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Abstract: Fractional order maps are a hot research topic; many new mathematical models are suitable
for developing new applications in different areas of science and engineering. In this paper, a new
class of a 2D fractional hyperchaotic map is introduced using the Caputo-like difference operator.
The hyperchaotic map has no equilibrium and lines of equilibrium points, depending on the values
of the system parameters. All of the chaotic attractors generated by the proposed fractional map
are hidden. The system dynamics are analyzed via bifurcation diagrams, Lyapunov exponents, and
phase portraits for different values of the fractional order. The results show that the fractional map
has rich dynamical behavior, including hidden homogeneous multistability and offset boosting. The
paper also illustrates a novel theorem, which assures that two hyperchaotic fractional discrete systems
achieve synchronized dynamics using very simple linear control laws. Finally, the chaotic dynamics
of the proposed system are stabilized at the origin via a suitable controller.

Keywords: fractional map; complexity; initial boosting attractors; amplitude control; chaos;
synchronization

1. Introduction

While discrete fractional calculus was first introduced roughly fifty years ago, the
non-integer-order derivative has been a mathematical idea since 1695 [1]. In particular,
the discretization of continuous-time operators [2] in 1974 led to the first derivations of
fractional differential equations. Due to the recent widespread interest in discrete frac-
tional calculus, many difference operators, notably the Grünwald–Letnikov difference
operator [3], have been proposed in the literature. Many efforts have been made to thor-
oughly analyze the dynamics of both classical systems and fractional systems since the
discovery of chaos phenomena in dynamical systems [3,4]. Regarding the latter, various
works have been conducted on the topic of studying chaotic behaviors in nonlinear maps
defined by fractional order difference equations [5–7]. Wu et al. [8] proposed a fractional
logistic map and studied the chaotic behavior based on the Caputo-left difference operator.
One-dimensional fractional maps with chaotic attractors and quasi-periodic behaviors
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were suggested in [9]. Further evidence for chaotic attractors was provided by Khennaoui
et al. [10] in three fractional maps, namely the Wang map, the Stefanski map, and the
Rössler map. The dynamic behavior of a higher-dimensional fractional-order chaotic map
was described by Peng et al. in [11] that same year, while Wang et al. examined the chaos
and complexity of a fractional order higher-dimensional multi-cavity chaotic map in [12].
Memristive maps with integer and fractional orders have recently been proposed [13,14]. A
memristor-based Rulkov neuron map was introduced in [15] by using a discrete memristor
to replicate the magnetic effects, whereas [16] illustrated the dynamic features of a novel
discrete memristive hyperchaotic map.

Compared with integer-order chaotic maps, fractional-order chaotic maps have more
complex dynamic characteristics, i.e., where a parameter can increase the degree of freedom
of the model. These additional degrees of freedom can also be employed to uncover the
subtleties of ecological processes that occur in the real world. In order to better understand
these complex dynamical characteristics, more discrete maps with fractional operators
must be provided. Furthermore, one of the distinctive benefits of fractional-order maps is
that they are sensitive to variations in fractional orders in addition to tiny perturbations
in parameters and initial circumstances. Additionally, fractional-order discrete maps
are advantageous for system analysis and numerical computation because they have
straightforward forms and rich dynamics.

In recent years, coexisting attractors and hidden attractors have been reported in vari-
ous chaotic fractional maps. For example, in [17], the presence of chaos in fractional discrete
systems with rectangle-shaped and square-shaped fixed points was investigated; ref. [18]
provided an illustration of the behavior of a discrete fractional-order Bonhoeffer-van der Pol
oscillator. The coexistence of various attractors, such as chaotic and hyperchaotic attractors
as well as quasi-periodic and periodic attractors, is highlighted by the map. Furthermore,
Almatroud et al. [19] showed that a brand-new 2D fractional-order chaotic map included
hidden extreme multistability. A fractional discrete system without fixed points is provided
in [20]. To demonstrate the existence of chaotic hidden attractors in the system dynamics,
the 0–1 test and the computation of the approximation entropy have been used. Later,
using bifurcation diagrams, Lyapunov exponents, and a 0–1 test, the complex dynamic
behaviors of a fractional map with hidden attractors were addressed; see [21]. The synchro-
nization and control of the system dynamics are also suggested. A synchronized chaotic
system aims to achieve the state of a chaotic master system. Hence, t → +∞ gives us a
synchronization error that converges toward zero. The design of synchronization schemes
is influenced by a wide range of techniques. The chaos synchronization phenomenon was
studied in many different ways, such as hybrid projection synchronization, inverse matrix
projection synchronization, Q–S synchronization, complete synchronization, etc. [22–24].

In this study, a discrete-time new fractional system with the line of equilibrium and
no equilibrium points was constructed with the following properties: homogeneous multi-
stability, hidden dynamics, and amplitude control. This new fractional-order hyperchaotic
map possesses not only hidden attractors but also coexisting attractors. The initial boosting
phenomena were investigated in the proposed hyperchaotic map, as seen in Section 3,
with an independent knob for partial amplitude control in Section 4. A suitable controller
stabilizes the hyperchaotic system in Section 5. A novel theorem is presented in Section 6,
which claims that two fractional hyperchaotic systems can be controlled linearly to show
synchronized dynamics. Our conclusions with ideas for future work are presented in
Section 7.
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2. Description and Analysis of the Fractional Hyperchaotic Map

Recently, Bao et al. [25] proposed a new hyperchaotic map by introducing the nonlinear
sinus function into a simple map, which is governed by Equation (1). As shown below, it
has only one nonlinear term and two real constants controllers A and B:{

x1(n + 1) = x1(n) + Ax1(n) sin x2(n) + B,
x2(n + 1) = x1(n) + x2(n).

(1)

Inspired by some relevant works on fractional-order discrete-time system(s) (FODTS) [26],
we define the fractional-order case by introducing the η-Caputo difference operator given by:

C∆η
a g(s) = 1

η(m−η) ∑
s−(m−η)
τ=a (s− τ − 1)(m−η−1)∆m

τ g(τ), (2)

where s ∈ Na+m−η , m = dηe+ 1 and η 6∈ N. The corresponding fractional-order form is
built as follows { C∆η

a x1(s) = Ax1(s− 1 + η) sin x2(s− 1 + η) + B,
C∆η

a x2(s) = x1(s− 1 + η),
(3)

where s ∈ Na+1−η and η ∈ (0, 1] are the fractional orders. The 2D FODTS (3) is sym-
metric with respect to the plane S = {(x1, x2) ∈ R, x1 = 0, x2 = 0}, and control pa-
rameters A and B, where it is always invariant under the transformation (x1, x2, A, B)→
(−x1,−x2,−A,−B). Thus, the attractor of the proposed FODTS could display symmetric
behavior.

The equilibrium points of the FODTS (3) are easily determined from:{
Ax1 sin x2 + B = 0,
x1 = 0.

(4)

Similar to the integer-order counterpart, two different cases are considered:
Case a: when B 6= 0 Equation (4) has no solution, demonstrating that the fractional

map (3) has no equilibrium point.
Case b: when B = 0 , the fixed points of the FODTS (3) are given by L = (0, C); where

C is a real number. In other words, the proposed system has line equilibrium points. The
Jacobian matrix (Jac) for system (3), computed at L, is:

Jac =
[

A sin C 0
1 0

]
, (5)

whose determinant is equal to zero (det Jac = 0). According to the stability theorem of a
fractional-order discrete-time system [19], the line of the equilibrium point is stable if

−Tr(Jac)
2 ≥

√
Det(Jac),

η > log2

√
Tr(Jac)2−4Det(Jac)−Tr(Jac)

2 ,
Det(Jac) > 0

(6)

The conditions −Tr(Jac)
2 ≥

√
Det(Jac) and Det(Jac) > 0 cannot be satisfied at the same

time; thus, system (3) has a high possibility of hidden attractors.
By definition, all chaotic attractors generated by the proposed FODTS (4) are hidden

attractors.
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3. Dynamical Analysis and Numerical Simulations

Nonlinear dynamical analysis tools, such as phase diagrams, bifurcation diagrams,
and Lyapunov exponents are used to analyze the hidden dynamics. We shall first give the
numerical formula of the proposed map. By applying the η fractional sum, ∆−η

τ g(τ) =
1

Γ(η) ∑s−γ
τ=a(s− τ − 1)(γ−1)g(τ), the numerical formula is designed as: x1n = x10 +

1
Γ(η) ∑n−1

j=0
Γ(n−1−j+η)

Γ(n−j) Ax1 j sin x2 j + B,

x2n = x20 +
1

Γ(η) ∑n−1
j=0

Γ(n−1−j+η)
Γ(n−j) x1 j.

(7)

As one can see from Equation (7), the proposed FODTS (3) has the memory effect. Hence,
the states x1n, x2n depend on x0, x1, x2, . . . , xn−1.

Using numerical simulations of the same bifurcation parameters for the integer-order
map reported in [25], we present the dynamics of the suggested fractional-order map in
order to find hidden chaotic attractors.

3.1. Hidden Attractors and Bifurcation Analysis

The control parameter B is assigned as B = ±0.1, B = 0, respectively, and the initial
condition is selected as x10 = ±1, x20 = ±2, respectively. The properties of the coexisting
symmetrical hidden attractors are illustrated by considering the bifurcation diagrams
and Lyapunov exponents (LEs) for A ∈ [2.3, 2.9] and A ∈ [−2.9,−2.3], respectively. The
bifurcation diagram is obtained by plotting the local maxima of the state x2 in terms of
the control parameter A, whereas the LEs are computed numerically using the Jacobian
matrix algorithm. The LEs are computed numerically using the Jacobian matrix algorithm
for fractional maps [27].

Case A: No Fixed Point

B = 0.1 and the initial values x10 = 1, x20 = −2; the bifurcation diagram and the
corresponding LEs are plotted in Figure 1a. These diagrams are obtained for η = 0.98
and for A ∈ [2.3, 2.9]. From the LEs and bifurcation diagram in Figure 1a, it can be
seen that the FODTS (3) gradually changes from the periodic state to a chaotic state at
A ∈ [2.665, 2.692] ∪ [2.704, 2.85], to a hyperchaotic state for A ∈ [0.8, 0.9286], through
period-doubling. With the change of system parameter A, the LE diagram approves the
dynamic behavior observed in the bifurcation diagram.

In contrast, when the control parameter B is fixed as B = −0.1 and the initial values are
set to x10 = −1, x20 = 2, while the control parameter A changes in the range [−2.9,−2.3];
the FODTS (3) also shows the period-doubling route to chaos. Namely, the FODTS (3) is
chaotic when A ∈ [2.665, 2.692]∪ [2.704, 2.85], where maxλ is positive, and is in hyperchaos
when A ∈ [0.8, 0.9286]; where λ1, λ2 > 0. Basically, Figure 1 shows that under symmetrical
initial values, the dynamic evolution of the FODTS caused by the symmetrical control
parameters A ∈ [2.3, 2.9] and A ∈ [−2.9,−2.3], respectively, had symmetrical similarity.

To observe the coexistence of hidden symmetric attractors in the FODTS (3), the phase
portraits, as seen in Figure 1, are disposed of in Figure 2. Red trajectories were obtained
for the constant parameter B = 0.1, fractional order η = 0.98, and the initial values
x10 = 1, x20 = −2; blue trajectories were obtained for B = −0.1, η = 0.98, x10 = −1, x20 =
2. For different values of A, the FODTS shows symmetrical hidden periodic attractors,
symmetrical hidden chaotic attractors, and symmetrical hidden hyperchaotic attractors.
Therefore, it is concluded that the FODTS has complex hidden dynamics. Moreover, the
coexistence behavior indicates the sensitivity of the map (3) to the control parameters and
initial values.
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Figure 1. Bifurcation diagrams and LEs of the FODTS (3) with no equilibria for fractional order value
η = 0.98: (a) for A ∈ [2.3, 2.9]; B = 0.1, and initial value x10 = 1; x20 = −2; (b) for A ∈ [−2.9,−2.3];
B = −0.1, and initial value x10 = −1; x20 = 2.
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Figure 2. Hidden attractors of the FODTS (3) for the symmetrical initial conditions (x10, x20) =

(±1,±2), fractional order η = 0.98, positive system parameters in red diagrams, and negative system
parameters in blue diagrams: (a) hidden periodic attractors for A = ±2.62 and B = ±0.1; (b) hidden
chaotic attractors for A = ±2.772 and B = ±0.1; (c) hidden hyperchaotic attractors for A = ±2.85
and B = ±0.1.

Case B: Line of the Equilibrium Point

As the system parameters and the initial state variables of the 2D fractional system are
taken as B = 0, x10 = 1, x20 = −2, the bifurcation diagrams along with the LEs diagram for
the fractional order value η = 0.95 are shown in Figure 3a. As illustrated in the previous
section, when B = 0, the FODTS (3) has a line of equilibria. When the bifurcation A
increases from 2.3 to 2.9, it can be seen from the bifurcation diagram that the FODTS starts
from the period and goes into chaos via the cascade of period-doubling bifurcation and
then turns into hyperchaos at interval A ∈ [2.689, 2.734] ∪ [2.77, 2.813]. In contrast, when
the parameter A is adjusted in the region [−2.9,−2.3], the bifurcation of the state x2 and
the LEs are numerically simulated as shown in Figure 3b. Similarly, it is easily viewed
that the bifurcation diagram in Figure 3b had certain symmetrical similarities with the one
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reported in Figure 3a. Therefore, it proves that the coexistence behavior appears in the
hidden attractors of the FODTS with the lines of the equilibrium points.

Without loss of generality, the hidden attractors at several critical values corresponding
to Figure 3 are shown in Figure 4.

Figure 3. Bifurcation diagrams and Lyapunov exponents of the FODTS (3) with the lines of the
equilibrium points in the A− x2 plane for the fractional order value η = 0.98: (a) for A ∈ [2.3, 2.9];
B = 0, and IV x10 = 1; x20 = −2; (b) for A ∈ [−2.9,−2.3]; B = 0, and initial conditions x10 =

−1; x20 = 2.
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Figure 4. Hidden attractors of the FODTS (3) with the lines of the equilibrium points for the sym-
metrical IV (x10, x20) = (±1,±2), fractional order η = 0.98, and positive system parameters in red,
and negative system parameters in blue with B = 0: (a) hidden periodic attractors for A = ±2.752,
(b) hidden hyperchaotic attractors for A = ±2.797, (c) hidden chaotic attractors for A = ±2.867.

3.2. The Effect of Fractional Order η

In order to further understand the dynamics of the FODTS, the fractional order η is
considered a bifurcation parameter, and the bifurcation diagram along with the LEs are
derived as shown in Figure 5. Note that the blue diagram is obtained for the initial condition
(1,−2) and system parameters A = 2.7, B = 0.1, while the red diagram is obtained for
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A = −2.7, B = −0.1, with initial conditions x10 = −1, x20 = 2. It is observed that the new
FODTS produces more complex dynamics compared with the integer-order map (1). In
particular, for the corresponding integer-order value η = 1, the FODTS is chaotic where
the maximum LEs is bigger than 0. However, it becomes hyperchaotic as the fractional
order value decreases, where both of the Lyapunov exponents (LE1, LE2) become bigger
than 0, which indicates that the dynamic characteristic of the FODTS is more complex.
Moreover, when η ∈ [0.8, 0.9286], the FODTS (3) is in hyperchaos, where λ1, λ2 > 0 with
some unbounded region for the largest values of n. When η ∈ [0.9286, 0.9739] ∪ [0.9869, 1]
the FODTS is in chaos, where maxλ > 0. The phase portraits for the fractional order values
η = 0.9 and η = 1, which are associated with the hidden hyperchaotic and hidden chaotic
attractors, respectively, are illustrated at the top of Figure 5.

The bifurcation diagram and LEs are used to analyze the relationship between the
control parameter A and the fractional order η. When the system parameter A is adjusted
in the region [2.2, 2.9], the fractional order η, respectively, is selected as η = 0.9, η = 0.95,
η = 1. Three kinds of bifurcation diagrams are depicted in Figure 6, with different color
regions. Correspondingly, the LEs are calculated and shown in Figure 6. The dynamic
behavior of the FODTS depends on the value of the control parameter A and the value
of η. Figure 6 shows that the states of the FODTS (3) go from a periodic to a chaotic state
with the decrease of order η, as A increases and η decreases, it is observed that the chaotic
band suddenly disappears and the system goes into infinity. The LE diagrams confirm that
the system passes from periodic regions to chaotic and hyperchaotic regions as the system
parameter A increases, and the fractional order value decreases.

Figure 5. Cont.
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Figure 5. Hidden attractors, bifurcation diagrams, and Lyapunov exponents (LEs) versus η of
the FODTS (3) for the symmetrical initial conditions (x10, x20) = (±1,±2), and positive control
parameter A = 2.7, B = 0.1 (red diagram), and negative control parameters A = −2.7, B = −0.1
(blue diagram).

Figure 6. Cont.
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Figure 6. Different bifurcation diagrams and Lyapunov exponents of the FODTS (3) with the variation
of control parameter A and fractional order η.

3.3. Hidden Extreme Homogeneous Multistability

To reveal the extreme multistability of the FODTS (3), the maximum LEs and the
bifurcation diagrams of the state variable x2n are calculated as shown in Figure 7, where
the fractional order η is chosen as 0.98. The parameters are selected as A = 2.7, B = 0.1,
and the IV is fixed as x10 = 1, while x20 varies in the range [0, 200]. As shown in Figure 7,
when η = 0.98, system (3) generates multiple chaotic attractors along the x2 axis, where the
values of the LEs of the FODTS (3) are nearly the same, which indicates that all of these
attractors have very close chaotic features. To exhibit the phenomenon of multistability,
typical hyperchaotic attractors of the FODTS (3) with no equilibrium for a different IV
x20 are simulated, as shown in Figure 8. As can be seen, different initial condition val-
ues x20 lead to different hidden hyperchaotic attractors of the same shape. This special
phenomenon is known as homogeneous multistability, which is a new phenomenon in
nonlinear systems [28]. The hidden homogeneous multistability of the FODTS (3) (with
respect to small changes of the initial state x20) is illustrated. Note that there are many
other hidden hyperchaotic attractors with unified LEs for other IVs.

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

140

160

180

200

x2 (0)

x 2
(n
)

0 10 20 30 40 50 60 70 80 90 100

0

0.05

0.1

0.15

0.2

0.25

x2 (0)

L
E
s

 

 

Figure 7. Bifurcation and LEs of the FODTS (3) versus IV x20, for parameter values A = 2.7, B = 0
and fractional order η = 0.98.
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Figure 8. Five coexisting hidden hyperchaotic attractors for different initial conditions and control
parameters A = 2.7, B = 0.1 and order η = 0.98, x20 = 1.

3.4. Initial Offset Boosting

In the following, we will discuss an unusual phenomenon of the new FODTS, namely
the initial offset boosting by changing the IV x20 with the 2π period as x20 = −2 + 2Kπ
with the fixed order η = 0.95, where K = −1, 0, 1, 2 and x10 = 1. In Figure 9, we present the
bifurcation diagrams of system (3) when A ∈ [2.3, 2.9] and B = 0. For four different values
of IC x20, the FODT systems experience four bifurcation diagrams with periods 2π. All of
these diagrams have the same structure with the 2π regime of homogenous multistability.
The same result can be obtained if we consider the second case B 6= 0.1.

Fix A = 2.8, B = 0.1, and let the fractional order η = 0.95; the hidden chaotic attractors
are illustrated in Figure 10 for x20 = −2 + 2K. These hidden chaotic attractors have the
same shape as regime 2π.

Figure 9. Offset boosting of the fractional map (3) for varying initial condition y(0) with x(0) = 1
and fractional order µ = 0.95. Bifurcation diagrams as the control parameter a increases in [2.3, 2.9]
and b = 0.1.
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Figure 10. Four hidden chaotic attractors with x20 = −2− 2π (grey), x20 = −2 (blue), x20 = −2+ 2π

(red), x20 = −2 + 4π (magenta).

4. Amplitude Control Analysis

In this section, the amplitude control method is used to detect coexisting attractors of
the FODTS (3). Amplitude control has potential application value in engineering applica-
tions because it can achieve stability and explain the unpredictable behaviors that occur in
engineered systems [29–31].

It is very interesting that the proposed FODTS possesses the property of amplitude
control, which means that the amplitudes of one or both states of the map are adjusted. By
introducing a controlled parameter c1 into the variable x2, respectively, the FODTS (3) can
be changed to {

C∆η
a x1(s) = Ax1(s− 1 + η) sin(x2(s− 1 + η)) + B,

C∆η
a x2(s) =

x1(s−1+η)
c1

,
(8)

which is identical to Equation (3) with transformation x1 = u and x2 = c1v. Therefore,
parameter c1 proportionally controls the amplitude of the FODTS states x1 and x2 according
to c1. In order to discuss the new fractional discrete-time system (8) in terms of controller
c1, we fix A = 2.8, B = 0.1, η = 0.98, and x10 = 1; x20 = −2; while parameter c1 takes the
values {−5, 2, 12, 13}. The phase diagrams are depicted in Figure 11. These diagrams have
the same shape structure as regime c1. In particular, from Figure 11, it can be seen that the
chaotic attractor of system (8) is larger as c1 increases. Nevertheless, there are other cases of
coexisting attractors that depend on the control parameter c1.
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Figure 11. Rescaled phase diagrams under different total amplitude controllers c1 of FODTS with
x10 = 1, x20 = −2, and fractional order η = 0.98: c1 = −5 (green diagram), c1 = 2 (red diagram),
c = 12 (magenta diagram), c1 = 13, (blue diagram).

5. Complexity Analysis of the FODTS

In this section, the complexity of the FODTS (3) is analyzed using the approximate
entropy (ApEn) [20]. An approximate entropy indicates how complex a system generated
by a time series is. In general, a time series with the largest values of ApEn is considered
as being more complex. ApEn can be calculated for both continuous and discrete systems
and integer and fractional orders. Firstly, the calculating process of the ApEn algorithm
is presented [32]. For the specific calculating method, we consider N points of the state
(x1)i=1,..,N ; the specific steps are as follows:

• Step 1. Construct a sequence of m vectors. For a given time series (x1)i=1,..,N , the m
vector sequence {Xm(1), . . . , Xi+m−1} is constructed as

Xm(1) = {x(i), x(i + 1), . . . , x(i + m− 1)}, 1 ≤ i ≤ B−m + 1.

• Step 2. For each 1 ≤ i ≤ N −m + 1, define the following equation

Cm
r (i) =

nbro f d[X(i), X(j)] ≤ r
N −m + 1

,

where d[X(i), X(j)] is the distance between X(i) and X(j) given by

d[X(i), X(j)] = maxk=0,...,m|X(i + k− 1)− X(j + k− 1)|,

and r = 0.2std(x) in which std(x) presents the standard deviation of the data x.
• Step 3. On the basis of Cm

r , the average value is denoted to be

φm(r) =
1

n−m− 1

n−m+1

∑
i=1

log Cm
i (r). (9)

• Step 4. The ApEn is calculated as follows

ApEn = φm(r)− φm+1(r). (10)



Symmetry 2023, 15, 139 13 of 19

The ApEn analysis results of the proposed FODT system (3) with varying η and A
are shown in Figure 12. It can be seen that the proposed system (3) can have a higher
complexity with relatively larger parameter values a and fractional order η. The analysis
results in Figure 12 indicate that the ApEn test cannot distinguish chaos and hyperchaos
but it can be used as the parameter choice in the practical application.

Figure 12. The approximate entropy ApEn of the FODTS (3) in the three-dimensional space with the
variation of system parameter A and fractional order η, for B = 0.1.

6. Control Laws

This section deals with the stability analysis of hyperchaotic FODTS (3). It is our
first objective to present the theorem below, which is used as the basis for analyzing the
stabilization of fractional discrete systems. Next, we perform numerical simulations to
demonstrate the effectiveness of the proposed control method.

Theorem 1 ([33]). Let x = 0 be an equilibrium point for the h-fractional discrete system

C
h ∆η

a x(s) = f (s + ηh, x(s + ηh)), s(hN)a+(1−η)h. (11)

Assume that there exists a positive definite and decrescent scalar function V(s, x(s)), such that
C
h ∆η

a V(s, x(s)) ≤ 0 Then the zero equilibrium point of the nonlinear h-fractional discrete system is
asymptotically stable.

Lemma 1 ([33]). For any discrete time s ∈ (hN)a+(1−η)h, we have

C
h ∆η

a x2(s) ≤ 2x(s + ηh)C
h ∆η

a x(s), 0 < η ≤ 1. (12)
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To obtain our results, the following theorem is presented.

Theorem 2. The two-dimensional FODTS (3) is controlled under the following one-dimensional
control law

C(s) = −(|A|+ 1)x1(s)− x2(s)− B, (13)

where s ∈ (hN)a+(1−η)h.

Proof. The controlled FODTS can be described as{
C∆η

a x1(s) = Ax1(s− η + 1) sin(x2(s− η + 1)) + B + C(s− η + 1),
C∆η

a x2(s) = x1(s− η + 1),
(14)

Consequently, (14) takes the form:{
C∆η

a x1(s) = Ax1(s− η + 1) sin(x2(s− η + 1))− (|A|+ 1)x1(s− η + 1)− x2(s− η + 1),
C∆η

a x2(s) = x1(s− η + 1),
(15)

One can utilize the Lyapunov method by first letting the Lyapunov function, V(s), in the
form:

V =
1
2

x2
1(s) +

1
2

x2
1(s), (16)

the adoption of the Caputo h-difference operator implies that

C
h ∆η

a V(s) =
1
2

C
h ∆η

a x2
1(s) +

1
2

C
h ∆η

a x2
2(s). (17)

By using Lemma 1, it follows that

C
h ∆η

a V ≤ x1(s + ηh)C
h ∆η

a x1(s) + x2(s + ηh)C
h ∆η

a x2(s)

= x1(s− η + 1)[Ax1(s− η + 1) sin(x2(s− η + 1))− (|A|+ 1)x1(s− η + 1)− x2(s− η + 1)]

x2(s− η + 1)x1(s− η + 1)

= Ax2
1(s− η + 1) sin(x2(s− η + 1))− (|A|+ 1)x2

1(s− η + 1)

≤
∣∣∣Ax2

1(s− η + 1) sin(x2(s− η + 1))
∣∣∣− (|A|+ 1)x2

1(s− η + 1)

≤ |A|x2
1(s− η + 1)|sin(x2(s− η + 1))| − (|A|+ 1)x2(s− η + 1)

≤ |A|x2
1(s− η + 1)− (|A|+ 1)x2

1(s− η + 1)

= −x2
1(s− η + 1) ≤ 0

Theorem 1 states that (14) has an asymptotically stable zero equilibrium. This implies
that the chaotic trajectories of this proposed FODTS (3) are stabilized by the linear control
law (13).

As shown in Section 3, the FODTS (3) with A = 2.8, B = 0.1, and η = 0.98 display
chaotic behavior. Figure 13 depicts the evolution of states and the phase space plot of the
controlled FODTS (3), respectively. As one can see, the FODTS (3) is completely controlled
in a stable state. These plots confirm that the hidden chaotic dynamic of the FODTS is
controlled effectively.
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Figure 13. Evolution of states and the phase space plot of the controlled FODTS (3) with fractional
order η = 0.98 and system parameters A = 2.8, B = 0.1.

7. Synchronization

In this section, we will investigate the synchronization of the hyperchaotic FODTS (3).
We present a new theorem that ensures that the dynamics of two chaotic FODT systems
are synchronized through linear control laws of a very simple nature. The master discrete
system is defined as{

C∆η
a x1m(s) = Ax1m(s− η + 1) sin(x2m(s− η + 1)) + B,

C∆η
a x2m(s) = x1m(s− η + 1),

(18)

and the slave system as{
C∆η

a x1s(s) = Ax1s(s− η + 1) sin(x2s(s− η + 1)) + B + L1,
C∆η

a x2s(s) = x1s(s− η + 1) + L2,
(19)
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where L1 and L2 are synchronization controllers that have to be designed. Using the master
(18) and slave discrete systems (19), the error dynamics can be derived as{

e1 = x1s − x1m,
e2 = x2s − x2m,

(20)

If lim
s→+∞

|ei(s)| = 0, then the synchronization scheme is achieved.

The following theorem, which we consider as being one of the most important out-
comes of this research, is intended to highlight the important results obtained by the
proposed synchronization scheme.

Theorem 3. The master system (18) and the slave system (19) achieve synchronized dynamics,
provided that the control law is selected asL1(s) = −

(
|A|+ (Al)2

4

)
e1,

L2(s) = −e1 − e2,
(21)

where s ∈ (hN)a+(1−η)h.

Proof. To establish an asymptotic convergence of the synchronization errors, given in (20),
we start applying the Caputo-type fractional-order differences on (20), which yields:{

C
h ∆η

a e1 = A[x1s(s− η + 1) sin(x2s(s− η + 1))− x1s(s− η + 1) sin(x2s(s− η + 1))] + L1,
C
h ∆η

a e2 = x1s(s− η + 1)− x1m(s− η + 1) + L2,
(22)

(21) is subsumed into (22) to yield the following new discrete system:C
h ∆η

a e1 = A[x1s(s− η + 1) sin(xs(s− η + 1))− x1s(s− η + 1) sin(x2s(s− η + 1))]−
(
|A|+ (Al)2

4

)
e1,

C
h ∆η

a e2 = −e2,
(23)

Let V = 1
2 e2

1(s) +
1
2 e2

2(s). This implies C∆η
a V = C∆η

a e2
1(s)+

C∆η
a e2

2(s), and by using
Lemma 1, we obtain

C∆η
a V ≤ e1(s− η + 1)C∆η

a e1(s− η + 1) + e2(s− η + 1)C∆η
a e2(s− η + 1)

= ae1(t− η + 1)[x1s(s− η + 1) sin(x2s(s− η + 1))− x1s(s− η + 1) sin(x2s(s− η + 1))]

−
(
|A|+ (Al)2

4

)
e2

1 − e2
2(s− η + 1)

one can write:

x1s(s− η + 1) sin(x2s(s− η + 1))− x1s(s− η + 1) sin(x2s(s− η + 1))

= x1s(s− η + 1)(sin(x2s(s− η + 1))− sin(x2m(s− η + 1)))

−(x1s(s− η + 1)− x1m(s− η + 1)) sin(x2m(s− η + 1))

So, we have

C∆η
a V ≤ |A||e1(t− η + 1)||x1s(s− η + 1)||(sin(x2s(s− η + 1))− sin(x2m(s− η + 1)))|

+|A|e2
1(s− η + 1)|sin(x2m(s− η + 1))| −

(
|A|+ (A)2

4

)
e2

1 − e2
2(s− η + 1)

since fractional chaotic maps have the ’property of boundedness’, we can put

|x1s(s− η + 1)| ≤ l
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and

|(sin(x2s(s− η + 1))− sin(x2m(s− η + 1)))| ≤ |x2s(s− η + 1)− x2m(s− η + 1)|

so we have

C∆η
a V ≤ |A|l|e1(s− η + 1)||(x2s(s− η + 1)− x2m(s− η + 1))|+ |A|e2

1(s− η + 1)

−
(
|A|+ (Al)2

4

)
e2

1 − e2
2(s− η + 1)

= |A|l|e1(s− η + 1)||e2(s− η + 1)| − (A)2

4
e2

1 − e2
2(s− η + 1)

= −
(
|A|l

2
e1 − e2

)2
< 0.

According to the stability theorem (Theorem 1), error system (22) is stabilized to
the origin. This means that the fractional slave discrete system (19) can asymptotically
synchronize the fractional master discrete system (18).

The synchronization errors between the hyperchaotic FODT master and slave systems
are depicted in Figure 14 for the initial values e1(0) = 1, e2(0) = −2, and η = 0.98. There is
a convergence of errors into zero, which indicates that chaos synchronization has indeed
been achieved.
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Figure 14. Evolution of synchronization error states with FODTS η = 0.98 and system parameters
A = 2.8, B = 0.1.

8. Conclusions

A 2D fractional map with hidden multistability is presented using the Caputo-like
difference operator. Bifurcation diagrams, Lyapunov exponents, and phase portraits have
been used to study the dynamics of the system in detail. Multiple hidden attractors have
been revealed in the new fractional map. In order to stabilize the chaotic trajectories of the
fractional discrete-time system, a new theorem has been illustrated. A new theorem assures
that two hyperchaotic fractional discrete-time systems can achieve synchronized dynamics
via very simple linear control laws. Future work will involve leveraging the hardware
implementation developed herein in order to develop cryptographic applications based on
fractional maps with hidden chaotic attractors. It is being investigated how fractional maps
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with hidden attractors can be used to develop new types of fractional pseudo-number
generators.
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