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Abstract
This paper proposes an empirical likelihood inference method for monotone index
models. We construct the empirical likelihood function based on a modified score
function developed by Balabdaoui et al. (Scand J Stat 46:517–544, 2019), where
the monotone link function is estimated by isotonic regression. It is shown that the
empirical likelihood ratio statistic converges to aweighted chi-squared distribution.We
suggest inference procedures based on an adjusted empirical likelihood statistic that
is asymptotically pivotal, and a bootstrap calibration with recentering. A simulation
study illustrates usefulness of the proposed inference methods.

Keywords Monotone index model · Empirical likelihood · Isotonic regression

1 Introduction

Single indexmodels arewidely used in statistics since they compromise interpretability
of index coefficients in the parametric part and flexibility of regressionmodeling in the
nonparametric part (see, ch. 8 of Li and Racine, 2007, for a review). Many estimation
methods have been proposed for single index models, such as the semiparametric
least squares estimator (Härdle et al., 1993; Ichimura, 1993) , M-estimator (Klein
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& Spady, 1993) , and average derivative estimator (Powell et al., 1989) . Although
these estimation methods have desirable theoretical properties under certain regularity
conditions, they typically require some nonparametric smoothing method to evaluate
the unknown link function, which involves tuning parameters, such as bandwidth and
series length parameters, and the optimal choices of them are substantial (theoretical
and practical) problems.

The monotone single index model, in which monotonicity is imposed on the link
function, has been studied in recent years. Balabdaoui et al., (2016) showed that the
least square estimator of a monotone single index model generally converges at the
cube root rate, but its asymptotic distribution is still unknown. The main difficulty
for deriving the asymptotic distribution of the least square estimator arises from the
non-differentiability of the objective function; in a monotone single index model,
the link function, which is an infinite-dimensional nuisance parameter, is generally
estimated by a nonparametric approach such as isotonic regression, while the index
part is parametrically modeled as a linear combination of the covariates. Then the
derivative of the objective function with respect to the index coefficients is intractable
due to the non-smoothness of the estimated nuisance parameter.

To overcome this issue, GroeneboomandHendrickx, (2018) developed a score-type
estimator for the current statusmodel, which is a special case ofmonotone single index
models. Their approach is based on the estimating equation which is the same as the
first-order condition of the least square estimator except that it ignores the derivative
of the estimated link function. They proved

√
n-consistency and asymptotic normality

of their estimator without any tuning parameter. Their result was extended to general
monotone single index models by Balabdaoui et al., (2019), where they derived

√
n-

consistency and asymptotic normality for the parametric component and an n1/3/ log n
convergence rate for the nonparametric estimator of the link function.

Although the score estimation approach is remarkable, the main drawback is that
it requires smoothing parameters to estimate the asymptotic variance to implement
hypothesis testing and interval estimation. Because the estimating function in the
score-type approach is dependent on the estimated link function, some conditional
expectation is involved in the asymptotic variance. Besides, the partial derivative of the
link function is also included in the asymptotic variance even though the estimated link
function is not smooth. Therefore, smoothing methods, such as the kernel smoothing,
are employed to estimate such quantities,which require us to selectmultiple smoothing
parameters and make statistical inference cumbersome.

To address this problem, we propose an empirical likelihood inference method
based on the score-type approach for monotone index models. We show that the
empirical likelihood statistic based on the estimating equation of Balabdaoui et al.,
(2019) converges in distribution to the weighted chi-squared distribution. Even in our
empirical likelihood approach, the conditional expectation asmentioned above appears
in the asymptotic distribution. To circumvent selection of smoothing parameters, we
adapt the bootstrap calibration method proposed by Hjort et al., (2009) to our context.
Because of the estimating equation with the estimated nuisance parameter plugged-
in, a classical naive bootstrap method is not asymptotically valid. Hjort et al. (2018)
provided amodified bootstrapmethod by recentering and reweighting to dealwith such
a situation. Combining the empirical likelihood and modified bootstrap methods, our
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approach provides a simple and theoretically justified method for statistical inference
in monotone single index models.

The remainder of this paper is organized as follows. Section 2 presents our basic
setup, methodology, and theoretical results. In Sect. 3, we conduct a small simulation
study to illustrate the proposed method. All proofs are contained in the appendix.

2 Main result

We closely follow the setup and notation of Balabdaoui et al., (2019) (hereafter BGH).
Consider the monotone index model

Y = ψ0(X
′α0) + ε, E[ε|X ] = 0, (1)

where Y is a scalar response variable, X is a d-dimensional vector of covariates, ε

is an error term, α0 is a k-dimensional vector of parameters, and ψ0 : R → R is an
unknownmonotone increasing function. For identification, we assume that α0 belongs
to the d-dimensional unit sphere Sd−1 = {α ∈ R

d : ||α|| = 1}. We are interested in
conducting statistical inference (i.e., interval estimation and hypothesis testing) on α0
based on the empirical likelihood approach.

Let S : Rd−1 → Sd−1 be a parameterization such that for each α in a neighbor-
hood of α0 on Sd−1, there exists a unique β ∈ R

d−1 which satisfies α = S(β). To
motivate the score-type approach of BGH, we tentatively assume that ψ0 is known.
The population score equation for the least square estimation of β0 is

E
[
J(β0)

′Xψ
(1)
0 (X ′

S(β0)){Y − ψ0(X
′
S(β0))}

]
= 0, (2)

where ψ
(1)
0 is the derivative of ψ0 and J(β) is the Jacobian of S(β). Thus, it is natural

to construct an estimator of β0 by taking an empirical counterpart of (2) and inserting
estimators for ψ

(1)
0 and ψ0. However, when we estimate ψ0 by the isotonic regression

method, the resulting estimator ofψ0 is typically discontinuous and it is not clear how
to evaluate the derivative ψ

(1)
0 without introducing smoothing parameters. To address

this issue, BGH and Groeneboom and Hendrickx, (2018) considered the modified
population score equation

E
[
J(β0)

′X{Y − ψ0(X
′
S(β0))}

] = 0. (3)

In particular, for point estimation of α0, BGH proposed to solve the following score-
type equation:

1

n

n∑
i=1

J(β̂)′Xi {Yi − ψ̂
β̂
(X ′

iS(β̂))} = 0, (4)
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with respect to β̂, and estimate α0 by α̂ = S(β̂), where for given β, ψ̂β is obtained by
the isotonic regression

ψ̂β = arg min
ψ∈M

n∑
i=1

{Yi − ψ(X ′
iS(β))}2, (5)

and M is the set of monotone increasing functions defined on R.
In this paper, we employ the score-type equation in (3) as a moment function and

propose the following empirical likelihood statistic

�(β0) = −2 max
{pi }ni=1

n∑
i=1

log(npi ) s.t.
n∑

i=1

pi = 1,
n∑

i=1

pi ĝi (β0) = 0, (6)

where

ĝi (β) = J(β)′Xi {Yi − ψ̂β(X ′
iS(β))}.

By the Lagrange multiplier argument, its dual form is obtained as

�(β0) = 2
n∑

i=1

log(1 + λ̂′ĝi (β0)), (7)

where the Lagrange multiplier λ̂ solves

1

n

n∑
i=1

ĝi (β0)

1 + λ̂′ĝi (β0)
= 0. (8)

In practice, we use the dual representation in (7) to implement statistical inference. To
study the asymptotic properties of the empirical likelihood statistic �(β0), we impose
the following assumptions. Let ‖·‖ be the Euclidean norm and B(a0, A) = {a :
‖a − a0‖ ≤ A} be a ball around a0 of radius A.
Assumption A1 {Yi , Xi }ni=1 is an iid sample generated by (1). The support X of X is

convexwith a nonempty interior, andX ⊂ B(0, R) for some R > 0. The Lebesgue
density of X has a bounded derivative on X . There exist positive constants c and
C such that E[|Y |m |X = x] ≤ cm!Cm−2 for all integers m ≥ 2 and almost every
x ∈ X .

A2 ψ0 is monotone increasing and there exists K0 > 0 such that |ψ0(u)| ≤ K0 for all
u ∈ {x ′α0 : x ∈ X }.
These assumptions are adaptations of Assumptions A1-A6 in BGH. Compared to

BGH, our assumptions are simpler because we do not need to control the behavior
of the score function outside the true parameter α0 = S(β0). Assumption A1 is on
the distribution form of the data. The support condition in A1 may be relaxed by
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assuming X to follow a sub-Gaussian distribution. The moment condition in A1,
which is analogous to BGH’s A6, is required to guarantee max1≤i≤n |Yi | = Op(log n)

to control the entropy of a class of score functions. Assumption A2 is on the true link
function ψ0. Compared to BGH which considers point estimation, we only need to
impose boundedness, which is a mild requirement.

Under these assumptions, our main result is presented as follows.

Theorem 1 Under Assumptions A1-A2, it holds

�(β0)
d→ Z ′V−1Z ,

where Z ∼ N (0, �) with � = J(β0)
′E[ε2(X − E[X |X ′

S(β0)])(X −
E[X |X ′

S(β0)])′]J(β0) and V = J(β0)
′E[ε2XX ′]J(β0).

Remark 1 This theorem says that the empirical likelihood statistic �(β0) is not asymp-
totically pivotal and converges to a weighted chi-squared distribution w1χ

2
1,1 + · · · +

wd−1χ
2
1,d−1, where w1, . . . , wd−1 are the eigenvalues of �−1V and χ2

1,1, . . . , χ
2
1,d−1

are independent χ2
1 random variables. This lack of asymptotic pivotalness is caused

by the mismatch in the asymptotic variance � of the score function 1√
n

∑n
i=1 ĝi (β0)

and the limit V of the sample variance V̂ = 1
n

∑n
i=1 ĝi (β0)ĝi (β0)

′. In the literature of
empirical likelihood, weighted chi-squared limiting distributions often emerge when
the score (or moment) functions involve estimated nuisance parameters (e.g., Qin and
Jing, 2001; Xue and Zhu, 2006; Hjort et al., 2009).

Remark 2 One way to conduct statistical inference based on �(β0) is to estimate the
critical values of w1χ

2
1,1 + · · · + wd−1χ

2
1,d−1 based on some estimators of � and

V . Based on (13), V is consistently estimated by V̂ . On the other hand, � can be
estimated by

�̂ = J(β0)
′ 1
n

n∑
i=1

ε̂2i {Xi − m̂(X ′
iS(β0))}{Xi − m̂(X ′

iS(β0))}J(β0),

where ε̂i = Yi − ψ̂β0(X
′
iS(β0)) and m̂(·) is a nonparametric estimator of m(·) =

E[X |X ′
S(β0) = ·].An alternativeway for statistical inference is to adjust the empirical

likelihood statistic �(β0) to recover the asymptotic pivotalness. Based on Rao and
Scottc (1981) (see also Xue and Zhu, 2006), the above theorem implies

�A(β0) = d − 1

trace(�̂−1V̂ )
�(β0)

d→ χ2
d−1. (9)

Then the confidence region of α0 = S(β0) can be obtained by {S(β) : �A(β) ≤ qa},
where qa is the (1 − a)th quantile of the χ2

d−1 distribution.

Remark 3 A drawback of the asymptotic inference method presented in the previous
remark is that it requires a selection of a tuning parameter to implement the nonpara-
metric estimator m̂(·). In order to obtain an inference procedure which is free from
tuning parameters, we adapt the bootstrap method of Hjort et al., (2009) as follows.
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(1) Based on the original sample {Yi , Xi }ni=1, compute β̂ as in (4), and then compute

Mn(β̂) = 1

n

n∑
i=1

ĝi (S(β̂)), V̄ = 1

n

n∑
i=1

ĝi (S(β̂))ĝi (S(β̂))′.

(2) Draw {Y ∗
i , X∗

i }ni=1 from the original sample {Yi , Xi }ni=1 with equal weights. Then
compute

M∗
n (β̂) = 1

n

n∑
i=1

J(β̂)′X∗
i {Y ∗

i − ψ̂∗
β̂
(X∗′

i S(β̂))},

where ψ̂∗
β̂

= argminψ∈M
∑n

i=1{Y ∗
i − ψ(X∗′

i S(β̂))}2.
(3) The bootstrap counterpart of �(β0) is given by

�∗ = n{M∗
n (β̂) − Mn(β̂)}′V̄−1{M∗

n (β̂) − Mn(β̂)}. (10)

Under the additional assumptions A3-A5 in the appendix, the validity of this bootstrap
approximation is obtained as follows.

Theorem 2 Under Assumptions A1-A5, it holds

sup
t≥0

|P∗{�∗ ≤ t} − P0{�(β0) ≤ t}| p→ 0,

where P∗ is the bootstrap distribution conditional on the data.

3 Simulation

We conduct a simulation study to investigate the finite sample performance of the
proposed inference methods. We consider the following data generation process:

Y = ψ0(X
′α0) + ε, ψ0(u) = u3, α0 = (1, 1, 1)′/

√
3

ε ∼ N (0, 1), X ∼ N (0, I3),

where I3 is the 3 × 3 identity matrix. We consider sample sizes n = 100, 500, 1000.
The number of Monte Carlo replications is 1000. We consider two testing methods
discussed in Remarks 2 and 3. For the adjusted statistic in (9), we estimate m(·) =
E[X |X ′

S(β0) = ·] by the Nadaraya–Watson estimator, and choose the bandwidths
based on the expected Kullback–Leibler cross-validation (Hurvich et al., 1998) .
To test the null hypothesis H0 : α0 = (1, 1, 1)′/

√
3, we calculate the test statistic

(9) and compare it with the 95 percentile of the χ2
d−1 distribution. For the bootstrap-

calibrated test statistic (10), we compute β̂ as in BGH (the computer code is available
at Groeneboom’s website), and generate 499 bootstrap samples, and calculate the
bootstrap counterpart �∗ in (10).
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Table 1 Rejection frequencies (%)

n Adjusted Bootstrap α̂1

N A1 A2 A3 N A1 A2 A3 Mean s.d

100 4.7 4.9 6.1 8.7 8.1 8.3 9.0 13.9 0.577 0.0528

500 4.2 7.5 15.9 51.1 6.6 10.0 18.1 53.3 0.576 0.0166

1000 7.4 14.8 31.5 86.1 5.6 18.2 34.9 87.8 0.577 0.0113

Table 1presents the rejection frequencies of the above empirical likelihood tests for
the null H0 : α0 = (1, 1, 1)′/

√
3when the true values ofα0 are (N)α0 = (1, 1, 1)′/

√
3,

(A1) α0 = (1.03, 1, 1)′/
√
1.032 + 2, (A2) α0 = (1.05, 1, 1)′/

√
1.052 + 2, and (A3)

α0 = (1.10, 1, 1)′/
√
1.102 + 2. (N) is for the size properties, and (A1)-(A3) are to

evaluate power properties.
The column “α̂1” reports the Monte Carlos averages and standard deviations of the

first element of the BGH estimator α̂. It shows that the mean is close to the truth,
α01 = 1/

√
3 � 0.577, while the standard deviation becomes smaller with the sample

size. From the columns (N), we can see that both the adjusted and bootstrap empirical
likelihood tests have reasonable size properties. Both tests become powerful as the
sample size increases and the true values of α0 are more distinct from the null values
(i.e., from A1 to A3). Also, we find that overall the bootstrap test rejects slightly more
often than the adjusted test.

Overall, our simulation results are encouraging.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A: Mathematical appendix

A.1 Proof of theorem 1

Here we denote ĝ0i = ĝi (β0), S0 = S(β0), and J0 = J(β0).
Note that (i) X has bounded support (byAssumptionA1), (ii) max |Yi | = Op(log n)

(by Assumption A2 and Lemma 7.1 of Balabdaoui et al., 2016), and
(iii) supx∈X |ψ̂β0(x

′
S0)| = Op(log n) by Lemma 8 of the supplementary material of

BGH (hereafter BGH-supp). Combining these results, it holds

max
1≤i≤n

|ĝ0i | = Op(log n). (11)
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Thus, an expansion of (8) around λ̂ = 0 using the same argument in (Owen, (1991),
proof of Theorem 2) based on (11) implies

λ̂ =
[
1

n

n∑
i=1

ĝ0i ĝ0i
′
]−1

1

n

n∑
i=1

ĝ0i + op(n
−1/2). (12)

A second-order expansion of (7) around λ̂ = 0 using (12) yields

�(β0) = 2λ̂′
n∑

i=1

ĝ0i − λ̂′
[

n∑
i=1

ĝ0i ĝ
′
0i

]
λ̂ + op(1)

=
(

1√
n

n∑
i=1

ĝ0i

)′ [
1

n

n∑
i=1

ĝ0i ĝ
′
0i

]−1 (
1√
n

n∑
i=1

ĝ0i

)
+ op(1).

Then it is enough for the conclusion to show that

1

n

n∑
i=1

ĝ0i ĝ
′
0i

p→ V = J
′
0E[ε2XX ′]J0, (13)

1√
n

n∑
i=1

ĝ0i
d→ N (0, �). (14)

We first show (13). Decompose

1

n

n∑
i=1

ĝ0i ĝ
′
0i = J

′
0

[
1

n

n∑
i=1

ε2i Xi X
′
i

]
J0 + J

′
0

[
1

n

n∑
i=1

{ψ0(X
′
iS0) − ψ̂β0(X

′
iS0)}2Xi X

′
i

]
J0

+J
′
0

[
2

n

n∑
i=1

εi {ψ0(X
′
iS0) − ψ̂β0(X

′
iS0)}Xi X

′
i

]
J0. (15)

By the law of large numbers, the first term of (15) converges to V ; by Proposition 4 of
BGH and Assumption A1, the second term converges to zero; by p.23 of BGH-supp
and Assumption A1, the third term converges to zero. Combining these results, we
obtain (13).

We now show (14). Let Pn be the empirical measure of {Xi ,Yi }ni=1, P0 be the true
measure of (X ,Y ), and

E[X |x ′
S0] = E[X |X ′

S0 = u] evaluated at u = x ′
S0.

Decompose

1

n

n∑
i=1

ĝ0i = J
′
0

∫
x{y − ψ̂β0(x

′
S0)}dPn(y, x)
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= J
′
0

∫
{x − E[X |x ′

S0]}{y − ψ̂β0(x
′
S0)}dPn(y, x)

+J
′
0

∫
{E[X |x ′

S0] − Ēn(x
′
S0)}{y − ψ̂β0(x

′
S0)}dPn(y, x)

+J
′
0

∫
Ēn(x

′
S0){y − ψ̂β0(x

′
S0)}dPn(y, x)

:= J
′
0(I + I I + I I I ),

where

Ēn(u) =

⎧⎪⎨
⎪⎩

E[X |x ′
S0 = τi,S0 ] if ψ0(u) > ψ̂β0(u) for all u ∈ (τi , τi+1),

E[X |x ′
S0 = s] if ψ0(s) = ψ̂β0(s) for some s ∈ (τi , τi+1),

E[X |x ′
S0 = τi+1,S0 ] if ψ0(u) < ψ̂β0(u) for all u ∈ (τi , τi+1),

(16)

and τi,S0 is the sequence of jump points of ψ̂β0 . By the definition of Ēn(x ′
S0), it holds

I I I = 0 (see, (C.10) in BGH-supp).
For I I , decompose

I I =
∫

{E[X |x ′
S0] − Ēn(x

′
S0)}{y − ψ̂β0(x

′
S0)}d(Pn − P0)(y, x)

+
∫

{E[X |x ′
S0] − Ēn(x

′
S0)}{y − ψβ0(x

′
S0)}dP0(y, x)

+
∫

{E[X |x ′
S0] − Ēn(x

′
S0)}{ψ̂β0(x

′
S0) − ψ0(x

′
S0)}dP0(y, x)

:= I Ia + I Ib + I Ic. (17)

The same argument as in pp. 19–20 of BGH-supp guarantees I Ia = op(n−1/2) and
I Ib = op(n−1/2). For I Ic, using (C.11) of BGH-supp and Proposition 4 of BGH, we
have

‖I Ic‖ ≤ C
∫

{ψ̂β0(x
′
S0) − ψ0(x

′
S0)}2dP0(y, x)

= Op((log n)2n−2/3) = op(n
−1/2),

for some C > 0. Therefore, we obtain

I I = op(n
−1/2). (18)

For I , decompose

I =
∫

{x − E[X |x ′
S0]}{y − ψ0(x

′
S0)}dPn(y, x)

+
∫

{x − E[X |x ′
S0]}{ψ0(x

′
S0) − ψ̂β0(x

′
S0)}dPn(y, x)
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:= Ia + Ib.

From pp. 21–22 of BGH-supp, we can show that Ib = op(n−1/2). Therefore,

1

n

n∑
i=1

ĝ0i = J
′
0

∫
{x − E[X |x ′

S0]}{y − ψ0(x
′
S0)}dPn(y, x) + op(n

−1/2)

= J
′
0
1

n

n∑
i=1

{Xi − E[Xi |X ′
iS0]}εi + op(n

−1/2), (19)

and the central limit theorem implies (14). Therefore, the conclusion is obtained.

A.2 Proof of Theorem 2

Based on Groeneboom and Hendrickx, (2018), it is sufficient for the conclusion to
show that

V̄
P0→ J

′
0E[ε2XX ′]J0, (20)

√
n{M∗

n (β̂) − Mn(β̂)} d→ N (0, �), (21)

where β̂ is obtained by solving (4). For the validity of bootstrap, we add the following
assumptions.

A3 There exists δ0 > 0 such that the mapping u 
→ E[Y |X ′α = u] is monotone
increasing on Iα = {z′α, z ∈ Z} for each α ∈ B(α0, δ0).

A4 For all β �= β0 with S(β) ∈ B(α0, δ0), Cov
[
(β0 −

β)′J(β)′X , ψ0(S(β0)
′X)|S(β)′X

] �= 0 almost surely.

A5 J
′
0E[ψ(1)

0 (X ′α0)Var(X |X ′α0)]J0 is non-singular.
By BGH, it can be shown that under A1–A5, β̂ is consistent and

√
n(β̂ − β0) is

asymptotically normal. Let ψβ(u) = E[Y |X ′
S(β) = u]. For (20), note that

V̄ = J(β̂)′
[
1

n

n∑
i=1

Xi {εi + ψ
β̂
(X ′

iS(β̂)) − ψ̂
β̂
(X ′

iS(β̂))}2X ′
i

]
J(β̂) + op(1)

= {J0 + op(1)}′
{
1

n

n∑
i=1

ε2i Xi X
′
i + op(1)

}
{J0 + op(1)},

where the first equality follows from ψ0(x ′
S(β0)) − ψ

β̂
(x ′

S(β̂)) = Op(β̂ − β0) for

almost every x (by p. 26 and Lemma 17 of BGH-supp) and the consistency of β̂, and
the second equality follows from A3 and the consistency of β̂. Thus, by the law of
large numbers, we obtain (20).
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We now prove (21). Note that M∗
n (β̂) − Mn(β̂) = M∗

n (β̂) by (4). Let P̂n be the
empirical measure of the bootstrap resample. Decompose

M∗
n (β̂) = J(β̂)′

∫
{x − E(X |x ′

S(β̂))}{y − ψ̂∗
β̂
(x ′

S(β̂))}dP̂n

+J(β̂)′
∫

{E(X |x ′
S(β̂)) − Ē∗

n (x
′
S(β̂))}{y − ψ̂∗

β̂
(x ′

S(β̂))}dP̂n

+J(β̂)′
∫

Ē∗
n (x

′
S(β̂)){y − ψ̂∗

β̂
(x ′

S(β̂))}dP̂n

:= I ∗ + I I ∗ + I I I ∗, (22)

where Ē∗
n (·) is defined similarly to (16) with respect to ψ̂∗

β̂
. Again, we have I I I ∗ = 0

by the definition of Ē∗
n (·). For I I ∗, similar to (18) and p. 3481 of Groeneboom and

Hendrickx, (2017) (GH hereafter), we have I I ∗ = oPM (n−1/2), where PM is defined
in p. 3450 of GH.

For I ∗, decompose

I ∗ = J(β̂)′
∫

{x − E(X |x ′
S(β̂))}{y − ψ̂∗

β̂
(x ′

S(β̂))}d(P̂n − Pn)

+J(β̂)′
∫

{x − E(X |x ′
S(β̂))}{y − ψ̂

β̂
(x ′

S(β̂))}dPn

+J(β̂)′
∫

{x − E(X |x ′
S(β̂))}{ψ̂

β̂
(x ′

S(β̂)) − ψ̂∗
β̂
(x ′

S(β̂))}dPn

:= I ∗
a + I ∗

b + I ∗
c .

For I ∗
b , (4) and pp. 19–20 of BGH-supp combined with β̂ − β0 = Op(n−1/2) imply

I ∗
b = J(β̂)′

∫
x{y − ψ̂

β̂
(x ′

S(β̂))}dPn

−J(β̂)′
∫

{E(X |x ′
S(β̂)) − Ēn(x

′
S(β̂))}{y − ψ̂

β̂
(x ′

S(β̂))}dPn

= op(n
−1/2).

For I ∗
c , (6.21) in GH and pp. 21–22 of BGH-supp yield

I ∗
c = J(β̂)′

∫
{x − E(X |x ′

S(β̂))}{ψ
β̂
(x ′

S(β̂)) − ψ̂∗
β̂
(x ′

S(β̂))}dPn

+J(β̂)′
∫

{x − E(X |x ′
S(β̂))}{ψ̂

β̂
(x ′

S(β̂)) − ψ
β̂
(x ′

S(β̂))}dPn

= op(n
−1/2).

Finally, for I ∗
a , we have

123



Japanese Journal of Statistics and Data Science

I ∗
a = J(β̂)′

∫
{x − E(X |x ′

S0)}{y − ψ0(x
′
S0)}d(P̂n − Pn) + oPM (n−1/2 + (β̂ − β0))

= J(β̂)′
∫

{x − E(X |x ′
S0)}εd(P̂n − Pn) + oPM (n−1/2),

where the first equality follows from a similar argument to (6.25) in GH, and the
second equality follows from a rearrangement and β̂ − β0 = Op(n−1/2).

Combining these results, we have

M∗
n (β̂) − Mn(β̂) = J(β̂)′

∫
{x − E(X |x ′

S0)}εd(P̂n − Pn) + oPM (n−1/2).

Comparing this and (19), the central limit theorem yields (21). Therefore, the
conclusion follows.
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