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2 Estimating inequality of opportunity from regression trees and forests

1. Introduction

Equality of opportunity is an important ideal of distributive justice. It
has widespread support among the general public and its realization has
been identified as an important goal of public policy intervention (Cappelen
et al., 2007; Corak, 2013; Chetty et al., 2016; Alesina et al., 2018). In spite
of its popularity, it is notoriously difficult to provide empirical estimates of
equality of opportunity. Next to normative dissent about the precise factors that
should be viewed as contributing to unequal opportunities, current estimation
approaches are encumbered by ad hoc model selection that leads researchers
to overestimate or underestimate inequality of opportunity.

In this paper, we propose the use of machine learning methods to overcome
the issue of ad hoc model selection. Machine learning methods allow for
flexible models of how unequal opportunities come about while imposing
statistical discipline through criteria of out-of-sample replicability. These
features serve to establish estimates of inequality of opportunity that are less
prone to upward or downward bias.

The empirical literature on the measurement of unequal opportunities has
been flourishing since the ground-breaking contribution by Roemer (1998),
Equality of Opportunity. At the heart of Roemer’s formulation is the idea that
individual outcomes are determined by two sorts of factors: those factors over
which individuals have control, which he calls “effort”, and those factors for
which individuals cannot be held responsible, which he calls “circumstances”.
While outcome differences due to effort exertion are morally permissible,
differences due to circumstances are inequitable and call for compensation.1

Grounded on this distinction, measures of inequality of opportunity quantify
the extent to which individual outcomes are predicted by circumstance
characteristics. They are usually calculated in a two-step procedure. First,
researchers predict an outcome of interest from observable circumstances.
Second, they calculate inequality in the distribution of predicted outcomes:
the more predicted outcomes diverge, the more circumstances are associated
with outcomes, and there is more inequality of opportunity.

Current approaches to estimate inequality of opportunity suffer from
biases that are the consequence of critical choices in model selection. First,
researchers have to decide which circumstance variables to consider for
estimation.2 The challenge of this task grows with the increasing availability

1The distinction between circumstances and efforts underpins many prominent branches of the
economics literature, such as the ones on intergenerational mobility (Chetty et al., 2014a,b), the
gender pay gap (Blau and Kahn, 2017), and racial differences (Kreisman and Rangel, 2015). For
different notions of equality of opportunity, see Arneson (2018).
2Roemer does not provide a fixed list of circumstance variables. Instead, he suggests that
the set of circumstances should evolve from a political process (Roemer and Trannoy, 2015).

c© 2023 The Authors. The Scandinavian Journal of Economics published by John Wiley & Sons Ltd on behalf of Föreningen
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P. Brunori, P. Hufe, and D. Mahler 3

of high-quality datasets that provide very detailed information with respect
to individual circumstances (Björklund et al., 2012; Hufe et al., 2017). On
the one hand, discarding relevant circumstances from the estimation model
limits the explanatory scope of circumstances and leads to downward-biased
estimates of inequality of opportunity (Ferreira and Gignoux, 2011). On the
other hand, including too many circumstances overfits the data and leads to
upward-biased estimates of inequality of opportunity (Brunori et al., 2019).
Second, researchers must choose a functional form according to which
circumstances co-produce the outcome of interest. For example, it is a
well-established finding that the influence of socio-economic disadvantages
during childhood on life outcomes varies by biological sex (Dahl and
Lochner, 2012; Chetty et al., 2016). In contrast to such evidence, many
empirical applications presume that the effect of circumstances on individual
outcomes is log–linear and additive while abstracting from possible interaction
effects (Bourguignon et al., 2007; Ferreira and Gignoux, 2011). On the one
hand, restrictive functional form assumptions limit the ability of circumstances
to explain variation in the outcome of interest and thus force a downward bias
on inequality of opportunity estimates. On the other hand, limitations in the
available degrees of freedom might prove a statistically meaningful estimation
of complex models with many parameters infeasible.

This discussion highlights the non-trivial challenge of selecting the
appropriate model for estimating inequality of opportunity. Researchers
must balance different sources of bias while avoiding ad hoc solutions.
While this task is daunting for the individual researcher, it is a standard
application for machine learning algorithms that are designed to make
out-of-sample predictions of a dependent variable based on a number of
observable predictors. In this paper, we use conditional inference regression
trees and forests to estimate inequality of opportunity (Hothorn et al., 2006).
Introduced by Morgan and Sonquist (1963) and later popularized by Breiman
et al. (1984); Breiman (2001), they belong to a set of machine learning
methods that is increasingly integrated into the statistical toolkit of economists
(Varian, 2014; Mullainathan and Spiess, 2017; Athey, 2018). Trees and
forests obtain predictions by drawing on a clear-cut algorithm that imposes
only minimal assumptions about which circumstances interact in shaping
individual opportunities, and how. Thereby, they restrict judgment calls of the
researcher and inform model specification by data analysis. As a consequence,
they cushion downward bias by flexibly accommodating different ways of how
circumstance characteristics shape the distribution of outcomes. Moreover,
the conditional inference algorithm branches trees (and constructs forests) by a

In empirical implementations, typical circumstances include biological sex, socio-economic
background, and race.

c© 2023 The Authors. The Scandinavian Journal of Economics published by John Wiley & Sons Ltd on behalf of Föreningen
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4 Estimating inequality of opportunity from regression trees and forests

sequence of hypothesis tests that prevents the inclusion of noisy circumstance
parameters. This feature reduces the potential for upward-biased estimates of
inequality of opportunity through model overfitting. Hence, regression trees
and forests address the detrimental consequences of ad hoc model selection
in a way that is sensitive to both upward and downward bias in inequality of
opportunity estimates.

To showcase the advantages of regression trees and forests, we compare
them to existing estimation approaches in a cross-sectional dataset of 31
European countries. We demonstrate that current estimation approaches
overfit (underfit) the data, which in turn leads to upward(downward)-biased
estimates of inequality of opportunity. These biases are sizable. For example,
some standard methods overestimate inequality of opportunity in the Nordic
countries while they underestimate the extent of inequality of opportunity in
Germany and France. As a consequence, these countries appear close in terms
of their opportunity characteristics. Hence, standard estimation approaches
can yield misleading information about the level of inequality of opportunity
in different societies to policymakers and the general public alike.

While we demonstrate the advantages of regression trees and forests
for estimations of inequality of opportunity, they are not a panacea to
empirical challenges in this literature. First, regression trees and forests
cannot address one of the most relevant sources of downward bias in
inequality of opportunity estimates: missing data on relevant circumstances.
Second, although regression trees and forests are less prone to upward and
downward bias, the remaining bias can nevertheless be substantial when
samples are small. Therefore, we encourage applied researchers to exercise
caution when estimating inequality of opportunity on data with small number
of observations.

The remainder of this paper is organized as follows. In Section 2, we
give a brief introduction to current empirical approaches in the literature on
inequality of opportunity. In Section 3, we introduce conditional inference
regression trees and forests, and illustrate how to use them in the context
of inequality of opportunity estimations. Section 4 contains an empirical
illustration based on simulated data and the EU Survey of Income and Living
Conditions. In this section, we also highlight the particular advantages of tree-
and forest-based estimation methods by comparing them with the prevalent
estimation approaches in the literature. We conclude in Section 5.3

3In a parallel paper, Blundell and Risa (2019) apply machine learning methods to the estimation
of intergenerational mobility. In particular, they assess the completeness of rank–rank estimates
of intergenerational mobility as measures of equal opportunities. In contrast to their work, we
directly estimate inequality of opportunity statistics. Therefore, our focus is not on downward
bias that follows from focusing on one circumstance only (i.e., parental income) but on balancing

c© 2023 The Authors. The Scandinavian Journal of Economics published by John Wiley & Sons Ltd on behalf of Föreningen
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P. Brunori, P. Hufe, and D. Mahler 5

2. Empirical approaches to equality of opportunity

2.1. Theoretical set-up and notation

Consider a population N = {1, . . . , 𝑁} and an associated vector of
non-negative incomes 𝑦 = (𝑦1, . . . , 𝑦𝑁 ). Income is determined by two sets
of factors: circumstances beyond individual control and individual efforts.
We define the (𝑃 × 1)-vector 𝜔𝑖 ∈ Ω as a comprehensive description of the
circumstances of 𝑖 ∈ N . Analogously we define the (𝑄 × 1)-vector 𝜃𝑖 ∈ Θ
as a comprehensive description of the efforts that are exerted by 𝑖 ∈ N . The
income-generating function can be defined as

𝑦 = 𝑑 (𝜔, 𝜃). (1)

Based on the realizations of individual circumstances, the population can be
partitioned into types. We define the type partition T = {𝑡1, . . . , 𝑡𝑀 }, such
that individuals are member of one type if they share the same circumstances:
𝑖, 𝑗 ∈ 𝑡𝑚 ⇔ 𝜔𝑖 = 𝜔 𝑗 .

2.2. Measurement

Opportunity egalitarians are averse to inequalities that are rooted in
circumstances; however, they are indifferent to inequalities that originate
from individual effort exertion. In spite of the intuitive appeal of this idea, the
literature has suggested a variety of formulations that differ in their precise
normative content; see Ramos and Van de gaer (2016) for an overview. In
this work, we exclusively focus on ex ante utilitarian measures of inequality
of opportunity (Van de gaer, 1993; Checchi and Peragine, 2010). These are
the most widely applied formulations in the empirical literature.4

According to the ex ante utilitarian view, the value of a type’s opportunity
set is pinned down by the expected value of its outcomes, E[𝑦 |𝜔]. Thus, the
distribution of opportunities in a population can be expressed by the following
counterfactual distribution 𝑦𝐶 :

𝑦𝐶 = (𝑦𝐶1 , . . . , 𝑦
𝐶
𝑖 , . . . , 𝑦

𝐶
𝑁 ) = (E[𝑦1 |𝜔1], . . . ,E[𝑦𝑖 |𝜔𝑖], . . . ,E[𝑦𝑁 |𝜔𝑁 ]).

(2)

From this distribution, one can construct ex ante utilitarian measures of
inequality of opportunity by choosing any functional 𝐼 ( ) that satisfies the
following two properties:

both downward and upward bias if the set of available circumstances is large in relation to a
given sample size.
4The use of machine learning methods is not restricted to ex ante utilitarian formulations and
can be easily extended to alternative measures of inequality of opportunity.

c© 2023 The Authors. The Scandinavian Journal of Economics published by John Wiley & Sons Ltd on behalf of Föreningen
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6 Estimating inequality of opportunity from regression trees and forests

1. 𝐼 (𝑦𝐶 ) decreases (increases) through transfers from 𝑖 to 𝑗 if 𝑖 is from
a circumstance type with a higher (lower) expected value of outcomes
than the recipient 𝑗 ;

2. 𝐼 (𝑦𝐶 ) remains unaffected by transfers from 𝑖 to 𝑗 if they are members
of the same type.

In most empirical applications, 𝐼 ( ) represents an inequality index satisfying
the standard properties of anonymity, the principle of transfers, population
replication, and scale invariance (Cowell, 2016).5 Examples of the latter are
the Gini index or any member of the generalized entropy class. Note that the
choice of 𝐼 ( ) is normative in itself as it specifies the extent of inequality
aversion at different points of the counterfactual distribution 𝑦𝐶 . For example,
the mean logarithmic deviation (MLD) values compensating transfers to the
most disadvantaged types more than the Gini index. In this work, we are
agnostic about the normatively correct choice of 𝐼 ( ). While we present our
main results in terms of the Gini index, we provide robustness checks based
on other inequality indices in Section S.6 of the Supplementary Material.

2.3. Estimation

Given the measurement decisions described above, we require an estimate of
the conditional distribution 𝑦𝐶 . The data-generating process (DGP) described
in equation (1) can be rewritten as

𝑦 = 𝑑 (𝜔, 𝜃) = 𝑓 (𝜔) + 𝜖 = E(𝑦 |𝜔) + 𝜖 . (3)

Here, E(𝑦 |𝜔) captures unfair variation due to observed circumstances. The
independent and identically distributed error term 𝜖 captures both fair
(individual effort) and unfair (unobserved circumstances) determinants of
individual outcomes; hence, resulting measures of inequality of opportunity
have a lower bound interpretation.

Estimating 𝑦𝐶 is a prediction task in which the researcher tries to answer
the following question: what outcome 𝑦𝑖 do we expect for an individual who
faces circumstances 𝜔𝑖? The precise form of 𝑓 ( ) is a priori unknown. In
the vast majority of empirical applications, researchers address this lack of

5The 𝛽 coefficient from intergenerational mobility regressions can also be interpreted as an ex
ante utilitarian measure of inequality of opportunity. In the intergenerational mobility framework,
𝛽 = 𝐸 (𝑦𝑖𝑐 |𝑦𝑖𝑝)/𝑦𝑖𝑝 , where 𝑦𝑖𝑝 represents parental income as the sole circumstance. Hence,
the functional applied to the distribution of conditional expectations can be written as 𝐼 ( ) =
1/𝑦𝑖𝑝 . Note that 𝛽 decreases (increases) through transfers from children from advantaged
(disadvantaged) backgrounds to children from less (more) advantaged backgrounds. However,
𝛽 remains unaffected by transfers between children from parental households with equal 𝑦𝑖𝑝 .

c© 2023 The Authors. The Scandinavian Journal of Economics published by John Wiley & Sons Ltd on behalf of Föreningen
för utgivande av the SJE.
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P. Brunori, P. Hufe, and D. Mahler 7

knowledge by invoking strong functional form assumptions. For example,
they perform a log–linear regression of the outcome of interest on the set of
observed circumstances and construct an estimate for 𝑦𝐶 from the predicted
values:

ln(𝑦𝑖) = 𝛽0 +

𝑃∑

𝑝=1

𝛽𝑝𝜔
𝑝
𝑖 + 𝜖𝑖 , (4)

�̂�𝐶𝑖 = exp
[
𝛽0 +

𝑃∑

𝑝=1

𝛽𝑝𝜔
𝑝
𝑖

]
. (5)

The literature refers to this estimation procedure as the parametric approach
(Bourguignon et al., 2007; Ferreira and Gignoux, 2011).6

According to another procedure, the researcher partitions the sample into
mutually exclusive types based on the realizations of all circumstances under
consideration. An estimate for 𝑦𝐶 is then constructed from average incomes
within types:

�̂�𝐶𝑖 = 𝜇𝑚(𝑖) =
1
𝑁𝑚

𝑁𝑚∑

𝑗=1

𝑦 𝑗 , ∀ 𝑗 ∈ 𝑡𝑚, ∀𝑡𝑚 ∈ T . (6)

The literature refers to this estimation procedure as the non-parametric
approach (Checchi and Peragine, 2010).

Both approaches face empirical challenges that are typically resolved
by discretionary decisions of the researcher. For example, the parametric
approach assumes a log–linear impact of all circumstances and therefore
neglects the existence of interdependences between circumstances and other
non-linearities. To alleviate this shortcoming, researchers can integrate
interaction terms and higher-order polynomials into equation (4). However,
such extensions remain at their discretion. Reversely, the non-parametric
approach does not restrict the interdependent impact of circumstances.
However, if the data are rich enough in information on circumstances,
researchers might be forced to reduce the observed circumstance vector to
obtain statistically meaningful estimates of the relevant parameters.7 The

6The logarithmic transformation is not innocuous as the marginal impact of circumstances on
incomes can differ from their impact on log-incomes. Therefore, the predicted outcome should
be obtained by applying the correction suggested in Blackburn (2007). This correction, however,
is rarely implemented in empirical applications.
7Assume that the researcher observes ten circumstance variables with three expressions each – a
quantity easily observed in many datasets. The non-parametric approach would require the
estimation of 310 = 59,049 group means.

c© 2023 The Authors. The Scandinavian Journal of Economics published by John Wiley & Sons Ltd on behalf of Föreningen
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8 Estimating inequality of opportunity from regression trees and forests

necessary process of restricting the circumstance vector again remains at the
researcher’s discretion.

The above discussion illustrates that common approaches leave researchers
to their own devices when selecting the best model for estimating the
distribution 𝑦𝐶 . In this paper, we provide an automated solution to this
problem. Similarly, Li Donni et al. (2015) propose the use of latent class
modeling to obtain type partitions that allow for estimates of 𝑦𝐶 according
to the non-parametric procedure outlined in equation (6). In their approach,
observable circumstances are considered indicators of membership in an
unobservable latent type. For each possible number of latent types, individuals
are assigned to types so as to minimize the within-type correlation of
observable circumstances. Then the optimal number of types, 𝑀∗, is selected
by minimizing an appropriate model selection criterion such as Schwarz’s
Bayesian Information Criterion (BIC). The latent class approach therefore
partly solves the issue of arbitrary model selection. However, it has important
drawbacks. First, it cannot solve the problem of model selection once the
potential number of types exceeds the available degrees of freedom. In such
cases, the latent class approach replicates the limitations of parametric and
non-parametric approaches: researchers must pre-select circumstances and
their subpartition. Second, latent classes are obtained by minimizing the
within-type correlation of circumstances while ignoring the correlation of
circumstance variables with the outcome variable. As a consequence, they are
likely to underfit the data, leading to downward-biased estimates of inequality
of opportunity (Lanza et al., 2013).

In the following section, we discuss how regression trees and forests
address the outlined shortcomings of existing estimation approaches.

3. Estimating inequality of opportunity from regression
trees and forests

Regression trees and forests belong to the class of supervised learning methods
that were developed to make out-of-sample predictions of a dependent variable
based on a number of observable predictors. As we outline in the following,
they can be straightforwardly applied to inequality of opportunity estimations,
and they solve the issue of model selection.

First, we introduce conditional inference regression trees. By providing
predictions based on identifiable groups, they closely connect to Roemer’s
theoretical formulation of inequality of opportunity.8 Second, we introduce

8Furthermore, their simple graphical illustration can be an instructive tool for comparisons of
opportunity structures in different societies.

c© 2023 The Authors. The Scandinavian Journal of Economics published by John Wiley & Sons Ltd on behalf of Föreningen
för utgivande av the SJE.
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P. Brunori, P. Hufe, and D. Mahler 9

conditional inference forests, which are, loosely speaking, a collection of
many conditional inference trees. While forests do not have the intuitive
appeal of regression trees, they perform better in terms of out-of-sample
prediction accuracy, and hence provide better estimates of the counterfactual
distribution 𝑦𝐶 .

3.1. Conditional inference trees

Trees obtain predictions for outcome 𝑦 as a function of input variables
𝑥 = (𝑥1, . . . , 𝑥𝑘). They use the sample S = {(𝑦𝑖 , 𝑥𝑖)}𝑆𝑖=1 to divide the
population into non-overlapping groups, G = {𝑔1, . . . , 𝑔𝑚, . . . , 𝑔𝑀 }, where
each group 𝑔𝑚 is homogeneous in the expression of some input variables.
These groups are called terminal nodes or leafs. The conditional expectation
for observation 𝑖 is estimated from the mean outcome �̂�𝑚 of the group
𝑔𝑚 to which 𝑖 is assigned. Hence, in addition to the observed outcome
vector 𝑦 = (𝑦1, . . . , 𝑦𝑖 , . . . , 𝑦𝑁 ) one obtains a vector of predicted values
�̂� = ( 𝑓 (𝑥1), . . . , 𝑓 (𝑥𝑖), . . . , 𝑓 (𝑥𝑁 )), where

𝑓 (𝑥𝑖) = �̂�𝑚(𝑖) =
1
𝑁𝑚

∑

𝑗∈𝑔𝑚

𝑦 𝑗 . (7)

The mapping from regression trees to equality of opportunity estimation
is straightforward. If the input variables 𝑥 = (𝑥1, . . . , 𝑥𝑘) are circumstances
only, each resulting group 𝑔𝑚 ∈ G can be interpreted as a circumstance type
𝑡𝑚 ∈ T . Furthermore, �̂� is analogous to an estimate of the counterfactual
distribution 𝑦𝐶 that underpins the construction of ex ante utilitarian measures
of inequality of opportunity.

3.2. Tree construction

Regression trees partition the sample into𝑀 types by recursive binary splitting,
which starts by dividing the full sample into two distinct groups according
to the value they take in one input variable 𝜔𝑝 ∈ Ω. If 𝜔𝑝 is a continuous
or ordered variable, then 𝑖 ∈ 𝑡𝑙 if 𝜔𝑝𝑖 < �̃�

𝑝 and 𝑖 ∈ 𝑡𝑚 if 𝜔𝑝𝑖 ≥ �̃�
𝑝, where �̃�𝑝

is a splitting value chosen by the algorithm. If 𝜔𝑝 is a categorical variable,
then the categories can be split into any two arbitrary groups. The process is
continued such that one of the two groups is divided into further subgroups
(potentially based on another 𝜔𝑞 ∈ Ω), and so on. Graphically, this division
into groups can be presented like an upside-down tree (Figure 1).

The exact manner in which the split is conducted depends on the type of
regression tree that is used. In this paper, we follow the conditional inference
methodology proposed by Hothorn et al. (2006). Conditional inference trees
are grown by a series of permutation tests according to the following four-step
procedure.

c© 2023 The Authors. The Scandinavian Journal of Economics published by John Wiley & Sons Ltd on behalf of Föreningen
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10 Estimating inequality of opportunity from regression trees and forests

Figure 1. Exemplary tree representation

Notes: Artificial example of a regression tree. Gray boxes indicate splitting points; white boxes indicate terminal

nodes. The values inside terminal nodes show estimates for the conditional expectation 𝑦𝐶 .

0. Choose a significance level 𝛼∗.

1. Test the null hypothesis of density function independence: 𝐻𝜔
𝑝

0 :
𝐷 (𝑦 |𝜔𝑝) = 𝐷 (𝑦), for all 𝜔𝑝 ∈ Ω, and obtain a 𝑝-value associated with
each test, 𝑝𝜔

𝑝
.

⇒ Adjust the 𝑝-values for multiple hypothesis testing, such that
𝑝𝜔

𝑝

𝑎𝑑 𝑗. = 1 − (1 − 𝑝𝜔
𝑝
)𝑃 (Bonferroni correction).

2. Select the variable 𝜔∗ with the lowest 𝑝-value, i.e., 𝜔∗ =
arg min𝜔𝑝 {𝑝𝜔

𝑝

𝑎𝑑 𝑗. : 𝜔𝑝 ∈ Ω, 𝑝 = 1, . . . , 𝑃}.

⇒ If 𝑝𝜔
∗

𝑎𝑑 𝑗. > 𝛼
∗, exit the algorithm.

⇒ If 𝑝𝜔
∗

𝑎𝑑 𝑗. ≤ 𝛼
∗, continue, and select 𝜔∗ as the splitting variable.

3. Test the null hypothesis of density function independence between the
subsamples for each possible binary partition splitting point 𝑠 based on
𝜔∗, and obtain a 𝑝-value associated with each test, 𝑝𝜔

∗
𝑠 .

⇒ Split the sample based on 𝜔∗, by choosing the splitting point 𝑠 that
yields the lowest 𝑝-value, i.e., �̃�∗ = arg min𝜔∗𝑠 {𝑝

𝜔∗𝑠 : 𝜔∗𝑠 ∈ Ω}.

4. Repeat steps 1–3 for each of the resulting subsamples.

c© 2023 The Authors. The Scandinavian Journal of Economics published by John Wiley & Sons Ltd on behalf of Föreningen
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P. Brunori, P. Hufe, and D. Mahler 11

In words, conditional inference trees start by a series of univariate
hypothesis tests. The circumstance that is most related to the outcome is
chosen as the potential splitting variable. If the dependence between the
outcome and the splitting variable is sufficiently strong, then a split is made.
If not, no split is made. Whenever a circumstance can be split in several ways,
the sample is split into two subsamples such that the dependence with the
outcome variable is maximized. This procedure is repeated in each of the two
subsamples until no circumstance in any subsample is sufficiently related to
the outcome variable. Note that the depth of the resulting opportunity tree
hinges on the level of 𝛼∗. The less stringent the 𝛼∗-requirement, the more we
allow for false positives (i.e., the more splits will be detected as significant
and the deeper the tree will be grown). In our empirical application, we fix
𝛼∗ = 0.01, which is in line with the disciplinary convention for hypothesis
tests. To illustrate the robustness of this choice, we show comparisons to
setting 𝛼∗ = 0.05 and choosing 𝛼∗ through cross-validation in Figure S.1 in
the Supplementary Material.

A particular advantage of trees is that they avoid list-wise deletion of
observations by implementing surrogate splits. In case of missing data, the
algorithm searches for an alternative splitting point that mimics the sample
partition based on �̃�∗ to the greatest extent. All observations that lack
information on �̃�∗ are then allocated to subbranches based on this surrogate
splitting point.

3.3. Conditional inference forests

Regression trees provide a simple and standardized way of dividing the
population into types. Therefore, they solve the model selection problem
outlined in Section 2. However, trees suffer from three shortcomings. First,
the structure of trees – and therefore the estimate of 𝑦𝐶 – is fairly sensitive
to alternations in data samples. This issue is particularly pronounced if
there are various circumstances that are close competitors for defining
the first splits (Friedman et al., 2009). Second, trees assume a non-linear
DGP that imposes interactions while ruling out the linear influence of
circumstances. Third, trees make inefficient use of data because some of
the circumstances 𝜔𝑝 ∈ Ω are not used for the construction of the tree.
However, circumstances might possess informational content that can increase
predictive power even if they are not significantly associated with 𝑦 at level
𝛼∗. This becomes an issue if two or more important circumstances are highly
correlated. Once a split is made using either of the two, it is unlikely that
the other contains enough information to cause another split. Conditional
inference forests address all of these shortcomings (Breiman, 2001; Biau and
Scornet, 2016).

c© 2023 The Authors. The Scandinavian Journal of Economics published by John Wiley & Sons Ltd on behalf of Föreningen
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12 Estimating inequality of opportunity from regression trees and forests

3.4. Forest construction

Random forests create many trees and average over all of these when making
predictions. Trees are constructed according to the same four-step procedure
outlined in Section 3.2. However, two tweaks are made. First, given the sample
S = {(𝑦𝑖 , 𝜔𝑖)}𝑆𝑖=1, each tree is estimated on a random subsampleS′ ⊂ S. In our
application, we randomly select approximately 60 percent of the observations
for each tree, and estimate 𝐵∗ such trees in total. Second, only a random subset
of circumstances of cardinality �̄�∗ is allowed to be used at each splitting point.
Together, these two tweaks remedy the shortcomings of single conditional
inference trees. First, averaging over 𝐵∗ predictions cushions variance in
the estimates of 𝑦𝐶 and smooths the non-linear impact of circumstance
characteristics. Second, the use of subsets of all circumstance variables
increases the likelihood that all observed circumstances with informational
content will be identified as splitting variable 𝜔∗ at some point.

Predictions are formed as follows:

𝑓 (𝜔;𝛼∗, �̄�∗, 𝐵∗) =
1
𝐵∗

𝐵∗∑

𝑏=1

𝑓
𝑏
(𝜔;𝛼∗, �̄�∗). (8)

Equation (8) illustrates that individual predictions are a function of 𝛼∗ (i.e.,
the significance level governing the implementation of splits, �̄�∗), the number
of circumstances to be considered at each splitting point, and the number
of subsamples drawn from the data, 𝐵∗. In our empirical illustration, we fix
𝐵∗ = 200 and determine 𝛼∗ and �̄�

∗ by minimizing the “out-of-bag” error
(MSEOBB). Details on these choices and empirical procedures are disclosed
in Section S.1 of the Supplementary Material.

4. Empirical application

In this section, we illustrate the machine learning approach using harmonized
survey data from 31 European countries. We compare the results from trees
and forests with results from the prevalent estimation approaches in the extant
literature: parametric, non-parametric, and latent class models. Comparisons
are made along two dimensions.

First, we evaluate the different estimation approaches by comparing their
out-of-sample mean squared error, MSETest, which is a standard statistic to
evaluate the prediction quality of estimation models.9 To calculate MSETest,
we follow the machine learning practice of splitting our sample into a training

9Minimizing MSETest is equivalent to trading off upward and downward biases of inequality of
opportunity estimates in a given data environment: the more parsimonious the model, the higher

c© 2023 The Authors. The Scandinavian Journal of Economics published by John Wiley & Sons Ltd on behalf of Föreningen
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P. Brunori, P. Hufe, and D. Mahler 13

set with 𝑖−𝐻 ∈ {1, . . . , 𝑁−𝐻 } and a test set with 𝑖𝐻 ∈ {1, . . . , 𝑁𝐻 }. For each
sample, we choose 𝑁−𝐻 = (2/3)𝑁 and 𝑁𝐻 = (1/3)𝑁 .10 We fit our models
on the training set and compare their performance on the test set according to
the following procedure.

1. Run the model on the training data (for the specific estimation
procedures, see Section 3.1 for trees and forests, and Section 4.2
for our benchmark methods).

2. Store the prediction function 𝑓
−𝐻
( ).

3. Calculate the mean squared error in the test set:
MSETest = (1/𝑁𝐻 )

∑
𝑖∈𝐻 [𝑦𝑖 − 𝑓

−𝐻
(𝜔𝑖)]

2.

Second, we evaluate the different approaches by comparing inequality of
opportunity estimates. To this end, we run the models on all data for a country,
and apply the resulting prediction functions 𝑓 ( ) to obtain �̂�𝐶 . Estimates of
inequality of opportunity are derived by summarizing �̂�𝐶 with the Gini index.
Estimates for alternative inequality indices are presented in Section S.6 of the
Supplementary Material.

4.1. Data

We base our empirical illustration on the 2011 wave of the European Union
Statistics on Income and Living Conditions (EU-SILC), which provides
harmonized survey data with respect to income, poverty, and living conditions.
It is the official reference source for comparative statistics on income
distribution and social inclusion in the EU. In its 2011 wave, EU-SILC
covers a cross-section of 31 European countries. For each country, it contains
a random sample of all resident private households. Data are collected by
national statistical agencies following common variable definitions and data
collection procedures. We use the 2011 wave because it contains an ad
hoc module about the intergenerational transmission of (dis)advantages. This
module allows us to construct finely grained circumstance-type partitions.
Observed circumstances Ω and their respective expressions are listed in
Table 1. We include all variables of EU-SILC containing information about

the prediction bias (underfitting) and the stronger the downward bias in inequality of opportunity
estimates. The more complex the model, the higher the prediction variance (overfitting) and
the stronger the upward bias of inequality of opportunity estimates. We provide a thorough
illustration of this mapping in Section S.2 in the Supplementary Material.
10Note that the size of the training set for each country is constant regardless of the estimation
method. Hence, any cross-method differences in prediction accuracy are not driven by differences
in sample size.

c© 2023 The Authors. The Scandinavian Journal of Economics published by John Wiley & Sons Ltd on behalf of Föreningen
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14 Estimating inequality of opportunity from regression trees and forests

Table 1. List of circumstances

(1) Respondent’s sex: male; female
(2) Respondent’s country of birth:

present country of residence; European country; non-European country
(3) Presence of parents at home∗:

both present
only mother
only father
without parents
lived in a private household without any parent

(4) Number of adults (aged 18 or more) in respondent’s household∗

(5) Number of working adults (aged 18 or more) in respondent’s household∗

(6) Number of children (under 18) in respondent’s household∗

(7) Father’s/mother’s country of birth and citizenship:
born in/citizen of the respondent’s present country of residence
born in/citizen of another EU-27 country
born in/citizen of another European country
born in/citizen of a country outside Europe

(8) Father’s/mother’s education (based on ISCED-97)∗:
unknown father/mother
illiterate
low (0–2 ISCED-97), medium (3–4 ISCED-97) or high (5–6 ISCED-97)

(9) Father’s/mother’s occupational status∗:
unknown or dead father/mother
employed
self-employed
unemployed
retired
house worker
other inactive

(10) Father’s/mother’s main occupation (based on ISCO-08)∗:
managers (I-01)
professionals (I-02)
technicians (I-03)
clerical support workers (I-04)
service and sales workers (I-05 and 10)
skilled agricultural, forestry and fishery workers (I-06)
craft and related trades workers (I-07)
plant and machine operators, and assemblers (I-08)
elementary occupations (I-09)
armed forces occupations (I-00)
father/mother did not work, was unknown or was dead

(11) Managerial position of father/mother∗: supervisory; non-supervisory
(12) Tenancy status of the house in which the respondent was living∗: owned; not owned

Notes: This table lists the circumstance variables available in EU-SILC 2011. Questions marked with ∗ refer to
the time when the respondent was 14 years old. Item 7 (11) is missing for Slovenia (Finland). ISCED97 is the
International Standard Classification of Education 1997. ISCO-08 is the International Standard Classification of
Occupations, published by the International Labour Office.
Source: EU-SILC 2011 cross-sectional (rev. 5, June 2015).

c© 2023 The Authors. The Scandinavian Journal of Economics published by John Wiley & Sons Ltd on behalf of Föreningen
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P. Brunori, P. Hufe, and D. Mahler 15

the respondent’s characteristics at birth and their living conditions during
childhood. Descriptive statistics of circumstance variables are reported in
Section S.5 of the Supplementary Material.11

The unit of observation is the individual and the outcome of interest is
equivalized disposable household income. We obtain the latter by dividing
household disposable income with the square root of household size. Reported
incomes refer to the year preceding the survey wave (i.e., 2010 in the case of
our empirical application). In line with the literature, we focus on equivalized
household income as it provides the closest income analogue to consumption
possibilities and general economic well-being. Inequality statistics tend to be
heavily influenced by outliers (Cowell and Victoria-Feser, 1996); therefore,
we adopt a standard winsorization method according to which we set
all non-positive incomes to 1 and scale back all incomes exceeding the
99.5th percentile of the country-specific income distribution to this lower
threshold. Our analysis is focused on the working-age population. Therefore,
we restrict the sample to respondents aged between 30 and 60. To assure
the representativeness of our inequality of opportunity estimates, we use
individual cross-sectional weights when calculating 𝐼 ( �̂�𝐶).

Table 2 shows considerable heterogeneity in income distributions across
Europe. While the average households in Norway and Switzerland obtained
incomes above 40,000 euros in 2010, the average household income in
Romania, Bulgaria, and Lithuania did not exceed the 5,000 euros mark.
Lowest inequality prevails in Norway, Iceland, and Denmark, all of which
have Gini coefficients below 0.230. At the other end of the spectrum, we find
Latvia and Lithuania with Gini coefficients above 0.340.

4.2. Benchmark methods

We compare trees and forests to three benchmark estimation methods from
the extant literature.

First, we draw on the parametric approach as proposed by Bourguignon
et al. (2007) and Ferreira and Gignoux (2011). In line with equation (4),
estimates are obtained by a Mincerian regression of log income on the
following circumstances: educational attainment of mother and father (five
categories each), father’s occupation (11 categories), area of birth (three
categories), and tenancy status of the household at age 14 (two categories).
The prediction model includes 22 parameters.

11In contrast to some existing work, we do not consider age as a circumstance (see Checchi
et al., 2016, among others). This choice is motivated by the fact that cross-sectional income
disparities across age groups even out across the life cycle of individuals. In Section S.7 of the
Supplementary Material, we provide robustness analyses based on income distributions that are
residualized from variation across age groups. Our conclusions remain unaffected.

c© 2023 The Authors. The Scandinavian Journal of Economics published by John Wiley & Sons Ltd on behalf of Föreningen
för utgivande av the SJE.

 14679442, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sjoe.12530 by T

est, W
iley O

nline L
ibrary on [31/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



16 Estimating inequality of opportunity from regression trees and forests

Table 2. Summary statistics

Country 𝑁 Equivalized disposable household income in euros

𝜇 𝜎 Gini

Austria 6,220 25,538 13,408 0.267
Belgium 6,011 23,314 10,769 0.247
Bulgaria 7,146 3,698 2,457 0.331
Croatia 6,945 6,631 3,764 0.306
Cyprus 4,589 21,074 11,554 0.278
Czech Republic 8,711 9,036 4,610 0.253
Denmark 5,795 32,471 14,422 0.227
Estonia 5,338 6,924 4,364 0.330
France 11,078 24,320 14,695 0.287
Germany 12,683 22,862 12,468 0.284
Greece 6,184 13,184 8,887 0.334
Hungary 13,330 5,305 2,830 0.275
Iceland 3,682 21,562 9,290 0.221
Ireland 4,318 24,882 14,078 0.295
Italy 21,070 18,774 11,348 0.314
Latvia 6,423 5,339 3,751 0.362
Lithuania 5,403 4,774 3,116 0.344
Luxembourg 6,765 37,948 19,412 0.270
Malta 4,701 13,058 6,758 0.272
Netherlands 11,411 24,322 11,452 0.243
Norway 5,026 42,265 16,679 0.206
Poland 15,545 6,087 3,837 0.316
Portugal 5,899 10,796 7,354 0.333
Romania 7,820 2,527 1,612 0.336
Slovakia 6,779 7,309 3,509 0.256
Slovenia 13,183 13,373 5,896 0.234
Spain 15,481 17,088 10,684 0.328
Sweden 6,599 25,098 11,157 0.237
Switzerland 7,583 42,844 23,877 0.278
United Kingdom 7,391 22,768 15,164 0.319

Notes: This table provides summary statistics by country. 𝑁 indicates the total number of observations. The last
three columns summarize the distribution of equivalized disposable household income: mean (𝜇), standard deviation
(𝜎), and Gini coefficient.
Source: EU-SILC 2011 cross-sectional (rev. 5, June 2015).

Second, we draw on the non-parametric approach as proposed by Checchi
and Peragine (2010). In line with equation (6), non-parametric estimates are
obtained by calculating average outcomes in non-overlapping circumstance
types. Types are homogeneous with respect to educational attainment of the
highest educated parent (five categories), fathers’ occupation (four categories),

c© 2023 The Authors. The Scandinavian Journal of Economics published by John Wiley & Sons Ltd on behalf of Föreningen
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P. Brunori, P. Hufe, and D. Mahler 17

and migration status (two categories).12 The prediction model includes 40
parameters.

Third, we draw on the latent class approach as proposed by Li Donni
et al. (2015). We use the union of circumstances used in the parametric and
non-parametric approaches from which the algorithm infers the appropriate
number of unobserved types in the data by minimizing the BIC.

Do these specification choices serve for a fair assessment of these
benchmark methods? As outlined in Section 2, model specification in
the (non-)parametric approach is a discretionary choice of the researcher;
therefore, there are many different specifications that could be used for the
benchmarking. To make the comparison non-arbitrary, we anchor our
comparison on model specifications of existing studies. The specification
of the parametric approach is inspired by Palomino et al. (2019). We divert
from their specification by excluding gender (due to our focus on disposable
household income) and retrospective information on the financial situation
during childhood (due to potential recall bias) from the list of circumstances.
In comparison, our prediction model (22 parameters) is more parsimonious
than the model in Palomino et al. (2019, 24 parameters). The specification of
the non-parametric approach is inspired by Checchi et al. (2016). We divert
from their specification by excluding gender (due to our focus on disposable
household income) and age (due to its interpretation as a proxy for life-cycle
effects) from the list of circumstances. In comparison, our prediction model
(40 parameters) is more parsimonious than the model in Checchi et al. (2016,
96 parameters). As outlined in Section 2, model specification in latent class
analysis is data-driven. Therefore, we do not need to specify the model itself
but commit to a model selection criterion. We anchor our comparison on the
study of Li Donni et al. (2015) who use the BIC to select the number of latent
classes to be estimated.

4.3. Simulation

We begin our analysis with a simulation exercise. The simulation allows us
to assess the properties of different estimation approaches while maintaining
control over the true DGP. As a consequence, we can: (i) assess the prediction
accuracy by decomposing MSETest into its variance and bias components; and
(ii) assess the resulting bias in inequality of opportunity estimates.

In general, simulation results are sensitive to assumptions about the true
DGP and sample sizes. To make the simulation relevant to the context of

12To minimize the frequency of sparsely populated types, we divert from the occupational
list given in Table 1 by re-coding occupations into the following categories: high-skilled
non-manual (I-01–I-03), low-skilled non-manual (I-04–I-05 and I-10), skilled manual and
elementary occupation (I-06–I-09), and unemployed/unknown/dead.

c© 2023 The Authors. The Scandinavian Journal of Economics published by John Wiley & Sons Ltd on behalf of Föreningen
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18 Estimating inequality of opportunity from regression trees and forests

Table 3. Summary of data-generating processes

Parametric Non-parametric Mixed

Outcome ln(𝑦) 𝑦 ln(𝑦)
Parameters 22 40 18
Circumstances Education father Education parents Education parents

Education mother Occupation father Occupation father
Occupation father Migrant background Migrant background

Birth area Tenancy status
Tenancy status

Non-linearity None Full interaction All circumstances with
migrant background

(two levels)
𝜖 N(0, 2000) N(0, 2000) N(0, 2000)

our empirical analysis, we choose DGPs that are anchored in the benchmark
methods presented in Section 4.2 and choose sample sizes to broadly cover
the range of country samples in EU-SILC. We note that our additional
simulation choices are conservative. First, we construct a simulation sample
without missing data points. As a consequence – and in contrast to actual
empirical applications – parametric and non-parametric approaches do not
suffer from data reductions through list-wise deletion. Second, we restrict
circumstances used by trees and forests to the union of circumstances used
in the (non-)parametric approach. As a consequence – and in contrast to
actual empirical applications – we deprive data-driven approaches from the
advantage of using all available circumstance information in the data.

We impose three DGPs that are summarized in Table 3. The parametric
DGP and the non-parametric DGP correspond to the estimation models
outlined in Section 4.2. They present a challenging test for data-driven
estimation methods because the latter have to compete against fixed
specifications (parametric, non-parametric) that correspond to the ground
truth. In addition, we specify a mixed DGP that integrates features of both the
parametric and the non-parametric DGP. This is a more realistic scenario as
it is plausible to assume that researchers devise fixed specifications without
prior knowledge of the true DGP. We estimate all three models on the
full sample of EU-SILC while list-wise deleting observations with missing
information (𝑁 = 197,565). In turn, we retain the predictions from these
estimations and add a disturbance term with N(0, 2000).13 Thus, we obtain
three variables that define the distribution of income for the purpose of this
simulation.

13We choose a variance term small enough such that 𝑦 ∈ R++.
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P. Brunori, P. Hufe, and D. Mahler 19

Next we specify five sample sizes that broadly cover the range of
effective country sample sizes observed in EU-SILC (see Table S.1 in the
Supplementary Material): 𝑁 ∈ {1,000; 2,000; 4,000; 8,000; 16,000}. For each
sample size, we draw one test set of size 𝑁𝐻 = (1/3)𝑁 and 50 training sets
of size 𝑁−𝐻 = (2/3)𝑁 . Thus, for each observation in the test sets, we obtain
50 predictions per combination of DGP and estimation approach. Based on
these predictions, we calculate two statistics: the expected MSETest to assess
out-of-sample prediction accuracy (James et al., 2013), and the expected
absolute difference between inequality of opportunity estimates and the true
level of inequality of opportunity.

Figure 2 displays the results of our simulation. The lower part of each panel
describes expected MSETest per combination of DGP, estimation approach,
and sample size. As we know the true DGP, we can decompose MSETest

into variance and expected bias.14 The upper part of each panel describes
the corresponding absolute bias in inequality of opportunity estimates on
an inverse scale. The absolute bias is calculated as the expected absolute
difference between inequality of opportunity estimates and the true level of
inequality of opportunity, as a percentage share of the latter.

The simulation results are in line with statistical theory. First, if fixed
estimation approaches (parametric, non-parametric) invoke the true DGP,
expected bias is zero and MSETest is driven by its variance component
only. Second, with increasing 𝑁 , the bias component of MSETest remains
constant for fixed specifications (parametric, non-parametric) and decreases
for data-driven approaches (LCA, trees, forests). Third, with increasing 𝑁 ,
the variance component of MSETest decreases for all combinations of DGPs
and estimation approaches. Fourth, forests tend to have lower variance than
trees – in our simulation, this is true in 93 percent of all cases.

Furthermore, Figure 2 illustrates that the size of MSETest, and therefore
bias in inequality of opportunity estimates, varies with sample size for all
estimation methods. However, the sources of this bias vary across estimation
methods. For example, forests incur downward bias in small samples as
their algorithm prevents the detection of relevant splits. To the contrary, fixed
specifications incur upward bias in small samples as the underlying parameters
are noisily estimated (although unbiased in expectation). The crucial question
is whether this sensitivity is larger for machine learning than for traditional
econometric methods, which is a case-specific and empirical question.

Under the reasonable assumption that researchers do not know the true
DGP, forests clearly dominate all other estimation approaches in terms of

14See also Section S.2 in the Supplementary Material for an illustration of the variance–bias
decomposition. The irreducible error term is uninformative for differences in MSETest because
Var(𝜖 ) = 2,0002 is constant across specifications. Therefore, we only present evidence on the
variance and the bias component of MSETest.

c© 2023 The Authors. The Scandinavian Journal of Economics published by John Wiley & Sons Ltd on behalf of Föreningen
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20 Estimating inequality of opportunity from regression trees and forests
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P. Brunori, P. Hufe, and D. Mahler 21

expected MSETest. This result holds both in comparison with fixed estimation
approaches (parametric, non-parametric) and in comparison with LCA as an
alternative data-driven estimation approach. The results for trees are also
persuasive; however, they have a weaker performance than forests when
samples are small. Even in the unlikely case that researchers were to specify
(non-)parametric models correctly, trees and forests quickly converge to the
test error of the fixed model that invokes the true DGP. The simulation results
further highlight the close correspondence between MSETest and expected bias
in inequality of opportunity estimates: the higher MSETest, the more strongly
inequality of opportunity estimates diverge from the ground truth.

In summary, the simulation results support the use of regression trees and
forests. They flexibly approximate the true DGP. Thereby, they outperform
fixed estimation approaches (parametric, non-parametric) and alternative
data-driven estimation approaches (LCA) in terms of the expected MSETest,
which itself is tightly linked to expected bias in inequality of opportunity
estimates.

4.4. Cross-country comparison

We now turn to a cross-country comparison based on actual data. First, we
calculate MSETest to assess the prediction accuracy of different estimation
approaches. Second, we calculate inequality of opportunity estimates. In
contrast to the simulation exercise, we do not know the true DGP and we
cannot assess bias in inequality of opportunity estimates by comparison with
the ground truth. Therefore, we assess bias in inequality of opportunity
estimates by comparing estimation approaches against the method with
the highest prediction accuracy (i.e., the method yielding the lowest
MSETest).

4.4.1. Prediction accuracy. Figure 3 compares MSETest across countries
and estimation approaches. For each method, MSETest is presented in
differences relative to random forests. By differencing across methods, we
provide a close analogue to the simulation exercise in Section 4.3: we omit
the irreducible error term from the comparison, and relative MSETest is driven
by variance and bias components only. For better visual clarity, we again
scale MSETest by 1 × 10−6. Relative MSETest > 0 indicates poorer prediction
accuracy in comparison with random forests.

Random forests outperform all other methods in terms of prediction
accuracy. On average, the parametric approach yields test errors that exceed
random forests by 8.4 (7.8 percent); see Figure 3(a). Somewhat smaller
average shortfalls in prediction accuracy are observed for non-parametric
(Figure 3(b)) and latent class models (Figure 3(c)). Averages across countries,

c© 2023 The Authors. The Scandinavian Journal of Economics published by John Wiley & Sons Ltd on behalf of Föreningen
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22 Estimating inequality of opportunity from regression trees and forests

Figure 3. Comparison of MSETest by method
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Note: This figure shows differences of MSETest from different estimation approaches relative to random forests. For

all methods, we multiply MSETest by 1 × 10−6 . Values > (<)0 indicate worse (better) out-of-sample prediction

accuracy than random forests. Vertical lines indicate unweighted cross-country averages. Point estimates and

associated standard errors are listed in Table S.1 in the Supplementary Material.

Source: EU-SILC 2011 cross-sectional (rev. 5, June 2015).

however, mask considerable heterogeneity. For example, the relative test
error of parametric estimates for Eastern European countries, such as Slovenia
or Czech Republic, are close to zero. On the contrary, relative test errors
of parametric estimates for Sweden, Luxembourg, and Switzerland diverge
significantly from the forest benchmark.
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P. Brunori, P. Hufe, and D. Mahler 23

Conditional inference trees are closest to the test error rate of forests:
MSETest = 2.8 (2.2 percent). Yet, they also fall short of the performance
of forests due to higher variance, imposing non-linearity, and omitting less
relevant circumstances (see Section 3.3).

We conclude that among all considered methods, conditional inference
forests deliver the highest out-of-sample prediction accuracy.15 Hence, relative
to random forests, other methods underutilize or overutilize the information
contained in Ω, which in expectation will lead to bias in inequality of
opportunity estimates.

4.4.2. Inequality of opportunity estimates. Figure 4 displays inequality
of opportunity estimates across countries and estimation approaches. In each
panel, we plot inequality of opportunity estimates for a particular method, as
well as the associated differences to estimates from forests. We emphasize
that results from forests cannot be interpreted as the truth. However, because
forests yield the lowest test error among all considered methods, they provide
the best “approximation of the true DGP in a given data environment”.
Therefore, they are a useful benchmark to assess bias of other estimation
methods.16

Figure 4(a) shows estimates from the parametric approach. In our country
sample, the chosen model specification for the parametric approach tends to
overstate inequality of opportunity relative to forests, which is the method
providing the lowest expected bias in comparison with the true DGP. For
21 out of 31 countries, the inequality of opportunity estimates are higher
than the results from forests. Most pronounced overstatements are observed
in countries that are typically considered high-opportunity societies. For
example, forests classify Sweden and the Netherlands as societies offering
high equality of opportunity. On the contrary, the parametric estimate would
rank them at similar levels to Germany and France.

Figure 4(b) shows estimates from the non-parametric approach. The
overall pattern is more heterogeneous than for the parametric approach.

15In Table S.3 of the Supplementary Material, we show that the overwhelming majority of
detected differences are statistically significant at conventional levels.
16It is important to keep this relative interpretation of “bias” in mind. We compare
method-specific estimates to the best estimate of inequality of opportunity in a given data
environment. In light of all methods lacking information on unobserved circumstances, methods
that are upward biased in this comparison might potentially be closer to the ground truth than our
reference estimate. Such conclusions, however, are purely speculative and can neither be verified
nor falsified without knowledge of the ground truth (see also Section S.2 of the Supplementary
Material for a thorough explanation). Therefore, another interpretation of forests is that they
provide the reliable maximum lower bound estimate of inequality of opportunity in a given data
environment.
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24 Estimating inequality of opportunity from regression trees and forests

Figure 4. Comparison of inequality of opportunity estimates by method

Iceland
Denmark

Norway
Netherlands

Finland
Slovenia
Sweden

Czech Republic
Slovakia

Ireland
Germany

Malta
United Kingdom

Lithuania
Swi�erland

Croatia
Cyprus

Belgium
Austria
Poland
France

Estonia
Hungary

Italy
Latvia
Greece

Spain
Romania

Luxembourg
Bulgaria
Portugal

Europe
0.05 0.10 0.15 0.20

Forest
Para.

Iceland
Denmark

Norway
Netherlands

Finland
Slovenia
Sweden

Czech Republic
Slovakia

Ireland
Germany

Malta
United Kingdom

Lithuania
Swi�erland

Croatia
Cyprus

Belgium
Austria
Poland
France

Estonia
Hungary

Italy
Latvia
Greece

Spain
Romania

Luxembourg
Bulgaria
Portugal

Europe
0.05 0.10 0.15 0.20

Forest
Non-Para.

Iceland
Denmark

Norway
Netherlands

Finland
Slovenia
Sweden

Czech Republic
Slovakia

Ireland
Germany

Malta
United Kingdom

Lithuania
Swi�erland

Croatia
Cyprus

Belgium
Austria
Poland
France

Estonia
Hungary

Italy
Latvia
Greece

Spain
Romania

Luxembourg
Bulgaria
Portugal

Europe
0.05 0.10 0.15 0.20

Forest
LCA

Iceland
Denmark

Norway
Netherlands

Finland
Slovenia
Sweden

Czech Republic
Slovakia

Ireland
Germany

Malta
United Kingdom

Lithuania
Swi�erland

Croatia
Cyprus

Belgium
Austria
Poland
France

Estonia
Hungary

Italy
Latvia
Greece

Spain
Romania

Luxembourg
Bulgaria
Portugal

Europe
0.05 0.10 0.15 0.20

Forest
Tree

(a) Parametric approach (b) Non-parametric approach

(c) Latent class analysis (d) Conditional inference tree

Notes: This figure shows inequality of opportunity estimates from different estimation methods relative to forests.

Inequality of opportunity is measured by the Gini coefficient of the counterfactual distribution �̂�𝐶 . Point estimates

and associated standard errors are listed in Table S.2 of the Supplementary Material.

Source: EU-SILC 2011 cross-sectional (rev. 5, June 2015).

While overstatements prevail in countries that are typically considered as
high-opportunity societies, there are 20 out of 31 countries for which the
non-parametric estimate falls short of the forest estimate. These countries are
clustered in the lower part of the equal-opportunity ranking. For example,
forests classify Italy at a worse position than most countries in Europe. On
the contrary, the non-parametric estimate would elevate Italy towards the
mid-field, close to Sweden.
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P. Brunori, P. Hufe, and D. Mahler 25

We highlight that any resemblance between forests and (non-)parametric
estimation approaches should be interpreted as a luck of the draw rather than
a property inherent to the estimation approach. Under alternative plausible
model specifications, estimates from both approaches might diverge much
more strongly than under the specifications adopted in this work. This
property of fixed model specifications is apparent from the simulation results
in Section 4.3.

Figure 4(c) shows estimates from the latent class approach. In our
country sample, LCA tends to understate inequality of opportunity relative
to forests. For 25 out of 31 countries, the LCA estimate falls short of its
forest-based analogue. LCA chooses rather coarse type partitions. Therefore,
understatements are clustered in the lower tail of the equal-opportunity ranking
(i.e., in societies in which many circumstances co-produce the outcome of
interest). On the contrary, in high-opportunity societies, the parsimonious
models chosen by LCA tend to replicate the results from forests reasonably
well.

Figure 4(d) shows that trees and forests tend to produce similar results.
The correlation between point estimates is high (0.98). In contrast to all other
approaches, there is no general tendency to overestimate or underestimate
inequality of opportunity relative to forests.

Finally, detected differences between the benchmark estimation approaches
and forests persist when estimating equality of opportunity in a pooled
European sample.17 For example, the parametric approach overestimates
inequality of opportunity relative to forests, whereas LCA yields lower
estimates than forests.

4.4.3. Robustness to differences in sample size. Effective sample
sizes differ by estimation method and country (see Table S.1 in the
Supplementary Material). First, samples for the benchmark methods
(parametric, non-parametric, LCA) are reduced as they rely on list-wise
deletion in case of missing circumstance information. These reductions can
be sizable and exceed 50 percent in six countries of our sample (Denmark,
Iceland, Netherlands, Norway, Slovenia, and Sweden). Second, even when
accounting for missing information, the largest country sample in EU-SILC
(Italy, 𝑁 = 21,070) is almost seven times as large as the smallest country
sample (Iceland, 𝑁 = 3,682). Therefore, we perform two robustness analyses.

17Note that we do not include country of residence as a circumstance. We acknowledge that
country of residence is congruent with country of birth for most individuals. Therefore, it
could be used as a proxy circumstance (Milanovic, 2015). However, our foremost concern is a
methodological comparison of estimation approaches in different data environments. Therefore,
we prefer to keep the set of circumstances comparable to our within-country estimates.
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26 Estimating inequality of opportunity from regression trees and forests

First, we recompute inequality of opportunity after completing missing
data through multiple imputation (Schafer, 1999).18 As a consequence, we
can compare inequality of opportunity estimates across methods on the same
effective sample size per country. Figure S.1 in the Supplementary Material
shows a decrease in inequality of opportunity estimates relative to forests
for all benchmark methods (parametric, non-parametric, LCA). This result is
in line with the intuition that upward biases decrease as sample sizes grow
relative to the number of model parameters. In contrast, the patterns for trees
and forests remain unaffected as they handle missing values by default through
surrogate splits.

Second, we recompute inequality of opportunity while reducing sample
sizes across countries to the smallest common denominator. As a consequence,
we can compare inequality of opportunity estimates across countries on
the same effective sample size. Figure S.2 in the Supplementary Material
shows that point estimates and country rankings differ for all benchmark
methods (parametric, non-parametric, LCA). Furthermore, trees also show
some variability as sample sizes decrease. In contrast, point estimates and
country rankings of forests are unaffected by harmonization in sample sizes
across countries. On the one hand, these results highlight that the high variance
of trees can lead to suboptimal results in some applications and that researchers
should give preference to forest estimates where possible. On the other hand,
these results bolster confidence that opportunity rankings of forests are not an
artifact of cross-country variation in sample sizes.19

4.4.4. Comparison with existing literature. We have shown that
benchmark methods from the existing literature yield markedly different
estimates of inequality of opportunity relative to the method for which
we expect the lowest bias. These differences are manifested in both point
estimates and country rankings. Therefore, these methods can be misleading
in two related dimensions. First, they might mis-classify European societies
regarding their need for opportunity equalizing policy interventions. Second,
researchers and policymakers in search of best practices to devise opportunity
equalizing policy interventions might turn to the wrong country examples. In

18List-wise deletion yields unbiased parameter estimates if data are missing completely at
random (MCAR). Multiple imputation weakens this assumption by assuming that data are
missing at random (MAR; i.e., missing data are random conditional on observed variables).
19We perform a similar exercise on the pooled sample: we re-estimate our results for the pooled
sample on increasingly smaller fractions of the total sample. In Figure S.3 in the Supplementary
Material, we again show that benchmark methods (parametric, non-parametric, LCA) and trees
are sensitive to changes in sample size when fractions become small. In contrast, forests again
emerge as the method that is most robust in small samples.
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P. Brunori, P. Hufe, and D. Mahler 27

the following, we assess the extent to which such concerns are reflected in the
extant literature on inequality of opportunity in Europe.

We proceed in two steps. First, we assess whether the existing literature
on inequality of opportunity in Europe is consistent (i.e., whether it yields
similar opportunity rankings across European societies). If the literature were
consistent, then researcher discretion in model selection would be irrelevant
for conclusions about inequality of opportunity in Europe. Second, we assess
whether the existing literature on inequality of opportunity in Europe conforms
with evidence on the intergenerational income elasticity (IGE). The IGE is
a commonly used proxy statistic for equality of opportunity that is based
on data links across generations. The IGE provides a suitable benchmark
as it can be interpreted as an ex ante utilitarian measure of inequality of
opportunity (see footnote 5) and it is often based on richer (administrative)
panel data. If there was conformity, then current estimation approaches
would yield opportunity rankings that are strongly in line with common
priors about mobility in European societies. We answer both questions by
calculating correlations in opportunity rankings across: (i) existing studies on
inequality of opportunity;20 (ii) existing consensus estimates of the IGE;21

and (iii) inequality of opportunity estimates from our preferred methods (i.e.,
regression trees and forests).

Panel A of Table 4 suggests that the existing literature on inequality of
opportunity in Europe is not consistent. Rank correlations as low as 0.09
indicate strong heterogeneity in country rankings. On the one hand, all studies
that inform this comparison have a very high degree of harmonization in
relevant dimensions: estimates were derived from the same underlying data
source (EU-SILC), refer to a similar age group (ages 25–60), and summarize
counterfactual distributions �̂�𝐶 by the same inequality metric (mean log
deviation). On the other hand, all studies specify different prediction functions
to estimate inequality of opportunity. This suggests that discretionary choices
with respect to model specifications might be a major force behind inconclusive
evidence in the inequality of opportunity literature. We cannot fully rule
out the possibility that differences in income concept definitions – that is,
individual income (Checchi et al., 2016) versus household income (Palomino

20We focus on published studies estimating ex ante measures of inequality of opportunity on
the 2011 wave of EU-SILC. Further studies that do not meet both criteria include Andreoli and
Fusco (2019) and Carranza (2020). Furthermore, we do not include Brzezinski (2020) as he
derives estimates based on the methods proposed in this paper.
21We focus on IGE estimates based on actual data linkages across generations and we exclude
IGE estimates based on two-sample instrumental variable estimators to mitigate distortions
through measurement error. Estimates are extracted from Stuhler (2018) and Carmichael
et al. (2020). Jointly both studies contain the following subset of our country sample: Denmark,
Finland, France, Germany, Italy, Netherlands, Norway, Sweden, Spain, and the United Kingdom.

c© 2023 The Authors. The Scandinavian Journal of Economics published by John Wiley & Sons Ltd on behalf of Föreningen
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28 Estimating inequality of opportunity from regression trees and forests

Table 4. Rank correlations of existing studies

Existing studies This paper

Checchi
et al. (2016)

Palomino
et al. (2016)

Suárez Álvarez
and López

Menéndez (2021)

Tree Forest

Panel A. Equality of opportunity (23 countries)
Tree – – – 1.000 –
Forest – – – 0.984 1.000
Checchi et al. (2016) 1.000 – – 0.363 0.345
Palomino et al. (2019) 0.281 1.000 – 0.882 0.859
Suárez Álvarez and

López Menéndez (2021)
0.090 0.855 1.000 0.756 0.757

Panel B. Intergenerational elasticity (10 countries)
Stuhler (2018) and

Carmichael et al. (2020)
0.535 0.657 0.444 0.900 0.887

Notes: This table shows country rank correlations in inequality of opportunity estimates across existing studies.
Panel A is based on the intersection of countries included in this paper, Checchi et al. (2016), Palomino et al. (2019),
and Suárez Álvarez and López Menéndez (2021) (23 countries). All ranks are calculated from the mean log deviation
of the counterfactual distribution �̂�𝐶 . Panel B is based on the intersection of countries included in this paper,
Palomino et al. (2019), Checchi et al. (2016), and Suárez Álvarez and López Menéndez (2021), and the union of
Stuhler (2018) and Carmichael et al. (2020) (10 countries). Ranks in Stuhler (2018) and Carmichael et al. (2020)
are calculated from consensus estimates of the intergenerational earnings elasticity (IGE). All rank correlations are
based on Spearman’s 𝜌.
Source: EU-SILC 2011 cross-sectional (rev.5, June 2015).

et al., 2019; Suárez Álvarez and López Menéndez, 2021) – might also
contribute to observed lack of consistency. However, as we detail in the next
paragraph, regardless of their income definition, all of these studies are only
moderately correlated with IGE rankings that are calculated with respect to
individual incomes. This pattern does not support an alternative explanation
based on differences in income definitions (see Panel B of Table 4).

In Panel B of Table 4, we test for conformity of opportunity rankings
with the IGE literature. Inequality of opportunity rankings of existing studies
are only moderately correlated with IGE rankings. In fact, various findings
contradict comparative evidence on the IGE (Carmichael et al., 2020; Bratberg
et al., 2017). For example, Palomino et al. (2019) and Suárez Álvarez and
López Menéndez (2021) find inequality of opportunity in Germany to be on
a par with the Nordic countries. Checchi et al. (2016) find the Netherlands
to be in the lower part of the opportunity ranking. On the contrary, rankings
based on trees and forests strongly increase conformity with IGE estimates
and therefore yield results that are more strongly in line with common priors
about mobility in Europe.

c© 2023 The Authors. The Scandinavian Journal of Economics published by John Wiley & Sons Ltd on behalf of Föreningen
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P. Brunori, P. Hufe, and D. Mahler 29

We conclude that regression trees and forests foster consistency in the
inequality of opportunity literature by reducing researcher discretion and
increase conformity with evidence from the neighboring IGE literature. Both
findings further bolster confidence in the ability of trees and forests to make
reliable distinctions among high and low opportunity societies in Europe.

5. Conclusion

In this paper we propose the use of conditional inference trees and forests
to estimate inequality of opportunity. Both estimation approaches minimize
arbitrary model selection by the researcher while trading off downward and
upward biases in inequality of opportunity estimates.

Conditional inference forests outperform all methods considered in this
paper in terms of their out-of-sample prediction accuracy. This observation
is valid both for simulated DGPs and representative survey data from
31 European countries. Hence, within a given data environment, they
provide estimates of inequality of opportunity that have the lowest expected
bias. Conditional inference trees closely mirror forests in terms of their
out-of-sample prediction accuracy and their inequality of opportunity
estimates. Hence, they provide a fair first-order approximation to the
least-biased inequality of opportunity estimates. Nevertheless, researchers
should be conscious that trees might yield suboptimal results in applications
with smaller samples.

We note that the improvements of our preferred methods are conditional on
a given data environment. As a consequence, they do not address two major
challenges of the existing literature: bias due to unobserved circumstance
information, and bias due to small sample sizes. These challenges exist
independently of the chosen estimation technique and can only be overcome
through the availability of improved data sources in the future.

Next to their advantages, we acknowledge two potential drawbacks of our
preferred methods for empirical research. First, (non-)parametric estimation
approaches can be estimated by ordinary least squares (OLS) – one of
the workhorse estimation methods in economics and other social sciences.
To the contrary, machine learning tools might require some upfront
investment of applied researchers to familiarize themselves with these
methods. However, as evidenced by the large volume of recent review
articles, machine learning methods are increasingly integrated into the
statistical toolkit of economists (Varian, 2014; Mullainathan and Spiess, 2017;
Athey, 2018). Therefore, we expect this drawback to vanish over time.
Second, trees and forests are computationally more costly than predictions via
OLS regressions. However, in our empirical application, trees approach

c© 2023 The Authors. The Scandinavian Journal of Economics published by John Wiley & Sons Ltd on behalf of Föreningen
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30 Estimating inequality of opportunity from regression trees and forests

the computation times of the (non-)parametric approach.22 Therefore,
time-constrained researchers who are willing to settle for a fair first-order
approximation of the least-biased method can consider using trees instead of
forests.

The development of machine learning algorithms and their integration
into the analytical toolkit of economists is a dynamic process. Finding the
best machine learning algorithm for inequality of opportunity estimations
is a methodological horse race that eventually will lead to some method
outperforming the ones employed in this work. Therefore, the main
contribution of this work should be understood as paving the way for
new methods that are able to handle the intricacies of model selection for
inequality of opportunity estimations. A particularly interesting extension may
be the application of local linear forests that outperform more traditional forest
algorithms in their ability to capture the linear impact of predictor variables
(Friedberg et al., 2020).

Finally, we restricted ourselves to ex ante utilitarian measures of inequality
of opportunity. The exploration of these algorithms for other measurement
approaches in the inequality of opportunity literature provides another
interesting avenue for future research (Lefranc et al., 2009; Pistolesi, 2009;
Kanbur and Snell, 2019; Brunori and Neidhöfer, 2021).

Supporting information

Additional supporting information can be found online in the supporting
information section at the end of the article.

Supplementary material
Replication files
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