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Abstract
Humans and other intelligent agents often rely on collective decision making based on an intuition that groups outperform
individuals. However, at present, we lack a complete theoretical understanding of when groups perform better. Here, we
examine performance in collective decision making in the context of a real-world citizen science task environment in which
individuals with manipulated differences in task-relevant training collaborated. We find 1) dyads gradually improve in
performance but do not experience a collective benefit compared to individuals in most situations; 2) the cost of co-
ordination to efficiency and speed that results when switching to a dyadic context after training individually is consistently
larger than the leverage of having a partner, even if they are expertly trained in that task; and 3) on the most complex tasks
having an additional expert in the dyad who is adequately trained improves accuracy. These findings highlight that the extent
of training received by an individual, the complexity of the task at hand, and the desired performance indicator are all critical
factors that need to be accounted for when weighing up the benefits of collective decision making.
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Significance Statement

Collaboration is one of the fundamental processes in humans’ social lives. With the invention of digital communication
technologies designed to further facilitate collaboration, identifying the keys to successful collaborations is more desirable
than ever. Previouswork in this area consists primarily of stylized tasks and therefore suffers from a lack of generalizability. In
this work, we utilize a real-world citizen science platform to run experiments with subjects recruited from a diverse pool of
non-expert participants. We show that when the task is complex, making decisions as an individual can be better than joint
decision making in dyads, particularly where coordination requires time and effort. Our work can inform the design of
collaboration platforms and advance the science of teamwork.

Introduction

Intelligent agents, be they natural or artificial, constantly have
tomake decisions to solve complex problems. Humans are no
exception; decision making is omnipresent in socioeconomic
life, occurring in households, classrooms, and, increasingly,
online (Tsvetkova et al., 2016). The common belief is that
group decisions are superior to decisions made by individ-
uals. The proverb “two heads are better than one” captures the
intuition that two (or more) people working together are
indeed more likely to come to a better decision than they
would if working alone (Bahrami et al., 2010; Koriat, 2012).
To test this notion empirically, we experimentally study
collective image classification tasks using the real-world task
environment of a citizen science project, where participants
classified pictures of wildlife, taken as part of a conservation
effort, as accurately and quickly as possible.

Our study focuses on dyadic interaction and was designed
to reveal to what extent task complexity and variation in
learned expertise influence the accuracy of classifications.We
ask three core questions: whether and when dyads perform
better than an average individual, whether dyads with similar
training perform better than dyads with different training, and
how performance is mediated by the complexity of the task.

Surprisingly, we find little support for two heads being
more accurate than one except for themost complex tasks, for
which having an additional expert significantly improves
performance upon that of non-experts. Our results show that
pairs of individuals gradually improve in performance as they
work together but tend not to experience a collective benefit
compared to individuals working alone; rather, the cost of
coordination to efficiency and speed is consistently larger
than the leverage of having a partner, even if they are expertly
trained. These findings highlight that the extent of training
received by an individual, the complexity of the task at hand,
and the desired performance outcome are all critical factors
that need to be accounted for when weighing up the benefits
of collective decision making.

Our findings stand in stark contrast to a vast literature of
research on decision making showing that groups usually
make better decisions than individuals; most of that research
considers groups with more than two members. Beginning

with the discovery of judgment feats achieved by large
numbers of people, classically in point estimation tasks like
guessing the weight of an animal (Galton, 1907), the idea of
the “wisdom of the crowd” (Surowiecki, 2004) has become a
prominent example. Building on other cases from stock
markets, political elections, and quiz shows, evidence from
other guessing tasks and problem-solving experiments (Kerr
and Tindale, 2004; Grasso and Convertino, 2012) shows that
the aggregate of many people’s estimates often tends to be
closer to the true value than all of the separate individuals.

Recent examples of research on the wisdom of the crowd
include answering general knowledge questions (Navajas
et al., 2018) and estimating political events (Becker et al.,
2019). Yet, while some have found the effect holds for higher
dimensional tasks involving spatial reasoning and combina-
torial problems such as the traveling salesman task (Yi et al.,
2012), in general, most are different to our study as they
nevertheless continue to rely on numeric judgment tasks, such
as dot estimation (Almaatouq et al., 2020). This difference in
task context means most studies have focused simply on
understanding the collective decision making through the
pooling of personal information, often via simple averaging.

Importantly, as studies have turned their attention to
understanding what determines the performance advantage
of collective decision making, they have reached divergent
conclusions on the importance of (i) diversity, in terms of
individual team member attributes (Hong and Page, 2004;
De Oliveira and Nisbett, 2018); (ii) group size and structure
(Galesic et al., 2018; Navajas et al., 2018); (iii) incentive
schemes (Mann and Helbing, 2017); (iv) the nature of the
task, also referred to as the “task context” (used henceforth)
or “task environment” (Mata et al., 2012); and, perhaps
most contentiously, (v) the role of social influence, that is,
whether interaction undermines (Lorenz et al., 2011;
Muchnik et al., 2013) or improves (Becker et al., 2019;
Farrell, 2011) collective performance.

With respect to pairs of individuals (dyads)—the most
elementary social unit (Kozlowski and Bell, 2013) and
focus of this paper—related recent experimental studies
have tended to examine the role played by (1) individual
confidence (Koriat, 2012; Bang et al., 2014) and (2) ar-
gument quality (Trouche et al., 2014) in determining the
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success of collective decision making. When taking others’
opinions into account on various numerical estimation
tasks, studies have shown that people are known to rely on a
“confidence heuristic” (Yaniv and Milyavsky, 2007) such
that more confident opinions tend to weigh more. For in-
stance, Koriat (2015) has shown that in the case of per-
ceptual or even general knowledge questions, the outcome
of group discussion can be emulated by aggregating the
individual judgments of the group members weighed by
their confidence. Meanwhile, studies of intellective tasks,
problems, or decisions for which there exists a demon-
strably correct answer within a verbal or mathematical
conceptual system, have focused on the idea that arguments,
more than confidence, explain the good performance of
reasoning groups (Trouche et al., 2014). Blanchard et al.
(2020) report that decision outcomes improved when people
act in dyads compared with acting individually to complete
a general knowledge test.

Recent studies have reported on other challenges in dyadic
collaboration. The dyad members can suffer from an ego-
centric preference for personal information and fail to reap
collective benefits by not listening to their expert counterparts
(Yaniv and Milyavsky, 2007; Tump et al., 2018). Similarly,
pairs may underperform due to people’s tendency to give
equal weight to others’ opinions (Mahmoodi et al., 2015).
Finally, individuals experience a collective benefit only when
dyadmembers have similar levels of expertise and training, as
this ensures members accurately convey the strength of their
belief and the dyad can reliably choose the best strategy
(Bang et al., 2014, 2017).

Based on the observation that such critical agent char-
acteristics, particularly the relevance of prior personal
knowledge (i.e., expertise), are not randomly distributed,
our work builds on this line of work by directly oper-
ationalizing differences in the extent of task-relevant
training between interacting individuals—in contrast to
studies which have relied on proxies for fixed differences in
decision experience and ability (Sella et al., 2018).

Crucially, most prior studies typically provide participants
with immediate feedback, alongside treating collective benefit
as a static event. However, this fails to take into account that
actual human pairs often have to perform tasks under uncer-
tainty, whilst simultaneously benefiting from continued indi-
vidual and social learning. The present study narrows the gap
between experimental control and realistic settings by exam-
ining collective decisionmaking in the context of an established
citizen science task—something that has not hitherto been tried
for large-scale image classification platforms.

Study design

The WildCam Gorongosa task. In the experiment, participants
had a set amount of time to classify pictures taken by motion-
detecting camera traps in Gorongosa National Park in

Mozambique as part of a wildlife conservation effort (the trail
cameras are designed to automatically take a photo when an
animal moves in front of them). Specifically, we instructed
participants, physically present in the lab and seated in front of
a computer monitor, to use the WildCam Gorongosa website,
hosted by Zooniverse, the world’s largest online platform for
citizen science (Cox et al., 2015). To increase the generality of
the findings, the exact number and sequence of images are not
controlled at the individual level, as is the case in many prior
studies that have employed abstract, stylized tasks. Rather, to
reflect the real-world nature of the tasks used in the experiment,
we ensured participants classified images in a manner con-
sistent with the experience of volunteering citizens visiting the
WildCam Gorongosa site.

The WildCam Gorongosa task consists of five distinct
labeling subtasks. For each image, participants in the ex-
periment had to perform the following classifications, listed
in increasing complexity: (1) detecting the presence of the
animal(s), (2) counting how many animals there are, (3)
identifying the behaviors exhibited, specifically, identifying
whether the animal(s) is (a) standing, (b) resting, (c)
moving, (d) eating, or (e) interacting (multiple behaviors
may be selected), (4) recognizing whether any young are
present, and (5) identifying the species type. The 52 possible
species options include a “Nothing here” button but no “I
don’t know” option (see Figure 1(a) for example images and
Supplementary Material Figures S1–S4 for further exam-
ples and screenshots of the online platform and
instructions).

Prior work has demonstrated that object recognition is a
task that requires context-dependent knowledge and various
facets of our visual intelligence (DiCarlo et al., 2012); hence,
citizen scientists primarily carry out tasks for which human-
based analysis often still exceeds that of machine intelligence
(Trouille et al., 2019). In the present case, the WildCam
Gorongosa task is thus considered suitable for the purposes of
analysis for the following two reasons. First, it has high
ecological validity: as part of an established crowdsourcing
platform, a type of “human-machine network” characteristic
of our hyper-connected era (Tsvetkova et al., 2017), the site
has engaged over 40,000 volunteers to date (Wildcam
Gorongosa, 2020). Given the abundance of situations in
everyday life where immediate outcomes are difficult,
sometimes even impossible, to establish, the task can also
be generalized to other contexts in that no feedback was
provided to participants. Second, identifying various
features in camera trap wildlife images is sufficiently
difficult (Norouzzadeh et al., 2018) that it offers the
possibility of collaborative benefits, especially when
dyad members have received similar training for iden-
tifying particular features.

We operationalize task complexity experimentally by
varying the number of information cues that subjects
consider (De Cesarei et al., 2017; Groen et al., 2018). In
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particular, as our definition means the complexity of each
subtask is based upon the number of visual information cues
that must be processed in order to succeed in the task,
identifying the species is considered the most complex
because it is expected to require processing the most inputs
(Swanson et al., 2016; Parrish et al., 2018).

Whilst this conceptualization diverges from classical
organizational behavior definitions (Wood, 1986; Hackman,
1969), which also consider the actor doing the task, the task
context, and the behavioral pattern required to perform the
task, it has parallels with the notion of “component com-
plexity,” part of the original framework proposed by Wood
(1986). We thus nevertheless retain the original label “task
complexity” because our definition retains a connection to
the original concept. Differences in learned expertise are

meanwhile operationalized as differences in task-relevant
training, which is taken to be the main way to facilitate the
acquisition, enhance retention, and promote the transfer of
relevant knowledge to contexts not encountered during
training (Healy et al., 2014).

Experimental procedure. The experiment was divided into a
training and a testing stage (T1 = 30 min and T2 = 45 min). A
training stage was required in order to ensure select par-
ticipants could receive task-relevant training and build up
greater expert knowledge in performing the task at hand;
this in turn ensured mixed-skill dyads could be formed for
the testing stage where one member (the “expert”) has
higher learned expertise. The length of the training stage
was determined by analyzing pre-existing citizen scientist-

Figure 1. Experimental design. (A) Examples of the experimental task and illustration of the difference between the set of images
seen in the general versus the targeted training condition. Instances of images classified in the testing stage are also provided. (B)
Sequential schema of events in the Experiment. In the training stage T1, every participant classified images individually. In the testing stage
T2, participants were additionally assigned to either an individual or dyad condition. WildCam Gorongosa imagery is reprinted under a
CC BY 4.0 license with permission.
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generated data for the WildCam Gorongosa task. In par-
ticular, we analyzed the “learning trajectories” of users, and
changes in performance over time, to determine the average
saturation time point, defined as the point after which the
majority of users no longer improve. As depicted in
Figure 2, most users who classified the first image correctly
(incorrectly) made an incorrect (correct) classification
within 10 classifications; only a small subset maintained
their winning (losing) streak. After determining the average
number of classifications an individual made before no
longer experiencing an increase in the proportion of clas-
sifications classified correctly and multiplying this count by
the average time it took to make a single classification, this
was found to be 30 minutes.

For the T1 period, participants were randomly assigned to
two different training conditions, “General” and “Targeted,”
and asked to individually classify a sequence of approxi-
mately 50 images, where the content of the images was
varied between conditions. As T1 was designed to provide
selective training to participants in the Targeted treatment
condition, the set of images seen by these participants
(Targeted set) consisted of pictures sharing specific features,
sampled from a predetermined subset of all the images
available to classify on WildCam Gorongosa. Specifically,
the Targeted set was restricted to pictures containing an-
telope species: bushbuck, duiker, impala, kudu, nyala, oribi,
reedbuck, and waterbuck. These animals were chosen as
they look visually similar, share a number of morphological
features, and exhibit similar behaviors, thus making them
relatively harder to distinguish (Norouzzadeh et al., 2018).
For the General condition, pictures shared less specific

features and were instead sampled from a much broader
predetermined subset containing a more diverse set of
animals other than the ones mentioned above which are
easier to distinguish, including baboons, warthogs, and
lions, among many others (see Supplementary Text S2.3.1
for details). The analysis presented below confirms the
effectiveness of this treatment in producing significant
differences between different groups.

T2 was designed to assess the effect of differences in
task-relevant training as well as the effect of working alone
versus collectively. For this reason, participants were further
randomly assigned to either a “Solo” or “Dyad” condition,
with participants in the dyad condition having to make a
joint decision by reaching a consensus (as opposed to voting
or relying on an averaging procedure); the dyad members
worked together, and one of them was randomly assigned to
input decisions on behalf of the pair. When taking into
account the level of training, the experimental procedure
resulted in 2 individual testing conditions, “General Solo”
and “Targeted Solo,” and 3 dyad testing conditions,
“General Dyad,” “Targeted Dyad,” and “Mixed Dyad.” The
set of images seen by all participants, regardless of testing
condition, thus consisted of pictures sampled from the
Targeted set (see Supplementary Text S2.3.2 for details).
Figure 1 illustrates the overall experimental design.

Each decision process that we measure can be broken
down into two phases: (1) individual or (in the case of
dyads) joint deliberation, deciding what decision to make,
and (2) execution, confirming and inputting the decision
using the computer mouse. Because we consider collective
decision making to be primarily concerned with the process
outcomes of interaction, we are interested in the former
phase: how effectively dyads deliberate (i.e., share social
information). In the execution phase, dyads may be ex-
pected to be, at least initially, slower in inputting their
decision as they have to coordinate their classification.
However, we consider this to have a negligible impact on
their overall performance and expect it to diminish over time
as they learn to coordinate. Instead, we expect their per-
formance to be determined primarily by how effectively
they interact during deliberation, so we do not try to ar-
bitrarily discount the effect of the execution phase on
performance via any type of weighting.

To measure performance, three metrics were in turn
computed for every individual or dyad i: pace, defined as the
number of images classified by i per minute (referred to as
volume when considering the absolute number); accuracy,
defined as the number of correct guesses made by i as a
proportion of volume; and efficiency, defined as the number
of correct guesses made by i per minute. These metrics are
chosen as they have been widely used as measures of
performance in decision science (Maloney, 2002). Except
for pace, which is an aggregate measure—and thus the same
across tasks—accuracy and efficiency were computed

Figure 2. Individual learning trajectories of citizen
scientists. Trajectories are defined as the change in the
proportion of correct classifications averaged across each of the
five WildCam Gorongosa tasks relative to the number of
classifications made. Each learning trajectory is for an individual
volunteer citizen scientist who accessed theWildCamGorongosa
site prior to the time of the experiment. Note the logarithmic scale
on the x-axis; hence for a small number of classifications, the
curves take exotic shapes.
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separately for the five tasks (see Supplementary Text S3.2
for details).

Results

Figure 3 shows the overall accuracy and efficiency of
participants for different tasks. Tasks vary in their com-
plexity, and therefore in the efficiency and accuracy of
classifications. Based on these results we categorize de-
tection of an animal and animal count as low complexity
tasks and identifying the behavior, recognizing young an-
imals, and identifying the species as moderate complexity
tasks.

The effect of training on classifications

Focusing first on the effect of training on performance
across the different tasks of varying complexity, we assess
the difference in performance changes over the course of the
entire experiment where change is relative to an individual’s
initial performance (see Materials and Methods and Details
of Analysis in the Supplementary Information for details).
T1 and T2 were separately split into three equally spaced and
non-overlapping time intervals. The average change in
performance was then estimated separately for each interval
by computing the difference in performance compared to
the performance of the respective individual(s) in the first
interval of the training stage, which can be thought of as the
natural baseline prior to training. The rationale is that

benchmarking against this initial performance allows for a
more precise estimation of whether individual training,
interaction (in the case of dyads), or both provide perfor-
mance gains (Almaatouq et al., 2021).

Figure 4 depicts the results, showing the average
change in efficiency across each of the five WildCam
Gorongosa tasks during the training (T1) and testing
stages (T2) for participants in the General Solo (Figure
4(a)) and Targeted Solo (Figure 4(b)) groups. Relative
differences in learning rates and performance changes
indicate that individual performance is mediated both by
the level of training received and the complexity of the
task (Saffell and Matthews, 2003; Mao et al., 2016; Mata
et al., 2012).

Individuals in the General Solo group continuously im-
prove across each task during T1, becoming most efficient
during the last third of training, as the benefits of general
training gradually subside, before experiencing a sharp de-
cline during the first phase of testing. Although they are able
to recover by the end of T2 with respect to animal detection,
count, and behavior—tasks of lower complexity—the con-
sistency of the decline across tasks indicates that individuals
with general training are initially less efficient when con-
fronted with new task stimuli. In contrast, individuals in the
Targeted Solo group continuously improve upon their T1
performance throughout the course of T2, experiencing
greater relative gains in efficiency than General Solo for each
time interval (Figure 4(b)), suggesting that targeted training
provides consistent accumulative performance benefits.

Figure 3. Task complexity mediates performance. Data are combined across all solo and dyad grouping conditions for the testing stage.
The more “complex” the task, the greater the reduction in average accuracy (A) and average efficiency (B). The difference in
experienced difficulty between the task with the lowest and highest complexity is very large: the average accuracy score dropped by
nearly 50%. Error bars indicate the 95% confidence intervals.
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Individual versus collective classifications

We now turn to our primary research questions: whether
dyads outperform individuals and how that the perfor-
mance of dyads depends on task complexity and indi-
vidual ability. We analyze differences in performance
change during the final phase of the testing stage, when
the benefits of interaction for dyads can best be separated
from additional effects, such as initial improvements in
coordination. As a secondary analysis, we also examine
differences over the course of the entire testing stage; this
allows us to see how these changes evolve, which in turn
allows us to detect when and why coordination problems
may arise, for instance, as a result of an initial conceptual
shift.

The performance of Mixed Dyads is computed in two
ways: using a “General benchmark” (the performance set by
the member with general training) when comparing Mixed
Dyads to General Solo and General Dyads, and using a
“Targeted benchmark” (the performance set by the member
with targeted training) when comparing Mixed Dyads to
Targeted Solo and Targeted Dyads (see Material and
Methods).

Figures 5(a)–(b) depicts the results for pace during the
last time interval of T2 for the species identification task
(most complex task), indicating that participants in an in-
dividual condition were on average faster in classifying
images belonging to the test set—regardless of whether or
not they received targeted training. Moreover, only Targeted
Dyads and, to a lesser extent, Mixed Dyads still improved in
terms of pace during the final phase; however, both General
Dyads and Mixed Dyads benchmarked against individuals
receiving general training saw no or close to no further
improvements on average. Statistical tests of the differences
provide further evidence that participants in the solo con-
ditions outperform participants in the respective dyad

conditions (p < 0.05 for pairwise comparisons; see
Supplementary Material, Sec. S3.3).

Moving on to task-specific performance differences in
accuracy and efficiency for the species identification task,
considered the most complex task, General Dyads experi-
ence no interaction benefit. Yet, pairing an individual with
general training and an individual with targeted training
strongly counteracts this result: Mixed Dyads improve in
accuracy by 37% more than General Solo (p = 0.036,
Cohen’s ds = 0.616, 95% CI for Cohen’s ds: [0.034, 1.199])
and 55% more than General Dyads (p = 0.018, Cohen’s ds =
0.895, 95% CI for Cohen’s d: [0.298, 1.492])—indicating
that participants with general training can improve upon
their expected individual performance by collaborating with
a selectively trained partner who can supply task-specific
expertise.

Targeted Solo individuals meanwhile experienced a
significantly greater average improvement in accuracy
during the last interval of T2 (41%; Figure 5(d)) compared to
Targeted Dyads (24%; p = 0.026), and to Mixed Dyads
(29%; p = 0.134), although to a less evident extent. As a
result, they appear to consistently achieve the greatest ef-
ficiency (Figure 5(f)), albeit only slightly. In contrast, whilst
General Solo achieved greater efficiency than General
Dyads as a result of increased speed (Figure 5(a)), achieving
0.78 more classifications per minute (p = 0.002, Cohen’s
ds = 0.934, 95% CI for Cohen’s ds: [0.322, 1.546]), the
slight difference between General Solo and Mixed Dyads
(Figure 5(e); p = 0.557) implies that individuals without
selective training experience a speed advantage when
working alone but derive an accuracy benefit when col-
laborating with a selectively trained teammate.

Surprisingly, across all other tasks, there was no clear
indication of substantive differences between individuals
and dyads in terms of accuracy during the final phase of
testing (see Supplementary Material).

Figure 4. Individual training effectiveness. Performance changes in terms of the average change in efficiency across each of the five
WildCamGorongosa tasks during the training (T1) and testing stage (T2) for General Solo (A), individuals who received general training
during T1, and Targeted Solo (B), individuals who received selective training. The dashed vertical line falling in T2 separates both stages,
which each have 3 data points. Error bars indicate one standard error of the mean.
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Classifications over time

Figures 6 and 7 show how accuracy changes over time for
different tasks (grouped into low and moderate complexity
tasks, respectively).

When comparing the change in accuracy over the course
of the entire testing stage, there is no clear indication of
significant or consistent differences between individual and
dyads in terms of accuracy for less complex tasks; Figure 6
illustrates that this holds across the entire testing stage.
When comparing changes in accuracy between General
Solo and the respective dyad conditions for the presence of
young task, considered to be of moderate complexity
(Figure 7), a similar pattern can nevertheless be observed to
changes in accuracy across the species identification task;

notably, individuals and dyads both fail to experience any
accuracy improvements. Moreover, when comparing Tar-
geted Solo and the respective dyads conditions, Mixed
Dyads appear to experience the greatest improvements in
accuracy during the first two intervals of T2. However, the
slight variations suggest that tasks of low complexity are
most probably too simplistic for practically relevant per-
formance differences to emerge.

A decline is to be expected given the coordination issue,
the extent of the decrease in performance experienced by
dyads depends on the distribution of expertise among dyad
members and has a different effect depending on this dis-
tribution. As seen in Figure 8, whilst General Dyads and
Mixed Dyads unsurprisingly undergo a decline in accuracy,
pace, and consequently efficiency, Targeted Dyads and

Figure 5. Individual and collective performance. Performance differences between individuals and dyads for the last third of T2 in
terms of the distribution and average change in pace (A–B), alongside accuracy (C–D) and efficiency (E–F) for the species
identification task, considered the most complex. General Solo individuals are compared to General Dyads and Mixed Dyads (left
panels), and Targeted Solo individuals are compared to Targeted Dyads and Mixed Dyads (right panels). Error bars indicate one standard
error of the mean.Whiskers are 1.5 times the interquartile range. The solid black line inside each box indicates the median and the red
circles do the mean.
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Mixed Dyads only experience a fall in pace but not ac-
curacy; hence, the slight dip in efficiency during the first
time interval of T2 (Figure 8(d)) is primarily the result of
classifying images more slowly. More specifically, indi-
viduals and dyads with general training respectively ex-
perienced a reduction of 12% and 13% in accuracy during
the first interval of T2.

Although both groups on average still gradually im-
proved over time, they do not manage to recover to the
performance benchmark set by General Solo during the first
phase of training. As a consequence, the finding that
General Dyads experience no interaction benefit at all re-
mains consistent beyond the initial phase of testing. The
observation that pairing an individual with general training
and an individual with targeted training causes this decline
is meanwhile consistently strong but becomes most pro-
nounced in the final time interval. This not only implies that
participants with general training can improve upon their
expected individual performance by collaborating with a
selectively trained partner but also further suggests that the
greatest interaction benefits among dyads with mixed ex-
pertise occur after overcoming initial coordination issues.

Regarding efficiency, Targeted Solo individuals appear
to consistently achieve the greatest performance gains, as
compared to Targeted Dyads and Mixed Dyads, albeit only
slightly. In contrast, whilst General Solo achieved greater
efficiency than General Dyads as a result of increased speed
reflected in pace (p = 0.018), the slight difference between
General Solo and Mixed Dyads (p = 0.557) implies that

individuals without selective training experience a speed
advantage when working alone but derive an accuracy
benefit when collaborating with a selectively trained
teammate (see also Supplementary Material Fig. S7, which
shows that using different time intervals does not signifi-
cantly change any of the reported findings).

Discussion

Our findings, in contrast to empirical studies of larger
groups, demonstrate that the benefits of dyads are contin-
gent. On the one hand, the stepwise performance im-
provements experienced by dyads in terms of pace and
accuracy for the species identification task are consistent
with prior studies showing that collective performance
increases gradually for complex tasks in the absence of
feedback (Bahrami et al., 2012; Mao et al., 2016). On the
other, these findings imply that switching to a dyadic
context for a task after training in an individual context in
most cases creates a coordination problem that hurts
performance.

Although the observation that dyads do not consistently
experience a collective benefit across tasks goes against
prior results that indicate an interaction benefit in the context
of low-level visual enumeration and numeric estimation
tasks (Koriat, 2015; Wahn et al., 2018), this finding is
nevertheless in line with the literature that has found no pair
advantage when the task context consists of general
knowledge-based tests involving discrete choice decisions

Figure 6. Change in accuracy over time. Performance differences between individuals and dyads over the course of T2 in terms of
the average change in accuracy for low complexity tasks. Error bars indicate one standard error of the mean.
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(Schuldt et al., 2017; Blanchard et al., 2020). This under-
scores the extent to which performance greatly depends on
overcoming any initial coordination issues and the task
context. Whilst some previous studies have suggested that
individuals outperform dyads due to faster skill acquisition
(Crook and Beier, 2010), the greater accuracy gains
achieved by Mixed Dyads when compared to General
Dyads and General Solo for the species identification task
show that, at least for complex tasks, this may further
depend on the level of task-relevant training among dyad
members. Additionally, our results highlight that task-
relevant training, particularly targeted training, provides
significant performance improvements, regardless of
working individually or in a pair.

Our work stresses that existing experiments and theories
of collective decision making, such as the “confidence
matching” model stating that only pairs similar in skill or
social sensitivity experience a collective benefit (Bang et al.,

2017), do not adequately stipulate if, and under what
conditions, dyads will outperform individuals.

The immediate contribution of this study is to demon-
strate that in the context of a real-world task context,
namely, Zooniverse’s WildCam Gorongosa citizen science
project, the heads of two experts, understood here as in-
dividuals with targeted training, are not always better than
one. Rather, one expert is more efficient than two experts or
a mixed ability dyad, indicating that the cost of coordination
to efficiency is consistently larger than the leverage of
having a partner—even if that partner is also specially
trained for the task at hand.

Moreover, we also show that a non-expert, an individual
with basic training, works faster than a dyad, even if one of
the dyad members is an expert, thereby giving further
support to the theory that dyads face a coordination problem
which costs time and suggesting that individuals exert less
effort when working in a pair. However, when it comes to

Figure 7. Change in accuracy over time. Performance differences between individuals and dyads over the course of T2 in terms of
the average change in accuracy for moderate complexity tasks. Error bars indicate one standard error of the mean.
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accuracy in the most complex task, having one expert in a
dyad significantly improves performance compared to that
of individual non-experts or dyads of non-experts; impor-
tantly, two expertly trained individuals working together do
not appear to be more accurate than one. This suggests
interaction, whereby dyads are allowed to exchange per-
sonal information, may inherently give rise to as-of-yet
unexplored psychological biases that hurt performance,
even when there is equality in the distribution of knowledge.

To explain our findings, we theorize the following
scenarios:

(a) Process losses due to social dynamics: Our findings
are in line with the literature that has found no pair
advantage when the task context consists of general
knowledge-based tests involving discrete choice
decisions. Theories of social dynamics that could
help explain why this is the case, relate to the
“process losses” that can plague group settings
(e.g., groupthink). One possible explanation for the
differential gains in confidence observed across
dyad types is with regard to the ability of group
settings to reduce individual feelings of uncertainty.
Social comparison theory (Festinger, 1954) posits
that individuals are motivated to assess the validity
of their opinions by comparing them to those held
by others, in the absence of other non-social,
“physical” means for doing so. Social comparison
processes are thus more likely to operate in groups

performing tasks that are more judgmental, as
compared with intellective, in nature (Laughlin and
Earley, 1982), as when individuals in a jury scenario
adopt a higher threshold for finding a suspect guilty
(“beyond a reasonable doubt”) after participating in
a group discussion (Magnussen et al., 2014; Schuldt
et al., 2017).

(b) Overconfidence/equality bias: Overconfident (but
inaccurate) people convince less confident (but
accurate) people to change their opinions toward the
wrong decision; this idea is regularly invoked in the
field of collective decision making and is advanced,
for instance, by Valeriani et al. (2017). Blanchard
et al. (2020), for instance, argue that overconfidence
may be responsible for the failure to improve group
decisions, as they find that, on average, dyads be-
came more confident than individuals despite no
increase in accuracy. The reasons they give to ex-
plain this relate to the metacognitive constructs
(i.e., trait-confidence and bias), that is, the presence
of one cautious individual (i.e., lower trait-
confidence and underconfident) may cause unjus-
tified increases in confidence displayed by dyads
composed of overconfident and potentially higher
trait-confidence individuals. In a different but re-
lated vein, Mahmoodi et al. (2015) argue that the
reason individuals in a dyad weigh each other’s
opinions equally, even if one individual is unjustly
confident, is because there is an “equality bias”

Figure 8. Change in pace over time. Differences between individuals and dyads over the course of T2 in terms of the pace of task
completion. Error bars indicate one standard error of the mean.
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across cultures, meaning when making decisions
together we tend to give everyone an equal chance
to voice their opinion. In our experiment, this may
be especially useful for explaining why mixed
dyads performed poorly.

(c) Insufficient time for discussion/social learning
theory: In our experiments, time was also a practical
constraint. The time pressure of completing the task
in a 45-minute window meant dyads failed to
properly discuss and instead the more confident/
dominant individual was able to push their opinion
through more easily. The more theoretical reason
that we could use to explain why time matters,
relates to social learning theory (Toyokawa et al.,
2019)—“learning that is facilitated by observation
of, or interaction with, another individual or its
products, is known as ‘social learning’” (Kendal
et al., 2018). Despite the positive connotation of the
term learning, another face of social learning is
herding effects where the collective decision
gradually moves toward a less optimal solution
(Vives, 1996).

In a situation where a general manager is deciding
whether or not to rely on a qualified expert or a pair of
untrained team members for solving various tasks effec-
tively, the results of the present study would suggest that, at
least for complex classification tasks, overall performance
can be maximized by relying on a pool of expertly trained
individuals working alone. Similarly, if the speed at which
the decision needs to be made is key, it is also best to rely on
individuals working alone. Yet, if accuracy carries more
practical importance than productivity, and it is not possible
to provide specialized training, then recruiting experts and
building mixed-ability teams may be most effective.

Providing specialized individual training to all or at least
some workers and relying on group work only when ac-
curacy matters may be the most effective strategy, whilst
relying on a dyad of trained experts will likely represent a
waste of resources, as it does not provide any additional
performance gains. Taken together, these results both
complement prior findings (Schuldt et al., 2017; Bahrami
et al., 2012) and provide new insights, highlighting that the
extent of training received by an individual, the complexity
of the task at hand, and the desired performance outcome are
all critical factors that need to be accounted for when
weighing up the benefits of collective decision making.

Despite the fact that collective decision making has been
studied extensively (Heath and Gonzalez, 1995; Bose et al.,
2017), prior studies have relied mostly on artificial or
comparatively simple tasks (e.g., number line or dot esti-
mation), which do not reflect the nature of human inter-
action in daily life nor account for the uncertainty and
limited task-relevant knowledge that individuals often

possess (see Supplementary Material Fig. S8(a), which
demonstrates that, in the present case, 86% of participants
had close to none, basic, or average zoology knowledge
and zero had any expertise). The WildCam Gorongosa task
studied here, however, is not only an established citizen
science challenge engaging thousands of participants but
also a task that shares significant features with other forms
of online collaboration and information processing ac-
tivities more broadly, given it requires both perceptual
ability and general knowledge. Thus, it can be expected
that the present results can be generalized to similar en-
vironments where collaboration may be substituted or
complemented with specialized training to improve
outcomes.

The finding that individuals and dyads with similar
training do not perform significantly differently suggests
that the pair advantage observed in highly controlled ex-
perimental studies employing one-dimensional tasks may
be less observable in many multi-dimensional contexts. Yet,
given some remaining shortcomings, this study also pro-
vides building blocks for future research that can help re-
solve some of the gaps in our understanding of the
relationship between task complexity and the performance
benefits experienced by interacting individuals.

A limitation of this study is the fact that only one type of
task context was studied. Nevertheless, by focusing on a
real-world task and advocating for a “solution-oriented”
approach (Watts, 2017), we hope that our approach will
inspire further research in computational social science on
decision making using externally valid domain-general task
contexts. Moreover, we note that the use of a preexisting
citizen science task resulted in a significant proportion of
participants reporting an interest in contributing further to
citizen science, independent from working alone or in a
dyad (see Supplementary Material Fig. S9 which shows that
68% of participants reported it as either somewhat or ex-
tremely likely that they would contribute to citizen science
in the long term), thereby demonstrating the additional
benefit to adopting such a task, that is, engaging participants
as well as advance our understanding of collective decision
making.

We believe our study will spur further experimental
research using citizen science platforms; we especially
encourage researchers to build on our task complexity
definition and develop a standardized framework to enable
reliable comparisons across citizen science task environ-
ments. In the context of collective decision-making re-
search, in particular, when considering individuals with
similar expertise who disagree, future studies will advance
our understanding of the value of deliberation. Such studies
might also vary the time that individuals and groups have to
make classifications. Another way of improving on this
work is to consider and monitor different strategies that
team members take or the difference in features on which
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they base their decisions. Alignment or misalignment be-
tween these could significantly influence team performance.

Finally, we welcome recent calls for the field to take
greater inspiration from animal research (O’Bryan et al.,
2020) and for researchers to consider how technologies and
machines affect human interaction in online collaborative
tasks (Rahwan et al., 2020) as additional avenues of re-
search to explore and further advance our collective
knowledge of collective intelligence.

Materials and Methods

This study was reviewed and approved by the Oxford In-
ternet Institute’s Departmental Research Ethics Committee
(DREC) on behalf of the Social Sciences and Humanities
Inter-Divisional Research Ethics Committee (IDREC) in
accordance with the procedures laid down by the University
of Oxford for ethical approval of all research involving
human participants. Participants (n = 195) were recruited
from the general public via the Nuffield Centre for Ex-
perimental Social Science (see Supplementary Material,
Sec. S2).

Zooniverse answers

As all images seen by participants have already been
evaluated on the Zooniverse website, Zooniverse estimation
data were used to assess the performance. These data consist
of the aggregated guesses of citizen scientists who used the
platform prior to when the experiment was conducted.
Whilst volunteer estimates have consistently been found to
agree with expert-verified wildlife images (Swanson et al.,
2016), it is noted that the ground truth data could still be
missing correct attributes that only experts could identify.
However, it is by definition impossible for any participant to
have performed better than the citizen scientist-provided
estimates; hence, we refer to these data as the “ground truth”
throughout (see Supplementary Material, Sec. S3.1 for
details on the content of the ground truth).

Performance analysis

To comprehensively compare individual versus collective
classifications, we assess performance at a specific point and
as a function of time. As our primary analysis, we analyze
differences in performance change during the final phase of
the testing stage. As a secondary analysis, we also examine
how any differences evolve over the course of the entire
testing stage. In order to do so, we split T1 and T2 into three
equally spaced and non-overlapping intervals of length
10 and 15 minutes, respectively. The reason we opted for
computing intervals, as opposed to examining performance
trial by trial, for example, was because the aim of the study
was not to assess the absolute improvements in performance

but to compare any change against initial performance
during training—before participants were able to acquire
any learned expertise.

Benchmarking changes in performance against average
performance during this initial interval in turn ensures we
can more precisely estimate whether individual training,
interaction, or both provide performance gains, and how this
changes across tasks and over time. We used two different
time intervals because each stage was different in length and
so we chose the highest factor that would still produce
enough data points per stage to allow for at least two
comparisons. Next to fulfilling the above criteria, the
specific interval sizes were in turn chosen for clarity of
presentation, as the results did not significantly change any
of the reported findings when changing the size of the
interval (see Supplementary Material Fig. S7).

The average change in performance was estimated
separately for each interval by computing the difference in
performance compared to the performance of the respective
individual(s) in the first interval of T1, which can be thought
of as the natural baseline prior to training. In comparing
individuals to dyads, two benchmarks are used: (a) a “non-
interacting nominal dyad,” defined as the average of the
initial performance of both dyad members working indi-
vidually (the sum is used for volume and efficiency, as these
are additive processes), and, in the case of Mixed Dyads, (b)
a “comparably trained individual,” defined as the average
initial performance of the dyad member with the same level
of training as the individual in the respective solo condition
(multiplied by two when considering volume and
efficiency).

Given the sample size, we opted to employ analysis of
variance (ANOVA) to statistically qualify the results, in-
stead of applying growth curve modeling, for instance.
Similarly, given the length of the experiment, as well as the
non-stationary nature of our temporal data, we considered
other time-based analysis methods, such as a sliding win-
dow approach using a distinct or overlapping time interval,
unsuitable as most assumptions would not be met.

Statistical tests

All statistical tests were two-tailed, and non-parametric
alternatives were planned if the data strongly violated
normality assumptions. For omnibus tests, the significance
of mean differences between groups was analyzed via
planned pairwise comparison tests. Given the fact that all
pairwise comparisons were planned, and taking into account
the sample size, length of the experiment as well as the
nature of the data, we follow the recommendation that
reporting actual p-values leads to fewer errors of inter-
pretation (Rothman, 1990; Saville, 1990). This also means
we avoid any arbitrary significance cutoff points (Vidgen
and Yasseri, 2016). As a result, we do not correct p-values
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but instead ensure that they are situated within the overall
findings of the study. Effect size values were meanwhile
interpreted in simple and standardized terms according to
Cohen (1988), when no previously described values are
available for comparison, and reported using conventions
recommended by Lakens (2013). Details of the statistical
tests are in Supplementary Material, Sec. S3.3.
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