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This study explores the usefulness of covariates on equating test scores from

nonequivalent test groups. The covariates are captured by an estimated pro-

pensity score, which is used as a proxy for latent ability to balance the test

groups. The objective is to assess the sensitivity of the equated scores to various

misspecifications in the propensity score model. The study assumes a para-

metric form of the propensity score and evaluates the effects of various mis-

specification scenarios on equating error. The results, based on both simulated

and real testing data, show that (1) omitting an important covariate leads to

biased estimates of the equated scores, (2) misspecifying a nonlinear rela-

tionship between the covariates and test scores increases the equating standard

error in the tails of the score distributions, and (3) the equating estimators

are robust against omitting a second-order term as well as using an incorrect

link function in the propensity score estimation model. The findings demonstrate

that auxiliary information is beneficial for test score equating in complex

settings. However, it also sheds light on the challenge of making fair

comparisons between nonequivalent test groups in the absence of common

items. The study identifies scenarios, where equating performance is acceptable

and problematic, provides practical guidelines, and identifies areas for further

investigation.

Keywords: test score equating; kernel equating; nonequivalent groups; propensity

scores; model misspecification

1. Introduction

Test score equating is a crucial statistical tool that enables the comparison of

test scores from different test forms and ensures fairness in assessments
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(González & Wiberg, 2017). When equating scores from nonequivalent test

groups, it is essential to account for differences in both the ability levels of the

test groups and the difficulty of the test forms. To make the scores comparable,

any differences in ability and difficulty must be separated, so that the scores are

only adjusted for differences in difficulty. For this purpose, testing programs

generally apply either an assumption of common test-takers or the use of com-

mon items. The former assumes that the test groups to be equated are random

samples from the same underlying population, whereas the latter views the

groups as samples from different populations. In the latter case, a subset of

common items is used to adjust for the differences in ability between the test

groups. These common items are often referred to as anchor items and the

belonging data collection design is known as the Nonequivalent Groups With

Anchor Test (NEAT) design (von Davier et al., 2004b). However, not all testing

programs have common items available but still need to adjust for ability imbal-

ances. Examples of such tests are the Invalsi test (Invalsi, 2013), the Armed

Services Vocational Aptitude Battery (Quenette et al., 2006), and the Swedish

Scholastic Aptitude Test (SweSAT; Stage & Ögren, 2004) up until recently. If

the ability imbalances are ignored, the equated test scores will be biased, which

can have severe consequences in high-stakes testing scenarios.

One way of applying a nonequivalent groups design without anchor items is to

use background information about the test takers in the form of measured cov-

ariates (Wiberg & Bränberg, 2015). There are several ways that covariates can be

utilized within equating. Kolen (1990), Cook et al. (1990), and Wright and

Dorans (1993) used covariates to balance the test groups before equating the test

forms, Liou et al. (2001) applied covariates in a similar fashion to anchor items,

Bränberg and Wiberg (2011) incorporated covariates in linear equating, and Hsu

et al. (2002) used covariates within item response theory (IRT) true-score equat-

ing. However, as the covariate vector grows, controlling for the covariates

quickly becomes very difficult. For example, conditioning on four categorical

covariates, each with four categories, yields 256 possible outcomes. The matrix

of all possible combinations of test scores and covariate realizations would

therefore have an inflated number of empty cells. To overcome this problem,

the test-takers can be compared on their propensity score instead, which is a

scalar function of the covariates.

Livingston et al. (1990) was the first to propose the use of covariates within a

propensity score for equating. More recently, Moses et al. (2010) explored the

use of two anchor tests within a propensity score, Powers (2010) applied chained

equating (CE) frequency estimation, IRT true score, and observed-score equating

using propensity scores, Haberman (2015) used propensity scores to create pseu-

doequivalent groups from nonequivalent groups, and Longford (2015) used it as

a tool for matching before equating. Wallin and Wiberg (2019) were the first to

propose propensity scores for both a poststratification equating (PSE) and CE

estimator within the kernel equating framework (von Davier et al., 2004b). Their
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results showed that a similar level of precision and accuracy compared to

the NEAT design could be achieved. However, their results were based on the

assumption that the propensity score was known. Since this will never be the case

in any real testing situation, it is of great importance to assess the sensitivity of

violations of this assumption. Thus, the aim is to study the functional form of the

propensity score through which the covariates are conditioned on and investigate

how sensitive the equated scores are to model misspecification of the estimated

propensity score using both real and simulated data.

Propensity score model misspecification has previously been studied within

the field of causal inference. Drake (1993) showed that a substantial bias was

introduced when estimating the average treatment effect if a confounding cov-

ariate was omitted in the propensity score estimation model. Dehejia and Wahba

(1999) had similar findings but also noted that causal estimates were not sensitive

to the specification of the functional form of the propensity score, once all

important covariates had been included. This has been shown in more recent

studies as well, where Waernbaum (2010, 2012) showed that the average treat-

ment effect can be unbiasedly estimated using propensity scores even when, for

example, the link function is misspecified or when failing to include higher order

terms of the covariates. There were furthermore situations with no efficiency

loss, and one of the key components to obtain such results was that the true

propensity score was a function of the misspecified model.

There are currently no existing studies on propensity score model misspeci-

fication in the equating context. This is critical to examine since the equating

results often are used for decision-making on an individual level (e.g., admission

decisions to universities) and for educational policy making. The current study

therefore investigates the sensitivity of the equating function for model misspe-

cification of the propensity score. Assuming a parametric model for the propen-

sity score, three misspecifications are considered, inspired by the studies of

Waernbaum (2010) and Waernbaum (2012): (1) misspecifying the link function,

(2) excluding an important (true confounder) covariate, and (3) excluding a

higher order moment of a confounding covariate. Each misspecification will

be evaluated in terms of the equating function precision and accuracy to deter-

mine how critical they are.

The structure of this article is as follows. The kernel equating framework is

introduced in Section 2, followed by an introduction to propensity scores in

Section 3. Section 4 includes an empirical illustration, and Section 5 presents

a simulation study. This article is concluded with a discussion of the results

together with some practical guidelines.

2. Kernel Equating

We denote the new test form by X and the old test form by Y and their

respective scores by X and Y. The realizations of X and Y are denoted xj,
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j ¼ 1; . . . ; J , and yk, k ¼ 1; . . . ;K. The test-takers receiving test form X are

viewed as a random sample from population P, and the test-takers receiving test

form Y as a random sample from population Q. With randomly sampled groups,

the score variables X and Y are considered being random variables with sample

spaces X and Y. An equating function thus maps the test scores from X to Y.

However, not all such functions are considered an equating function. See Kolen

and Brennan (2014) for a list of requirements.

Consider the random variable x ¼ FðX Þ, which is well-known to follow a

uniform distribution on the interval ½0; 1�, given that F is a continuous and strictly

increasing cumulative distribution function (CDF). It is consequently true that

V ¼ G�1ðxÞ exactly follows the distribution given by G, as long as G has a

properly defined inverse. The equipercentile function (Braun & Holland, 1982)

is undoubtedly the most common equating function and uses this simple rela-

tionship between distributions of continuous random variables. With GT and FT

denoting the CDFs of Y and X on the target population T for the equating para-

meter, the equipercentile equating function is defined as

jðxÞ ¼ G�1
T ðFT ðxÞÞ: ð1Þ

The equipercentile function thus matches all of the moments of Y by matching

the scores from X and Y that are at the same quantile of their respective distribu-

tions, that is

FT ðxÞ ¼ u ¼ GT ðyÞ; u 2 ð0; 1Þ: ð2Þ

However, since most test scores are discrete, their CDFs are not continuous

but step functions. Hence, for any value u 2 ð0; 1Þ, it is rarely the case that

there are two scores x and y that satisfy Equation 2. All test score equating

methods that utilize the equipercentile function in (1) therefore need to resolve

this issue.

Since kernel equating (Holland & Thayer, 1989; von Davier et al., 2004b)

generalizes many of the most common and modern equating approaches, we

present our theory in terms of this framework although the proposed method is

applicable for example traditional equipercentile and linear equating as well.

This framework consists of five steps: (1) fitting a regression model (typically

a log-linear model) to the empirical score distributions, (2) estimating the test

score probabilities on the target population based on the estimated model in

Step 1 and given the data collection design, (3) making continuous approxima-

tions to the estimated discrete score distributions from Step 2, (4) equating the

test scores using the equipercentile function, and (5) evaluating the estimated

equating function (González & Wiberg, 2017; von Davier et al., 2004b). From

Equation 1, it is clear that in order to estimate jð�Þ, we need estimators of FT and

GT. Kernel equating first uses the maximum likelihood estimates of the test

score probabilities rj ¼ PðX ¼ xjÞ and sk ¼ PðY ¼ ykÞ and then makes contin-

uous approximations of these distributions using kernel functions. It is thus a
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semiparametric method of estimating the equating function jð�Þ. For this pur-

pose, we define the joint distribution of ðX ;AÞ and ðY ;AÞ, where A denotes a

proxy variable for the latent ability that the test is constructed to measure.

Typically, A represents an anchor test score, but as will be presented in the next

section, we will instead consider a set of covariates that are gathered in a pro-

pensity score. Let P ¼ fpjlgJ�L, where pjl ¼ PrðX ¼ xj;A ¼ aljPÞ, j ¼ 1; . . . ; J

and l ¼ 1; . . . ; L. Letting pl ¼ ðp1l; . . . ; pJlÞT , we vectorize the matrix P, such

that the vectors pl, l ¼ 1; . . . ; L, are stacked onto each other. We denote this

by vðPÞ. For details, see von Davier et al. (2004b). It is common practice to fit a

log-linear model to the data to reduce sampling variance, so we will assume

that vðPÞ can be described by a log-linear model with R number of free

parameters:

logðvðPÞÞ ¼ �þ uþ BT �; ð3Þ

where a is a normalizing constant, u is a known constant of length J that

specifies the null model when � ¼ 0, B ¼ ðb1; . . . ; bJ Þ is a matrix of

dimension R� J of known constants, and � is a R-dimensional vector of

unknown parameters. Equivalent model assumption is made for vðQÞ ¼
ðq1; . . . qLÞT , where Q ¼ fqjlgJ�L, qjl ¼ PrðY ¼ yj;A ¼ aljQÞ, j ¼ 1; . . . ; J and

l ¼ 1; . . . ; L. The model parameters in (3) are estimated through maximum

likelihood.

The next step is to estimate the score probabilities r ¼ ðr1; . . . ; rJ ÞT and

s ¼ ðs1; . . . ; sKÞT , where r and s are functions of vðPÞ and vðQÞ, respectively,

and of a design function that depends on the choice of data-collection design and

equating estimator. We will save the introduction of necessary assumptions for

Section 3, where two propensity score-based estimators are presented. For now,

we assume that legitimate estimators of r and s are available. We also choose to

present the required quantities only for the X scores since the expressions for the

Y scores are given by corresponding formulas.

Let the mean and variance of X be denoted by ðmX ;s
2
X Þ, and let V denote a

continuous random variable, such that EðVÞ ¼ 0 and VðVÞ ¼ s2
V . Lastly, let

a2
X ¼

s2
X

s2
X þ s2

V h2
X

;

where hX > 0 denotes a smoothing parameter from here on referred to as the

bandwidth. With the introduced notation, we define a new random variable ~X by

constructing a linear combination of X, hX, and V. This will serve as a continuous

version of X:

~X ¼ aX ðX þ hX VÞ þ ð1� aX ÞmX :
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The random variable ~X is defined, such that Eð ~X Þ ¼ EðX Þ ¼ mX and

Vð ~X Þ ¼ VðX Þ ¼ s2
X . To define the CDF of ~X , let KV ð�Þ denote the kernel func-

tion of V. It is then straight-forward to show that the CDF of ~X is equal to

F ~X ðxÞ ¼ Pð ~X � xÞ ¼
X

j

rjKV

x� aX xj � ð1� aX ÞmX

aX hX

� �
: ð4Þ

In most studies of kernel equating, the function KV ð�Þ is set to the standard

normal CDF Fð�Þ, although other choices have been suggested (Lee & von

Davier, 2011). In the empirical illustration of this study, the Gaussian kernel

function is used although the proposed estimators can be used together with any

other proper kernel function. Since F ~X is a function of the quantities mX , sX , and

aX, which in turn all are a function of r, every component needed to estimate

the continuized score CDFs, except for the bandwidth hX, is available after

estimating r.

The bandwidth hX determines the degree of smoothness of the score distribu-

tion F ~X and is often selected by minimizing certain criterion function. The most

commonly used criterion, first suggested in von Davier et al. (2004b), is given by

QðhX Þ ¼
X

j

ðr̂ j � f̂ ~X ðx; hX ÞÞ2 þ k
X

j

Aj; ð5Þ

where f̂ ~X ðx; hX Þ is the density function of ~X for bandwidth hX yielded by

differentiating F ~X ðxÞ in x, Aj ¼ 1 if

½ð f̂ 0~X ðxj � oÞ > 0Þ \ ð f̂ 0~X ðxj þ oÞ < 0Þ� [ ½ð f̂ 0~X ðxj � oÞ < 0Þ \ ð f̂ 0~X ðxj þ oÞ > 0Þ�;

and Aj ¼ 0 otherwise (von Davier, 2013; Wallin et al., 2021). The weight k could

be chosen through, for example, cross-validation but is typically set to 1, and o
determines the neighborhood for which the criterion function penalizes a band-

width that permits sign changes in f 0. In this study, we use o ¼ 0:25 as it has

yielded densities that closely follows the raw score histograms. However, it has

been shown that the equated scores are not sensitive to the choice of bandwidth

among the methods that are currently available (Wallin et al., 2021). In both the

empirical illustration and the simulation study, we therefore use the criterion

function in (5).

Remark 1. As the bandwidth grows to infinity, the continuous score CDF

F ~X ðxÞ � Fðx�mX

sX
Þ, which makes the KE estimator approach the linear equating function

LinðxÞ ¼ mY þ sY

sX
ðx� mX Þ. See von Davier et al. (2004b) for the proof. If the band-

width is set large, for example, hX ¼ 10sX , the linear equating estimator can be

closely approximated. If the bandwidth instead is set to something very small, F ~X is

a close approximation of the step function F. The traditional percentile rank method,

where F ~X and G ~Y are the piecewise linear functions, can thus also be closely approxi-

mated (von Davier et al., 2004b). These two results emphasize that KE comprises a

family of equating methods that incorporates both of the traditional methods as special
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cases when the bandwidth is either very large (linear equating) or very small (percen-

tile rank method).

With the estimated, continuized score distributions F̂ ~X ðxÞ ¼ F ~X ; ðx; r̂Þ and

Ĝ ~Y ðyÞ ¼ G ~Y ðy; ŝÞ, the kernel equating estimator of the equipercentile function

jðxÞ equals

jðx; r̂; ŝÞ ¼ G�1
~Y
ðF ~X ðx; r̂Þ; ŝÞ: ð6Þ

The asymptotic distribution of jðx; r̂; ŝÞ is given by Nðjðx; r; sÞ; JjY

JDFCC0JDF
0JjY

0Þ, where JjY
denotes the Jacobian of the equating function,

JDF denotes the Jacobian of the design function, and C is the covariance matrix

of the score distributions vðPÞ and vðQÞ. See Wallin and Wiberg (2019) for the

specific formula of these quantities. The standard error of equating (SEE; von

Davier et al., 2004b) is consequently given by

jjJjY
JDFCjj; ð7Þ

where jj � jj denotes the Euclidean norm.

3. Nonequivalent Groups With Covariate (NEC) Design

This section will clarify the viewpoint we take on the nonequivalent groups

designs in test score equating, and the specific assumptions underlying the NEC

design (Wiberg & Bränberg, 2015). The NEC design assumes that the group of

test-takers being administered test form X are a random sample from population

P, and the group of test-takers being administered test form Y are a random

sample from population Q, where P 6¼ Q and X 6¼ Y. Each test-taker thus has a

recorded test score on only one of the test forms, but never both. Additional to the

test score there is a vector of measured covariates D ¼ ðD1; . . . ;DmÞ for all test-

takers regardless of test form. The NEC design is summarized in Table 1.

The covariates in D take a similar role to that of the anchor score in the NEAT

designs, meaning that they are intended to adjust for any imbalance in ability

between the test groups. All covariates confounding the relationship between the

test form assignment mechanism and ðX ; Y Þ need to be controlled for. We denote

the test form assignment by Z ¼ 1 if a randomly chosen test-taker is administered

test form X and Z ¼ 0 if test form Y is administered.

TABLE 1.

The Nonequivalent Groups With Covariate (NEC) Design Summarized

NEC X Y D

P sample P P
Q sample P P

Wallin and Wiberg
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In Figure 1, the variables Z, D, and ðX ; Y Þ are illustrated in a directed acyclic

graph (DAG). In the DAG, the relationship between test form assignment and test

score is confounded by the covariate vector D. A proper equating procedure

under the NEC design thus needs to control for such disturbance or else it will

result in biased equated scores. In this sense, there is no difference with the use of

anchor test scores A in NEAT design equating. Simply replace D with A in the

DAG, and it will graphically summarize the NEAT design. Just as the anchor test

score A, the covariate vector D thus is used as proxy for ability.

3.1. Propensity Scores

The basic idea of the NEC design is to replace the anchor test scores with the

covariates and then to equate the test scores treating the covariate realizations as

if they were in fact anchor scores. When using more than only a few covariates,

the number of empty cells in the frequency table will grow large. There is thus a

practical problem with the NEC design that is unrelated to the theoretical justi-

fication of the method. The curse of dimensionality is a well-known problem far

beyond the equating literature, and a well-established method to handle this

problem is by using a dimension-reducing function of the covariates called the

propensity score. It reduces the dimension of covariate vector down to a scalar

and is defined as eðDÞ ¼ PðZ ¼ 1jDÞ.
The propensity score possesses the appealing property of being a balancing

score (Rosenbaum & Rubin, 1983). This means that it is sufficient to control for

eðDÞ to balance the covariates between the test groups, if all confounders of the

relationship between Z and ðX ; Y Þ are contained in D. It is worth reminding

that the variable we truly wish to control for is latent ability. It follows that

the usefulness of balancing the test groups on the covariates is dependent on the

quality of D as a proxy variable for ability. Note that this is completely in line

with the assumptions underlying NEAT-based equating using anchor scores.

FIGURE 1. The nonequivalent groups with covariates design.
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As the propensity score is not known, it needs to be estimated. A common

method is to use logistic regression, which will be used here. Following Rosen-

baum and Rubin (1984) and Wallin and Wiberg (2019), the estimated propensity

scores of the test-takers will thereafter be partitioned into strata based on the

percentiles. The test-takers in each stratum are treated as homogeneous in terms

of the latent ability, meaning that the equivalent groups design assumptions hold

true within each stratum.

3.2. Equating Estimators Based on the Propensity Score

In the following, two propensity score-based equating estimators are derived

and presented together with their underlying assumptions, following the estima-

tors presented in Wallin and Wiberg (2019). Note that as these estimators were

presented without much theoretical justification in the original paper by Wallin

and Wiberg (2019), special attention is given to motivate them in this section.

3.2.1. PSE estimator. To define the PSE estimator, abbreviated PS-PSE, define

the elements in r and s as

rj ¼ PðX ¼ xjjTÞ ¼ wrPj þ ð1� wÞrQj; ð8Þ

and

sk ¼ PðY ¼ yk jTÞ ¼ wsPk þ ð1� wÞsQk ; ð9Þ

where

rPj ¼ PðX ¼ xjjPÞ rQj ¼ PðX ¼ xjjQÞ
sPk ¼ PðY ¼ yk jPÞ sQk ¼ PðY ¼ yk jQÞ

:

The probabilities are defined on the target population T and populations P and

Q. For PSE, this is a somewhat theoretical construct and described by the sym-

bolic equation T ¼ wPþ ð1� wÞQ, where w is a weight often set according to

the relative sample sizes.

Remark 2. Every test score equating method needs to specify the target population T,

which the equating function is defined for. Since one of the five requirements of any

test score equating method is population invariance, the estimated equating function is

independent of the subgroup of the population that is used to calculate it. By varying T,

the fulfillment of this requirement can be empirically checked (Dorans & Holland,

2000). As is stated in von Davier et al. (2004b, p. 6), “ . . . the use of a common target

population is the way that we control for differential examinee ability in observed-

score test equating.” Our view is therefore to consider P and Q as mutually exclusive

and exhaustive strata of a larger mixture population T, and by varying the weight w, we

have both in our empirical and simulation studies verified that the resulting equated

scores have not changed in any practically important way. A discussion on the choice

of w can be found in, for example, Brennan and Kolen (1987b), Angoff (1987), and

Brennan and Kolen (1987a).

Wallin and Wiberg

9



In Equations 8 and 9, the terms rQj
and sPk

are not possible to calculate with

data since the P sample has only been administrated test form X and the Q sample

only test form Y. There is thus data missing by design, in the same sense as is

thoroughly discussed in Sinharay and Holland (2010b). The following assump-

tion is therefore needed to define the PS-PSE estimator. We follow the notation

in Dawid (1979) and let v denote statistical independence.

Assumption 1: For the PS-PSE estimator, we assume that

ðX ; Y ÞvZjeðDÞ;

0 < eðDÞ < 1:

for any T ¼ wPþ ð1� wÞQ.

Note, for a dichotomous treatment (i.e., a pair of test forms to be equated),

PðX ¼ xjjZ ¼ 1; eðDÞÞ ¼ PðX ¼ xjjZ ¼ 0; eðDÞÞ for all j 2 ½1; J � and PðY ¼
yk jZ ¼ 1; eðDÞÞ ¼ PðY ¼ yk jZ ¼ 0; eðDÞÞ for all k 2 ½1;K� if Assumption 1 is

true. This is sometimes referred to as strong ignorability in the causal inference

literature (Hernan & Robins, 2020).

The first part of Assumption 1 means that the test scores are conditionally

independent of the test form assignment by controlling for the propensity score.

The test groups would thereby be only randomly different from each other, as in

the equivalent groups design. The second part of Assumption 1 is to ensure that all

test-takers have a nonzero probability of being assigned either test form. If the

propensity score has been stratified into L strata, such that the test groups are

balanced on D in each stratum, estimators of the missing-data quantities in Equa-

tions 8 and 9 can be identified under Assumption 1. To that end, let the stratified

propensity score be denoted M 2 f1; . . . Lg with realizations denoted m.

Under Assumption 1, we furthermore assume that:

PrðX ¼ xjjM ¼ m; QÞ ¼ PrðX ¼ xjjM ¼ m; PÞ; ð10Þ

and

PrðY ¼ yk jM ¼ m; PÞ ¼ PrðY ¼ yk jM ¼ m; QÞ: ð11Þ

Equation 10 states that the probability of test score xj is the same in popula-

tions P and Q conditional on the observed, stratified propensity score M ¼ m.

The corresponding probability statement is true for the Y scores in Equation 11.

Estimators of rQj
and sPk

are now possible to define. In the following, such

estimators are defined and justified.

Proposition 1: Denote the (from log-linear models) estimated joint distributions of

X and M in P, and of Y and M in Q, by

p̂jl ¼ PrðX ¼ xj;M ¼ m; PÞ;

and
q̂kl ¼ PrðY ¼ yk ;M ¼ m; QÞ:

Propensity Score Misspecification in Equating
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If Assumption 1 holds true and the propensity score has been stratified, such

that the covariate distribution is balanced in the test groups, rQj
and sPk

can be

estimated by

r̂Qj
¼
X

l

p̂jlX
j

p̂jl

X
k

q̂kl

0
BB@

1
CCA;

and

ŝPk
¼
X

l

q̂klX
k

q̂kl

X
j

p̂jl

0
BB@

1
CCA:

The proof of Proposition 1 is found in Online Appendix A.

Lastly, plug the estimated test score probability r̂ into Equation 4, and do the

corresponding for ŝ, and functionally compose the equating estimator as

jðx; r̂; ŝÞPSE ¼ G�1
~Y
ðF ~X ðx; r̂Þ; ŝÞ: ð12Þ

3.2.2. CE estimator. Even though conditioning on the propensity score, as has

been outlined for the PS-PSE estimator, is the traditional way of removing

dependencies between the outcome and the treatment, CE methods have a

long-standing tradition within test score equating. Several studies have showed

that the result of linking, or chaining, together a sequence of equating functions is

often very similar and sometimes even better than that of the competing PSE

estimator (Sinharay & Holland, 2010a, 2010b; Wallin & Wiberg, 2019). In fact,

when equating with an anchor, the PSE and CE coincide if the anchor score

distribution in P and Q is equal (von Davier et al., 2004a). Thus, for the second

equating estimator considered, abbreviated PS-CE, let

rP ¼ ðrP1; . . . ; rPJ ÞT sQ ¼ ðsQ1; . . . ; sQKÞT

tP ¼ ðtP1; . . . ; tPJ ÞT tQ ¼ ðtQ1; . . . ; tQKÞT ;

with rPj ¼ PrðX ¼ xjPÞ, sQk ¼ PrðY ¼ yjQÞ, tPj ¼ PrðM ¼ mjPÞ, and tQk ¼
PrðM ¼ mjQÞ. Note that these are score probabilities for populations P and Q,

respectively, and not for the mixture population T. The quantity tPj is to be

understood as the probability of the random, stratified variable M being equal

to the realization m in population P, and tQk interpreted analogously. We further-

more define the corresponding continuized score CDFs that are functions of the

score probabilities:

F ~X P
ðx; rPÞ ¼ Prð ~X � xjPÞ

G ~Y Q
ðy; sQÞ ¼ Prð ~Y � yjQÞ

H~eP
ðm; tPÞ ¼ PrðM � mjPÞ

H~eQ
ðm; tQÞ ¼ PrðM � mjQÞ

;
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where F ~X P
;G ~Y Q

, H~eP
, and H~eQ

denote CDFs that have been continuized in similar

fashion as in Equation 4.

The PS-CE estimator is dependent on the linking of distributions between

populations P and Q. There is an underlying assumption that there is a link

between the X scores and the propensity scores in population P and a link

between the propensity scores and the Y scores in population Q. This is specified

in Assumption 2.

Assumption 2: For the PS-CE estimator, we assume that

H�1
eP
ðF ~X P
ðxÞÞ ¼ H�1

T ðFT ðxÞÞ
G�1

~Y Q
ðHeQ
ðmÞÞ ¼ G�1

T ðHT ðmÞÞ;
ð13Þ

for any target distribution of the form T ¼ wPþ ð1� wÞQ.

Assumption 2 is to be understood as a statement regarding population invar-

iance of the equipercentile function linking X to eðDÞ on P and of the equiper-

centile function linking eðDÞ to Y on Q.

Proposition 2: The PS-CE estimator is given by linking the functions in Equation 13

together in a chain:

jðx; r̂P; t̂P; t̂Q; ŝQÞCE ¼ G�1
~Y Q
ðH~eQ
ðH�1

~eP
ðF ~X P
ðx; r̂PÞ; t̂PÞ; t̂QÞ; ŝQÞ:

The proof of Proposition 2 is found in Online Appendix B.

4. A Motivating Example Using Empirical Data

As a motivating example, two test administrations of the SweSAT are ana-

lyzed. The SweSAT is used in the selection process for Swedish university

programs and consists of a verbal and quantitative section. These sections in

turn consist of 80 items each and are equated separately. Only recently, the

SweSAT started including anchor items. Prior to this, covariates were used in

a matching procedure when the test forms were equated (Wiberg & Bränberg,

2015). In this empirical study, both the PS-PSE and PS-CE estimators will be

used to equate the quantitative sections from two SweSAT test administrations

from the past decade.

4.1. Data and PS Models

The score distributions of the analyzed test forms are shown in Figure 2. As

seen, the Y score distribution (the old test form) is slightly skewed and shifted to

the left of the X score distribution. The empirical distributions suggest that either

the X test group is on average more capable compared to the Y test group or that

the X test form is easier, or a combination of both. In addition to the test scores,

each test-taker has a set of covariates recorded. Based on previous studies
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(Altintaş & Wallin, 2021; Bränberg et al., 1990; Wallin & Wiberg, 2019) and on

availability, the covariates used in this study are gender, age, and the test score

from the verbal section as these have shown to correlate with the quantitative

score. In Table 2, summary statistics are being presented for the variables of the

empirical study. The variable Age is reported in five categories: It equals 1 if an

individual’s age is within ½0; 20�, it equals 2 if the age is within ½21� 24�, it

equals 3 if the age is within ½25� 29�, it equals 4 if the age is within ½30� 39�,
and it equals 5 if the age is 40 or older. Note that at the time for these test

administrations, there was no age restriction for individuals taking the test.

FIGURE 2. The score distributions of the X and Y scores, where X represents the new test

form and Y the old test form.

TABLE 2.

Summary Statistics of the Variables Used in the Empirical Illustration

Verb Age Gender X Y

Correlation to Y 0.48 �0.14 0.26 0.27 1

Correlation to X 0.52 �0.13 0.28 1 0.27

Mean 43.91 (39.35) 1 (1) 0.42 (0.53) 43.32 39.34

Standard deviation 12.08 (11.56) 2 (2) 0.49 (0.50) 12.65 11.80

Note. Verb refers to the verbal test score. Values within parentheses refer to form Y. The correlations

for the variables Age and Gender are the Spearman and point-biserial correlations, respectively. For

Age, the last two rows present the median and quartile deviation.
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Since there is no known true propensity score model, a number of candidate

models are set up for both the PS-PSE and PS-CE equating estimators. Let D1

denote the test score on the verbal section of the test, D2 denote age, and D3

denote gender. The candidate propensity score models are estimated using logis-

tic regression with a logit link except when indicated. We consider most of the

possible combinations of covariates and factors, resulting in 13 models, which

are shown in Table 3.

Hence, in total, there will be 26 equating estimators considered, 13 for the PS-

PSE estimator and 13 for the PS-CE estimator. The equated scores and the

SEEs of each estimator will be analyzed to determine the extent to which they

vary with changes in the propensity score model’s parameterization. The differ-

ence that matters (Dorans & Feigenbaum, 1994), defined to be larger than half a

raw score point, will also be investigated. Goodness-of-fit measures like the

Akaike information criterion (Akaike, 1974) or the Bayesian information criter-

ion (BIC; Schwarz, 1978) are not suitable for evaluating the propensity score

models, since their parameter estimates are not the priority but rather the

achieved covariate balance between the test groups (Augurzky & Schmidt,

2001; Stuart, 2010). The absolute standardized mean difference (ASMD; Austin,

2008) will therefore be used to evaluate the level of achieved covariate balance:

ASMD ¼ mðTÞD � mðCÞDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2ðTÞ

D
þs2ðCÞ

D

2

r
��������

��������
; ð14Þ

where mðTÞD and mðCÞD denote the means of the treatment (test form X) and control

(test form Y) group for covariate D, respectively, and s2ðTÞ
D and s2ðCÞ

D denote

their respective variances. There exist no general threshold for the ASMD, but a

value above 0.10 is considered to indicate covariate imbalance (Austin, 2008).

Once a proper stratification has been achieved, bivariate log-linear models of the

test scores and the stratified, estimated propensity score according to (3) are fit to

TABLE 3.

The Parametrization of the Candidate Propensity Score Models

Covariate Combinations

1. D1;D2; and D3 8. D1 and D3

2. D1;D2; and D3 with probit 9. D2 and D3

3. D1and D2 10. D2;D
2
2; and D3

4. D1;D
2
1;D2; and D3 11. D1;D

2
1; and D2

5. D1 12. D1;D2;D
2
2; and D3

6. D2 13. D1;D
2
1;D2;D

2
2; and D3

7. D3
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the empirical data. The BIC is used to choose parametrization of the log-linear

models since it as it has been proven to have a high selection accuracy for

bivariate smoothing (Moses & Holland, 2010). All analyses are made using R

(R Core Team, 2021) and the R package kequate (Andersson et al., 2013).

In Figure 3, the ASMDs between the treatment (test form X) and control (test

form Y) group for the covariate Verb are displayed. The ASMD was calculated

within each stratum of the propensity score. To determine the number of strata, a

sequence of potential stratifications was set up. For each possible number of

strata, the ASMD was calculated within each stratum. The stratification that

produced a low ASMD for all strata was chosen, resulting in 20 strata for this

particular dataset. In Figure 3, the first two models show the best performance in

terms of ASMD since most of the strata have an ASMD below 0.1. This could be

compared with the ASMD if not controlling for the propensity score, which

equals 0.386. Stratifying on the propensity score has thus successfully brought

the test groups substantially closer in terms of their covariate distribution. The

corresponding plots were examined for the covariates Gender and Age as well,

FIGURE 3. The absolute standardized mean difference between the treatment group

(test form Y) and the control group (test form X) for the covariate Verb, for each of the

20 strata of the four candidate propensity score models.
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where similar patterns were observed. It could thus be suspected that these

models will lead to low equating error, given that the covariates Verb, Gender,

and Age are at all associated with the latent ability.

In the next stage, bivariate log-linear models are fit to the observed test scores

and the stratified propensity scores. A set of candidate models are considered and

evaluated in terms of their BIC. In Tables 4 and 5, the estimated coefficients

together with their corresponding standard errors, p values, and the BIC are

presented for four candidate models. The notation X : M refers to an included

interaction term between X and Y. We decided to use the third model for both the

TABLE 4.

The Estimated Coefficients, With Standard Errors in Parenthesis, of the Four Bivariate

Log-Linear Models Fit Considered for the X Data

Candidate Models

(1) (2) (3) (4)

X 0.399*** 0.399*** 1.114*** 1.163***

(0.120) (0.120) (0.122) (0.124)

X2 �0.077** �0.077** �0.087*** �0.085***

(0.032) (0.032) (0.032) (0.032)

X3 0.007** 0.007** 0.008** 0.007**

(0.004) (0.004) (0.004) (0.004)

X4 �0.0003* �0.0003* �0.0003* �0.0003*

(0.0002) (0.0002) (0.0002) (0.0002)

X5 0.00001* 0.00001* 0.00001* 0.00001*

(0.00000) (0.00000) (0.00000) (0.00000)

M �0.001* 0.280*** 0.749*** 0.830***

(0.0005) (0.005) (0.019) (0.041)

M2 �0.004*** �0.010*** �0.011***

(0.0001) (0.0004) (0.001)

M3 0.00004*** 0.00005***

(0.00000) (0.00001)

X : M �0.013*** �0.016***

(0.0003) (0.002)

X 2 : M 0.00004**

(0.00002)

Constant 0.531*** �4.023*** �15.762*** �17.055***

(0.150) (0.176) (0.384) (0.699)

Observations 1,620 1,620 1,620 1,620

Bayesian information

criterion

15,388.42 7,963.714 4,892.262 4,894.582

*p < .1. **p < .05. ***p < .01.
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X and Y scores, as it showed the best fit in terms of the BIC. We thereafter

continuized the score distributions by applying a Gaussian kernel to the distri-

bution approximation in Equation 4 and select the degree of smoothness using

the criterion in Equation 5.

4.2. Results

To illustrate the general trend among the estimators, we display the results of

the equating estimators using propensity score models 1–4 in Figure 4.

TABLE 5.

The Estimated Coefficients, With Standard Errors in Parenthesis, of the Four Bivariate

Log-Linear Models Fit Considered for the Y Data

Dependent Variable

Frequency

(1) (2) (3) (4)

Y �0.256*** �0.196** 0.374*** 0.362***

(0.092) (0.093) (0.094) (0.096)

Y2 0.051* 0.036 0.029 0.029

(0.027) (0.027) (0.027) (0.027)

Y3 �0.005 �0.004 �0.004 �0.004

(0.003) (0.003) (0.003) (0.003)

Y4 0.0003 0.0002 0.0002 0.0002

(0.0002) (0.0002) (0.0002) (0.0002)

Y5 �0.00000 �0.00000 �0.00000 �0.00000

(0.00000) (0.00000) (0.00000) (0.00000)

M 0.006*** 0.265*** 0.564*** 0.548***

(0.001) (0.005) (0.018) (0.032)

M2 �0.003*** �0.007*** �0.006***

(0.0001) (0.0004) (0.001)

M3 0.00002*** 0.00002***

(0.00000) (0.00000)

Y : M �0.010*** �0.010***

(0.0003) (0.001)

Y 2 : M �0.00001

(0.00001)

Constant 1.949*** �2.700*** �10.566*** �10.307***

(0.101) (0.141) (0.326) (0.544)

Observations 1,620 1,620 1,620 1,620

Bayesian information

criterion

13,804.4 7,534.71 5,131.271 5,138.315

*p < .1. **p < .05. ***p < .01.

Wallin and Wiberg

17



Propensity score model number 3, which does not include the covariate Gender,

deviates clearly. For the upper score scale, Model 3 has a score difference to the

other estimators that clearly matters. Since gender has been established as an

important covariate when analyzing the SweSAT (Bränberg et al., 1990) and

with a fairly strong correlation with the test scores, it comes as no surprise that

the equated scores are affected when gender is excluded. Far less important is the

choice of link function, or whether or not a second-order term is included, for this

dataset. On the other hand, the SEEs of all estimators are more or less similar

along the whole score scale.

In Figure 5, the equated scores (upper part) are shown for the four PS-CE

estimators, together with SEE (lower part). The pattern from the PSE estimators

is evident here as well, with clear deviations for the model that fails to include

gender in the propensity score model and with a negligible difference in terms of

SEE. We also notice a distinct difference between the equated scores produced

by the PSE-based estimators in Figure 4 and the CE-based estimators in Figure 5.

In the online supplements, the estimated equating functions resulting from all 13

propensity score models are given.

FIGURE 4. The equated scores and standard error of equating of the PS-PSE estimator,

using Models 1–4 for the propensity score estimation.
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5. Simulation Study

For the empirical illustration, the results suggested that a critical component

when using propensity scores to equate test scores is to include all important

covariates in the propensity score estimation model. The equated scores were less

sensitive to the choice of link function and the inclusion of higher order poly-

nomials. Since it is not possible to generalize these results, the robustness of the

PS-PSE and PS-CE estimators to misspecifications of the propensity score model

is evaluated in a simulation study. We assume that the propensity score is

described by a parametric model and consider two different simulation designs.

Both designs are inspired by the simulation study in Wallin and Wiberg (2019)

but with propensity score model misspecifications added. The misspecifications

considered are (1) using the wrong link function, (2) leaving out a covariate, and

(3) leaving out higher order terms. The simulation designs follow closely the

FIGURE 5. The equated scores and standard error of equating of the PS-CE estimator,

using Models 1–4 for the propensity score estimation.
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studies typically seen in the causal inference literature, where potential outcomes

under different treatment regimes are generated and the observed outcomes

depend on the realization of the treatment variable, which in turn is a function

of a covariate vector. Inspired by this and by trying to mimic the situation

described in Figure 1, we generated covariates that both affected the test form

assignment (through the propensity score) and the test scores, making them true

confounders. Both potential test scores and observed test scores are generated,

as explained in the simulation designs. The presented results are based on n ¼
10;000 simulated test-takers and 1,000 iteration, although sample sizes of

n ¼ 1;000 and n ¼ 5;000 were considered as well. As the difference of those

results to the ones based on n ¼ 10;000 was negligible, they have been excluded

but can be sent upon request. As in the empirical study, all calculations are

carried out in R with the R package kequate.

5.1. Simulation Design A

For Design A, the data generating process (DGP) is as follows:

1. Generate the covariates D1;D2*Uniformð1; 5Þ.
2. Generate n ¼ f1; 000; 5; 000; 10; 000g Bernoulli trials to compose the treatment

variable Z*BernoulliðeðDÞÞ, where

eðDÞ ¼ 1

1þ expð�0:36þ 1:25D1 þ 1:25D2 � 0:35D2
1 � 0:35D2

2Þ
: ð15Þ

It follows that the test groups will be of approximately the same size.

3. The potential test scores on test form X are for all test-takers generated as

X ¼ �6þ 4D1 þ 5D2 þ EX ;

and the potential test scores on test form Y are for all test-takers generated as

Y ¼ �9þ 3D1 þ 6D2 þ EY :

Since the covariates in these expressions represent the ability differences

between the groups, the E terms represent the difficulty of the test forms, where

EX*Nð2; 1:5Þ and EY*Nð0; 1Þ. The means and variances of the test scores are

E½X � ¼ 23, E½Y � ¼ 18, V½X � � 56:92, and V½Y � ¼ 61. With the data generated,

the distributions of the covariates differ between the test groups.

4. The observed test score for each test-taker is defined as

U ¼ ZX þ ð1� ZÞY :

To generate an observed score U � for each test-taker, we set

U � ¼ minðU ; 40Þ, which is to be understood as the rounded value of whichever

is the smaller of U and 40. Although no generated score was smaller than 0,
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such score would have been truncated to 0. The score range is therefore set

to ½0; 40�.

5. The propensity score is estimated using logistic regression. Based on the percen-

tiles, it is thereafter divided into 20 categories. The number of categories was

chosen trying to reach a covariate balance between the test groups as measured

by the ASMD. Four candidate models will be defined: one that is correctly specified

according to Equation 15, one that uses a probit link function instead of the correct

logit link, one that leaves out D2, and one that leaves out D2
1 and D2

2.

5.2. Simulation Design B

For Design B, the DGP is as follows:

1. Generate the covariates D1;D2*Uniformð1; 5Þ.
2. Generate n ¼ f1; 000; 5; 000; 10; 000g Bernoulli trials to compose the treatment

variable Z*BernoulliðeðDÞÞ, where

eðDÞ ¼ 1

1þ expð0:8þ 0:72D1 þ 0:72D2 � 0:25D2
1 � 0:25D2

2Þ
: ð16Þ

It follows that the test groups will be of approximately the same size.

3. The scores on test form X are for all test-takers generated as

X ¼ 9þ 1:25D1 þ 1:25D2 þ D2
1 þ D2

2 þ D1D2 þ EX ;

and the scores on test form Y are for all test-takers generated as

Y ¼ 7:5þ 1:25D1 þ 1:25D2 þ D2
1 þ D2

2 þ D1D2 þ EY ;

where EX*Nð0; 1Þ and EY*Nð5; 1:5Þ. Note that the covariates in this design

have a nonlinear relationship with the test scores and that there is an interaction

term included. The means and variances of the test scores are E½X � � 46:17,

E½Y � � 49:67, V½X � � 129:79, and V½Y � � 131:04.

4. The observed test score for each test-taker is generated as

U ¼ ZX þ ð1� ZÞY :

To generate an observed score U � for each test-taker, we set U� ¼
minðU ; 90Þ, which is to be understood as the rounded value of whichever is the

smaller of U and 90. Although no generated score was smaller than 0, such score

would have been truncated to 0 as in Design A. The score range is therefore set

to ½0; 90�.

5. As in Design A, the propensity score is estimated using logistic regression

and thereafter divided into 20 categories, based on the absolute standardized

mean difference. Four candidate models will be used: one that is correctly
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specified according to Equation 16, one that uses a probit link function instead of

the correct logit link, one that leaves out D2, and one that leaves out D2
1 and D2

2.

Remark 3. The potential test score X is to be interpreted as the test score that a test-

taker would have got if they had been administered the X test form, and Y is the

potential test score if test form Y had been administered. In this way, every test-

taker has a potential, but not observed, test score on both forms. The observed test

score U reflects the test form actually administered to each of the test-takers. In

addition, for both Designs A and B, each test-taker has an observed covariate vector

D and an estimated propensity score êðDÞ. Also, a discrete version of the covariates

was considered by splitting them into five equally spaced groups, inspired by the DGP

in Wiberg and Bränberg (2015). The reason for doing this was to mimic testing

programs where only categorized versions of the background information have been

stored, such as prespecified age intervals instead of the actual ages of the test-takers.

Lastly, it is important to note that it is possible to define a true equating function for

both DGPs given above, since each test-taker has a potential test score on both test

forms.

Remark 4. Note that in Design A, the covariates are associated with the log odds of the

propensity score and the test scores in a linear way, whereas in Design B, that rela-

tionship involves both higher order terms and interactions. In this way, we are able to

investigate whether there is any connection between model complexity, model mis-

specification, and sensitivity of the equated scores.

5.3. Evaluation Measures

The PS-PSE and PS-CE estimators are evaluated by calculating the bias and

SE, as given in Wiberg and González (2016):

BiasðĵðxiÞÞ ¼ 1

1000

X1000

g¼1

ðĵðgÞðxiÞ � jðxiÞÞ;

and

SEðĵðxiÞÞ2 ¼ 1

1000

X1000

g¼1

ðĵðgÞðxiÞ � �jðxiÞÞ2;

where

�jðxiÞ ¼ 1

1000

X1000

g¼1

ĵðgÞðxiÞ;

and ĵðgÞðxiÞ denote the estimated equating function evaluated at xi for replicate g,

g ¼ 1; . . . ; 1,000.
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5.4. Simulation Results—Design A

The bias of the PS-PSE and PS-CE estimators is presented in Figure 6. Note

that for propensity score models with a misspecified link function and for those

that fail to include the second order term, the bias is very similar. Although not

illustrated in the figure, their biases practically coincide with the biases of their

correctly specified counterparts (the difference is less than 0.01 for each score

point). This turns out to be a pattern which is present for both estimators for all

considered sample sizes, all evaluation measures, and both simulation designs.

As the upper part of Figure 6 illustrates, the PS-PSE estimators exhibit only a

small bias for all scores, with the exception of the KE estimators with a propen-

sity score model that leaves out a covariate. It is also noteworthy that it does not

matter whether or not the covariates have been categorized; the biases for all

estimators stay similar regardless. The estimators that misspecify the link

FIGURE 6. The bias of the PS-PSE and PS-CE estimators for n ¼ 10;000 test-takers

under Simulation Design A, considering both categorized and uncategorized covariates,

using a misspeficied link function and a missing covariate, respectively, in the propensity

score estimation model.
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function and that leaves out the second-order term show the best performance,

with differences between them being too small to be discovered in the figure. As

these estimators more or less coincide with the estimator using a correctly spec-

ified model, the results suggest that the propensity score is successful at balan-

cing the test groups for the PS-PSE estimator.

The lower part of Figure 6 depicts the bias for the PS-CE estimators. For the

PS-PSE estimators, misspecifying the link function (and leaving out the second

order term) yields small biases across the score range. There is a negligible

difference between using categorized and uncategorized covariates in the pro-

pensity score model, and the bias increases substantially when a covariate is left

out and grows particularly large for categorized covariates.

The SE of the PS-PSE and PS-CE estimators is illustrated in Figure 7.

Generally, the SE is larger in the lower and upper end of the score range

FIGURE 7. The standard error of the PS-PSE and PS-CE estimators for n ¼ 10;000 test-

takers under Simulation Design A, considering both categorized and uncategorized cov-

ariates, using a misspeficied link function and a missing covariate, respectively, in the

propensity score estimation model.
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regardless of the type of misspecification. This is due to the sparse data at the

most extreme scores. The estimators perform similarly with few exceptions.

However, the PS-PSE estimator with a propensity score model that leaves out

the second-order term of the categorized covariates yields a slightly larger SE,

especially in the middle segment of the score scale. For the PS-CE estimators, it

instead is the misspecification consisting of a left out covariate that results in

such pattern. We remind that the solid curves also represent the results of the

estimators with the second-order terms missing, down to a very small differ-

ence. The dot dashed curves in the same way represent two types of misspeci-

fications for categorized covariates.

From Design A, we conclude that misspecifying the link function or missing

to include a second-order term, for both the original covariates and the categor-

ized versions of them, introduces far less error compared to missing to include a

covariate in the propensity score model.

5.5. Simulation Results—Design B

The results of Design B are presented for n ¼ 10;000 as the results for n ¼
1;000 and n ¼ 5;000 are more or less the same, both in magnitudes of the

evaluation measures and in relative performance of the estimators.

The bias of the PS-PSE and PS-CE estimators is displayed in Figure 8. The

similarity with the biases in Design A is apparent. Once again, failing to include

an important covariate leads to severe bias for both estimators. Especially in the

case of the PS-CE estimator with categorized covariates, the results are partic-

ularly inaccurate. The estimators with a misspecified link function and those who

fail to include the second-order term show robust results in the presence of model

misspecification.

The SE of the estimators is shown in Figure 9. Both estimators perform

similarly for all misspecifications, but with an overall best performance shown

in the case of misspecified link functions and with a second order missing,

respectively. In contrast to the other estimators, the SE of these estimators also

drops for the top scores. This could be a meaningful difference since the most

critical decisions in many tests, for example, selection tests, are made at the top

scores. It should however be noted that the SEs are large, especially in the tails.

Similar to Design A, we conclude from Design B that the estimators with an

incorrect link function and those that do not include the second-order term are

relatively robust. The PS-CE estimator that fails to include one of the categorized

covariates shows the overall worst performance. We also observe that the results

of Design B are approximately proportional to those of Design A, possibly due to

both designs having the same type of covariates (uniformly distributed on the

interval [1, 5]). However, Design B has a more intricate relationship between the

covariates and the propensity score, as well as the covariates and the test scores.

As a result, the biases displayed in Design B’s results are roughly twice as large
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as those seen in Design A, and the SEs have also increased. Therefore, the

additional complexity in the DGP has amplified the equating error.

6. Discussion

The goal of this study was to investigate how sensitive the equated scores are

to model misspecification of the propensity score, when the propensity score is

used to equate nonequivalent test groups. It has already been shown in Wallin

and Wiberg (2019) that equating with propensity scores has the possibility to

reach similar precision and accuracy as equating with an anchor, and superior

results compared to equating under a false assumption of equivalent groups. But

since the results of Wallin and Wiberg (2019) are based on the assumption that

the propensity score is known, which it typically is not in practical research

FIGURE 8. The bias of the PS-PSE and PS-CE estimators for n ¼ 10;000 test-takers

under Simulation Design B, considering both categorized and uncategorized covariates,

using a misspeficied link function and a missing covariate, respectively, in the propensity

score estimation model.

Propensity Score Misspecification in Equating

26



scenarios, it was crucial to study how sensitive these results are to model mis-

specification. The propensity score is a useful tool in research as it possesses the

desirable feature of being a balancing score, which has led to its widespread

application across various domains. However, its high degree of flexibility means

that there are numerous modeling options available, emphasizing the need for

careful scrutiny to determine when the propensity score can effectively balance

test-taker groups and when it falls short.

The propensity score methods explored in this study demonstrate potential as

the equated scores remain insensitive to both link function misspecification and

the omission of a second-order term in the estimation model. This applies to both

linear (Simulation Design A) and nonlinear (Simulation Design B) relationships

between covariates and outcomes. Notably, the model misspecifications resulted

in a similar bias and SE (in rounded score terms) to the correctly specified

models, signifying robustness of the equated scores to such errors in the

FIGURE 9. The standard error of the PS-PSE and PS-CE estimators for n ¼ 10;000

test-takers under Simulation Design B, considering both categorized and uncategorized

covariates, using a misspeficied link function and a missing covariate, respectively, in the

propensity score estimation model.
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propensity score model. On the other hand, the equated scores were negatively

affected by a propensity score model that omitted a true confounding covariate.

These conclusions remained the same for all considered sample sizes and for

both simulation designs. The results therefore clearly point to the importance of

using all pertinent information related to latent ability when using the propensity

score as a proxy variable. This aligns with earlier research on the propensity

score, which indicates that omitting a higher order term that exists in the actual

model while estimating the propensity score does not result in biased estimates

(Dehejia & Wahba, 1999; Drake, 1993; Stuart, 2010; Waernbaum, 2010, 2012).

Incorporating all true confounding variables is linked to the unconfoundedness

assumption that forms the foundation of the propensity score method for covari-

ate balancing. Consistent with earlier research, it was found that this aspect is

crucial in the equating context as well. As in Waernbaum (2010, 2012), we note

that as long as the true propensity score is a function of the misspecified model,

unbiased estimation of the parameter of interest is possible. We note that for

Design B, the standard errors are fairly large but should be seen in relation to

previous research that has showed that equating error and variability is even

greater when falsely assuming equivalent groups (Wallin & Wiberg, 2019). A

misspecification of the propensity score model when the relationship between the

test scores and the covariates is nonlinear is thus a delicate scenario. Since

reported scores often are used for individual-level decision making, the current

results suggest that future research should carefully study nonlinear cases.

We emphasize that the quality of the ability balancing suggested in this article

depends strictly on the quality of the auxiliary information. The restrictions that

come with the data at hand need to be evaluated with the identifying Assump-

tions 1 and 2 in mind. Two examples of restrictions in the empirical data ana-

lyzed in this study are the limited amount of covariates and the fact that the

variable Age is only available in a categorized version. Since the proposed

method has been shown to perform similar to anchor test-based equating for this

particular data set (Wallin & Wiberg, 2019), there is reason to believe that the

current covariate restrictions have not reversed the results. In the case of pro-

pensity score-based equating, we advise seeking input from experts in the subject

matter concerning the testing program and test groups that need to be equated.

Additionally, we suggest conducting a comprehensive analysis of the associa-

tions between the collected covariates and test scores. Since both the propensity

score and anchor test score are employed as proxies for ability, they can be

evaluated using similar methods.

Some limitations with the current study include the following. We only con-

sidered two types of covariates and future studies could consider to expand that.

Both by using a propensity score model that is a function of both discrete and

continuous covariates and with different dependence structure between them. We

however emphasize that the aim of this article was to study propensity score

model misspecification, and the misspecifications were thus the main focus and
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not different types of covariates. We therefore chose to vary the relationship

between the treatment variable, the test scores, and the covariates but not the

covariates themselves. On this note, it should be pointed out that Assumptions 1

and 2 are strong, but of similar magnitude to the assumptions underlying NEAT

equating. The results in both the original paper by Wallin and Wiberg (2019) and

the current article furthermore suggest that there are several realistic test scenar-

ios, where propensity score stratification is a viable technique for a sufficient

ability imbalance reduction. It would therefore be of importance to further inves-

tigate how sensitive the equating function parameter is to violations of the pro-

pensity score assumption. Studying the omission of a true confounder in the

propensity score model could be considered a first step toward such analysis,

since this violated the unconfoundedness assumption in Assumption 1. A diag-

nostic tool would in the future be of great use for such analysis. In Online

Appendix C, further simulation results are presented, considering both missing

data and another case of model assumption violation. These results suggest that

the PS-PSE particularly is robust against certain missingness, but that bias is

introduced when a subset of test-takers have a true propensity score equal to 1 (or

equivalently, equal to 0). These scenarios could, for example, happen when there

is an age restriction to the test in question, and certain test-takers were not

allowed to take the test in the previous administration. An empirical check of

the propensity scores should therefore always be conducted.

It is worth mentioning that the outcomes of Simulation Design B demonstrate

a proportional relationship with those of Simulation Design A. This is attributed

to the intricate association among the covariates, the treatment variable, and the

outcome in Design B, which is more complicated than that in Design A. In

addition to these factors, there are testing programs that have access to both

covariates and an anchor test. It would therefore be worth investigating if there

is any additional gain by using both sources of information to control for ability

differences. Incorporating both covariates and anchor test scores has been studied

within the NEC design (Albano & Wiberg, 2019; Wiberg & Bränberg, 2015), but

never when considering propensity scores. We expect this to improve the results,

as demonstrated in the small example in Online Appendix C. Generalizing these

results and quantifying the improvement would be a significant contribution to

equating nonequivalent groups. Finally, this study has only considered para-

metric regression models to estimate the propensity score, and other existing

methods should be examined in future research.

As a final note, we point out the recent critique that has been raised toward

NEAT-based equating in San Martı́n and González (2022). With data being par-

tially missing by design in the nonequivalent groups designs, the test score dis-

tributions, and thus the equating estimator, are not identified. Most methods,

including the methods studied in this article, make identifying assumptions to

estimate the score distributions. An alternative approach, suggested in San Mart́ın

and González (2022), is to use the theory of partial identification (Manski, 2009) to
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define identification regions for the equating function. This is a new perspective

that we believe sheds light to the discussion on whether or not equating has any

potential to report fair scores under nonequivalent groups designs, see, for exam-

ple, Bolsinova and Maris (2016). Their approach could also serve as a useful tool to

investigate the sensitivity of the identifying assumptions presented in this article.
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School of Business, Economics and Statistics, Umeå University, SE-901 87 Umeå,
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