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Abstract After a rich history in medicine, randomized control trials (RCTs),
both simple and complex, are in increasing use in other areas such as web-
based A/B testing and planning and design of decisions. A main objective of
RCTs is to be able to measure parameters, and contrasts in particular, while
guarding against biases from hidden confounders. After careful definitions of
classical entities such as contrasts, an algebraic method based on circuits is
introduced which gives a wide choice of randomization schemes.

Keywords Algebraic statistics and combinatorics · A/B testing · Bias and
confounders · Big data · Design of experiments

1 Introduction

There are ways in which a regression model can be biased because of the
neglect of hidden variables, sometimes called hidden confounders. To some
extent these biases can be removed using randomization. A major source of
conceptual difficulty is the continuing distinction between passive observation,
characterized by the terms “observational study” and controlled experiment.
In addition this distinction is flavored by different intellectual traditions. In
most fields a controlled experimental design is conceived as an intervention.
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Thus one talks about setting the level of a variable X, or applying a treatment
or treatment combination. Rather than interfere too much with the state of
Nature one may simply select a value of X which is already in a population,
such as selecting a subject of a particular age. Stratification is in this cate-
gory as is “matching”, observing (or treating) a collection of subjects who are
close in terms of some multivariate metric applied to the possible confounders.
“Natural Experiments” exploit opportunities where Nature has unwittingly
designed an experiment for us. For a very thorough compendium of experi-
mental design methodology both as intervention and as selection, see Dean
et al (2015).

Traditions in agriculture and socio-medical sciences have stressed the role
of randomization, and indeed the method has been described as one of the
greatest contributions of statistics to scientific methodology; a major review
is Cox (2009) which goes a long way towards updating earlier discussions such
as Kempthorne (1955). After a long period in which factorial and optimum
controlled experiments may be seen to have had a dominant role, influenced by
success in product design and quality improvement, randomization is making
a come back, if indeed it ever left the limelight. It is now used extensively out-
side its traditional areas of clinical trials under the generic term randomized
control trials, RCT. Notably, there is a fast growing application to experi-
ments in social media, under the heading A/B testing in on-line marketing,
see Kohavi and Longbotham (2017), and to socio-technical experiments, such
as smart metering in homes and transport, see e.g. Guzowski et al (2014).
Other important developments are in the field of “big data”, where data are
often collected without experimental design being used at all, so that biases
can be a serious impediment to model building, see Drovandi et al (2017);
Pesce et al (2019, 2022).

There seems to be no doubt that in nearly all fields the removal of biases
in modeling is a major reason to randomize. The question then remains as to
whether the randomization, or rather the randomization distribution, is to be
used in the analysis, e.g., probability statements are made based on the ran-
domization, for example, using nonparametric tests, or whether randomization
should only be used in the design, e.g. for bias reduction. The latter approach
is probably more common and is adopted here. A compromise position is a
minimax approach which is closely related to the use of randomization in fi-
nite population sampling, see Scott and Smith (1975); Stenger (1979); Stigler
(1969); Wynn (1977).

Our approach can be considered a contribution to the subtle relation-
ship between randomization and combinatorial design, see Bailey and Rowley
(1987). It is based on the theory of circuits, which are already studied in oper-
ations research (Simões Pereira (1975)) and algebraic statistics (Fontana et al
(2022)). The better known extensions of simple RCT such as block randomiza-
tion, stratified randomization and the less covered hierarchical randomization
are covered by our methods, and we shall return to this claim in the last
section.
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After a straightforward formulation of the problem, we formally define
valid randomization schemes in Section 4, followed by a short discussion on
analysis in Section 5. Sections 6 and 7 are the main developments, with Section
6 describing a sufficient condition under which unions of non-negative binary
circuits give a valid randomization. Section 7 gives some special conditions.
Final considerations in Section 8 conclude the paper.

1.1 A/B testing

Some of the disparate interpretations of randomization can be understood from
a simple A/B testing (RCT) experiment, which is typically used to assess the
difference between the effect of two treatments A and B with effect parameters
θA and θB , respectively. That is, we want to estimate φ = θA − θB .

A standard model for a response variable Y is to write for subjects i and
j receiving treatments A and B, respectively

YAi = θA + δAi, i = 1, . . . , nA,

YBj = θB + δBj , j = 1, . . . , nB

where nA, nB are the respective sample sizes and δAi, δBj are unit effects
of other influences, be they errors of measurement or other (hidden) fac-
tors effects. YAi and YBj are therefore specializations of Y for the two sub-
populations A and B. The naive estimate of the treatment difference is

φ̂ = θ̂A − θ̂B .

Here the estimates of θA and θB are given by the respective sample means:

θ̂A = ȲA· , θ̂B = ȲB· ,

where for instance ȲA· is the usual notation for the average of measurements
over group A. The standard argument, and this is probably also the common
sense argument of non-experts, is that if we randomize then the difference
between the mean values of the deviations due to other factors will cancel
out: δA· − δB·, will be approximately zero and will not perturb φ̂. Of course,
if δAi, δBj are random with standard assumptions then φ̂ is both the least
squares estimate and the best linear unbiased estimate of φ.

A critical question is: what does the model mean, both scientifically and
predictively? What are θA, θB and φ? In other words, do parameter values
refer to the finite population from which the sample was taken or to which the
treatment were applied? Or is there some larger population of which the pop-
ulation of units under study is a subpopulation, such as all present and future
subjects who may benefit from a vaccination decision based on the results of
the experiment? Or, are A and B a “crucial experiment”, to decide between
two scientific theories? These questions are important also with the A/B test-
ing experiments on people using social media. The commercial opportunities
in terms of the use of huge (big) data sets come with a risk of bias arising from
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any number of demographic and operations factors. It is almost impossible to
describe the population of social media users but if bias can be removed in
some simple way then the estimates can genuinely reflect peoples’ choices and
behavior.

A naive but rather universal conclusion is something like: after randomiza-
tion we can use the model. This is expressed as part of expert advice: make
sure you randomize your blocks. On the one hand this paper takes this simple
approach, but on the other introduces a special technique, based on circuits,
to decompose an experiment into mutually exclusive blocks in each of which
randomization can be carried out separately. Some solutions comprise rec-
ognizable combinatorial designs, such as matching and stratification. All the
others can be derived from the circuits which can be computed from running
the program 4ti2 4ti2 team (2018). Our approach provides a full solution to
the problem of block randomization to control bias, up to the computational
feasibility, see subsection 6.1.

2 Contrasts

Consider an experiment giving a random sample Y1, . . . , Yn and the following:

Definition 1 A linear function Z =
∑n

i=1 ciYi with fixed coefficients {ci} is
called an empirical contrast if

∑n
i=1 ci = 0.

In the A/B case randomization is particularly suited to situations in which
standard estimates are unaffected by a uniform shift of the observations, which
is then subtracted out.

Now consider a standard regression model in the form

Y (x) =

p∑
j=1

θjfj(x) + ε,

for functions {fj(x)}, x a generic point in some design space X , for parame-
ters {θj}, and ε a random error with the usual assumptions (zero mean and
constant variance).

An experimental design D = {x(i), i = 1, . . . , n}, with sample size |D| = n,
has design matrix

X = {fj(x(i))}
with dimension n× p, and we express the standard regression set-up by:

µ = E(Y ) = Xθ,

where θ is a vector of parameters with length p and E is the expectation.
Definition 2 follows standard terminology in regression models and design of
experiments, see Das and Jain (1970).

Definition 2 For a standard regression model a parametric contrast is defined
as the expectation of an empirical contrast.
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In the following we exemplify the basic idea to divide experiment into
disjoint blocks in each of which we randomize, and then combine the results.

Example 1 (22 experiment) We consider a simple example from linear regres-
sion, namely a 22 factorial design problem, with ±1 levels and no replication
(for simplicity). We take the model without an interaction

E(Y ) = θ0 + θ1x1 + θ2x2 ,

so that design matrix is

X =


1 1 1
1 −1 −1
1 1 −1
1 −1 1

 .
If we randomize a large population and uniformly apply the four combina-
tion of the design, {±1,±1}, the potential bias effect will be negligibly small
because the estimators of the θ-parameters are unbiased.

But there is an alternative. Split the population into two groups, random-
ize each separately and apply the controls (x1, x2) = {(1, 1), (−1,−1)} to the
first group and {(1,−1), (−1, 1)} to the second group. Then we can estimate
θ1 + θ2 from the first group and θ1 − θ2 from the second group. Combining
these estimates gives the same result as if we randomized over the whole 22 ex-
periment. Note that the parameters θ1 and θ2 and their estimates are already
respectively parametric contrasts and empirical contrasts, with contrast coef-
ficients equal to c = 1

4 (1,−1, 1,−1)T and c = 1
4 (1,−1,−1, 1)T , respectively.

This can be seen as splitting the 23 experiment into two (randomized) A/B
experiments.

3 Writing a model in contrast form

In the case of the orthogonal design described above the X-matrix takes the
form

X = [ξ : X1],

where ξ is the n-vector of ones, for the constant (intercept) term, and X1

is a matrix with dimension n × (p − 1) orthogonal to ξ, that is ξTX1 = 0.
We describe such an X-matrix as being in contrast form. All empirical and
parametric contrasts are derived from X1. Thus we can prove the following
lemma.

Lemma 1 For a regression model with µ = E(Y ) = E(X̃θ), written in con-
trast form X̃ = [ξ : X1] the set of all parametric contrasts is {cTµ : cTX1 =
0 and ξT c = 0}.

Proof This follow since E(cTY ) = cT [ξ : X1]θ = (cT ξ, cTX1)θ.
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Notice that from any model with integer design matrix X it is always
possible to derive a reparametrization with design matrix X̃ written in contrast
form. In Section 6, we will use the vector ξ and we will exploit its orthogonality
to X1 to study the connections between randomizations and circuits. Note that
the assumption of integer design matrix X is made here only to simplify the
computation of the circuits introduced in Section 6. The theory here is valid
for design matrices with rational entries. A design matrix with rational entries
can be multiplied by a constant, namely the least common multiple of the
denominators, to obtain a matrix with integer entries whose columns generate
the same vector space.

Lemma 2 Every model Y = Xθ+ε including the intercept can be transformed
to contrast form as Y = X̃φ + ε, where X̃ = [ξ : X1] is full-rank and has the
same column space as X and ξTX1 = 0

Proof We can easily determine the reparametrization which the transforma-
tion requires. Starting with:

X̃φ = Xθ,

we simply solve for φ:
φ = (X̃T X̃)−1X̃TXθ.

From Lemma 2, a design matrix X with column space containing the vector
ξ = (1, 1, . . . , 1)T can be transformed to contrast form. The term contrast is
especially prevalent in Analysis of Variance (ANOVA) models, that is additive
models for qualitative factors in which each level of each factor provides a
parameter. The classical notation for a two-way I×J table with two factors is
that the additive model would have parameters αi, (i = 1, . . . , I) and βj , (j =
1, . . . , J) and the model for the observations Yij is

Yij = αi + βj + εij , (1)

where {εij} are the random errors with standard assumptions. We show below
how the reparametrization to obtain a model in contrast form works with an
example for a model as in Eq. 1.

Example 2 Let I = J = 2. By using indicator variables and setting θ =
(α1, α1, β1, β2)T we write the model in regression form, E(Y ) = Xθ where

X =


1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1

 .
This X-matrix is not in contrast form, but it can be transformed into contrast
form:

X̃ =


1 1 1
1 1 −1
1 −1 1
1 −1 −1

 .
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From this, the reparametrization is:

φ0 =
1

2
(α1 + α2 + β1 + β2) ,

φ1 =
1

2
(α1 − α2) ,

φ2 =
1

2
(β1 − β2) .

We have limited the analysis to the decomposition of X̃ into [ξ : X1] since
for randomization we are interested in the decomposition of the vector ξ, but
the results in this section and many results about the circuit bases in the next
sections could be written in general for a decomposition of X̃ into [X2 : X1]
with XT

2 X1 = 0.
Note that when a full-rank matrix X̃ is decomposed into [ξ : X1], also the

matrix X1 is full-rank. To avoid trivialities, we also assume that all the rows
of the matrix X1 are not null, i.e., each design point is involved in at least one
contrast.

4 Valid randomizations

Using the representation of the design matrix in contrast form we can provide
a catalogue of valid randomization systems to address the question stated
earlier in Section 1.1 in the framework of A/B experiments. The elements of
the catalogue can be computed and in the case of unimodular X1 matrix (see
Section 7) this catalogue is complete. The separation into blocks is a partition
of the observations so that there are at least two observations in each element of
the partition, as described by the following definitions giving the only relevant
randomizations to study contrasts.

Definition 3 For observations Yi, (i = 1, . . . , n) a potential randomization
system R is a set partition of N = {1, 2, . . . , n}, namely a decomposition of N
into disjoint exhaustive subsets, R1, . . . , Rk, called blocks, of size 2 or more:

1.
⋃k

i=1Ri = N
2. Ri ∩Rj = ∅, 1 ≤ i < j ≤ k
3. |Ri| ≥ 2, i = 1, . . . , k

Definition 4 For a regression model and experimental design Dn with sample
size n, a design matrix in contrast form [ξ : X1] and a potential randomization
system {R1, . . . , Rk}, let z(i) = (zi,1, . . . , zi,n) the binary vectors defined by

zi,j =

{
1, i ∈ Rj

0, i ∈ N \Rj
.

The potential randomization system is a valid randomization system if z(i) is
orthogonal to X1, i.e., (z(i))TX1 = 0, for all i = 1, . . . , k.
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The case where R = N , we refer to as full randomization. The next two
examples are familiar in the sense that the orthogonal blocks are easily asso-
ciated with addition factors or parameters in an orthogonal design. The third
example may be less familiar.

4.1 Factorial fractions

We consider a 23 factorial experiment for main effects. The standard X-matrix
is already in contrast form:

XT =


1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 1 −1 1 −1 1 −1

 .
In addition to a full randomization, represented by {1, 2, 3, 4, 5, 6, 7, 8}, there
are two different randomization systems and we list the Rj partitions for each:

1. {1, 4, 6, 7}, {2, 3, 5, 8} ;
2. {1, 8}, {2, 7}, {3, 6}, {4, 5} .

These two distinct randomizations of this example correspond to familiar de-
composition into blocks based on abelian groups (see e.g. Box et al (1978)).
The first arrives from a 23−1 experiment with defining contrast subgroup in
classical notation

I = ABC.

The second corresponds to the 23−2 with subgroup

I = AB = BC = AC.

For those more familiar with the algebraic design of experiments, these solu-
tions are the point ideal corresponding respectively to the solutions of

(1) : x1x2x3 = ±1, and (2) : (x1x2, x2x3) = (±1,±1).

4.2 Tables and Latin Squares

Consider an I×I table with the usual additive model. A Latin square based on
the table has the usual definition. If I = 3 there are two mutually orthogonal
Latin squares; in traditional notation:

A B C
C A B
B C A

a b c
b c a
c a b
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Each square gives a different valid randomization based on the letters. Label-
ing the observations left-to-right and top-to-bottom the respective blocks are
(ignoring commas)

{159}, {267}, {348}, {168}, {249}, {357}.

We state the general result without proof and in the terminology of this ex-
ample.

Lemma 3 For an I×I additive Analysis of Variance model a set of mutually
orthogonal Latin squares provides a set of alternative valid randomizations.

4.3 k-out-of-2k choice experiments

Choice experiments are those in which subjects are asked to score a selection
of attributes from a portfolio of attributes. Models are fitted to experimental
data in an effort to discover subjects’ (hidden) preference order.

Suppose there are n = 4 attributes and each subject is offered k = 2
attributes, labeled 1, 2, 3, 4. There are six selection pairs

{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}.

An additive preference model has (without replication) the six values Yi,j with
the model

Yij = αi + αj + εi,j (i, j = 1, 2, 3, 4; i < j).

We are interested in contrast αi − αj , because their estimates would yield an
estimated preference order. In this case:

X =


1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1

 .

This gives a choice of X1:

XT
1 =

−1 0 0 0 0 1
0 −1 0 0 1 0
0 0 −1 1 0 0

 ,
and the randomization: {1, 6}, {2, 5}, {3, 4}, where the integers refer to selec-
tion pairs.
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5 Analysis

The informal approaches we have taken is that, for large samples random-
ization has approximately the effect of introducing a block parameter. Our
condition of orthogonality in the definition of valid randomization and as ex-
emplified, has so far ignored the fact that in standard terminology blocks do
not have to be orthogonal. Indeed, there is rich theory of balanced incomplete
blocks (BIBD) both from combinatorial and from optimal design theory. We
note here some basic facts about orthogonal versus non-orthogonal blocks.

1. For orthogonal designs we set up a model in which every binary vector
orthogonal to the X1 matrix is allocated a block parameter, then only
under orthogonality is the usual Least Square Estimate (LSE) of the θ-
parameters the best and there is no bias of these estimates from the block
effects.

2. In the non-orthogonal blocks design case, if we use the LSE of the θ-
parameters assuming that the block parameters are zero, when they are
not, then the block parameters introduce bias.

3. In the non-orthogonal blocks case the “proper” LSE estimate of the θ-
parameters in the presence of the block parameters, will be unbiased but
will have higher variances than in case (2) above. This can be expressed by
the Loewner ordering: one covariance matrix is “smaller” than the other if
the difference is non-negative definite.

Models with non-orthogonal blocks with a specified block effect, require
some effort to model or at least interpret the block affect, for example the effect
of day if the experiment is conducted over days. In such cases a bias model is
required. But where bias is caused by hidden, unspecified, confounders, such
a bias model seems somewhat artificial. The effects are too artificial to model
but sufficiently present that we prefer orthogonality.

6 Circuit basis for randomization

In this section, we introduce the notion of circuits of a matrix which allows
a novel approach to the problem of randomization. The proposed analysis,
based on tools from Algebraic Statistics, leads to the enumeration of all pos-
sible randomization schemes. In this setup a randomization is given by the
decomposition of the vector ξ = (1, . . . , 1)T into binary vectors:

ξ = ξ1 + . . .+ ξk (2)

where each vector ξh ∈ {0, 1}n satisfies ξThX1 = 0, h = 1, . . . , k. Such bi-
nary vectors ξh are called binary randomization vectors. Next, we introduce
the circuits and their main properties. When all randomization vectors can-
not be decomposed into binary vectors with smaller support we have a non-
decomposable randomization.
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Definition 5 Given a randomization of ξ into binary vectors as in Eq. (2),
the vector ξh is a non-decomposable randomization vector if there is no de-
composition ξh = ξh,1 + ξh,2 with ξTh,1X1 = 0 and ξTh,2X1 = 0. If all the
vectors ξ1, . . . , ξk are non-decomposable, Eq. (2) defines a non-decomposable
randomization.

Let A be an integer-valued matrix with d rows and n columns. For our
purposes, we can assume that A = XT

1 . Let u ∈ Zn be an integer-valued
vector, u+ be the positive part of u, namely u+i = max(ui, 0), i = 1, . . . , n,
and u− be the negative part of u, namely u−i = −min(ui, 0), i = 1, . . . , n, so
that u = u+ − u−. Moreover, denote with supp(u) the support of u, i.e.,

supp(u) = {i ∈ {1, . . . , n} : ui 6= 0} .

Definition 6 A circuit of A is an integer-valued vector u in ker(A), i.e., Au =
0, with the following minimality properties:

1. u has minimal support, i.e., there is no other circuit v with supp(v) ⊂
supp(u).

2. u is irreducible: if v is an integer-valued vector in ker(A) with supp(v) =
supp(u), then v = ku for some k ∈ N.

Definition 7 The set of all circuits of the matrix A is named the circuit basis
of A and is denoted with C(A).

The circuit basis C(A) is always finite. The minimal support property gives
rise to a number of interesting properties of C(A). We recap in the following
proposition the special features of the circuits we will use for describing ran-
domization. For the proofs and further details the reader can refer to Sturmfels
(1996).

Proposition 1 Let A be an integer-valued matrix with dimensions d× n and
suppose that rank(A) = d.

1. The circuit basis C(A) is subset compatible, i.e., for a sub-matrix A′ with
n′ < n columns of A, the circuit basis of A′ is given by the circuits in C(A)
whose support is contained in the n′ columns.

2. The cardinality of the support of a circuit in C(A) is at most d+ 1.
3. Each vector v of ker(A) can be written as rational non-negative linear com-

bination of circuits, i.e,

v =

n−d∑
h=1

qhuh , qh ∈ Q+

and the uh are conformal with v.

The term “conformal” in Item (3) of Prop. 1 means that supp(u+h ) ⊂
supp(v+) and supp(u−h ) ⊂ supp(v−).

The first key observations for randomization follow directly from the fact
that a circuit lies in ker(A).
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Lemma 4 Any non-negative binary circuit of A = XT
1 provides a randomiza-

tion vector.

Proof When a non-negative binary circuit ξ1 gives a valid randomization, then
also ξ2 = ξ − ξ1 is a binary non-negative vector in ker(A) so that the decom-
position ξ = ξ1 + ξ2 is a valid randomization.

Note that the vector ξ2 in the proof may be a circuit itself (and in such a case
we call ξ = ξ1 + ξ2 a non-decomposable randomization), or not. In the latter
case, the vector ξ2 can be decomposed into the sum of non-negative circuits
by virtue of Proposition 1, Item (3).

The decomposition of ξ in Eq. (2) and the argument above show that valid
randomizations generate a lattice, partially ordered by set inclusion, indeed:
(1) circuits sit at the most refined level of the lattice and (2) less refined
randomization schemes are obtained by merging two lattice elements into their
join. This connection with lattice (and matroids) is taken up again in the
discussion section. From Proposition 1, Item (3), and Lemma 4, we see that the
circuit basis, and in particular the set of non-negative circuits, is the natural
tool to find valid non-decomposable randomizations. In general, if the vector
ξ can be written as the sum of binary non-negative circuits we have a valid
randomization. The main problem posed in this paper is to provide conditions
for when the converse holds, that is to provide classes of experimental designs
for which every randomization vector ξh is a circuit. In the next section we
will describe an important class, here we have a useful sufficient condition.

Lemma 5 If ξ1 is a non-negative binary randomization vector with two non-
zero elements (#supp(ξ+1 ) = 2), then it is a circuit of XT

1 .

Proof In view of Prop. 1, Item 3, it is enough to prove that there is no circuit
ξ1 with exactly one non-zero element. By contradiction, suppose that such a
vector ξ1 exists and, without loss of generality, suppose that ξ1 = (1, 0, . . . , 0).
Since ξ1 is in the kernel of XT

1 , we have XT
1 ξ1 = 0 and this implies that the

first column of XT
1 is a column of zeros. This is in contradiction with the fact

that all rows of X1 are not zero.

Thus, for every ξ1-vector in example covered by Lemma 5, there are two
rows of XT

1 which have opposite signs. This is the case in Section 4.3 which
yields the following result.

Corollary 1 Any k-out-of-2k choice experiment is a valid randomization with
blocks of size 2.



Generation of all randomizations using circuits 13

Proof For a k-out-of-2k experiment we can construct an X matrix with rows
corresponding to k-tuples and the rows in lexicographic order. Then as for the
example in Section 4.3 we pair them: the first with the last, second with the
second to last and so on, assigning −1 and +1 respectively, to construct the
X1 matrix. Let n =

(
2k
k

)
, then the valid randomization blocks are the selection

pairs:
{1, n}, {2, n− 1}, . . . , {n/2, n/2− 1},

which follows because X1 is of the type discussed in Lemma 5.

This shows that a valid randomization with binary vectors each with two
non-zero binary vectors can be found by inspecting the list of all circuits.

6.1 Computation of circuits

To find the randomization systems from the circuit basis, we start from the
design matrix X, we write it in contrast form X̃, and we extract the con-
trast matrix X1 as described above. The actual computation of the circuits
of the matrix X1 can be done with the software package 4ti2, see 4ti2 team
(2018). In 4ti2 there is a function called circuits to compute the circuits of
an integer matrix. The algorithms to compute circuits in 4ti2 belong to the
class of combinatorial algorithms, and thus there is a limitation on the size of
the matrices for which the computation of the circuit is actually feasible. In
our experiments, problems with a set of points up to 50 are easily processed,
but the execution time increases fast with the number of points. However, all
the contrast matrices illustrated in this paper have been processed by 4ti2 in
less than 0.1 seconds. 4ti2 is now available also within the symbolic software
Macaulay2, see Grayson and Stillman (2019), and there are R packages avail-
able which allow the communication between R and Macaulay2, leading to a
flexible use of the symbolic computations into statistical analysis, see Kahle
et al (2020).

Example 3 Using the function circuits for the contrast matrix of the 3-out-
of-6 problem, we obtain three circuits as expected0 0 1 0 0 1

0 1 0 1 0 0
1 0 0 0 1 0

 .
Example 4 Computing the circuits for the 23 design with contrasts on the
main effects, we obtain the circuits described in the previous sections. The
4ti2 output consists of 20 circuits, 6 of which are non-negative:

0 0 0 1 1 0 0 0
0 0 1 0 0 1 0 0
0 1 0 0 0 0 1 0
0 1 1 0 1 0 0 1
1 0 0 0 0 0 0 1
1 0 0 1 0 1 1 0

 .
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This yields the two randomization schemes

{1, 4, 6, 7}, {2, 3, 5, 8} and {1, 8}, {2, 7}, {3, 6}, {4, 5}

already discussed. Here, there is only one valid randomization based on 2-ers
and only one valid randomization based on 4-ers. (The term n-er is a colloquial
term for an entity of size n.)

With the aid of the circuits we are able to analyze also more complex models
where the number of randomization systems is relatively large.

Example 5 In the case of 24 design with contrasts on the main effects, the
contrast matrix is:

XT
1 =

1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1
1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1 1 1 −1 −1 1 1 −1 −1
1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

 ,
and the situation becomes more complex. Although 0.02 seconds are enough
to obtain the whole set of 456 circuits, the non-negative circuits are now 48
but there are also non-binary circuits with entries equal to 2. Selecting the
binary circuits reduces to 32 circuits: 8 circuits with support on two points
give a unique randomization based on 2-ers; with the remaining 24 circuits on
4 points we can construct 30 valid randomizations. Each circuit on 4 points is
used in 5 possible randomizations. For instance with the circuit

c =
[

0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0
]

one can define 5 randomizations, reported in Figure 1.

With a large choice of randomization schemes the problem arises as to
which to choose. This is discussed briefly in Section 8.

7 Totally unimodular X1

Although the factorial design and Latin square examples can be considered
well-known, because of their orthogonality properties, example in Section 4.3
may be less so. So we may ask what is the property of XT

1 for which the full
valid randomization system can be found as a set of circuits.

Definition 8 A totally unimodular matrix A is one for which all square sub-
matrices (including itself if square) have determinant 0, 1, or −1.

Theorem 1 Let A = XT
1 be the design/model matrix of regression model in

contrast form and suppose A is totally unimodular. Then every valid random-
ization is based on circuits.



Generation of all randomizations using circuits 15

0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0
0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1
1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0 0 0 1 0 0 1 0 0
0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1
1 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0
0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0
0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0
0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1
1 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0
0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0
0 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0
0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1
1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 0
0 0 1 0 1 0 0 0 0 1 0 0 0 0 0 1
0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0

Fig. 1 The 5 randomizations for the 24 configuration in Example 5 containing the circuit
c = (0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0).

The proof is in two parts. First we need the following lemma, whose proof is
based on some technical results from the algebraic theory of toric ideals and
Gröbner bases. In order to maintain the focus on the problem of randomization,
we do not recall here all the formal definitions of the objects needed in the
proof, for which the reader can refer to, e.g., Sturmfels (1996).

Lemma 6 For a totally unimodular matrix A all non-negative circuit vectors
are binary.

Proof In this statement, the circuits should be seen as represented by the so-
called binomials, that is for each circuit u = u+−u− we consider n “dummy”
variables x1, . . . , xn and the binomial associated to u is defined as:

xu
+

− xu
−
.

These binomials generate a toric ideal I(A). This ideal is very widely studied,
for example in algebraic statistics it is the starting point for Markov Chain
Monte Carlo simulation for testing hypotheses on multinomial contingency
tables, see Diaconis and Sturmfels (1998).

Now, if A is totally unimodular then it is known that the initial ideal
in(I(A)) is generated by square-free binomials for any given term-order (re-
quired to define a Gröbner basis), see Sturmfels (1996). The initial ideal
in(I(A)) of the ideal I(A) is the ideal generated by the leading terms of the
polynomials in I(A). Thus, all the binomials in the Universal Gröbner basis
U(I(A)) have square-free leading terms.
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Finally, the non-negative circuits are elements of U(I(A)), viewed as bino-
mials of the form xu − 1. The leading term is always xu, it is square-free, and
therefore u is binary.

To complete the proof of Theorem 1 we also need the following result.

Lemma 7 If the contrast matrix A = XT
1 in a regression model is totally

unimodular then every non-decomposable randomization vector ξ is a circuit.

Proof This is by contradiction. Let ξ1 be a (non-negative binary) non-decomposable
randomization vector and suppose it is not a circuit. Since ξ1 ∈ ker(A), by
Prop. 1, Item 3, ξ1has a representation as a non-negative linear combination
of circuits u1 + . . . + uk. Take one of such circuits uh. Its support is strictly
contained in supp(ξ1) and note that #supp(ξ1)−#supp(uh) > 1, because ξ1
is not a circuit and there are no circuits with support on one point. More-
over, the circuit uh is binary by Lemma 6. So there is a refinement given by
ξ1 = uh + (ξ1 − uh), which contradicts ξ1 being non-decomposable.

Proof (of Theorem 1) Let

ξ = ξ1 + . . .+ ξk ,

be a valid randomization. If it is non-decomposable, then the vectors ξ1, . . . , ξk
are circuits by Lemma 7. If the randomization is decomposable, each vector
ξh can be decomposed into the sum of non-negative circuits, by Prop. 1, Item
3. By Lemma 6 such circuits are binary and they form a non-decomposable
randomization.

The best known example of a totally unimodular matrix is generated by
a directed graph G(V,E). The rows are indexed by vertices and the columns
by directed edges with the following rule for entries: if the edge is e = (i→ j)
then entries Ai,e = 1, Aj,e = −1 and all other entries in column e are zero. For
A to be an X1 matrix we need it to be (row) orthogonal to ξ = (1, 1, . . . , 1)T ,
this requires that for any vertex the number of in-arrows and the number of
out-arrows must be the same.

Example 6 Let |V | = 5, |E| = 15 and the directed edges (leaving out commas):

12, 13, 14, 23, 24, 25, 34, 35, 31, 45, 41, 42, 51, 52, 53.

In this example A = XT
1 is


1 1 1 0 0 0 0 0 −1 0 −1 0 −1 0 0
−1 0 0 1 1 1 0 0 0 0 0 −1 0 −1 0

0 −1 0 −1 0 0 1 1 1 0 0 0 0 0 −1
0 0 −1 0 −1 0 −1 0 0 1 1 1 0 0 0
0 0 0 0 0 −1 0 −1 0 −1 0 0 1 1 1
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1

2

5

3

4

Fig. 2 The directed graph on 5 points in Example 6.

The graph for this example is pictured in Figure 2. For theX1 matrix above,
there are 33 non-negative circuits from a total of 198 circuits: 5 2-ers, 10 3-ers,
10 4-ers, and 8 5-ers. The valid randomizations we obtained from those circuits
are reported in the following table giving the cardinality of the subsets and
number r of different choices, classified by the corresponding integer partition.

randomization r
5+5+5 1

5+5+3+2 5
5+3+3+2+2 5

5+2+2+2+2+2 1
4+4+3+2+2 10

4+3+2+2+2+2 5
3+3+3+2+2+2 5

By the properties of the circuits we know that no proper subset is possible
in the previous randomization, so for instance we know that no randomization
of the form 5 + 5 + 3 + 2 can share two 5-ers with the randomization 5 + 5 + 5.
However, the 5+5+5 shares a 5-ers with the randomization 5+2+2+2+2+2,
as shown in Figure 3.

Example 7 Our final example exploits the existing structure of the design/model
environment to make finding the circuits more straightforward, as we saw for
factorial designs. The full saturated X-matrix below is taken from a Haar
wavelet model on [−1, 1] with depth three from the constant term:

X =



1 1 1 0 1 0 0 0
1 1 1 0 −1 0 0 0
1 1 −1 0 0 1 0 0
1 1 −1 0 0 −1 0 0
1 −1 0 1 0 0 1 0
1 −1 0 1 0 0 −1 0
1 −1 0 −1 0 0 0 1
1 −1 0 −1 0 0 0 −1


.
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Fig. 3 Two randomizations for the directed graph on 5 points in Figure 2: a 5 + 5 + 5
randomization (solid lines) and a 5 + 2 + 2 + 2 + 2 + 2 randomization sharing a 5-er (dashed
lines).

Making use of the intrinsic orthogonality we use columns 2,3,4 for the X1

matrix leaving the last four columns to extract the circuits. Computing the
circuit basis for X1 we obtain 16 circuits with 0-1 entries and with support
on 4 points. Each vector has a complementary vector (interchanging the ones
and zeros) which together form a randomization scheme with 2 randomized
blocks, i.e., of the form 4 + 4. This example is small enough that also a di-
rect computation is possible. As an exercise, we find that the circuits can be
computed by brute force solving the equations:

xi(1− xi) = 0, i = 1, . . . , 8

x1 + x2 + x3 + x4 − x5 − x6 − x7 − x8 = 0

x1 + x2 − x3 − x4 = 0

x5 + x6 − x7 − x8 = 0

There are 18 solutions. Excluding the null vector and the vector with all entries
equal to 1 (full randomization), we obtain the non-trivial solutions, i.e., 16
binary vectors (x1, . . . , xn) with 4 ones and 4 zeros, which correspond exactly
with the 16 circuits computed by 4ti2. We give just one example of valid
randomization for this example to save space. Two non-trivial solutions are

(1, 0, 0, 1, 1, 0, 0, 1), (0, 1, 1, 0, 0, 1, 1, 0)

which are confirmed be orthogonal to the model columns 2,3,4. They corre-
spond to the randomization

{1, 4, 5, 8}, {2, 3, 6, 7} .
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Finally, we briefly discuss the unimodularity assumption. Although uni-
modularity seems to be a restrictive assumption, a number of models in im-
portant applications are defined by a unimodular matrix. For instance the
independence model for two-way tables has an unimodular design matrix, the
Kronecker product of two unimodular matrices is unimodular, providing a
large class of models with unimodular design matrix. Other examples comes
from optimization and graph theory, thus for statistical network models. The
coefficient matrix of the constraints in the linear programming formulation of
the maximum flow problem is unimodular. An example from graph theory has
been used in Example 6.

There are criteria to check whether a matrix is totally unimodular, but
they are rather technical and a detailed analysis in that direction is outside
the scope of the present paper. For further details and applications of unimod-
ular matrices the reader can refer to, e.g., Schrijver (2003).

8 Discussion

We can ask a skeptical general question: given the wealth of combinatorial
theory to find orthogonal blocks what benefit does the circuit method have?
An immediate answer is that it provides, in appropriate cases, the choice of
a large, even very large, variety of valid randomizations schemes and under
special conditions all valid randomizations.

Weighing designs give some intuition. Historically there are two types.
Weighing a set of objects on a single pan weighing machine is very similar
to the choice experiments. A chemical balance experiment has two pans and
compares sets of objects. In the chemical balance the observation itself is
a difference, that is an empirical contrast, whereas in the single pan case
we have to reparametrized creating X1 to obtain contrasts, as in the A/B
experiment. Informally, we could say the contrast matrix X1 represents a two-
pan experiment embedded in a one pan experiment.

It is important to emphasize that the nature of the lattice of circuits in
a particular problem depends on the structure of the X1 matrix. Cost con-
siderations and optimality of the experiment may point towards particular
randomization schemes. In some cases choice of X1 may mean there is no
randomization other that full randomization (over units) of the whole experi-
ment. Conversely, the need to randomize because of perceived sources of bias
will restrict the form of X1 as in simple A/B testing.

The blocks of a randomization scheme as defined here generalize the idea
of a randomized blocked experiment and there is no requirement for equal
block size, unless imposed. Stratified sampling is covered if the contrast of
interest are within strata. Valid randomizations form a lattice under refinement
which we suggest is natural generalization of nested randomization. A single
non-decomposable binary vector orthogonal to the X1 matrix is a minimal
element. A non-decomposable valid randomization corresponds to partition
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of N = {1, 2, . . . , n}. There may be more than one non-decomposable valid
scheme, as we saw in the 23 example in Section 4.1 and in Example 7.

Also relevant is randomization cost. It may be that a cost function which
is related to the structure of the randomization and which is order preserving
with respect to the refinement in the lattice could lead to useful strategies in
cases where, as we have seen, the choice of valid randomizations is very large.
That is, we have in the background the idea that more refined randomization
is cheaper. There is a considerable literature on sequential randomization with
a model, in the A/B case, that subjects (e.g. patients) are awarded treatments
A or B on the equivalent of a toss of a fair coin (there is a considerable work
on biased coin design which we do not cover). This is an example where the
method in this paper should be a cheaper procedure administratively than
randomizing over a fixed population in order to conduct a more complex ran-
domized block experiment. Note that in the 22 experiment of Example 1 with
two blocks of size 2, each block only supplies some of the information. The
same for the 4 blocks of size 2 in the 23 experiment, whereas for the two 1

2
fractions of size 4 the parameters can be estimated from each block. In the
2-out-of-4 choice experiments we compare similarly attributes (1, 2) v. (3, 4),
(1, 3) v. (2, 4) and (1, 4) v. (2, 3). The two-pan metaphor is useful. The exten-
sion to the k-out-of-2k example is straightforward and the blocks arise from all
ways of splitting 2k objects into disjoint set of size k. It is likely, in our view,
that sequential and adaptive randomization will be increasingly important as
costs are traded with effectiveness. Their impressive use in CoViD-19 vaccina-
tion trials (e.g. Thorlund et al (2020); Knoll and Wonodi (2021)) is likely to
have a lasting impact.

The paper could have been written concentrating on the link to matroid
theory, indeed the term circuit is from matroid theory and the circuits pre-
sented here form a linear circuit, in the matroid sense. Another mathematical
feature is that each block of randomization scheme defined here has an as-
sociated permutation group and the full randomization scheme generates a
subgroup of the full permutation group Sn. All possible schemes for a partic-
ular example may lead to a complex lattice of subgroups under set partition
refinement. The relation between matroids and permutation groups has been
studied in Cameron and Fon-Der-Flaass (1995).
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