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A B S T R A C T   

COVID pandemic across the world and the emergence of new variants have intensified the need to identify 
COVID-19 cases quickly and efficiently. In this paper, a novel dual-mode multi-modal approach is presented to 
detect a covid patient. This has been done using the combination of image of the chest X-ray/CT scan and the 
clinical notes provided with the scan. Data augmentation techniques are used to extrapolate the dataset. Five 
different types of image and text models have been employed, including transfer learning. The binary cross 
entropy loss function and the adam optimizer are used to compile all of these models. The multi-modal is also 
tried out with existing pre-trained models such as: VGG16, ResNet50, InceptionResNetV2 and MobileNetV2. The 
final multi-modal gives an accuracy of 97.8% on the testing data. The study provides a different approach to 
identifying COVID-19 cases using just the scan images and the corresponding notes.   

1. Introduction 

Late in December 2019, in Wuhan, China, the COVID-19 illness 
caused by the SARS-CoV-2 coronavirus made its initial appearance 
(Phan, 2020). All ages, including kids and teenagers, are susceptible to 
COVID-19 infection, which can lead to life-threatening consequences. As 
of April 11, 2022, the World Health Organization reported that there 
had been over 500 million confirmed cases of COVID-19, resulting in 6, 
250,000 fatalities. The SARS-CoV-2 virus can transmit through direct 
touch or through droplets coughed or sneezed out. When COVID-19 
affects the respiratory system, it can result in severe pneumonia, 
which can lead to death (De Miranda & Teixeira, 2020). To detect the 
SARS-Cov-2, the Reverse transcription polymerase chain reaction 
(RT-PCR) test is used. This test is relatively complicated and produces 
less consistent results (Kucirka, Lauer, Laeyendecker, Boon, & Lessler, 
2020). Radiography examination by radiologists is an alternative 
method to visually detect COVID-19 viral infection. However, detecting 
the infection from X-ray images is challenging and requires a high level 
of expertise. Clinical diagnosis of X-ray and CT images by radiologists 
yields an accuracy of 75% (Satia et al., 2013; Wong et al., 2020). 

Therefore, a quick and more precise method is needed to aid physicians 
in identifying COVID-19 symptoms. 

In the past few years, deep learning (DL) have been widely used in 
the medical field in detecting area such as hypertension detection (Nasir 
et al., 2021), diabetic retinopathy detection (Nasir et al., 2022b), 
epileptic seizure detection (Barneih et al., 2022), sleep apnea detection 
(Qatmh et al., 2022) and image object detection and image classification 
(Woźniak, Siłka, & Wieczorek, 2021). In the COVID-19 pandemic, arti-
ficial intelligence has been extensively used in areas such as diagnosis, 
social control, surveillance public health and controlling the COVID-19 
patients. To alleviate the significant strain on limited medical resources 
caused by the COVID-19 pandemic, the most important measures to 
control the pandemic’s spread are rapid diagnosis, accurate prediction, 
enhanced monitoring, and effective treatments. Many review articles on 
the subject have been published. However, the findings of these studies 
are inconclusive, and there is little research systematically assessing the 
application of AI for COVID-19 in accordance with PRISMA, with the 
majority of them focusing on aspects such as diagnosis or treatment. 
Researchers have made significant contributions to the anti-COVID-19 
campaign, and the number of COVID-19-related AI models in the 
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literature is rapidly increasing. Artificial intelligence models that have 
been properly trained can ensure accurate and rapid diagnosis or assist 
doctors in streamlining the diagnosis and reducing manual labor. By 
using training data, AI models could detect patients at higher risk, 
characterize the epidemiology of COVID-19, and model disease trans-
mission. Artificial intelligence-based methods, such as repurposing 
existing drugs, screening targets as vaccines based on the potential 
mutation model to SARS-CoV-2, and screening compounds as potential 
vaccine adjuvants, could aid in the discovery of novel drugs and vac-
cines. A unique retinal blood vessel categorization approachsis sug-
gested in Dash et al. (2022), this article recommends a combination 
model of a directed filter and a matched filter for improving atypical 
retinal images with weak vascular contrasts. 

This paper proposes a multi-modal approach to detect whether a 
patient is COVID-19 positive or not. Along with using the images of the 
CT scan/X-ray of the patient, the notes that have been jotted down by 
the doctor/nurse are also considered for the final prediction, which has 
resulted in better performance and efficient detection of COVID-19 
cases. Specific keywords that can only be associated with COVID-19 
are very helpful in detection. Along with this, even the problem of 
small size datasets is resolved by using various data augmentation 
techniques to increase the number of observations in the data to get 
results that reflect the real world scenario in terms of covid - non covid 
cases imbalance. 

In this paper, we explore the solution to the problem in coherence to 
the following contributions:  

1. Concatenation of a text and Image model to predict COVID.  
2. Comparison of Augmentation results: a) with No-Augmentation, b) 

with Augmentation on whole data, and c) with Augmentation on 
training data only.  

3. Comparing the performance of benchmark CNNs and Proposed 
Multi-Modal Approach in classifying the X-ray scans (along with 
three Image Models). 

The novelty of the study of Dual-mode (Text and Image) multi-Model 
for covid detection. This study will help as a precautionary step towards 
various ailment detection. The binary cross entropy loss function and the 
Adam optimizer are used to compile all of these models. The model is 
trained using the default batch size of 32 and the early stopping criterion 
and model checkpoint callbacks. 

2. Literature review 

Using artificial intelligence (AI) and machine learning (ML) tech-
niques, many researchers developed models to diagnose COVID-19 cases 
from chest X-ray and CT imaging. El Asnaoui & Chawki (2021) detected 
and classified COVID-19 cases using seven different deep learning 
models i.e. ResNet50, DenseNet201, MobileNetV2, InceptionResNetV2, 
InceptionV3, VGG16 and VGG19. The overall accuracy was 82.80%, 
with InceptionResNetV2 achieving the highest accuracy of 92.18%. 
Wang, Lin, & Wong (2020a), proposed COVID-Net, which is a CNN used 
for detecting COVID-19 from X-ray images. The network was trained 
using the COVIDx dataset, which consists of 13,975 chest X-ray images. 
The model achieved a testing accuracy of 91%. Authors in Horry et al. 
(2020), compared different CNN models and then chose and optimized a 
VGG19 model. Using OpenCV library, they pre-processed the images by 
applying histogram equalization followed by texture enhancement. 
Their model was able to detect COVID-19 using chest X-ray images, CT 
scans and ultrasound with an accuracy of 86%, 84% and 100% 
respectively. 

Zhang et al. (2020) proposed COVID19XrayNet which is a deep 
learning based model that detects COVID-19 from X-ray images. The 
model is based on ResNet32 with two layers i.e., smoothing layer and 
feature extraction layer. The model achieved better results than the 
original ResNet32 with an accuracy of 91.92%. Authors in Ismael & 

Şengür (2021) proposed Support Vector Machine (SVM) for COVID19 
classification and several pretrained CNN models i.e. VGG16, VGG19, 
ResNet18, ResNet50 and ResNet101 for feature extraction to achieve an 
accuracy of 94.7%. The dataset used consists of 380 normal and 
COVID-19 chest X-ray images. Hemdan et al. Hemdan, Shouman, & 
Karar (2020), proposed COVIDX-Net which a deep learning framework 
dedicated to detect COVID-19 using X-ray images. Authors composed a 
comparative study of other deep learning models including Inception-
ResNetV2, InceptionV3, VGG19, ResNetV2, Xception and MobileNetV2. 
Their study showed that VGG19 and DenseNet19 achieved the highest 
accuracy of 90%. Authors in Maghdid et al. (2021) combined simple 
CNNs (single convolution layer followed by batch normalization, recti-
fied linear unit (ReLU) with two fully-connected layer and AlexNet 
model. The proposed model achieved an accuracy of 94%. Authors in 
Hall, Paul, Goldgof, & Goldgof (2020) used transfer learning strategy 
with VGG16. Moreover they used data augmentation to increase the size 
of the dataset achieving an accuracy of 96.1%. A comparison of 
state-of-the-art studies has been done in discussion section which com-
pares results of proposed study with existing studies. 

3. Methodology 

This section discusses the dataset, models and their architectures, 
and proposed methodology. The dataset has been gone through data 
augmentation and text analysis. Moreover, the model architectures 
discussed along with a basic CNN architecture are VGG16, Resnet50, 
MobileNetV2 and InceptionResnetV2. 

3.1. Dataset description 

The data used in this article is a public dataset made available by 
Cohen, Morrison, & Dao (2020a); Cohen et al. (2020c). The data con-
tains images of the chest X-rays and CT scans done on patients who 
either tested positive for COVID-19 or were suspected of having 
COVID-19 or other viral/bacterial pneumonia. Along with the images, 
metadata is made available which contains information about the pa-
tient like their sex, age, clinical notes and other additional notes asso-
ciated with the scan. The 2 columns of the data - clinical notes and other 
notes are combined into a single column by string concatenation. The 
data consists of 535 images. Out of these 535 images, clinical notes 
associated are only available for 485 of them and information about sex 
and age for only 483 and 440, respectively. The missing values of age are 
imputed with the mean while the missing values for the sex are filled 
with the mode. The missing clinical notes are filled with an empty string. 
The problem of classification in this paper is converted to a binary 
classification problem, with all other labels except for covid categorized 
as “Non-Covid”. This results in an imbalanced data consisting of 342 
covid cases and remaining 193 as non-covid cases. The data is split into 
the training, validation and test datasets where the training data is 85%, 
validation data 10% and testing data 5% of the original data. This is 
done via random sampling.The noise and blurring of image has been 
fixed during the pre-processing stage, using denoising function. 

3.1.1. Data augmentation 
Given the imbalanced nature of the dataset, data augmentation 

techniques are implemented to make the data balanced and the results 
compared with the imbalanced data. These data augmentation methods 
are applied to both the text and the images. The augmentation is done 
for the texts and images associated to the non-covid patients and is done 
in two ways, once on the whole data and once just on the training data. 
The augmentation is done such that the data still remains unbalanced, 
but with higher number of non-covid cases. So for each non-covid case in 
the data, two more augmented observations are added. 

For the text data, the augmentation is done in 2 ways - by replacing 
certain number of random words with their synonyms and randomly 
swapping words within the text. The number of words to be replaced and 
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swapped is chosen as 15 and the resulting text is the augmented text. For 
images as well, two types of augmentation is done - rotation and 
decreasing brightness. Since dealing with medical images, inversion of 
the images is not possible. The augmented images are rotated by an 
angle of 20 degrees. Data augmentation is done twice, once on the whole 
dataset and once only on the training dataset. An example of the 
augmented images is shown in Fig. 1. 

3.1.2. Text analysis 
The clinical notes are analyzed by plotting word clouds and top 20 

uni-grams, bi-grams and tri-grams. Word clouds are a visual represen-
tation that is often used to visualize text data. It breaks down the texts 
into words and plots the words with varying sizes and colors that 
represent it’s frequency in the data. A word which is much bigger in size 
in the word cloud is said to be most frequently occurring word in the 
data while smaller sized words are less frequent. Uni-grams refer to 
single words alone. Bi-grams refer to pairs of words together while tri- 
grams refer to groups of 3 words together. All possible such combina-
tions are taken and the most frequently occurring groups of words are 
then plotted. 

3.2. K-fold cross validation 

Three different situations are tested to get the best results - when 
there is no data augmentation, data augmentation only on the training 
data and data augmentation on the whole data. Out of these three, the 
best model is chosen and then K-fold cross validation is performed to test 
for the validity of results since the data is small and data splitting is done 
randomly. For this, K is chosen as 10. For each of the 10 iterations, the 
model was run keeping one fold as testing and the remaining as training 
data. While running the model, validation data size is chosen as 30% of 
the training data. 

3.3. Model architectures 

The state-of-the-art pre-trained networks included in the Keras core 
library have consistently outperformed Convolutional Neural Networks 
on the ImageNet challenge. These networks also show a strong ability to 
generalize to images outside of the ImageNet dataset using transfer 
learning techniques such as feature extraction and fine-tuning. Four 
used CNN architectures are discussed below: 

3.3.1. VGG16 model 
The most distinctive aspect of VGG16 is that it focused on having 

convolution layers of 3 × 3 filter with stride one instead of a bunch of 
hyper-parameters and always utilized the same padding and maxpool 
layer of 2 × 2 filter with stride two. Convolution and max pool layers are 

arranged in this manner throughout the entire architecture. two fully 
connected layers and a softmax are included as its final features. The 16 
in VGG16 stands for the number of weighted layers, which are 16. This 
network has around 138 million parameters, making it fairly huge 
(Simonyan & Zisserman, 2014). 

3.3.2. ResNet50 model 
The introduction of ResNet or residual networks, which are made up 

of Residual Blocks, has alleviated the problem of training very deep 
networks. The difference is that there is a direct connection that skips 
some layers in between (this may vary depending on the model). This 
connection is known as the ‘skip connection,’ and it is at the heart of 
residual blocks. Because of this skip connection, the layer’s output is no 
longer the same. Without this skip connection, the input ‘× ’ is multi-
plied by the layer weights before being multiplied by a bias term. This 
term is then passed through the activation function, f(), and the result is 
H(x) = f(x). With the addition of the skip connection, the output is now 
H(x) = f(x)+ x. This method appears to have a minor flaw when the 
dimensions of the input differ from those of the output, which can occur 
with convolutional and pooling layers. When the dimensions of f(x)
differ from those of x, one of two approaches can be taken: the skip 
connection is padded with extra zero entries to increase its dimensions. 
To match the dimension, the projection method is used, which is 
accomplished by adding 11 convolutional layers to the input. In this 
case, the result is H(x) = f(x)+ w1.x. In this case, we add an extra 
parameter w1, whereas in the first approach, no extra parameter is 
added. The skip connections in ResNet solve the problem of vanishing 
gradient in deep neural networks by allowing the gradient to flow 
through an alternate shortcut path. Another way that these connections 
help is by allowing the model to learn the identity functions, which 
ensures that the higher layer performs at least as well as, if not better 
than, the lower layer (He, Zhang, Ren, & Sun, 2016). 

3.3.3. MobileNetV2 model 
In MobileNetV2, there are two different kinds of blocks. A residual 

block with a stride of one and another one with a stride of two for 
downsizing. Both sorts of blocks have an 11 convolution with ReLU6 
layer as their first layer. A depth wise convolution makes up the second 
layer, and a further 11 convolutions with no non-linearity make up the 
third layer. Deep networks are said to only have the power of a linear 
classifier on the non-zero volume portion of the output domain if ReLU is 
applied once more (Sandler, Howard, Zhu, Zhmoginov, & Chen, 2018). 

3.3.4. InceptionResNetV2 model 
The Inception-ResNet-v2 convolutional neural network was trained 

on over a million images from the ImageNet database. Images may be 
categorized into 1000 different object categories using the 164-layer 

Fig. 1. Image augmentation : left: Original, middle: Rotated, right: Decreased Brightness.  
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network, including the keyboard, mouse, pencil, and numerous animals. 
The network has therefore learned in-depth feature representations for a 
wide range of images. The network outputs a list of estimated class 
probabilities after receiving a 299 by 299 picture as input. It is made by 
merging the Residual connection and the Inception structure. In the 
Inception-Resnet block, multiple convolutional filters of various sizes 
are merged with residual connections. In addition to avoiding the 
deterioration problem brought on by deep structures, using residual 
connections speeds up training. Fig. 5 depicts the fundamental network 
architecture of Inception-Resnet-v2 (Mahdianpari, Salehi, Rezaee, 
Mohammadimanesh, & Zhang, 2018). 

3.4. Proposed methodology 

Two different kinds of model architectures are tried out for the 
classification problem. In the first, only the images are considered for the 
basis of classification. Three kinds of basic CNN architectures are 
implemented for this purpose. In the first image model (Model 1), only 
one 2D convolutional neural network layer with 16 filters, kernel size 
(3,3), stride of length 1 and padding of type same is used due to the small 
size of the data and to avoid over-fitting. This layer is then followed by a 
max pooling layer with pool size (2,2) and stride length two. The output 
is then flattened and passed onto a dense layer with 64 units and acti-
vation function ReLU and kernel initializer he uniform. This is completed 
by the final output Dense layer with one unit and activation function 
sigmoid. The second image model (Model 2) follows the same architec-
ture but the difference being that the convolutional layer has 32 filters 
and the Dense layer has 128 units. The third image model (Model 3)is 
made more deep by including 3 groups of a convolutional 2D layer, 
batch normalization, max pooling and a dropout layer, each with 
increasing number of units, 16,32 and 64 and dropout percentage 
0.2,0.25 and 0.3. This is then passed to a Dense layer with 100 units and 
finally the output layer. The structure of all the three models are shown 
in Figs. 6 and 7. 

All these models are compiled using the binary cross entropy loss 
function and Adam optimizer. The early stopping criterion and model 
checkpoint callbacks are used and the model is trained using the default 
batch size of 32. The best model is saved, wherein best is defined as the 
model having the highest validation accuracy, and that is used to make 
predictions for the test data. 

The image models alone don’t perform very well, and to improve 
this, a second model architecture is considered, where even the clinical 
notes associated with the patients’ scan is passed as input. A multi- 
modal approach is utilized to incorporate both the images and text in 
the input. The images are passed to a separate image model and the text 
is passed into a text model. The outputs of both these models are 
concatenated and then passed into a final model which gives the 
resulting prediction. The model architecture is shown in Fig. 8. 

The text is converted to a numeric vector before being passed to the 
model. Since we are dealing with medical data and few keywords in the 
notes make a lot of difference in diagnosis, each document is converted 
to a vector by counting the frequency of each word in the text. For 
example, if we consider 2 sentences - I like an apple and bananas and 
He ate an apple, then both the sentences can be converted to a numeric 
vector in the following way - All the words from all documents are 
considered and the vector is formed such that each value in the vector 
represents the frequency of that corresponding word in the sentence. So 
the vector form for these 2 sentences are shown in Table 1. This is done 
for all the texts in the data. As a pre-processing step, the stopwords from 

the texts are removed. Stopwords refer to all those words that are very 
frequently used in a sentence but offer no contextual information. These 
include words like and, the, I, am, etc. Along with these, terns frequently 
used in medical text like patient, doctor, dr, etc. are also removed. The 
words are converted to lower case as well for easier implementation. 
Once each text is converted to the document feature vectors, these are 
passed as input to the text model. Although there are more sophisticated 
text models build like recurrent neural networks and BERT models, for 
the proposed study, the Bag Of Words approach is used. This is done due 
to the importance given to specific keywords in the clinical notes written 
by the nurse/doctor that can help identify symptoms of COVID-19. Since 
the main focus is on those keywords and it’s frequency in the text, BoW 
model has been used instead of RNNs and other NLP models. To test this 
hypothesis, an LSTM model is also used to see whether it performs better 
than the BoW approach or not. 

The text model is created as a simple 2 layer deep neural network. 
Both of the dense layers have 64 units. The output of the final layer is 
passed on as input to the concatenation layer and the final model. The 
image model used is the third image model used described formerly. The 
final concatenated model is just one dense layer with 16 units and 
activation function ReLU. This is followed by a dropout layer and then 
the final output layer. The model again is compiled using the binary 
cross entropy loss function and Adam optimizer. The same set of call-
backs are used to get the best model. 

For the LSTM model, the texts are tokenized and padded to create all 
vectors of the same length. The maximum length of a vector is 451. The 
LSTM text model is created using an embeddings later and an LSTM 
layer. The number of output units in the embeddings layer is 10 while 
the number of units in the LSTM layer is 16. 

Four pre-trained models are also tried out as a replacement for the 
custom build image model. The models tried out were - ResNet 50, 
InceptionResNetV2, MobileNetV2 and VGG16. The text model and final 
model, along with the compiling and training conditions, are kept the 
same. This is done only on the augmented training data. 

For all the models trained, the best model is obtained and tested on 
the testing data. The learning diagnostic curves are plotted for all the 
models’ history - training and validation loss plotted with number of 
epochs and the training and validation accuracy with number of epochs. 
Using the best model, predictions on the test data are obtained and the 
confusion matrix and ROC curve is plotted. The full methodology for the 
multi-modal is described in Fig. 9. 

4. Results 

In the notes associated with covid cases, as shown in the word clouds 
in Fig. 10, the most frequently used words are chest, bilateral, fever, 
cough, day, history. The very frequently used pair of words are chest 
radiography, dry cough, shortness breath, oxygen saturation, 
pleural effusion. The frequently used groups of 3 words are normal 
range elevated, polymerase chain reaction, fever dry cough. The 
same for non-covid cases are night, chest, left, lung, pneumonia, 
normal, upper lobe, lower lobe, left lung, middle lobe, weight loss 
and right upper lobe, left lower lobe, anteroposterior radiograph 
obtained, human immunodeficiency virus. The covid cases presented 
were noted for the commonly occurring symptoms - fever, cough among 
others. The top uni-grams, bi-grams and tri-grams are shown in 
Figs. 11–13. 

The image models on their own don’t perform very well when only 
the images are considered for classification. Considering the first image 
model, it performs poorly when there is no data augmentation or when 
data augmentation is done only on the training data. It fails to identify 
many covid cases and misclassifies them as non-covid, resulting in high 
number of false negatives. The learning curves and results are shown in 
Fig. 14. When the loss vs. epochs curve is inspected, it can be seen that 
the validation loss is little higher than the training loss with there is no 
data augmentation and when the data augmentation is done only on the 

Table 1 
Document feature vectors.  

Documents I like an apple and bananas he ate 

Sentence 1 1 1 1 1 1 1 0 0 
Sentence 2 0 0 1 1 0 0 1 1  
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training data. Since data augmentation is done only on the training data, 
the balance between the classes is different in the validation/testing 
data, hence resulting in a higher loss and lower accuracy. But addition of 
more data has resulted in the validation loss and accuracy to be more 
stable across epochs as compared to when there was no data augmen-
tation done. Even the area under the ROC curve is highest for the case 
when the class imbalance is consistent across the training, validation 
and testing datasets. 

The second image model doesn’t perform very well either giving low 
accuracy, especially when data augmentation is done only on the 
training data. This model suffers from the problem of high false posi-
tives. Many patients are termed as covid positive despite being negative. 
The results for this model is shown in Fig. 15. The performance of the 
second model is much more unstable compared to the first model. The 
validation loss and accuracy is highly erratic as the model is trained for 
more epochs. The area under the ROC curve is much lesser too than that 
of the first model. Consistent with the first model, performance is more 
unstable in the case of no augmented data compared to when there was 

additional augmented data added. 
The third image model has the lowest performance among all of 

them, which can be attributed to over-fitting due to a small size dataset. 
There is very high misclassification of covid patient as not having 
COVID-19, resulting in a high number of false negatives. The learning 
curves and results are shown in Fig. 16. The model shows similar un-
stable behavior as the previous model owing to over-fitting. The model 
also makes more errors in classification as compared to the previous 2 
models. The same can be said for the behavior of the ROC curve. 

The third image model is used as the image model for the multi- 
modal classification. Since it’s a complex architecture, the text model 
is made to be very simple. The multi-modal approach performs very well 
in classifying the patient as covid positive or not. In all 3 cases, just one 
case is misclassified. The graphs associated with this model are shown in 
Fig. 17. The validation and training accuracy reach almost 100% with 
much more consistent values of loss across epochs, although, there 
seems to be slight overfitting when the model is trained for more number 
of epochs. The ROC curve when data augmentation is done on the whole 

Table 2 
Performance metrics.  

Models Accuracy Sensitivity Specificity Precision F1 Score 

Model 1 No Data Aug 70.37% 72.22% 66.67% 81.25% 76.47% 
Data Aug (Whole) 91.30% 90.91% 91.67% 90.91% 90.91 
Data Aug (Training) 70.37% 66.67% 77.78% 85.71% 75.00% 

Model 2 No Data Aug 76.92% 83.33% 62.50% 83.33% 83.33% 
Data Aug (Whole) 86.96% 90.91% 83.33% 83.33% 86.96% 
Data Aug (Training) 66.67% 72.22% 55.56% 76.47% 74.29% 

Model 3 No Data Aug 62.96% 61.11% 66.67% 78.57% 67.75% 
Data Aug (Whole) 91.30% 81.82% 100% 100% 90.00% 
Data Aug (Training) 55.56% 44.44% 77.78% 80.00% 57.14% 

Multi-Model No Data Aug 96.30% 100% 88.89% 94.74% 97.30% 
Data Aug (Whole) 97.83% 95.45% 100% 100% 97.67% 
Data Aug (Training) 96.30% 100% 91.74% 88.89% 94.12% 

Transfer Learning MobileNetV2 70.37% 66.67% 77.78% 85.71% 75.00% 
ResNet50 96.30% 100% 88.89% 94.74% 97.30% 
InceptionResNetV2 96.30% 100% 88.89% 94.74% 97.30% 
VGG16 92.59% 94.44% 88.89% 94.44% 94.44%  

Table 3 
Comparison with other studies.  

Ref. Dataset used Methods/Models Results Description 

Sahinbas and Catak 
(2021) 

COVID-19 X-ray images + collected 50 positive 
and 50 negative 

CNN Accuracy in VGG16 got 
the highest percentage 
which equals to 80% 

Images scaled to 256*22 and later augmented by 
flipping and different angles. Study presented 
five pretrained deep CNN models, including 
VGG16, VGG19, ResNet, DenseNet, and 
InceptionV3, for transfer learning implementing 
X-ray images. 

Ohata et al. (2020) “1394 Chest X-ray Images (Pneumonia) with data 
augmentation (Kermany et al., 2018) 

CNN, MLP, and SVM SVM got the highest 
accuracy of 98.5% 

Used CNNs to extract features, then using the 
transfer learning approach and categorizing 
these features with consolidated machine 
learning methods. 

Apostolopoulos and 
Mpesiana (2020) 

1427 X-ray images from Cohen et al. (2020d) 
without data augmentation 

CNN Highest accuracy of 
96.78% 

Assessed the effectiveness of CNN designs 
created in recent years for medical image 
classification. 

Shaik and 
Cherukuri (2022) 

2483 images for SARS-CoV-2 where 1252 of them 
is diagnosed with the virus (Soares et al., 2020) 
Dataset for COVID-CT (Zhao et al., 2020) which 
contains 349 COVID-19 CT and 463 
non-COVID-19 images from 216 patients 

CNN Highest accuracy for 
SARS-CoV-2 = 98.99, 
Highest accuracy for 
COVID-CT = 93.33 

The study is to present an effective ensemble 
strategy for identifying SARS-CoV-2 infection in 
chest CT scan images. 

Wang et al. (2020b) ImageNet dataset, the number of the dataset is 
18,567 with using data augmentation 

ResNet101 and 
ResNet152 

Accuracy = 96.1% Their approach attempts to transfer learning, 
integrate models, and categorize chest X-ray 
pictures into three categories: normal, COVID- 
19, and viral pneumonia. 

Phankokkruad 
(2020) 

COVID-19 research challenge dataset that 
contains 323 images without data augmentation ( 
Cohen et al., 2020b) 

CNN Highest accuracy of 
97.19% 

CNN model with Xception outperforms the 
VGG16 and Inception-ResNet-V2 models in 
terms of accuracy. 

[This Work] Image + text Dataset VGG 16, Resnet 50, 
MobileNet V2 and 
Inception-Resnet V2 

multi-modal results in a 
97.8% accuracy 

Multi-Modal approach with data augmentation 
methods are applied to both the text and the 
images.  
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data is almost perfect, giving an area under the curve value of 0.98. The 
addition of the text has shot up the performance of the models, than 
what was obtained by just using the images. 

Finally, the results of using the pre-trained models are summarized in 
Table 2 and the learning curves are shown in Fig. 18. The ResNet50 and 
InceptionResNetV2 model perform better than the other 2. When 
MobileNetV2 is used, the performance on the validation data is 
extremely poor. This can be attributed to the complex structure of the 
model. When using ResNet50, the validation and training loss are 
perfectly stable, with few ups and downs in the validation accuracy. 
When using InceptionResNetV2, the model starts to overfit which can be 
seen from the sharp upward rising spike in the validation loss and 
slightly falling validation loss. But this and the ResNet50 model result in 
only 1 false positive, with all other cases classified correctly. The VGG16 
model shows signs of overfitting from the beginning, with an upward 
rising validation loss curve and a downward validation accuracy curve. 

The results of the K-Fold cross-validation on the data is summarised 
in Fig. 19. The average of all the accuracies for each fold is 85.1% and 
the standard deviation is 14.17%, which accounts to nearly 10 obser-
vations being misclassified out of 92, which is the size of the testing data. 
The results of the LSTM text model is shown in Fig. 20. The testing ac-
curacy obtained is 88.89% with 3 data points misclassified. 

5. Discussion 

The models are trained on both kinds of data, completely augmented 
data and augmented training data. This helps us to give us models in 
both scenarios, when there are a lot of covid cases and during the time 
when there are less cases. When the augmentation is done on the whole 
data, the validation and testing data are imbalanced but the majority of 
cases are non-covid. When the augmentation is done only on the training 
data, the validation and testing data are also imbalanced but now, the 
majority are covid cases. In both these cases, the models perform well 
and only one case is misclassified. 

5.1. Comparison with other studies 

This section offers an important evaluation of deep learning algo-
rithm for detecting COVID-19 positive cases for some related papers as 
shown in Table 3, moreover, a compared study from other similar deep 
learning approaches with our proposed model that was done. And a 

Fig. 2. VGG16 model architecture (Simonyan and Zisserman, 2014).  

Fig. 3. ResNet50 model architecture (Ji et al., 2019).  
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discussion table (Table 3) has been created to evaluate our model in 
terms of others. According to Table 3, the majority of the datasets 
contained a small quantity of data (limited pictures for training and 
testing) to create and improve their model. Another notable fact is that 
the authors’ most prevalent techniques for model creation were based 
on VGG and ResNet. In this paper, authors employed VGG16, Resnet50, 
MobileNetV2, and InceptionResnetV2 to create the model faster and 
more reliably so that it may be used as a real-time evaluation tool. All the 
models of transfer learning are standard and therefore when compared 
to other studies, their conditions and parameters are same. 

5.2. Tradeoffs of performance metrics 

To improve precision, the model’s parameters and hyperparameters 
can be changed. While adjusting, you may notice that higher precision 
generally leads to lower recall, and higher recall leads to lower accuracy. 
Similarly, the recall value of any machine learning model can be altered 
by adjusting multiple parameters or hyperparameters. A higher or lower 

Fig. 4. MobileNetV2 model architecture (Seidaliyeva et al., 2020).  

Fig. 5. Compressed InceptionResNetV2 model architecture (Mahdianpari et al., 2018).  

Fig. 6. Different layers of: a) image model 1, and b) image model 2.  

Fig. 7. Different layers of image model 3.  
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recall for any model has a specific meaning: With a high recall, the 
majority of positive instances (TP + FN) will be identified (TP). As a 
result, the number of FP measurements increases while overall accuracy 
decreases. Assume, however, that the outcome is low recall.In that case, 
it indicates that there were many FNs (should have been positive but 
labeled negative), which means that if the results find a positive 
example, there is a better chance that it is a true positive. Furthermore, 
while F1 is less intuitive than accuracy, it is usually more advantageous, 
particularly when the class distribution is unequal. Accuracy improves 
when the cost of false positives and false negatives is the same. If the cost 
of false positives and false negatives is significantly different, both 
Precision and Recall should be considered. 

Furthermore, recall and sensitivity are inversely proportional. Sus-
ceptible tests yield more positive results in patients who are sick, 
whereas precise tests reveal no illness in patients who do not have a 
finding. Sensitivity and specificity should always be considered 
concurrently to provide a complete diagnosis. Furthermore, accuracy is 
a good quality measure when datasets are symmetric and the values of 
false-positive and false-negatives are nearly similar. As a result, other 
parameters play an important role in determining the performance of a 
model. 

Fig. 8. Multi-modal architecture.  

Fig. 9. Metholodogy.  

Fig. 10. Word clouds of clinical notes.  
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5.3. Behaviour of models used 

Each VGG block is made up of 2D Convolution and Max Pooling 
layers, as shown in Fig. 2. As the number of layers in CNN increases, so 
does the model’s ability to fit more complex functions. As a result, more 
layers promise improved performance. This is not to be confused with an 
Artificial Neural Network (ANN), where increasing the number of layers 
does not always result in improved performance. The backpropagation 

algorithm is used to update the weights of a neural network, which 
makes minor changes to each weight in order to reduce the model’s loss. 
It updates each weight so that it moves in the direction of the decreasing 
loss.This is simply the gradient of this weight as determined by the chain 
rule. However, as the gradient flows backward to the initial layers, the 
value grows with each local gradient. As a result, the gradient becomes 
smaller and smaller, resulting in very small changes to the initial layers. 
As a result, the training time is significantly increased. If the local 

Fig. 11. Top uni-grams of clinical notes.  

Fig. 12. Top bi-grams of clinical notes.  

Fig. 13. Top tri-grams of clinical notes.  

N. Nasir et al.                                                                                                                                                                                                                                   



Intelligent Systems with Applications 17 (2023) 200160

10

gradient equals one, the problem is solved. 
This is where ResNet comes in, as it accomplishes this via the identity 

function. As a result, as the gradient is back-propagated, its value does 
not decrease because the local gradient is 1.Deep residual networks 
(ResNets), such as the popular ResNet-50 model, are another type of 50- 

layer deep convolutional neural network architecture (CNN), as seen in 
Fig. 3. A residual neural network converts a plain network into its re-
sidual network counterpart by inserting shortcut connections. ResNets 
are less complex than VGGNets because they have fewer filters. The 
vanishing gradient problem is not permitted in ResNet. The skip 

Fig. 14. Image model 1 results [Top-Bottom: No Data Aug, Data Aug (Whole), Data Aug (Training)].  

Fig. 15. Image model 2 results [Top-Bottom: No Data Aug, Data Aug (Whole), Data Aug (Training)].  
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connections function as gradient superhighways, allowing the gradient 
to flow freely. This is also one of the main reasons why ResNet comes in 
different versions such as ResNet50, ResNet101, and ResNet152. 

Inception was designed to reduce the computational burden of deep 

neural nets while achieving cutting-edge performance. Because the 
computational efficiency decreases as the network grows deeper, the 
authors of Inception were interested in finding a way to scale up neural 
nets without increasing computational cost. Fig. 5 shows the 

Fig. 16. Image model 3 results [Top-Bottom: No Data Aug, Data Aug (Whole), Data Aug (Training)].  

Fig. 17. Multi-modal results [Top-Bottom: No Data Aug, Data Aug (Whole), Data Aug (Training)].  
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InceptionResNetV2 model architecture. While Inception is concerned 
with computational cost, ResNet is concerned with computational ac-
curacy. In theory, deeper networks should outperform shallower net-
works, but in practice, deeper networks outperformed shallower 
networks due to an optimization problem rather than overfitting. In 
short, the deeper the network, the more difficult it is to optimize. To 
achieve higher accuracy, computer vision networks are becoming 

deeper and more complicated.Deeper networks, on the other hand, 
come at the expense of size and speed. The object detection task must be 
able to be performed on a computationally limited platform in real- 
world applications such as an autonomous vehicle or robotic visions. 

MobileNet, a network for embedded vision applications and mobile 
devices, was created to address this issue. The idea behind MobileNet is 
to build lighter deep neural networks by using depthwise separable 
convolutions. The convolution kernel or filter is applied to all of the 
channels of the input image in a regular convolutional layer by doing a 
weighted sum of the input pixels with the filter and then sliding to the 
next input pixels across the images. Only the first layer of MobileNet 
employs this regular convolution. The depthwise separable convolutions 
are the next layers, which are a combination of the depthwise and 
pointwise convolutions. The depthwise convolution convolutions each 
channel independently. If the image has three channels, the output 
image will also have three channels. The input channels are filtered 
using this depthwise convolution.The pointwise convolution follows, 
which is similar to regular convolution but with a 1x1 filter. The goal of 
pointwise convolution is to combine the depthwise convolution output 
channels to create new features. As a result, the computational work 
required is less than that of regular convolutional networks. The model 
architecture is shown in Fig. 4. MobileNet outperforms other cutting- 
edge convolutional neural networks such as VGG16, VGG19, 
ResNet50, InceptionV3, and Xception. MobileNets are thin deep neural 
networks that are ideal for mobile and embedded vision applications. It 
uses depthwise separable convolutions in a streamlined architecture and 

Fig. 18. Transfer learning [Top-Bottom: MobileNetV2, ResNet50, InceptionResNetV2, VGG16].  

Fig. 19. K-fold cross validation results.  
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employs two simple global hyperparameters to efficiently trade off ac-
curacy versus latency. MobileNet could be used for object detection, 
fine-grain classification, face recognition, large-scale geolocation, and 
other applications. 

The following are the benefits of using MobileNet over other cutting- 
edge deep learning models. It reduced network size to 17MB and 
parameter count to 4.2 million. It is more performant and useful for 
mobile applications. It has a convolutional neural network with a low 
latency. Advantages always have some drawbacks, and with MobileNet, 
it’s the accuracy. Even though MobileNet is smaller, has fewer param-
eters, and performs faster, it is less accurate than other cutting-edge 
networks. ResNet models reduce training time while increasing accu-
racy by not activating all neurons in every epoch. Furthermore, the 
model employs a clever strategy for improving model training perfor-
mance by learning the feature once and then not attempting to learn it 
again; instead, it focuses on learning additional features. While VGG 
significantly improved speed and accuracy by introducing pretrained 
models and increasing model depth. The model’s nonlinearity increased 
as the number of layers with smaller kernels increased. Unlike Inception 
v1 to v3, the Inception-ResNet-v2 model makes use of residual networks 
to improve the accuracy and convergence speed of the original model. 

The LSTM based text model performs poorly as compared to the BoW 
approach text model with reduction in accuracy. This can be attributed 
to the fact that usually, attention mechanism don’t work very well with 
clinical data, as also shown by the study conducted by researchers in 
Korea (Kim et al., 2020). Keywords play a more important role and 
hence, a more simple text model in this case performs better. 

6. Conclusion and future outlook 

A multi-modal approach is presented in this paper to classify a pa-
tient as covid positive or negative using the image of the chest X-ray/CT 
scan and the clinical notes provided with the scan. Data augmentation 
techniques are used to overcome the problem of small data sets, and they 
have been shown to improve model performance. The multi-modal is 
also compared to previously trained models. The final multi-modal re-
sults in a 97.8 percent accuracy on the testing data, with only one data 
point misclassified. The study takes a unique approach to identifying 
COVID-19 cases by relying solely on scan images and corresponding 
notes. This research can benefit all researchers working in this field 
around the world. The limitation of the study is the size of the dataset, in 
future a big data (comprises of text and image data both) can be 
generated and used. This study’s future scope cannot be limited to 
hardware implementation, hybrid classification, etc. Applications can 
be expanded to include other types of medical data with additional 
classifiers, neural networks, and other AI and data techniques (Nasir 
et al., 2022a). 
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