s, a) as π̂(s) ∈ argmaxa∈Af̂L(s, a) for any s ∈ S. We
summarize our procedure in Algorithm 1.

Algorithm 1 Pessimism-based Bayesian learning for of-
fline contextual bandit.
Input: The observed data Dn = {si, ai, ri}ni=1, and the
significance level α.
Step 1: Fit BLBM or BNN on Dn.
Step 2: Compute the posterior distribution p(w|Dn), with
mean ŵ and covariance Σ̂ estimated by BLBM or BNN.
Step 3: Draw N random samples {wi}Ni=1 from p(w|Dn),
and obtain the index set J = {j ∈ [N ] | (wj −
ŵ)⊤Σ̂−1(wj − ŵ) ≤ χ2

1−α(p)}.
Step 4: Choose j∗ = argmin

j∈J
f(s, a, wj). Set w∗ = wj∗ ,

and f̂L(s, a) = f(s, a, w∗).
Step 5: Compute the estimated optimal policy as π̂(s) ∈
argmaxa∈Af̂L(s, a), for any s ∈ S.
Output: A uniform lower bound f̂L, and the estimated
optimal policy π̂.

3.2 Dynamic Treatment Regimes

We next extend our method to the DTR problem, where
the insufficient data coverage becomes more serious as the
number of decision stages increases.

Suppose we observe the data Dn ={
s
(1)
i , a

(1)
i , s

(2)
i , a

(2)
i , . . . , s

(T )
i , a

(T )
i , r

(T )
i

}n

i=1
con-

sisting of i.i.d. realizations of state, action and reward
tuples {S(1), A(1), S(2), A(2), . . . , S(T ), A(T ), R(T )} at
T stages. Denote H(t) = (S(1), A(1), . . . , S(t)) as the
history information up to the decision point t, and its
realization for each instance as h(t)

i for i = 1, . . . , n. Here
we only consider the sparse reward setting commonly seen
in medical applications (Murphy, 2003), but our method
can also be applied when there is an immediate reward
at each decision point. We propose to incorporate our
pessimism-based BML idea at each stage. Specifically, at
the last stage, similar as in single-stage contextual bandit,
we first construct the uniform lower confidence bound
f̂
(T )
L (h(T ), a(T )) for E(R(T )|H(T ) = h(T ), A(T ) = a(T )).

We then obtain the estimated optimal policy at the last
stage as

π̂T (h
(T )) ∈ argmaxa(T )∈A f̂

(T )
L (h(T ), a(T )),

for every hT . Next, to estimate the optimal policy for the
(T −1)-stage, we employ dynamic programming, and con-
struct the pseudo-reward for each instance at the (T − 1)-
stage as

r
(T−1)
i = max

a(T )∈A
f̂
(T )
L (h

(T )
i , a(T )),

for i = 1, . . . , n. We then apply Algorithm 1 again, us-
ing {h(T−1)

i , a
(T−1)
i , r

(T−1)
i }ni=1 to construct the uniform

lower confidence bound f̂
(T−1)
L (h(T−1), a(T−1)) for

E(max
a∈A

f̂
(T )
L (H(T ), a(T ))|H(T−1) = h(T−1), A(T−1) = a)
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Algorithm 2 Pessimism-based Bayesian learning for
multi-stage dynamic treatment regimes.
Input: The observed data Dn =

{s(1)i , a
(1)
i , s

(2)
i , a

(2)
i , . . . , s

(T )
i , a

(T )
i , r

(2)
i }ni=1, the length

of horizon T , and the significance levels α1, . . . , αT .
Initialize f̂T+1

L = 0.
For K = T, T − 1, · · · , 1
Apply Algorithm 1 using the data rearranged as
{si = h

(K)
i , ai = a

(K)
i , ri = r

(K)
i }ni=1, with the

confidence level αK to obtain π̂K with the estimated lower
confidence bound f̂

(K)
L .

State: Construct the pseudo-reward, r
(K−1)
i =

maxa∈A f̂
(K)
L (h

(K)
i , a), for i = 1, . . . , n.

End for.
Output: The estimated optimal policy {π̂t}1≤t≤T .

for every h(T−1) and a. We obtain the estimated optimal
policy at the (T − 1)-stage as

π̂T−1(h
(T−1)) ∈ argmaxa∈A f̂

(T−1)
L (h(T−1), a),

for every h(T−1). We iterate the above process until the
estimated optimal policy of the first stage is obtained. We
summarize our proposed procedure in Algorithm 2. We
also remark that dynamic treatment regimes differ from
MDPs that impose the Markov assumption within each tra-
jectory, in that, in our setting, the Markov assumption can
be violated and the optimal treatment regime at each stage
depends on the full data history.

4 THEORY

We next establish theoretical guarantees for our proposed
method. We focus on the setting of offline contextual ban-
dit of Section 3.1 here, and extend the results to the DRT
setting in Appendix A.1.

We first list a set of regularity conditions. Recall that
p(r|s, a, w) corresponds to the model we impose for the
conditional reward distribution given the state-action pair.

Assumption 1 (i) The realization condition holds, i.e.,
there exists some w0, such that p(r|s, a, w0) is the or-
acle conditional reward density function.

(ii) The parameter space of ω is compact, and
p(r|s, a, w) is continuous and identifiable in ω.

(iii) p(r|s, a, w) is differentiable in quadratic mean at the
oracle parameter w0 with a non-singular Fisher in-
formation matrix.

(iv) The prior measure of w is absolutely continuous in a
neighborhood of w0 with a continuous positive den-
sity at w0.

Assumption 1 imposes the conditions on the parameter
space and smoothness of the conditional density function,
so that we can apply the Bernstein-von Mises theorem, and
in turn establish the asymptotic equivalence between the
derived credible interval and the confidence interval from
the frequentist perspective. These conditions are all mild
and standard in the literature (Kleijn and van der Vaart,
2012; Bickel and Kleijn, 2012; Kim, 2006).

We next obtain the following proposition.

Proposition 1 Suppose Assumption 1 holds. Then,

lim inf
n→∞

P
(
∩(s,a) {fL(s, a) ≤ Q(s, a)}

)
≥ 1− α.

Note that fL(s, a) is the theoretical lower bound obtained
by solving the exact optimization (3) and Q(s, a) =
f(s, a, w0) with the oracle parameter w0 under the realiza-
tion condition in Assumption 1(i). Proposition 1 ensures
that solving (3) is asymptotically equivalent to construct
a valid and uniform lower bound, and thus the validity of
using the Bayesian learning approach for quantifying the
degree of pessimism.

Since the exact optimization (3) is difficult to solve, we next
extend the above proposition to the case where Gaussian
approximation and Monte Carlo sampling are applied to
approximate the lower bound.

Proposition 2 Suppose Assumption 1 holds. Then,

lim inf
n→∞

lim inf
N→∞

P
(
∩(s,a)

{
f̂L(s, a) ≤ Q(s, a)

})
≥ 1− α.

Note that f̂L(s, a) is the lower bound obtained by solving
the surrogate optimization (4). Proposition 2 ensures that
the resulting solution based on the Gaussian approximation
and Monte Carlo sampling provides a valid uniform lower
bound asymptotically.

Finally, we establish the theoretical guarantee that charac-
terizes the average regret of the estimated optimal policy
from Algorithm 1, i.e., the difference between the value
function under the optimal policy and that under the esti-
mated policy.

Theorem 1 Suppose Assumption 1 holds. Then, as
n,N → ∞, with probability at least 1 − α + o(1), the
average regret is upper bounded by

Eπ∗

[
E(R|S,A)− f̂L(S,A)

]
.

Specifically, if we use BLBM with p basis functions for
model fitting, then there exists some constant c̄ > 0, such
that the average regret can be upper bounded by

c̄p1/2n−1/2.
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We note that the expectation Eπ∗ in the regret bound is
taken with respect to the optimal policy π∗. In addition,
the difference within the square brackets measures the esti-
mation error of the Q-function. As such, the average regret
of the proposed policy depends only on the estimation error
of the optimal action’s Q-estimator, instead of the uniform
estimation error of the Q-estimator at each action. The lat-
ter can be much larger without the full coverage assump-
tion. In the case of BLBM, N is not included in the upper
bound since we can explicitly solve optimization (4) with-
out Monte Carlo sampling.

We also remark that our theory can be extended to obtain
finite-sample guarantee as well. As an example, Hipp and
Michel (1976) showed that, under some regularity condi-
tions, the Bernstein-von Mises approximation of the poste-
rior distribution was of the order n−1/2. Following similar
arguments, we can further extend Theorem 1 to obtain a
nonasymptotic probability bound. We provide more details
in Corollary 1 in Appendix A.2.

5 SYNTHETIC DATA ANALYSIS

Simulation Setup. We conduct extensive numerical exper-
iments to investigate the empirical performance of the pro-
posed pessimism-based Bayesian learning method (PBL).
We illustrate our method using both BLBM and BNN. We
also compare with the method of Jin et al. (2021, PEVI),
and a standard Q-learning method using BLBM or BNN
but without pessimism (Non-Pessi).

We consider both a single-stage contextual bandit setting
and a two-stage DTR setting. In the two-stage setting,
since a linear Q-function model is likely to be misspeci-
fied in backward induction, we did not implement BLBM
under this setting. For both settings, we consider two
data generating processes, with linear and nonlinear Fried-
man signals (see e.g., Zhao et al., 2017), respectively.
We generate all actions by the ϵ-greedy policy, with ϵ ∈
{0.95, 0.85, 0.75, 0.5}, and a smaller ϵ indicating a larger
coverage over the state-action distribution. We choose the
sample size n from {500, 1000, 1500, 2000, 2500, 3000},
and repeat each experiment 50 times. More details of the
data generation and implementations are given in the Ap-
pendices C.1, C.2 and C.3. To implement PEVI, we choose
the hyperparameter c from {1, 2, 5, 10}. We also conduct
a sensitivity analysis by varying a number of parameters
in Appendix C.4, including the number of Monte Carlo
samples N , the number of ensembles M for the MC gra-
dient computation in variational inference, and the signif-
icance level α. We find that our method is not overly
sensitive to those parameters as long as they are in a rea-
sonable range. We make our code publicly available at
https://github.com/yunzhe-zhou/PBL.

Results. Figure 2 reports the results for the single-stage
contextual bandit setting under the linear and nonlinear

signals, whereas Figure A2 in Appendix C.5 reports the
results for the two-stage DTR setting. It is clearly seen
from these plots that both our proposed PBL and the PEVI
method outperform the standard Q-learning method when
ϵ ≥ 0.75 and the coverage assumption is seriously vio-
lated, demonstrating the advantage of the pessimism princi-
ple. Nevertheless, for the single-stage setting when ϵ = 0.5
and the coverage is of less concern, PEVI over-penalizes
the Q-function, leading to a large regret. By contrast, our
proposed method performs comparably to the standard Q-
learning algorithm in this setting. For the two-stage setting,
our proposed method based on BNN outperforms PEVI in
all cases. This is because PEVI uses a linear function ap-
proximation. The linearity assumption is likely to be vio-
lated in backward induction, leading to sub-optimal poli-
cies.

6 REAL DATA APPLICATION

We illustrate our method with the MIMIC-III v1.4 dataset
that contains critical care data for over 40,000 patients from
the Beth Israel Deaconess Medical Center between 2001
and 2012 (Johnson et al., 2016). Following the analysis of
Raghu et al. (2017), we define a 5× 5 action space by dis-
cretizing both medical interventions intravenous (IV) fluid
and maximum vasopressor (VP) dosage into 5 levels. We
define the reward as the negative value of the SOFA score
that measures the organ failure of the patients (Lambden
et al., 2019), so a larger reward is better. We consider the
state space with 47 physiological features, including the de-
mographics, lab values, vital signs, and intake and output
events. We construct two datasets, one for single–stage
contextual bandit, and the other for two-stage DTR. We
randomly split each data into a training set and a testing
set with equal sample size. We apply our algorithm to the
training data and use BNN to fit the Q-function. We did
not use BLBM or apply PEVI to this data, since the asso-
ciations between the features and rewards are expected to
be highly complex and nonlinear (Raghu et al., 2017). We
compare our proposed PBL method with the standard Q-
learning method based on BNN without using pessimism,
as well as the conservative Q-learning (CQL) method im-
plemented via the d3rlpy package at its default setting.

Figure 3 reports the frequencies of the assigned treatments,
in terms of heatmaps, given by the physicians, the proposed
PBL, and the standard Q-learning method (Non-Pessi). For
each heatmap, the axis labels show different levels of each
action, where 0 represents no drug is given, and a nonzero
value corresponds to the dosage of the IV fluid or VP. It can
be seen from the plot that the physicians tended to prescribe
no vasopressor to patients, but often considered IV fluids
with various dosages. Meanwhile, the policy produced by
our pessimism-based method tends to recommend treat-
ment 0 or 4 for IV fluids and treatment 0 for VP, which
is consistent with physicians’ recommendations to some

https://github.com/yunzhe-zhou/PBL
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(a) Linear Signal

(b) Nonlinear Signal

Figure 2: The single-stage contextual bandit simulation with linear and nonlinear signals. The methods compared include
the proposed PBL method, the PEVI method of Jin et al. (2021), and the standard Q-learning method without pessimism,
each of which using BLBM and BNN.

extent. Moreover, we use 5-fold cross-validation and ap-
ply the importance sampling method (Zhang et al., 2013)
to evaluate the average reward under the estimated optimal
policies produced by the proposed PBL, the standard Q-
learning and CQL. Figure 4 reports the results. It is seen
that PBL achieves the highest average award among the
three methods, demonstrating the competitive performance
of our method in this real data application.

7 DISCUSSIONS

In this article, we develop a novel pessimism-based
Bayesian learning approach for offline optimal dynamic
treatment regimes. We propose to combine the pessimism
principle with Thompson sampling and Bayesian machine
learning to optimize the degree of pessimism. Theoreti-
cally, we derive the upper bound for the regret of the pro-
posed method, and obtain its explicit form in a specific case

of a parametric model. Empirically, we develop a highly
efficient and scalable computational algorithm based on
variational inference. We also conduct extensive numer-
ical experiments to illustrate the superior performance of
our method. In terms of potential limitations of our pro-
posed method, since it requires a large number of Monte
Carlo samples, it can be computationally intensive, espe-
cially when the model dimension is large. How to further
improve the computational efficiency warrants future re-
search. In addition, it is of interest to extend our theoretical
results that take the model misspecification and approxi-
mation errors into consideration, and we leave it as future
research.
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A ADDITIONAL THEORETICAL RESULTS

A.1 Theory for Dynamic Treatment Regimes

We first generalize our theoretical guarantee for the DTR setting. We introduce the following notation. For any
K = 1, 2, . . . , T − 1, let f (K)(hK , aK , w) denote the model at stage K used to fit the response of pseudo-reward
maxa(K+1) f̂

(K+1)
L (h(K+1), a(K+1)). For K = T , let f (T )(hT , aT , w) denote the model at final stage T for fitting

E(R(T )|H(T ) = h(T ), A(T ) = a(T )). Denote p(K)(r|hK , aK , w) as the conditional density of the pseudo-reward given
the history information under the model f (K)(hK , aK , w), such that

f (K)(hK , aK , w) =

∫
r

p(K)(r|hK , aK , w)dr,

We consider the following assumption for K = 1, 2, . . . , T :

Assumption A1 (i) The realization condition holds, i.e., there exists some w(K)
0 , such that p(K)(r|hK , aK , w

(K)
0 ) is the

oracle conditional pseudo-reward density function.

(ii) The parameter space of ω is compact, and p(K)(r|hK , aK , w) is continuous and identifiable in ω.

(iii) p(K)(r|hK , aK , w) is differentiable in quadratic mean at the oracle parameter w
(K)
0 with a non-singular Fisher

information matrix.

(iv) The prior measure of w is absolutely continuous in a neighborhood of w(K)
0 with a continuous positive density at

w
(K)
0 .

Assumption A2 Suppose the data used for fitting f̂ (K) for K = 1, . . . T are independent.

Assumption A1 is similar as Assumption 1, but extends to multiple stages. Assumption A2 imposes the cross-fitting
condition to simplify our theoretical analysis. Without such an independence assumption, we need to impose certain
entropy condition on the function class to prove Theorem A1 (Vaart and Wellner, 1996).

We next obtain the following proposition, and show that the f̂
(K)
L (hK , aK) based on the Gaussian approximation and

Monte Carlo sampling provides a valid uniform lower bound from the frequentist perspective.

Proposition A1 Suppose Assumptions A1 and A2 hold. Then,

lim inf
n→∞
N→∞

P
(
∩(hK ,aK)

{
f̂
(K)
L (hK , aK) ≤ Q(K)(hK , aK)

})
≥ 1− α.

Finally, we establish the theoretical guarantee that characterizes the average regret of the estimated optimal policy from
Algorithm 2.

Theorem A1 Suppose Assumptions A1 and A2 sequentially hold for each stage K. Suppose the significance level αK =
α/T is set following the Bonferroni correction. Then, as n,N → ∞, with probability at least 1 − α + o(1), the average
regret is upper bounded by

T∑
K=1

Eπ∗

[
E(RK |HK , AK)− f̂

(K)
L (HK , AK)

]
.

Specifically, if we use BLBM with p basis functions for model fitting, then there exists some constant c̄ > 0, such that the
average regret can be upper bounded by

c̄T p1/2n−1/2.
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A.2 Finite-sample Guarantee for Contextual Bandit

We next extend our theory to obtain the finite-sample guarantee for contextual bandit. As an example, following similar
arguments in analyzing the Bernstein-von Mises approximation (Hipp and Michel, 1976), we can show that the statement
of Theorem 1 holds with probability at least 1−α−Cn−1/2, for some positive constant C that depends on the number of
parameters p only. This yields a non-asymptotic probability upper bound as follows.

Corollary 1 Suppose Assumption 1 holds. Then, as N → ∞, with probability at least 1−α−Cn−1/2, the average regret
is upper bounded by

Eπ∗

[
E(R|S,A)− f̂L(S,A)

]
.

where C is a positive constant that depends on the number of parameters p.

B PROOFS

We provide the proofs for Proposition A1 and Theorem A1 in Appendix A.1. By setting T = 1 as a special case, we obtain
the proofs for Proposition 2 and Theorem 1 in Section 4.

B.1 Proof of Proposition A1

Denote H as the space for the history information. By definition that f (K)(hK , aK , w) is the model at stage K used to
fit the response maxa(K+1) f̂

(K+1)
L (h(K+1), a(K+1)), for any K = 1, 2, . . . , T − 1, and by (3), we know that, for any

(hK , aK) ∈ H ×A and w ∈ W ,

P
({

w : ∀(hK , aK) ∈ H ×A, f
(K)
L (hK , aK) ≤ f (K)(hK , aK , w)

}
| Dn

)
≥ P(w ∈ W | Dn) ≥ 1− α.

For Q(K)(hK , aK) = f (K)(hK , aK , w
(K)
0 ), we obtain that

P
(
∩(hK ,aK)

{
f
(K)
L (hK , aK) ≤ Q(K)(hK , aK)

}
| Dn

)
≥ 1− α.

Recall the assumptions that the parameter space is compact, and the likelihood function p(K)(r|hK , aK , w) is continuous
and identifiable in w. Furthermore, recall that p(K)(r|hK , aK , w) is differentiable in quadratic mean at w(K)

0 with non-
singular Fisher information matrix, and the prior measure of w is absolutely continuous in a neighborhood of w(K)

0 with a
continuous positive density at w(K)

0 . Then, by Corollary 7 of Wang and Blei (2019), we have that

lim inf
n→∞

P
(
∩(hK ,aK)

{
f
(K)
L (hK , aK) ≤ Q(K)(hK , aK)

})
≥ 1− α.

Denote wopt = minimize
w∈W

f (K)(hK , aK , w), subject to P(w ∈ W|Dn) ≥ 1 − α, which is the solution to the optimization

problem in (3) for a given aK and hK . Let δ > 0 be a positive constant, such that |wopt,j − wj | ≤ δ for j ∈ {1, 2, . . . , p},
and the value of δ will be determined later. Since f is Lipschitz continuous in w, there exists a constant L > 0, such that,
for ∀(hK , aK) ∈ H ×A,

|f (K)(hK , aK , wopt)− f (K)(hK , aK , w)| ≤ L||wopt − w||2 ≤ L
√
pδ.

Considering the interval Ij = [wopt,j − δ, wopt,j + δ], we have that

P (wj ∈ Ij | Dn) =

∫
Ij

p(wj |Dn)dwj .

In our method, we adopt a Gaussian distribution to approximate the posterior distribution. Hence, p is Lipschitz continuous
in wj for a given mean and a given covariance matrix. Thus, we can find some constants c1, c2 > 0, such that

c1δ ≤ P (wj ∈ Ij | Dn) ≤ c2δ.
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This implies that

P

 ⋂
hK ,aK

{
|f (K)(hK , aK , wopt)− f (K)(hK , aK , wj)| ≤ L

√
pδ
}

| Dn

 ≥ (c1δ)
p.

Since we randomly generate N samples from the posterior distribution of w and select the one that minimizes f , with some
calculations, we have that

P
(
|f (K)(hK , aK , wopt)− f (K)(hK , aK , w∗)| ≤ L

√
pδ | Dn

)
≥ 1− [1− (c1δ)

p]N .

Letting δ = N−1/(2p), we obtain that

lim inf
N→∞

P
(
|f (K)(hK , aK , wopt)− f (K)(hK , aK , w∗)| ≤ ϵ | Dn

)
= 1 (5)

for any ϵ. From Proposition 1, we know that

P
(
∩(hK ,aK)

{
f (K)(hK , aK , wopt) ≤ Q(K)(hK , aK)

}
| Dn

)
≥ 1− α.

Combining it with (5), we obtain that, for any ϵ,

lim inf
N→∞

P
(
∩(hK ,aK)

{
f̂
(K)
L (hK , aK) ≤ Q(K)(hK , aK) + ϵ

}
| Dn

)
≥ 1− α,

where f̂L(hK , aK) = f (K)(hK , aK , w∗). Since ϵ can be chosen arbitrarily small, we have that

lim inf
N→∞

P
(
∩(hK ,aK)

{
f̂
(K)
L (hK , aK) ≤ Q(K)(hK , aK)

}
| Dn

)
≥ 1− α,

By Corollary 7 of Wang and Blei (2019), we have

lim inf
n→∞

lim inf
N→∞

P
(
∩(hK ,aK)

{
f̂
(K)
L (hK , aK) ≤ Q(K)(hK , aK)

})
≥ 1− α.

B.2 Proof of Theorem A1

In Algorithm 2, we employ dynamic programming and construct the pseudo-reward, R
(K)
i =

maxaK+1∈A f̂
(K+1)
L (h

(K+1)
i , aK+1), for each instance at the Kth stage, K = 1, 2, . . . , T − 1. Define the event

ΩK =
{
f̂
(K)
L (hK , aK) < E(RK |HK = hK , AK = aK), ∀(hK , aK) ∈ H ×A

}
.

for K = 1, 2, . . . , T . Define the joint event as Ω =
⋂T

K=1 ΩK .

By Proposition A1, we can show that P(ΩK) ≥ 1−α/T+o(1) as both n and N approach infinity for any K = 1, 2, . . . , T .
Then with the Bonferroni correction, we have that P(Ω) ≥ 1−α+ o(1) when n and N approach infinity. Let ET (R; s(1))
denote the average regret given the initial state s(1). Then we decompose the average regret into three components as
follows:

ET (R; s(1)) =

T∑
K=1

{
−Eπ̂[ηK(hK , aK)|H1 = s(1)]︸ ︷︷ ︸

(i)

+Eπ∗ [ηK(hK , aK)|H1 = s(1)]︸ ︷︷ ︸
(ii)

+

Eπ∗ [⟨f̂L(hK , aK), π∗(·|hK)− π̂(·|hK)⟩A|H1 = s(1)]︸ ︷︷ ︸
(iii)

}

where ηK(hK , aK) = E(RK |HK = hK , AK = aK)− f̂
(K)
L (hK , aK) is the model evaluation error.

We start with the last stage K = T and do backward induction. We first note that, since π̂ is greedy with respect to
f̂
(T )
L (h, a), the optimization error (iii) is non-positive. So it can be directly removed from the bound. Next, we consider

the error term (i). Under event ΩK , we have that

0 ≤ η(hT , aT ) = E(RT |HT = hT , AT = aT )− f̂
(T )
L (hT , aT )
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Thus, we obtain that

−Eπ̂[η(hT , aT )|H1 = s(1)] ≤ 0

We repeat the same produce for K = T − 1, . . . , 1, and under each event ΩK , we obtain that

−Eπ̂[η(hK , aK)|H1 = s(1)] ≤ 0

Eπ∗ [⟨f̂L(hK , aK), π∗(·|hK)− π̂(·|hK)⟩A|H1 = s(1)] ≤ 0

Combining the inequalities above, we have that, under the event Ω,

−
T∑

K=1

Eπ̂[η(hK , aK)|H1 = s(1)] ≤ 0

T∑
K=1

Eπ∗ [⟨f̂L(hK , aK), π∗(·|hK)− π̂(·|hK)⟩A|H1 = s(1)] ≤ 0

which implies that

ET (R; s(1)) ≤
T∑

K=1

Eπ∗

[
E(RK |HK = hK , AK = aK)− f̂

(K)
L (hK , aK)|H1 = s(1)

]
.

Taking the integral over the randomness of s(1) on both sides, as n,N → ∞, with probability at least 1 − α + o(1), we
can upper bound the average regret by

T∑
K=1

Eπ∗

[
E(RK |HK , AK)− f̂

(K)
L (HK , AK)

]
.

For the specific case of BLBM, we have that

ET (R; s(1)) ≤
T∑

K=1

Eπ∗

[
E(RK |HK , AK)− f̂

(K)
L (HK , AK)

]
≤

T∑
K=1

Eπ∗

[
E(RK |HK , AK)− f

(K)
L (HK , AK) + f

(K)
L (HK , AK)− f̂

(K)
L (HK , AK)

]
≤

T∑
K=1

Eπ∗

[
E(RK |HK , AK)− f

(K)
L (HK , AK)

]
︸ ︷︷ ︸

(I)

+

T∑
K=1

Eπ∗

[
f
(K)
L (HK , AK)− f̂

(K)
L (HK , AK)

]
︸ ︷︷ ︸

(II)

where (II) is 0 if we directly solve the optimization problem (4) without Monte Carlo sampling. By Corollary 7 of Wang
and Blei (2019) and the Lipschitz continuous condition for f (K), we have that

(I) ≤ ζ1−αTEπ∗
[
ϕT (HK , AK)Λ−1

K ϕ(HK , AK)
]
+ o(n−1/2)

≤ ζ1−αT

√√√√ p∑
j=1

1

cn
+ o(n−1/2)

≤ c′ζ1−αTp
1/2n−1/2,

where ζ1−α is the 1− α percentile of the standard normal distribution, and Λ−1
K =

∑n
i=1 ϕ(HK,i, AK,i)ϕ

T (HK,i, AK,i).

Therefore, we obtain that

ET (R; s(1)) ≤ c̄T p1/2n−1/2.

for some constant c̄.
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C ADDITIONAL NUMERICAL RESULTS

C.1 Data Generation for One-Stage Contextual Bandit

We first outline the details of our data generation for one-stage contextual bandit.

• Linear Signal:

r(s, a) =

{
0.2s1 + 0.25s2 + 0.3s3 + 0.1z if a = 1
0.25s1 + 0.3s2 + 0.35s3 + 0.1z if a = 2

where z ∼ Normal(0, 1). We draw s ∈ R3 with si ∼ Normal(0, 1) for i = 1, 2, 3. For each state s, we denote
a∗ = argmax

a
E[r(a, s)], and generate a with the probability P (a = a∗) = 1 − ϵ, where E is taken with respect to

the randomness of the reward function.

• Nonlinear Signal: We define two transformation functions,

f1(s) = [0.1 exp(4s1) + 4/(1 + exp(−20(s2 − 0.5))) + 3s3 + 2s4 + s5]/2.5,

f2(s) = [0.12 exp(4s1) + 4.8/(1 + exp(−20(s2 − 0.5))) + 3.6s3 + 2.4s4 + 1.2s5]/2.5,

r(s, a) =

{
f1(s) + 0.1z if a = 1
f2(s) + 0.1z if a = 2

,

where z ∼ Normal(0, 1). We draw s ∈ R5 with si ∼ Uniform[0, 1] for i = 1, 2, 3, 4, 5. We generate the actions in
the same way as for the linear signal.

C.2 Data Generation for Two-Stage DTR

We next outline the details of our data generation for two-stage DTR.

• Linear Signal: We define two transformation functions,

f1(s) = 0.2s1 + 0.25s2 + 0.3s3,

f2(s) = 0.25s1 + 0.3s2 + 0.35s3.

We first randomly generate the coefficient matrix W1 ∈ R2×3 with each entry independently drawn from
Normal(0, 1). We then define W2 = W1 + 0.05, where the sum calculation is element-wise. We fix W1 and W2.
For each replication, we draw the state at the first stage as s(1) = (s

(1)
1 , s

(1)
2 )T ∈ R2×1 with s

(1)
i ∼ Normal(0, 1) for

i = 1, 2. Suppose that the action of the first stage is chosen as a(1), then we generate the state at the second stage as{
s(2) = WT

1 s(1) + z if a(1) = 1
s(2) = WT

2 s(1) + z if a(1) = 2
,

where z = (z1, z2, z3)
T ∈ R3×1, and zi ∼ Normal(0, 1) for i = 1, 2, 3. Suppose that we get a(2) as the action of the

second stage. We generate the reward as{
r(s, a) = f1(s) + 0.1z′ if a(2) = 1
r(s, a) = f2(s) + 0.1z′ if a(2) = 2

, where z′ ∼ Normal(0, 1) for i = 1, 2, 3.

To generate the action of the first stage, we introduce the notation,

g(s(1), a(1)) = max
a(2)

Er,s(r(s
(2), a(2)))

a(1)∗ = argmax
a(1)

Es[g(s
(1), a(1))]

where Er,s is taken over the randomness of the noise of the reward function and of the generation of the state s(2),
and Es is only taken over the randomness of the generation of the state s(2). We generate a(1) with the probability
distribution of P (a(1) = a(1)∗) = 1− ϵ, where ϵ is a fixed greedy parameter.
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To generate the action of the second stage, we define

a(2)∗ = argmax
a(2)

Er(r(s
(2), a(2))),

where Er is taken with respect to the randomness of the reward function. We then generate a(2) with the probability
distribution of P (a(2) = a(2)∗) = 1− ϵ.

• Nonlinear Signal: We define two transformation functions,

f1(s) = [0.1 exp(4s1) + 4/(1 + exp(−20(s2 − 0.5))) + 3s3 + 2s4 + s5]/2.5,

f2(s) = [0.12 exp(4s1) + 4.8/(1 + exp(−20(s2 − 0.5))) + 3.6s3 + 2.4s4 + 1.2s5]/2.5.

We first randomly generate the coefficient matrix W1 ∈ R2×5 with each entry independently drawn from
Normal(0, 1). We then define W2 = W1 + 0.05, where the sum calculation is element-wise. We fix W1 and W2.
For each replication, we draw the state at the first stage as s(1) = (s

(1)
1 , s

(1)
2 )T ∈ R5×1 with s

(1)
i ∼ Normal(0, 1) for

i = 1, 2, 3, 4, 5. Suppose that the action of the first stage is a(1), then we generate the state at the second stage as{
s(2) = WT

1 s(1) + z if a(1) = 1
s(2) = WT

2 s(1) + z if a(1) = 2
,

where z = (z1, z2, z3, z4, z5)
T ∈ R3×1, and zi ∼ Normal(0, 1) for i = 1, 2, 3, 4, 5. Suppose that we get a(2) as the

action of the second stage. We generate the reward as{
r(s, a) = f1(s/10) + 0.1z′ if a(2) = 1
r(s, a) = f2(s/10) + 0.1z′ if a(2) = 2

, where z′ ∼ Normal(0, 1) for i = 1, 2, 3, 4, 5,

where s/10 is calculated in an element-wise fashion. We generate the actions in the same way as for the linear signal.

C.3 Implementation Details and Computing Time

For BLBM, we use the RBFSampler function under its default setting in the sklearn package to generate basis with random
Fourier features. For BNN, we use a two-layer neural network with 16 hidden units at each layer, and the ReLU activation
function. We use SGD for optimization, with the learning rate 10−4. We set the number of training epochs at 500, the batch
size at 100, the number of Monte Carlo samples for gradient descent at 5, and the number of samples from the posterior
distribution at 10000. We use savio htc cluster for all the computations. For BLBM, it takes about 1.5 seconds to run for
one replication on one CPU for the single-stage setting, and about 25 seconds for the two-stage setting. For BNN, it takes
about 3 minutes for the single-stage setting, and about 20 minutes for the two-stage setting. We use multiple CPUs for
parallelization.

C.4 Sensitivity Analysis

We conduct a sensitivity analysis by varying a number of parameters in our method, including the number of Monte Carlo
samples N , the number of ensembles M for the MC gradient computation in variational inference, and the significance
level α. We adopt the single-stage contextual bandit setting with a linear signal. Figure A1 reports the results. It is seen
that our method is not overly sensitive to those parameters, as long as they are in a reasonable range. To the contrary, PEVI
is sensitive to the choice of the parameter c, as shown in Figures 2 and A2.

C.5 Plot for Two-Stage DTR

Figure A2 reports the simulation results for the two-stage DTR setting.



Optimizing Pessimism in Dynamic Treatment Regimes: A Bayesian Learning Approach

Figure A1: Sensitivity analysis for the single-stage contextual bandit simulation with a linear signal.

(a) Linear Signal

(b) Nonlinear Signal

Figure A2: The two-stage DTR simulation with linear and nonlinear signals. The methods compared include the proposed
PBL method, the PEVI method of Jin et al. (2021), and the standard Q-learning method without pessimism, each of which
using BLBM and BNN.
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