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Abstract

Background: Due to the emergency responses early in the COVID-19 pandemic, the use of digital health in health care increased
abruptly. However, it remains unclear whether this introduction was sustained in the long term, especially with patients being
able to decide between digital and traditional health services once the latter regained their functionality throughout the COVID-19
pandemic.

Objective: We aim to understand how the public interest in digital health changed as proxy for digital health–seeking behavior
and to what extent this change was sustainable over time.

Methods: We used an interrupted time-series analysis of Google Trends data with break points on March 11, 2020 (declaration
of COVID-19 as a pandemic by the World Health Organization), and December 20, 2020 (the announcement of the first COVID-19
vaccines). Nationally representative time-series data from February 2019 to August 2021 were extracted from Google Trends for
6 countries with English as their dominant language: Canada, the United States, the United Kingdom, New Zealand, Australia,
and Ireland. We measured the changes in relative search volumes of the keywords online doctor, telehealth, online health,
telemedicine, and health app. In doing so, we capture the prepandemic trend, the immediate change due to the announcement of
COVID-19 being a pandemic, and the gradual change after the announcement.

Results: Digital health search volumes immediately increased in all countries under study after the announcement of COVID-19
being a pandemic. There was some variation in what keywords were used per country. However, searches declined after this
immediate spike, sometimes reverting to prepandemic levels. The announcement of COVID-19 vaccines did not consistently
impact digital health search volumes in the countries under study. The exception is the search volume of health app, which was
observed as either being stable or gradually increasing during the pandemic.

Conclusions: Our findings suggest that the increased public interest in digital health associated with the pandemic did not
sustain, alluding to remaining structural barriers. Further building of digital health capacity and developing robust digital health
governance frameworks remain crucial to facilitating sustainable digital health transformation.

(J Med Internet Res 2023;25:e42401) doi: 10.2196/42401
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Introduction

On March 11, 2020, the World Health Organization announced
that COVID-19 has been classified as a pandemic, disrupting
health care services worldwide. Evidence from a systematic
review shows a median 42% decrease in health care visits, 28%
decrease in admissions, 31% reduction in diagnostics, and 29%
reduction in therapeutics, resulting in an overall 37% decrease
in health care usage [1]. As a result, digital health has exploded
during the early stages of the COVID-19 pandemic [2-4]. Digital
health generally refers to the use of internet solutions, big data,
and communications technologies to collect, share, and manage
health information to improve both individual and public health,
as well as to identify symptoms, plan treatment, monitor key
health parameters, and monitor progress and treatment effects
[5-7]. While digital health saw tremendous uptake early in the
pandemic [4,8], no information exists on whether this uptake
was sustainable [9].

The sudden disruption of traditional health services may have
led health ecosystems to digitalize out of a need to survive,
highlighted by the emergency transition to a digital paradigm
and subsequent changes when the pandemic started [2].
Implementing digital health solutions is complex and relies on
many institutional factors, cultural and behavioral traits, and
health system characteristics [9,10]. For instance, the design
process of digital health solutions is indicative of which
populations it will be able to reach and, equally importantly,
what population groups will experience difficulties in accessing
and using the tool [3,11,12]. Policy environments are vital to
laying the foundation of how conducive a health system is to
adopting a digital health solution and how health professionals
are trained in the field of digital health [3,11,13]. The readiness
and willingness of digital health users are crucial elements in
adopting digital health solutions [2,10]. A recent analysis of
digital skills in the European Union—frequently regarded as a
leading region in terms of digital skills—found clear
discrepancies across the European region [14]. Certain
population groups seem to fare more favorably in a digital
world: people who are younger, higher educated, male, live in
urban regions, and are either students or employed consistently
report higher internet access and digital skills [14-17].
Consequently, if digital health services were to be structurally
introduced now, only certain population groups could fully
benefit from these services. Paradoxically, population groups
that have higher needs for health care and could potentially
benefit most from these innovations are the ones that would
experience the highest barriers to access [8,11,12].

With traditional health services recovering, patients could decide
whether they prefer to seek traditional or digital health care,
which often starts with web-based search engines [18]. Although
the internet cannot substitute health professionals as a sole health
information source due to a combination of the prominence of
misinformation and a lack of health, digital, and science literacy
[16,19-21], search engine data can be instrumental in
understanding the general preference of populations in exploring
the possibility of using digital health [22,23]. While web-based
searches can be information- or curiosity-driven, previous
research has shown that web-based search behavior is strongly

correlated with the actual (health care) needs of the population
and forms an integral part of a pathway to actual communication
with health care providers [22-25].

This study aims to understand how the public interest in digital
health changed as proxy for digital health–seeking behavior in
Australia, Canada, New Zealand, the United Kingdom, the
United States, and Ireland when COVID-19 was declared a
pandemic on March 11, 2020, and whether any observed
changes were sustained over time. In particular, we hypothesize
that (1) interest in digital health rose when the pandemic was
announced and (2) this increased public interest also declined
over time. It is important to emphasize that this study does not
cover the demand but only the public interest in digital health
care, which may not always translate into demand.

Methods

Overview
Google Trends is a principal tool used to study trends and
patterns of search engine queries [22]. It is an open-access big
data repository that provides real-time information on Google
queries from 2004 onward [26], solving issues that arise with
conventional, time-consuming survey methods [26]. These data
showcase how popular specific search terms were in certain
countries. The main advantage of Google Trends is that it
captures the revealed, and not stated, users' preferences [26],
making it possible to obtain data that would be difficult to collect
otherwise. The advantage of revealed user data is that they are
based on actual decisions, meaning that there is no need to
assume that participants will respond to simulated situations as
is the case with stated user data. As a result, revealed user data
are characterized by high reliability and face validity [27].
Google Trends has shown to be a viable tool to understand,
monitor, and even forecast information-seeking trends and
public interest and is becoming an increasingly popular method
for assessing population preferences in health research
[22,28,29]. It has been applied to various health-related topics
such as mental health, vaccine hesitancy, and infodemic
surveillance [25,30,31].

All Google Trends data points are normalized and scaled [26],
meaning that the number of searches for a specific term is
divided by the total number of searches for all topics at a
particular location and within the specified time frame, resulting
in a normalized score. All normalized scores are scaled between
0 and 100 points, yielding relative search volumes. These
relative search volumes represent search interest relative to the
month with the highest search interest. Google adjusts relative
search volumes for internet access and population size. We
followed the established methodological guidelines for using
Google Trends in infodemiology and infoveillance [26].

Keyword, Time Frame, and Country Selection
Based on the digital health–focused search strings used in recent
systematic reviews [32-34], we used 5 keywords to monitor
web-based search interests: online doctor, telehealth, online
health, telemedicine, and health app. We also explored digital
health, digital therapeutics, telecare, telemonitoring, and virtual
health, yet these terms' search volumes were negligible (<1)
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and were therefore excluded. By using quotation marks in our
data extraction commands (eg, “online doctor”), we prevented
keywords with a common term (ie, online doctor and online
health or online health and health app) from including search
results across multiple keywords.

We extracted the weekly relative search volume data for Canada,
the United States, the United Kingdom, New Zealand, Australia,
and Ireland from February 1, 2019, to August 1, 2021 (n=780
country-weeks). These countries were chosen because they
share English as their dominant language, 90%-97% of their
total population has access to the internet [35], and they provide
a varied representation in policy landscape regarding digital
health [11,13]. Google is also used for 87% to 93% of the
web-based search queries in these countries [36-38], meaning
that our data accurately capture the search behavior of the vast
majority of the population of these countries. As such, we can
reliably measure public interest in digital health during the
pandemic [28].

Empirical Approach
To assess both the short- and long-term effects of the pandemic
on Google search volumes, we used a single-group interrupted
time-series design [39,40], which is suitable for evaluating
population-level effects of critical events (eg, interventions,
policy innovations, or public health crises) that have occurred
at a clearly defined point in time [41]. Our design adopts a
segmented regression analysis approach that allows for the
identification of 3 effects by comparing pre- and postevent
trends [41,42]: (1) the pre-event slope, indicating how the
outcome of interest was changing prior to the occurrence of the
critical event; (2) the change in intercept, identifying the
immediate change following the critical event; and (3) the
postevent slope, capturing the gradual change in the period after
the critical event. In this study, the critical events are the start
of the pandemic on March 11, 2020, and the announcement of
the vaccines on December 20, 2020. The start of the pandemic
was chosen because of the shock it brought to health system
functioning and the public attention it raised about the health
risks associated with COVID-19 [1]. The vaccine announcement
was chosen as this signaled the start of a new period where it
was possible to partially return to the prepandemic status quo
[43].

To account for the heterogenous spread of COVID-19 news
across the studied countries, we tested the break point of March
11, 2020, using the Chow F test [44]. We also performed a
sequential estimation using unknown break points to test for
minor variations in the break point location to determine the
optimal break point for this analysis [45-47].

This approach addresses internal validity constraints and
represents a methodologically robust design for measuring the
impact of critical events [48], and has been widely used in
empirical work in the field of public health [49-51]. We also
computed 7-day moving averages for active COVID-19 cases
and COVID-19 deaths using Oxford Government Policy Tracker
data [52]. These moving averages were added as covariates,
since trends in COVID-19 cases and deaths may affect (digital)
health care–seeking behavior during the pandemic. Our
segmented regression models were fit using Newey-West SEs,
which are designed to account for autocorrelation and potential
heteroskedasticity in time-series data [53]. We conducted a
postestimation analysis to capture the exact postintervention
trend.

To ensure that we fit a model that accounts for the correct
autocorrelation structure, we performed Cumby-Huizinga tests
for autocorrelation for each individual segmented regression
model [54]. The appropriate lag was determined by performing
Cumby-Huizinga tests on segmented regression models without
lag. Finally, we conducted a sensitivity analysis to verify the
robustness of the segmented regression model, consistent with
a placebo intervention using the time period between February
1, 2017, and August 1, 2019. Data were extracted using R
(version 4.1.2; The R Foundation) and the analysis was
performed using Stata/MP (version 17.0; StataCorp).

Results

Descriptive Analysis
When comparing Google search volumes before and after the
pandemic announcement on March 11, 2020 (shown in Figure
1), we observed an immediate increase in the relative search
volumes of online doctor, online health, telehealth, and
telemedicine. The search volume of health app did not indicate
an immediate change, though the search volumes increased over
time. We also observed a gradual reduction in the search trends
of online doctor, online health, telehealth, and telemedicine,
while that of health app remained stable. Furthermore, there is
limited reason to assume “anticipation” as a relevant factor in
Google search behavior, given that search volumes substantially
increased only after the announcement of the pandemic. Airline
traffic data remained constant until the week of March 9, 2020
[55], whereas daily Google Trends Mobility data of the countries
under study remained stable until March 11, 2020 [56]. Based
on these data, we inferred that changes in human behavior and
mobility only emerged shortly after the pandemic declaration
[57,58]. Country-specific Google search volumes are shown in
Multimedia Appendix 1.
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Figure 1. Google Trends search volumes before and after the announcement of the COVID-19 pandemic. The vertical axis shows the average search
volume (scaled from 0 to 100) before and after the pandemic was announced and after the announcement of conditional market authorization of the
first COVID-19 vaccines.

Interrupted Time-Series Analysis
When assessing all studied countries combined, we observed
rising trends in the relative search volumes of online doctor,
online health, telehealth, and health app. Upon the
announcement of COVID-19 being a pandemic, the relative
search volumes of all keywords increased significantly, though
the increases in the search volumes of telehealth (43.44
[19.35-67.53]) and telemedicine (41.61 [18.98-64.24]) are

particularly large. After the pandemic announcement, all
keywords under study, except for health app, showed decreasing
trends in their respective relative search volumes. After the
vaccine announcement, the search volumes of online doctor,
online health, and health app showed an acute increase.
Following this event, online health saw a decreasing trend,
while the other keywords under study revealed a stable trend.
Further details are shown in Figure 2 and Table S1 in
Multimedia Appendix 1.
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Figure 2. Interrupted time-series regression estimates for the relative search volumes of online doctor, online health, telehealth, telemedicine, and
health app before and after the announcement of the COVID-19 pandemic and the announcement of the first COVID-19 vaccines. (A) Acute changes
in the search volumes following the pandemic announcement in March 2020 and the vaccine announcement in December 2020. (B) Changes in search
volumes per week before the pandemic announcement, after the pandemic announcement, and after the vaccine announcement. Values shown are
estimates and 95% CIs.

Prior to the announcement of the COVID-19 pandemic, online
doctor and online health showed an increase in relative search
volume in Canada, the United Kingdom, and the United States,
while telemedicine only reported an increasing search volume
in the United Kingdom. The search volume of health app
increased in the United Kingdom and the United States. Upon
the announcement of the pandemic, Australia, Canada, the
United Kingdom, the United States, and Ireland reported an
immediate rise in the search volumes of all 5 keywords under
study. In contrast, New Zealand only reported an immediate
rise in online health, telehealth, and telemedicine. After the
immediate shock, Australia and the United States reported a
declining trend in the search volumes of all keywords under
study except health app. Canada reported declining search
volumes of online health, telehealth, and telemedicine, yet an
increasing search volume in health app. New Zealand also
reported declining search volumes of online health, telehealth,
and telemedicine. The United Kingdom showed declining search
volumes of online doctor and online health. Finally, Ireland

reported a decline in all keywords under study after the
immediate shock of the pandemic announcement. Further details
are shown in Figure 3 and in Table S2 and Figure S7 in
Multimedia Appendix 1.

Following the vaccine announcement on December 20, 2020,
the search volume of telemedicine in New Zealand reported
another immediate rise, while those of health app fell.
Simultaneously, health app search volumes increased in the
United Kingdom, the United States, and Ireland. After the
immediate impact, Australia reported an upward trend in the
search volumes of online health and telemedicine, while New
Zealand reported a positive trend for the search volume of
telehealth. In the United Kingdom, telehealth and telemedicine
both reported declining trends, as well as health app in the
United States. Finally, an increasing trend was observed in the
search volume of telemedicine in Ireland, while online health
and health app displayed a decreasing trend. Further details are
also shown in Figure 2 and in Table S2 and Figure S7 in
Multimedia Appendix 1.
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Figure 3. Country-specific regression estimates for the relative search volumes of online doctor, online health, telehealth, telemedicine, and health app
before and after the announcement of the COVID-19 pandemic and the announcement of the first COVID-19 vaccines. (A) Acute changes in search
volumes following the pandemic announcement in March 2020 and the vaccine announcement in December 2020. (B) Changes in search volumes per
week before the pandemic announcement, after the pandemic announcement, and after the vaccine announcement. Values shown are estimates and 95%
CIs.

Robustness Checks
The break point of March 11, 2020, was tested using the Chow
F test for the keyword telehealth, which resulted in a significant
output (test statistic=70.82; P<.001), supporting the use of the
week of March 8-14, 2020 as a break point. This keyword was
chosen for its clearly visible break point in the descriptive
analysis in all studied countries without much noise (see Figures
S1-S6 in Multimedia Appendix 1). However, an assessment of
the week of March 15-21, 2020, as a break point also yielded
a significant result (test statistic=28.16; P<.001). More decisive
support for our decision of the break point was obtained from
the sequential estimation of unknown break points using Bai
and Perron’s [45] critical values, which reported the estimated
break point to be the week of March 8-14, 2020 (see Table S3
in Multimedia Appendix 1).

We used data from 2017 to 2019 and conducted placebo tests
with events taking place during the same dates in 2018 (ie,
March 8, 2018, and December 16, 2018) to further check the
robustness of our findings. Figure S8 and Table S4 in

Multimedia Appendix 1 indicate some seasonal shocks in March
in online doctor and online health when using a placebo sample.
However, in contrast to our main findings, the shocks in the
placebo sample show a downward shock, rather than an increase,
in search volume. While online health and telehealth reported
a positive shock in March in Australia, the main model
coefficients are significantly higher than the upper limit of the
placebo coefficients' 95% CI (online health: 95% CI 2.19-23.80;
telehealth: 95% CI 1.82-32.06).

Discussion

Principal Findings
In this study, we explored how digital health search behavior
changed after the pandemic announcement and how this
behavior developed in later stages of the pandemic. We observed
an immediate rise in digital health search volumes in all
countries under study. Simultaneously, we observed that the
search volumes of the digital health–related keywords decreased
after the acute increase around the World Health Organization’s
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pandemic announcement of March 11, 2020. These findings
indicate that public interest in digital health increased as the
COVID-19 pandemic was announced; yet, it also dwindled over
time.

These findings are consistent with the claim that health care
underwent an emergency transition to a digital paradigm when
the pandemic started [2]. We also observed that after this
immediate spike, digital health search volumes declined again,
sometimes toward prepandemic levels. The exception to this is
the search volume of health app, which either remained stable
or gradually increased during the pandemic. This can be
explained by the notion that all other keywords are meant to
substitute traditional health care usage, while health apps may
be used for a wider variety of purposes (eg, prevention, fitness,
and managing subclinical health complaints). Additionally, a
large volume of health apps was released and advocated for
during the pandemic for surveillance purposes (such as recording
vaccination status and generating vaccine passports), which
may further contribute to explaining these findings. Seeing that
vaccines were rolled out in phases across the general population,
it is unsurprising that health app searches remained stable. Our
placebo analysis indicated some significant seasonal trends over
the time period of 2017-2019. However, these trends were
almost exclusively negatively skewed. In the two cases where
the trend was positive, our main finding fell outside the CI of
the placebo experiment, suggesting that our main results are
not driven by an artificial correlation.

It is well established that an array of factors need to align in
order for a digital innovation to be adopted structurally [2,10],
even more so in health care, which is characteristically one of
the slowest domains in which to adopt digital innovations [59].
The beneficial effects of digital health slowly become more
apparent, and our findings indicate that the general population
also seeks out digital health care if traditional care is disrupted
[2,11,60]. However, our findings indicate that digital health
care–seeking behavior is not sustainable at the current stage of
progress, seeing how the search volumes under study frequently
reverted to prepandemic levels. While this may be partially
explained by the return of traditional health services, it also
supports previously speculated notions that key shortcomings
still exist in the digital health infrastructure and competencies
to fully embrace the opportunities afforded by digital health
[11,12,14,61,62]. Initiatives such as the Biden Administration’s
plan to provide internet access to 48 million low-income
households could form an important step in removing barriers
in the digital infrastructures [61], while developing educational
modules and training courses available can aid in mitigating
the paradoxical effects of digital health [8,11,63].

Strengths and Limitations
This study has a number of strengths. This study is, to our
knowledge, the first one that captures the prolonged effect of
the COVID-19 pandemic on public interest in digital health as
proxy of digital health–seeking behavior using a comprehensive
list of possible search terms, which adequately captures digital
health usage. While other data sets may exist, which capture
digital health care usage, a unique advantage of Google Trends
is the high frequency with which data are collected. This allows

us to examine both short- and long-term trends from a
comparative cross-country perspective. Furthermore, Google
Trends data are considered revealed preference data, thus
allowing for actual behaviors of Google users to be analyzed.
Our countries of choice also include a mix of digitally prolific
countries (eg, the United Kingdom and Australia) and more
digitally hesitant countries (eg, the United States) [11,13], thus
providing a balanced representation of search behavior across
countries at various stages of digital health development.

This study’s limitations also need to be considered. While we
were not able to ascertain sociodemographic characteristics, we
need to consider the possibility of selection bias, since young
people are more likely to seek health information digitally given
their digital skills [14,64]. Also, population groups commonly
without internet access are underrepresented in this data set (eg,
people from rural communities, those from lower income
brackets, lower educated people, and unemployed or retired
people) [14]. Furthermore, data from only one search engine
are included, and our list of keywords was not exhaustive. We
attempted to test and include as many search terms as possible,
yet we cannot fully predict the search terms that people use.
Some linguistic nuances may have been overlooked by the
systematic reviews, which underpinned our search strategy
[32-34]. Additionally, our findings may not be interpreted as
conclusive but should be viewed as an empirical addition to
how public interest in digital health care changed at various
points in the pandemic or the use of Google Trends [25,65-67].
While Google is the most popular search engine, other search
engines may have also been used to seek digital health care. We
did not account for population migration rates during the study
period, though we do not believe that this impacted our findings
due to international travel being severely restricted [68,69]. Our
study does not capture digital health–seeking behavior of people
who directly reached out to their general practitioner or medical
contact point. Finally, our data do not allow us to capture the
supply—or demand—side of digital health delivery, which may
interact with the public interest for digital health services.

Recently, calls for increased and accelerated uptake of digital
technologies in health care have occurred in various magnitudes
[70-73]. However, our findings strongly suggest that such
acceleration would be premature and could undermine the real
potential of digital health delivery [15]. Vulnerable population
groups, in particular, may be further disadvantaged and excluded
through lack of access to digital infrastructure and
underdeveloped digital skills [15,74,75]. The recently launched
European Health Data Space is an example of how policy
frameworks can risk exacerbating existing digital divides if
policy makers do not address the underlying lack of access to
digital infrastructure and underdeveloped digital skills before
structurally rolling out digital health tools [12]. As such, capacity
building efforts in the areas of digital infrastructure and skills
should be combined with the large-scale introduction of digital
health technologies to ensure that citizens and health
professionals alike are in a position to recognize the value of
digital health tools once they enter the health care market at
large [9-11,16,63,76]. Nevertheless, the deployment of digital
health tools should not cease and instead be carefully designed
and targeted to specific population groups and health services
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because digital health is considered a type of health care
modality whose value can only be derived after directly
experiencing it [73]. Methodically nurturing the readiness and
tension for change is, therefore, a vital element in the process
of adopting digital health as a mainstream health care modality.

Policy environments are vital to the process of taking up of
digital health [11,13]. National standards play an important role
in creating awareness in markets, setting norms, and
safeguarding basic quality dimensions of digital health [13]. So
long as these factors remain underdeveloped, digital health will
face substantial barriers to being implemented and assimilated
into national health care settings. In fact, the absence of robust
market access regulatory frameworks for digital health may also
contribute to the current environment where novel tools are
stuck in the proof-of-concept or pilot phase and cannot pivot to
clinical adoption [3,77,78].

Finally, our findings address an overarching change in public
interest for digital health, especially at the start of the pandemic,
though we recognize that the development of digital health is
heterogeneous and may differ among health specialties [79].
As such, more in-depth analyses of readiness to seek out digital
health are warranted among health specialties. Furthermore,
educational material should be developed for better acquainting
civilians with the concept of digital health, building their
capacity to harness the potential of digital tools and navigate
digital environments [16]. More extensive educational material

may be prepared for key stakeholder groups such as patients,
health professionals, and policy makers [80,81]. Closer
engagement with the general public and patient groups can also
prove to be instrumental in developing and facilitating digital
health tools that are widely accessible [11,12,61,64]. These
recommendations are not only applicable in the process of
adopting digital health into modern health care but also relevant
to building more resilient health systems that can continue to
operate in the event of a new public health crisis.

Conclusions
In summary, this study explores how public interest in digital
health changed as proxy for digital health–seeking behavior
across 6 countries during the COVID-19 pandemic. We show
that, after an acute increase, digital health–seeking behavior
declined to levels comparable to those before the pandemic,
which indicates the presence of structural problems that
currently complicate the sustainable implementation of digital
health. We highlight potential next steps for digital health
integration in the countries under study, while acknowledging
the common need for policy innovation, increasing awareness
of digital health and its potential, and capacity building
(including both digital infrastructure and digital literacy). While
the future use of digital technologies in health is promising, we
must allow both the policy landscapes and digital health literacy
levels to catch up with the rapid advances in technology [2,82].
Ultimately, it is evident that more than a pandemic is needed
to sustainably implement digital health.
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