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Abstract 

Machine Learning (ML) methods are increasingly being used across a variety of fields and have led to 

the discovery of intricate relationships between variables. We here apply ML methods to predict and 

interpret life satisfaction using data from the UK British Cohort Study. We discuss the application of 

first Penalized Linear Models and then one non-linear method, Random Forests. We present two key 

model-agnostic interpretative tools for the latter method: Permutation Importance and Shapley Values. 

With a parsimonious set of explanatory variables, neither Penalized Linear Models nor Random Forests 

produce major improvements over the standard Non-penalized Linear Model. However, once we 

consider a richer set of controls these methods do produce a non-negligible improvement in predictive 

accuracy. Although marital status, and emotional health continue to be the most important predictors of 

life satisfaction, as in the existing literature, gender becomes insignificant in the non-linear analysis. 
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1 Introduction 

One of the major domains of Social Science is the understanding of individual well-being, 

with the aim of predicting what makes a successful life. This success in well-being terms can be 

defined either objectively or subjectively: the former focuses on measures such as income or 

consumption, where those with more economic resources are considered to be better-off, while 

the latter relies on individuals’ own evaluations of how well their life is going. We here consider 

this second type of measure, commonly called subjective well-being. 

The prediction of subjective well-being starts with the analysis of its associations with a set 

of key observable characteristics, which can be at either the individual or a more-aggregated level 

(see Clark, 2018, for a survey). We will here focus on individual-level characteristics. One of the 

central individual variables is income, both in absolute terms and expressed relative to others 

(Clark and Oswald, 1996, and Luttmer, 2005, are two analyses including relative income), and 

another (conditional on income) is unemployment (Winkelmann and Winkelmann, 1998, and 

Clark and Oswald, 1994, among many others). With respect to other non-pecuniary 

characteristics, the married are more satisfied than the non-married (see Stutzer and Frey, 2006, 

for a discussion of selection into marital status), and the correlations with both physical and 

mental health are typically positive (Dolan et al., 2008), with Layard et al. (2014) and Clark et 

al. (2018) finding the correlation with emotional health to be larger. The association between 

subjective well-being and education is on the contrary more ambiguous (see Chapter 3 of Clark 

et al., 2018). Women are often found to be more satisfied with their lives (Helliwell et al., 2016) 

but at the same time report more stress (Kahneman and Deaton, 2010). While there is a vibrant 

literature on subjective well-being and age, this will not be relevant in the analysis we carry out 

here, which is based on one wave of a birth-cohort dataset (in which all respondents are therefore 

the same age). 

The vast majority of these findings regarding the individual correlates of well-being come 

from parametric models. These models are, however, more useful in terms of explaining rather 

than predicting the dependent variable, at a potential cost in terms of predictive accuracy. The 

related statistical and methodological arguments will be presented below. At the same time, the 

growing computing power of current machines (including computers) has recently made Machine 
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Learning (henceforth ML) widely available. Broadly, ML looks for a pattern (in general, non-

linear) that maps a set of explanatory variables to the dependent variable of interest in a training 

set of data, and then focuses on generalizations, i.e. on obtaining good predictions of the 

dependent variable on data from outside of this training set.  

Our aim here is to see whether two key ML algorithms – Penalized Linear Models and 

Random Forests – can provide more-accurate predictions of subjective well-being than does the 

more-traditional linear model (which we will henceforth call non-penalized linear regression). 

The model we analyze is that in Layard et al. (2014), the aim of which (as indicated in their article 

title) is the prediction of life satisfaction; this thus provides a natural starting point for our 

analysis. 

The greater predictive accuracy of ML models comes at the cost of being less-easily 

interpretable than non-penalized linear regressions. Following Kim et al. (2016), interpretability 

refers to the degree to which a human can consistently predict the model's result. We will below 

apply model-agnostic methods to our results in order to render the predictions from Random 

Forests more interpretable. 

The remainder of the paper is organized as follows. Section 2 describes the British Cohort 

Study data that we use in our empirical applications. The results are then presented in Section 3, 

and interpreted in Section 4. Last, Section 5 concludes.  

 

2 Data 

We use the same dataset as in Layard et al. (2014), the British Cohort Study (BCS). This is a 

birth-cohort study, covering all individuals in the UK who were born in the second week of March 

1970 (cls.ucl.ac.uk/cls-studies/1970-british-cohort-study/). Since the birth wave of the survey in 

1970, there have been ten other waves (‘sweeps’) at ages 5, 10, 16, 26, 30, 34, 38, 42, 46 and 51. 

Layard et al. (2014) focus on the life satisfaction that respondents report at age 34. Of the 17 000 

initial births recorded, 8 867 individuals provided information at age 34 on all of the variables 

that we will use in the analysis, as listed below.  

We initially consider only the eight adult age-34 explanatory variables that appear in Layard 

et al. (2014): these are our explanatory variables, which we use to predict Life Satisfaction, our 
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dependent variable. The only variable that we treat differently from them is health. Our health 

measure comes from the BCS analysis in Clark and Lepinteur (2019), and is the number of 

conditions from which the individual suffers; that in Layard et al. (2014) is instead self-assessed 

health at age 26 measured on a scale of 1 to 4 (from ‘Bad’ to ‘Excellent’). We prefer an objective 

health measure for common-method variance reasons (even if the subjective health measure in 

Layard et al., 2014, is lagged by two waves). 

Our eight initial explanatory variables are the following: 

 Ln(income) at age 34. Household equivalent disposable income using the OECD 

equivalence scale, expressed in Pounds. 

 Educational Achievement at age 34. This is a single variable with six distinct cardinal 

values, obtained from a regression of male log full-time earnings on having a family, 

childhood emotion and conduct, and five education dummies. The resulting values are 

0.750 (PhD or Master), 0.486 (Degree), 0.237 (A-level), 0.188 (GCSE), 0.043 (CSE), and 

0 (No qualifications; this was the omitted category in the regression).  

 Employment at age 34. A dummy variable for not being unemployed at the time of the 

interview. 

 Has a Partner at age 34. This is a single variable with four distinct cardinal values, 

obtained from a regression of life satisfaction on three family dummies and a number of 

life-success variables. The resulting estimated coefficients on the family dummies are 

0.685 (Married and cohabiting with children), 0.530 (Married/cohabiting without 

children), -0.004 (Single with children), and 0 (the omitted category: Single without 

children).  

 Good Conduct between ages 16-34: One unit of ‘crime’ here is being found guilty by a 

criminal court or formally cautioned at a police station. Good Conduct is the maximum 

observed number of crimes between ages 16 and 34 years in the BCS sample (25 crimes) 

minus the individual’s own number of crimes. 



4 

 Physical Health at age 26. This is a cardinal variable for the number of health conditions 

from which the individual suffers, from a list of 15 (see Appendix B.1 We multiply this 

figure by -1, so that higher values refer to better physical health. 

 Mental Health at age 26. This is the sum of the respondent’s replies at the age-26 BCS 

wave to 24 questions covering aspects such as worry and irritation, and physical symptoms 

like poor appetite and headache. The total number of conditions, multiplied by -1, is our 

index of mental health. 665 individuals had missing values for mental health at age 26; 

for these individuals we take their value at age 30 instead. 

 Gender. 1 if female, 0 for male. 

 

The dependent variable is Life satisfaction at age 34. This comes from the following question: 

“Here is a scale from 0-10. On it “0” means that you are completely dissatisfied and “10” means 

that you are completely satisfied. Please tick the box with the number above it which shows how 

dissatisfied or satisfied you are about the way your life has turned out so far.” 

Our expanded analysis of life satisfaction adds 16 additional explanatory variables reflecting 

life at age 34: Number of people in the household, Number of natural children of the Cohort 

Member in the household, Number of non-natural children of the Cohort Member in the 

household, Number of rooms in the household, Type of accommodation, BMI, Alcohol units per 

week, Cohort Member’s main activity, Highest academic qualification, Disability status, Whether 

the mother is alive, Whether the father is alive, Marital status, Weekly smoking habits, Tenure 

status, and Whether health limits everyday activities. These new explanatory variables are likely 

highly correlated with some of the eight original explanatory variables: we will discuss this issue 

below when presenting the results. The descriptive statistics of all our variables appear in 

Appendix Table A, which also contains the coding details for all the variables, including Type of 

accommodation, Alcohol units per week, and Cohort Member’s main activity. 

The treatment of missing values depends on the nature of the variable. Missing values for 

categorical variables are not imputed. The rationale here is that the missing values are not at 

                                                                  
1 We retain the two-wave lag (i.e. using age-26 values) in order to be consistent with Layard et al. (2014). Information 
on some, but not all, of the conditions used to construct the Physical Health index are also available at age 34. 
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random, and potentially contain additional information about the individual. We instead consider 

the missing categories (there may be more than one for a given variable) as separate values to be 

used in the empirical analysis. Of the 16 new explanatory variables proposed above, the only 

categorical variable with significant missing information is Alcohol units per week (which is 

measured in categories), with 1683 missing values. These correspond to individuals who reported 

never drinking or only on special occasions (these individuals are assigned a missing value code 

of -1 in the BCS questionnaire). The next most-frequent occurrences of missing values are for 

BMI and Whether the father is alive, with much smaller numbers of 246 and 121.  

In the linear regression models, we create dummies for each value of the following categorical 

variables: Type of accommodation, BMI, Alcohol units per week, Cohort Member’s main 

activity, Highest academic qualification, Disability status, Whether the mother is alive and 

Whether the father is alive (both of these are categorical, as they distinguish between the living 

parent being in or outside of the household), Marital status, Weekly smoking habits, Tenure status, 

and Whether health limits everyday activities.  

The numerical variables Number of people in the household, Number of natural children of 

the Cohort Member in the household, Number of non-natural children of the Cohort Member in 

the household, and Number of rooms in the household have, respectively, 25, 25, 25, and 53 

missing values, also labelled via negative numbers. We impute the negative missing values for 

these variables by the mean of the observed value. Nonetheless, there are only few observations 

that have missing values for these numerical variables in the dataset (between 0.3% and 0.6% of 

the observations), and our findings are unaffected if we instead simply drop the observations with 

missing values for these numerical variables. In the Random Forest analysis, these missing 

negative values were left as they appear in the data, as here the different explanatory variables’ 

values only serve to define the sample splits, with the actual numerical values not affecting the 

calculation of the value of the dependent variable. 

 

3 Machine-Learning Algorithms: Presentation and Results 

The choice of the ML technique to be used depends on the interpretability−predictive 

accuracy trade-off (see James et al., 2013, for a discussion). In general, the most internally-
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interpretable algorithms are the least flexible: these less-flexible algorithms provide 

straightforward intuitions about the relationship between each of the explanatory variables and 

the dependent variable. If we wish the model to be interpretable, we may then prioritize less-

flexible models. If, on the contrary, we are more concerned about accurate prediction, we may 

sacrifice interpretation in favor of more-flexible complex models. Accurate prediction may be at 

a premium, for example, in contexts in which we already have strong theoretical arguments 

regarding the explanatory variables-dependent variable relationship, and want to establish the 

best-possible predictive map. Linear Regression and Deep Feedforward Neural Networks can be 

considered as two polar examples in this trade-off continuum. 

Nonetheless, the interpretability-predictive accuracy trade-off is not a strict dichotomy. As we 

will see below, model-agnostic interpretative tools also allow for inference in more-flexible 

methods. Equally, inflexible methods can produce similar (or even better) performance than 

more-flexible ones (for example, if the joint distribution of the explanatory variables and the 

dependent variable is relatively simple to model).  

We will start our analysis of subjective well-being in the BCS data in the following sub-

section by considering linear models. Computations were performed using the scikit-learn library 

in Python (Pedregosa et. al., 2011), and glmnet in R (Friedman et al., 2010). 

 

3.1 Non-Penalized and Penalized Linear Regressions 

The standard linear non-penalized regression is our benchmark. This is a special case of an 

Elastic Net Regression, the general form of which is (see Zou and Hastie, 2005): 

 min
𝜷∈ோೖ

∑ ሺ𝑦 –𝒙𝒊
ᇱ𝜷ሻଶ

ୀଵ    𝜆 ቂଵିఈ
ଶ
∑ 𝛽

ଶ
ୀଵ   𝛼 ∑ |𝛽|

ୀଵ ቃ      (1) 

where λ and α are hyperparameters: parameters that are used to regulate the learning process, 

whose value has to be determined before the estimation of the 𝛽’s. Penalizing by the sum of 

squares of the betas produces coefficient shrinkage, balancing the bias and variance of the 

estimates. It does not however yield a parsimonious model as all variables are retained – none of 

the coefficients are shrunk to 0. Automatic variable selection instead comes from penalizing the 

sum of the absolute values of the betas (Zou and Hastie, 2005). The values of λ and α can either 

be input manually (ex ante) or discovered via cross-validation (tuning: see Section 3.1.2 below). 
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We first consider five different values of α, (0, 1, 0.25, 0.50 and 0.75), and in each case use 5-

fold cross-validation on the training set (which will cover 80% of the individuals) to find the 

optimal value of λ.  

The linear non-penalized regression empirical loss function (i.e. that of OLS) is given by 

Equation (1) with λ = 0. When λ ≠ 0, a value of α = 0 corresponds to the Ridge Regression 

minimization problem, and λ ≠ 0 and α = 1 to the Lasso Regression minimization problem (where 

Lasso stands for Least Absolute Shrinkage and Selection Operator).  

In linear regression, the goal is to estimate the unknown mapping under the assumption that 

the dependent variable is linear in the parameters, by minimizing the squared distance between 

the predicted and observed values.  

We analyze these four cases (λ = 0, and λ ≠ 0 with α either 0, 1, or in the interval) in turn, 

discussing the rationale for each case and the ensuing results. 

 

3.1.1 Linear Regression - Non-Penalized 

The standard linear regression model corresponds to λ = 0. Defining X ∈ ℝn×k as the matrix 

whose element xi,j is the value of the jth explanatory variable for the ith individual, the (non-

penalized) linear regression minimization problem is usually presented as: 

 𝑚𝑖𝑛𝜷∈ℝೖ  ∑ ሺ𝑦 –𝒙𝒊
ᇱ𝜷ሻଶ

ୀଵ      (2) 

where y ∈ ℝn is the vector of values of the continuous dependent variable for each of the n 

individuals in the sample. The underlying assumed mapping is linear in the parameters: 

       𝒚 ൌ 𝑋𝜷   𝜺, 𝜺 ∼ 𝑁ሺ𝟎, 𝜎ଶ𝐼ሻ . (3) 

Additional standard requirements are the conditional mean independence of the error term 

with respect to the explanatory variables (formally, E(ε|X) = 0), no perfect multicollinearity, so 

that no one column in X can be expressed as a linear combination of the others (or more simply 

that rank(X) = k < n) and that the error term ε is distributed as in (3). The latter can be relaxed by 

allowing for heteroscedasticity (where the variance of the error term’s distribution is individual-

dependent), which often appears as a robustness check. Under these conditions, it is well-known 

(the Gauss−Markov Theorem) that the Least Squares estimator solving (2) 

 𝜷ைௌ ൌ ሺ𝑋ᇱ𝑋ሻିଵ𝑋′𝒚 (4) 
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is the Best Linear Unbiased Estimator (BLUE), in that it has the lowest variance of all the unbiased 

linear estimators. 

Given its additive structure, the linear regression is arguably the most-interpretable model, as 

𝛽መைௌ,  is the predicted change in yi following a unit change in xi,j, for all individuals i and keeping 

all other explanatory variables xi,−j constant. If the variables are standardized, a similar 

interpretation holds in terms of the correlation between standard deviations, and the square of 

each estimated coefficient 𝛽መைௌ,ௌ௧ௗ,  shows how much the explanatory variable 𝒙 contributes 

to the dependent variable’s variance, ignoring its covariance with the other explanatory variables 

(Layard et al., 2014). Nonetheless, linear regression is inflexible due to the stringent parametric 

linearity assumption and the other requirements noted above. 

We will compare the performance of our models using the Test Mean Squared Error (MSE), 

considering a random split where 80% of the individuals appear in the training set (S) and the 

remaining 20% are in the test set (T). In general, S and T have no individuals in common and 

come from the same data-generating process. We train our algorithms on the set S to learn the 

mapping 𝑓መ: ℝ୩ →  ℝ. We then assess the empirical quality of this mapping via the following 

statistic: 

 𝑀𝑆𝐸௧௦௧ ൌ
ଵ

ሺ்ሻ
∑ ൫𝑓መሺ𝒙𝒊ሻ െ 𝑦൯

ଶ
∶ሺ𝒙𝒊,௬ሻ∈்  (5) 

where n(T) represents the cardinality of the test set T. For instance, in the case of linear regression: 

 𝑓መሺ𝒙𝒊ሻ ൌ 𝒙𝒊′𝜷𝑶𝑳𝑺,𝒕𝒓𝒂𝒊𝒏 (6) 

for all the individuals i in T, with 𝜷𝑶𝑳𝑺,𝒕𝒓𝒂𝒊𝒏 having been learned from the training set. We add 

the subscript ‘train’ to the estimated coefficients to stress that these come from the training set, 

but are evaluated in terms of their ability to map the explanatory variables onto the dependent 

variable using the data from the test set. 

We now present the Test MSEs for predicting life satisfaction, as well as the Training MSEs, 

defined as in (5) but over the elements in the Training Set S. All non-dummy explanatory variables 

are standardized (standardization is a normalization and does not affect the quality of the fit). 

Original refers to the model including only the eight adult explanatory variables from Layard et 

al. (2014), and Extended to the 21-explanatory variable model (which become 96 once the 
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dummies are created from the categorical variables) corresponding to five of the eight original 

explanatory variables in Layard et al. (2014) and the 16 new explanatory variables. Three of the 

eight original explanatory variables are dropped (or rather expanded) in the Extended model. The 

Original explanatory variable ‘Has a partner’ is now redundant, as the newly-added variables 

include both respondent marital status and the number of natural and non-natural children. 

Equally, educational achievement is replaced by the highest academic qualification, and the 

original employed dummy is now one of the categories of the newly-added respondent main-

activity variable. In order to avoid potential multicollinearity issues, we omit the most-populous 

category for each categorical explanatory variable, and drop entirely all categories covering fewer 

than 15 individuals: these dropped categories are listed in Appendix D.2 As a result, the number 

of explanatory variables falls from 96 to 72. 

All models were fitted 100 times with 100 different randomly-drawn train–test splits (in all 

of which 80% of observations were assigned to the training set). Table 1 lists the average Mean 

Squared Errors from these 100 different splits, with their associated standard deviations in 

parentheses.  

 

Table 1. The Performance of the Linear Regression 

 Training MSE Test MSE 

Original 2.78  
(0.03) 

2.79 
(0.11) 

Extended 2.57 
 (0.02) 

2.65 
(0.09) 

Notes. These figures show the average performance of linear regressions in predicting life satisfaction in 100 different 
train-test splits, with 80% of the sample in the training set and the error calculated on the remaining 20% test-set 
individuals. Standard deviations are in parentheses.  
 

Adding the 16 new explanatory variables – for a total of 72 plus the constant - in the Extended 

model improves the Test Set performance, with a reduction in the MSE of 5.3% (from a figure of 

2.79 to 2.65). Moreover, while in the Original dataset the training and testing accuracy figures are 

                                                                  
2 Without this exclusion, there are 18 perfectly multicollinear cases (out of the 100). This occurs with sparse 
categorical dummy cells, when all of the 1’s are randomly-allocated to the test set (producing a column of 0’s in the 
training set). 
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almost identical, in the Extended case the Training MSE is 3% lower than the Test MSE (2.65 vs. 

2.57).  

The procedure to avoid multicollinearity does nonetheless involve a potentially substantial 

loss of information. Considering, for instance, Marital Status, we of course have to drop one 

category in order to estimate the coefficients on the other categories: here we drop the most-

populous category (‘Married’, with 4817 observations); we in addition drop ‘Widowed’ (12 

observations) and ‘Other missing’ (3 observations), for which we therefore do not estimate a 

coefficient. However, these small groups may still be of policy interest – especially the Widowed, 

whose life satisfaction (as we will see with Random Forests) is particularly low. As such, 

machine-learning techniques that are capable of dealing with multicollinear datasets can be of 

use, as they allow us to model the relationship with the dependent variable for individuals in these 

more sparsely-populated categories. To this end, in what follows we consider Penalized Linear 

Regressions that allow for the inclusion of all of the response categories, for a total of 96 

explanatory variables.  

 

3.1.2 Multicollinearity and Ridge Regressions 

The Ridge Regression estimator (Hoerl and Kennard, 1970) corresponds to the minimization 

of (1) with α = 0: 

 min
𝜷∈ோೖ

∑ ሺ𝑦 –𝒙𝒊
ᇱ𝜷ሻ

ୀଵ
ଶ    ఒ

ଶ
∑ 𝛽

ଶ
ୀଵ  (7) 

where λ is a tuning parameter. It can be shown that the Ridge Regression estimator from (10) is: 

 𝜷ோௗ ൌ ሺ𝑋ᇱ𝑋  𝜆𝐼ሻିଵ𝑋′𝒚. (8) 

The Ridge estimator can be calculated even under perfect multicollinearity, as λ > 0. In the 

case of harmful, but not perfect, multicollinearity, it can be seen that the presence of λ reduces 

the absolute values of the estimates. The larger is the chosen λ (via hyperparameter tuning or ex-

ante choice), the greater is the coefficient shrinkage - although the coefficients never become 

zero. 

The variance of the Ridge estimator is: 

𝑉𝑎𝑟൫𝜷ோௗ ห 𝑋ሻ ൌ  𝜎ଶሺ𝑋ᇱ𝑋  𝜆𝐼ሻିଵ𝑋ᇱ𝑋ሺ𝑋ᇱ𝑋  𝜆𝐼ሻିଵ ൏ 𝜎ଶሺ𝑋ᇱ𝑋ሻିଵ ൌ  𝑉𝑎𝑟൫𝜷ைௌ ห 𝑋ሻ. (9) 
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This variance is smaller than that from OLS for every λ > 0. However, E(𝜷ோௗ  | X) ≠ β due 

to shrinkage, so that the coefficients are biased under the linearity assumption, whereas E(𝜷ைௌ | 

X) = β. The broad idea behind the use of the Ridge estimator is that by introducing some bias into 

the estimates, we can reduce the variance up to a point at which the associated MSE is lower than 

that from OLS. 

The Ridge Regression results appear in Table 2. The optimal λ∗ here is chosen from a grid of 

100 values via 5-fold cross−validation3 on the training set solving (7). The λ∗ producing the 

smallest average cross-validated MSE is then introduced into (7), producing the Ridge estimator 

in (8). Last, the fitted model is used to assess the quality of the fit on the data in the test set, 

measured via the Test Set MSE as in (5). The procedure is again applied with 100 different 

random train-test splits, and the results refer to the average performance and associated standard 

deviations. We also list the mean and standard deviation of λ∗. Note that standardization is 

required here for all explanatory variables, including the dummies, given the presence of the 

penalization term.  

 

Table 2. The Performance of the Ridge Regression 

 Training MSE Test MSE λ∗ 

Original 2.78 
(0.03) 

2.79 
(0.11) 

0.06 
(0.001) 

Extended  
2.57 

 (0.02) 
2.65 

 (0.10) 
0.35 

 (0.08) 
Notes: This table lists the mean performance and optimal λ∗ of the Ridge regression predicting life satisfaction over 
100 different train-test splits, each with 80% of the sample in the training set and the error calculated on the remaining 
20% of individuals in the test set. The λ∗ obtained for each split comes from a 5-fold cross-validation on the training 
set. Standard deviations appear in parentheses. 
 

Prediction in the test set using the Ridge estimator on the Extended dataset now always 

produces a reasonable Test Error, even without dropping any dummy variables. 

In the Original dataset, the Ridge estimator’s lower variance does not suffice to offset the loss 

in accuracy: the Test MSE of the Ridge estimator is 2.79. This reflects the absence of 

                                                                  
3 The training set is split into k equally-sized blocks for k-fold cross-validation. One of these k blocks is used for 
validation, and the model is fitted on the remaining k-1 blocks. This process is repeated k times until each of the k 
blocks has been used for validation. The cross-validated score for a given hyperparameter value is the average 
validation score (the MSE in our case) over the k folds (we here use 5 folds). 
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multicollinearity in the Original model. On, the contrary, the estimated average value of λ∗ in the 

Extended model is almost six times that in the Original model: this reflects the multicollinearity 

discussed above. The standard deviation of λ∗ is small as compared to its mean, so that the optimal 

values found across the 100 train-test splits were very similar to each other.  

In terms of performance, the Ridge estimator produces a Test MSE that is 5.3% lower in the 

Extended (2.65) than that in the Original model (2.79). The new explanatory variables provide 

more-detailed information on the socioeconomic determinants of individual well-being, including 

marital status and wealth (approximated by housing-tenure status and the number of rooms in the 

household). In the Original model, these latter were limited to the explanatory variables of Has a 

Partner and Log Income. In order to estimate a coefficient for each of the categories of each 

categorical explanatory variable, we have however had to introduce bias into the estimates, in that 

the Ridge coefficients are biased estimates of the true 𝛽. A better way of describing the 

determinants of subjective well-being more thoroughly appears in the discussion of the Shapley 

Values in the Random Forest in Section 4 below. 

 

3.1.3 Variable Selection and Lasso Regression 

An alternative to the Ridge is the Lasso regression (Tibshirani, 1996). The empirical loss 

function here comes from setting α = 1 in (1): 

 min
𝜷∈ோೖ

∑ ሺ𝑦 –𝒙𝒊
ᇱ𝜷ሻ

ୀଵ
𝟐    𝜆∑ |𝛽|

ୀଵ . (10) 

The Lasso minimization problem in (10) may have multiple solutions, although they always 

produce the same predicted values, so that the Test MSE remains a valid measure of the quality 

of fit (Tibshirani, 2013). Outside of some particular cases, no closed-form expression for the 

Lasso estimator exists. There are a number of numerical methods of solving (10), including 

Coordinate Descent, the method used in the glmnet package of R. Additional details on 

Coordinate Descent and other solution techniques can be found in Friedman et al. (2010) and Van 

Wieringen (2020). 

The key characteristic of the Lasso penalization is that it induces variable selection: even with 

not particularly large values of λ, one or more of the 𝛽መ௦௦, may be shrunk to 0; this is only the 

case for the Ridge estimator when the estimated coefficients were already zero in the OLS 
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estimation without penalization. The difference between the two approaches reflects the shapes 

of the constraints imposed on the estimates by the two penalizations. A more detailed explanation 

can be found in Hastie et al. (2009, Ch.3). 

The optimal λ∗ values were obtained using the same procedure as described above for the 

Ridge estimator. The results appear in Table 3, which also lists the number of non-zero 

coefficients associated with the optimal cross-validated λ∗. The figures refer to standardized 

values and show the means and standard deviations over 100 different random train–test splits. 

 

Table 3. The Performance of the LASSO Regression 

 Training MSE Test MSE λ∗ Non-zero coefficients 

Original 2.78 
(0.03) 

2.79 
(0.11) 

0.002 
(0.002) 

9 [out of 9] 
(0.20) 

Extended 2.58 
 (0.02) 

2.64 
 (0.09) 

0.02 
(0.004) 

51 [out of 97]  
(5.60) 

Notes: These figures show the average performance, optimal λ∗ and number of non-zero coefficient figures in a Lasso 
regression predicting life satisfaction over 100 different train-test splits, each with 80% of the sample in the training 
set and errors calculated over the remaining 20% of individuals in the test set. λ∗ is obtained from 5-fold-cross-
validations on the training set. Standard deviations appear in parentheses. 
 

The predictive performance of the Lasso regression is comparable to that of the Ridge 

regression, and the same conclusions regarding bias and variance, overfitting and underfitting as 

in the OLS and Ridge case apply. 

In the Original model, shrinkage to 0 was confined to one explanatory variable out of the 9 (8 

plus the constant) in four cases out of the 100 train-test splits. On the contrary, in the Extended 

model an average of 46 coefficients (out of 97) were shrunk to 0. 

As for the Ridge estimator, the Lasso estimator solves the numerical multicollinearity issues 

found for the OLS estimator in the Extended model when we did not drop the dummy associated 

with the most populous category and all categories with fewer than 15 individuals. The 16 new 

explanatory variables (with their 97 associated categories) yield a greater predictive accuracy of 

5.7% in testing.  

While the performances of the Ridge and Lasso estimators are then comparable, the latter has 

the advantage of automated explanatory-variable selection via the shrinkage to zero. This may 

help reduce model complexity, further reducing its variance and making it easier to interpret. We 
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nonetheless may still wish to obtain estimates for all of the coefficients, after explanatory-variable 

selection has been carried out ex ante. In general, Tibshirani (1996) concludes that with n > k (i.e. 

more observations than independent variables) the Ridge estimator outperforms the Lasso 

estimator. Furthermore, if two explanatory variables are collinear, the Lasso estimator does not 

shrink both of the associated 𝛽መ௦௦,  coefficients, but rather only one of them. As such, Lasso 

does not have the desirable Grouping Effect, where two highly-correlated explanatory variables 

should attract similar estimated coefficients (and identical coefficients in absolute value if the two 

are perfectly correlated: see Zou and Hastie, 2005).  

The Elastic Net, first developed by Zou and Hastie (2005), is considered to overcome the 

weaknesses of the Lasso estimator, but retains its attractive explanatory variable-selection 

property.  

 

3.1.4. Between Ridge and Lasso: The Elastic Net 

The general Elastic Net minimization problem in Zou and Hastie (2005) was set out in 

Equation (1) above, of which OLS, Ridge and Lasso are special cases. In general, the estimator 

that solves this problem is  

                            𝑚𝑖𝑛𝜷∈ோೖ ∑ ሺ𝑦 –𝒙𝒊
ᇱ𝜷ሻଶ

ୀଵ   ఒమ
ଶ
∑ 𝛽

ଶ
ୀଵ   𝜆ଵ ∑ |𝛽|

ୀଵ         (11) 

where α ∈ (0,1) in Equation (1) is the ratio of λ1 over λ1 + λ2, and thus shows the relative weights 

given to the two types of penalization. 

Were we to optimize over pairs of (λ1, λ2), we may find the same cross-validated log-

likelihood for two different pairs and thus not be able to distinguish between them: the same log-

likelihood can come from a very sparse model in which more coefficients are shrunk to 0 (λ1 >> 

λ2) or one that is not sparse (λ2 >> λ1). We thus instead optimize over α, rephrasing the Elastic 

Net minimization problem in (11) as that in (1). The introduction of α allows us to tune the model 

over the pairs (λ, α). We here consider three possible values for α, 0.25, 0.50 and 0.75, hence 

either giving 3/4 of the weight to one of the two forms of penalization or weighting them equally. 

The results are listed in Table 4.  
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Table 4. The Performance of the Elastic Net Regression 

Notes: These figures show the average performance, optimal λ∗ and number of non-zero coefficient figures in three 
elastic-net regressions predicting life satisfaction. 100 different train-test splits are carried out, each with 80% of the 
sample in the training set and the error calculated on the remaining 20% of individuals in the test set. The values of 
α are ex-ante fixed and reflect the relative weights on the two penalization terms. λ∗ was obtained via 5-fold cross-
validations on the training set. Standard deviations appear in parentheses. 
 

As can be seen in Table 4, the three variants of the Elastic Net we consider do not yield much 

improvement in terms of predictive performance over the Ridge or Lasso regressions. From the 

𝛽ఫ ് 0 columns, there is shrinkage for over 40 explanatory variables in all three Elastic-Net 

estimations.  

Our main conclusion from considering penalized and non-penalized linear regressions is then 

that there is no reason to believe that the linear non-penalized regression overfits the Original data 

and, given the reliability of the estimates in the training data with no evidence of harmful 

multicollinearity, it is probably preferable to avoid introducing bias. Conversely, in the Extended 

dataset, the 16 additional explanatory variables improve the Test Set performance with a reduction 

in the MSE of 5.3%. Moreover, while in the Original dataset the training and testing accuracy 

were almost identical, in the Extended model we observe a Training MSE that is 2.3% lower than 

the Test MSE.  

We next introduced penalization, and retained all of the dummies in the analysis. We do not 

observe any additional improvement here: the Test MSE for the Ridge estimator is 5.3% lower in 

the Extended (2.65) than in the Original model (2.79), as was the case for the non-penalized 

regression. In general, fitting a multicollinear linear regression can be of interest in any case, as 

we may wish to assess the marginal effects of some explanatory variables while adding other 

(possibly correlated) controls. Moreover, the addition of (relevant) multicollinear explanatory 

variables can in theory still lead to improved test accuracy, and hence a fuller model to interpret 

(although this is not the case in the data that we analyze here).  

 

 α = 0.25   α = 0.50   α = 0.75  

Train 

MSE 

Test 

MSE 
λ∗ 𝜷ଚ ് 𝟎 

Train 

MSE 

Test 

MSE 
λ∗ 𝜷ଚ ് 𝟎 

Train 

MSE 

Test 

MSE 
λ∗ 𝜷ଚ ് 𝟎 

Original 2.78 
(0.03) 

2.79 
(0.11) 

0.007 
(0.003) 

9 
(0.14) 

2.78 
(0.03) 

2.79 
(0.11) 

0.004 
(0.003) 

9 
(0.20) 

2.78 
(0.03) 

2.79 
(0.11) 

0.003 
(0.002) 

9 
(0.17) 

Extended 2.58 
(0.02) 

2.64 
(0.09) 

0.07 
(0.01) 

54 
(5.35) 

2.58 
(0.02) 

2.64 
(0.09) 

0.04 
(0.01) 

52 
(5.37) 

2.58 
(0.02) 

2.64 
(0.09) 

0.03 
(0.01) 

51 
(6.01) 
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In what follows, we move beyond linear estimation to the next algorithm in the 

interpretability-complexity trade-off: Regression Trees and their ensemble, the Random Forest. 

For the latter, we will explore two Model-Agnostic Interpretable Algorithms – Permutation 

Importance and Shapley Values – that will help us to interpret the results. 

 

3.2 Regression Trees and Random Forest: Stratifying the Explanatory Variable Space 

Classification and Regression Trees have a considerable history. The Regression Trees we 

now turn to were presented in Breiman et al. (1984). The overall idea is to divide the explanatory 

variable space into J distinct and disjoint sets, the terminal nodes or leaves of the tree. The 

dependent variable value for each individual in a leaf is the mean of the dependent variable of all 

the individuals who are in the same leaf. Individuals fall into a leaf by moving along one of the 

branches of the tree, depending on values of their explanatory variables. 

The subsequent splits along the branches of the tree define the internal nodes obtained by 

recursive binary splitting. Starting from the top of the tree – at which point every individual 

belongs to the same set (so that this is a top−down approach) - a greedy procedure is implemented, 

where the preferred split is that which is the best at that specific point, independent of any 

subsequent steps.  

These procedures tend to overfit the training set, producing deep trees with too-long branches, 

and so produce estimators with high variance and low bias. There will be only few training 

individuals in each of the final leaves, and a poorly-defined outcome variable, 𝑦ො௧ೖ,ೝೌ
. For this 

reason, Random Forests (ensembles of trees) are preferred, along with regularization criteria for 

each tree. 

Random Forests are constructed via bootstrap aggregation, which can be either non-

parametric or parametric. In the former case, no assumptions are made regarding the data-

generating process, and new observations are constructed by sampling with reintroduction from 

the training set. On the contrary, in the latter we assume a well-defined parametric model for the 

data-generating process. 

As we are looking for evidence against the linearity (parametric) assumption, we consider 

non-parametric bootstrapping, which is the general practice in the applied Random Forest 
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literature. Bootstrap Aggregation or bagging consists in averaging the prediction of B fitted 

models, each labelled b, over the Sb different bootstrapped samples, with the aim of reducing the 

variance of the final estimator. 

The entire Random Forest, and each Regression Tree in it, has the same expected value, and 

hence the same bias. As Tibshirani (2013, p.596) notes, “Increasing the number of trees does not 

cause the Random Forest sequence to overfit”. 

A key element in the lower variance is the number m of explanatory variables used for the 

split at each internal node of each tree, m ≤ k, where k is the total number of explanatory variables. 

The correlation between two generic trees in the forest rises with m, although the bias falls with 

m.  

One of the most interesting features of Random Forests is the possibility of leaving 

categorical and ordinal explanatory variables as they are, without creating dummies. We now 

present the Random Forest results for both the Original and Extended models. The average 

predictive performance continues to be calculated over 100 Random Forests with 100 different 

random train–test splits. In each of these, 400 trees were constructed with non-parametrically 

bootstrapped data. The procedure differs from that in the Penalized Linear Regressions, where 

we looked for the optimal 𝜆∗ in each train-test split. Conversely, the optimal structure of the trees 

in the forest was established, via 5–fold cross–validation, on a single train–test split (the first) 

using 4000 trees. The penalizations used were the number of explanatory variables at each split, 

the maximum depth of the branches and the minimum number of training individuals per leaf. 

The Shapley Values, describing the marginal effects of the different explanatory variables at an 

individual level, are instead calculated considering only the Random Forest in train-test split 1. 

The results are presented in Table 5. 

 

3.2.2 Random Forest: Results 

Cross-validation was used as the optimizing strategy, so as to be consistent with the linear 

regressions. Table 5 (fourth column) shows that the algorithm always prefers a random subset of 

the explanatory variables over including them all - in order to avoid overfitting - and over 

considering one variable only - which would have been too restrictive. More precisely, the 
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algorithm considers a subset composed of only the (rounded) square root of the number of all of 

the variables, which latter is a rule-of-thumb value to trade-off between overfitting and 

underfitting. Regarding the maximum depth of each branch of each tree, longer trees are 

unsurprisingly required in the Extended dataset of 21 explanatory variables, given the potential 

for more-complex relationships.  

 

Table 5. The Performance and the Optimal Hyperparameters of the Random Forest 

 Average 

Training 

MSE 

Average 

Test 

MSE 

Number 

of trees 

Number of considered 

explanatory variables per split 

Maximum 
depth of 
branches 

Minimum 
individuals 

per leaf 

Original 2.67 
(0.03) 

2.79 
(0.10) 

400 round(√8) = 3 8 15 

Extended 2.19 
(0.02) 

2.66 
(0.10) 

400 round(√21) = 5 13 8 

Notes: These figures show the average performance of 100 Random Forests over 100 different train-test splits in 
predicting life satisfaction. The optimal number of explanatory variables to be considered at each split of each tree, 
the maximum depth of each branch of each tree, and the minimum number of training individuals to be left in each 
leaf of each tree were ex-ante obtained via 5-fold-cross-validation on the first train-test split 1. 
 

Table 6. The Performance of the Random Forest Compared to Linear Regression 

 
Lin. Reg. 

MSE Train 
Lin. Reg. 
MSE Test 

R.F. 
MSE Train 

R.F. 
MSE Test 

R.F. 
Improvement in 

Training Set 

R.F. 
Improvement in 

Test Set 

Original 2.78 
(0.03) 

2.79 
(0.11) 

2.67 
(0.03) 

2.79 
(0.10) 

4.12% 0% 

Extended 
2.57 

(0.02) 
2.65 

(0.09) 
2.19 

(0.02) 
2.66 

(0.10) 
17.35% -0.38% 

 
Table 6 compares the performance of linear regressions and Random Forests, in both training 

and testing. We first note a considerable improvement in training set accuracy over the linear 

regressions of 4.1% and 17.4% in the Original and Extended specifications respectively, while 

accuracy does not change much in testing. Comparing across both algorithms and specifications, 

the Extended-model Test MSE in the Random Forest (2.66) is a 4.9% improvement over the 

Original-model MSE in Unpenalized Linear Regression (2.79).  

We now present Permutation Importance and the Shapley Values calculated for the Random 

Forest, and a comparison of the latter to the Linear Regression results. As well as discussing the 
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Random Forest’s predictive accuracy, these will allow us to understand how the different 

explanatory variables affect life satisfaction. 

 

4 Interpreting the Findings: Opening the Black Box 

The interpretation of the ML results requires additional calculations beyond fitting, as 

opposed, for instance, to the interpretation of the explanatory variable coefficients in linear 

regressions. Model-agnostic tools are used to this end. 

The choice of the best model-agnostic interpretability approach depends on a number of 

factors, including the complexity cost of the algorithm, and whether we are interested in sparse 

or full interpretations, or extracting new, derived predictive algorithms from the fitted model (see 

Molnar, 2019, for details). We will here consider Permutation Importance and Shapley Values, 

applied to the results from the Random Forest. We first focus on the Shapley Values, as they are 

interpretable in terms of both their importance - defined via their absolute mean for each 

explanatory variable - and their marginal effects, and provide a clearer image of the fitted model. 

Permutation Importance instead tells us which explanatory variables, once randomized, most 

increase the MSE. Last, Learning Curves allow us to understand the overall complexity of the 

underlying data-generating process.  

 

4.1 Shapley Values and TreeSHAP 

The Shapley Value is a solution concept from co-operative game theory introduced by 

Shapley (1951) and formalized in Shapley (1953). The underlying idea is that the way in which a 

certain sum obtained by a group of players is split depends on how much each member contributes 

to the outcome. 

Applied to Machine Learning, the game is the predictive task and the players are the different 

explanatory variables that work together to produce the gain, namely the difference between the 

prediction for a given individual and the “average prediction in the sample” (Molnar, 2019, 

Chapter 5.9). The Shapley Value of an explanatory variable is “the average of all marginal 

contributions across all possible coalitions of explanatory variables” (Molnar, 2019, Chapter 5.9). 

Shapley Values are calculated at the individual level. If we have k explanatory variables and we 
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are interested in calculating the Shapley Value for one of them, say variable j, we will consider 

all of the possible 2k−1 coalitions of the remaining k − 1 explanatory variables.  

In each of these 2k−1 coalitions, we calculate the difference between the predicted value with 

and without the value of the jth explanatory variable for individual i, xi,j. This reveals the marginal 

contribution of the explanatory variable j in predicting the dependent variable. The values of the 

explanatory variables that do not appear in a coalition are eliminated, by randomly replacing 

individual i’s value of that explanatory variable with that of another individual. The Shapley 

Value for explanatory variable j for individual i is then the weighted average of its marginal 

contributions across all of the 2k−1 coalitions, with the weights depending (in a U-shaped way) on 

the number of explanatory variables included in the coalitions. 

Formally, define xi as the vector of explanatory variables for individual i, and {xi,1, ... , xi,k} as 

the set of all of the values of the k explanatory variables considered for i. Let S be the coalitions 

of players considered in a given step - that is, the coalition of explanatory variables used in the 

model - and f : 2k−1 → ℝ a value function. The Shapley Value of the explanatory variable j for 

individual i is formally defined as: 

 𝜙 ൫𝑥,൯ ൌ  ∑ ሺௌሻ!ሺିሺௌሻିଵሻ!

!ௌ⊆൛௫,భ ,…,௫,ೖ ൟ\൛௫,ೕൟ ሾ𝑓𝒙൫𝑆 ∪ ൛𝑥,ൟ൯ െ  𝑓𝒙ሺ𝑆ሻሿ. (12) 

The value taken by explanatory variable j for individual i then contributes 𝜙 ൫𝑥,൯ “to the 

prediction of this particular instance compared to the average prediction for the dataset” (Molnar, 

2019, Chapter 5.9). 

It is immediate to see that the calculation of Shapley Values is costly, as we calculate values 

for 2k−1 coalitions for every individual in the sample and for every explanatory variable. A number 

of ways of addressing this issue have been proposed, including Monte Carlo sampling by 

Štrumbelj et al. (2014).  

We here consider the TreeSHAP algorithm of Lundberg et al. (2018), where the value function 

is the expected value of the prediction conditional on the explanatory variables in the coalition S: 

𝑓௫(S) = E [f(xi) | S]. The direct estimation of 𝑓௫(S) would have computational complexity of 

O(BL2k), where B is the number of trees in the forest, L the maximum number of final leaves in 

any tree, and k the number of explanatory variables. The TreeSHAP algorithm greatly reduces the 

computational complexity to O(BLD2), where D is the maximum depth of any tree.  
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The key measure that can be derived from Shapley Values is the Shapley Feature Importance, 

that is, the mean absolute value of the Shapley Values for variable j calculated over all of the i 

individuals in the training set: 

 𝐼ௌ൫𝑋൯ ൌ  ଵ

ೝೌ
∑ |𝜙൫𝑥,൯|ೝೌ
ୀଵ . (13) 

We calculate 𝐼ௌ൫𝑋൯ for each explanatory variable in each of the 100 train-test splits, and 

average these to produce Average Mean Absolute Shapley Values with their associated standard 

deviations. Formally, labelling the different train-test splits as train(1), train(2),…,train(100), this 

average value is given by: 

                           𝐴𝑣𝑔ൣ𝐼ௌ൫𝑋൯൧ ൌ
ଵ

ଵ
∑  ଵ

ሺ௧ሺ௧ሻሻ
∑ |𝜙௧൫𝑥,൯|ሺ௧ሺ௧ሻሻ
ୀଵ

ଵ
௧ୀଵ ,                 (14)                     

where 𝑛ሺ𝑡𝑟𝑎𝑖𝑛ሺ𝑡ሻሻ ൌ 7093 (i.e. 80% of the sample size of 8867) in all the 100 splits, and 𝜙௧൫𝑥,൯ 

represents the Shapley Value of explanatory variable j for training individual i in the tth training 

set. The results appear in Figure 1 and Table 7 for the Original model, and Figure 3 and Table 8 

for the Extended model. 

 

    4.1.1 Average Mean Absolute Shapley Values: Original Model 

The Average Mean Absolute Shapley Values are depicted in Figure 1: the most important 

explanatory variable is the composite variable “Has a Partner”. This changes the absolute 

predicted value of life satisfaction by on average 0.36 over the 100 train–test splits; the second 

most important explanatory variable is Emotional Health, with an average effect of 0.19.  

 
Figure 1: Average Mean Absolute Shapley Values in the Original Model. 
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Table 7. Average Mean Absolute Shapley Values in the Original Model 

Explanatory Variables Average MASV SD MASV 

Has a Partner 0.36 0.01 

Emotional Health 0.19 0.01 

Log Income 0.10 0.01 

Good Conduct 0.09 0.01 

Female 0.05 0.01 

Educational Achievement 0.05 0.01 

Employed 0.03 0.00 

Physical Health 0.02 0.00 

 
Notes: This table shows the Average Mean Absolute Shapley Value (MASV) for each explanatory variable 
calculated over the same 100 different train–test splits considered in the Random Forests. Original model. 
Standard deviations are in parentheses. 
 

The Shapley Values can also tell us in which direction the explanatory variables affect the 

findings. The values presented below refer to one Random Forest only (that calculated on train-

test split 1). Nonetheless, given that the performance of this Random Forest and the average over 

all 100 forests are similar, the results there are generalizable. The rankings of the Average MASVs 

in Table 7 (calculated over the 100 Random Forests) and those in Figure 2 below are also similar.  

The dots depicted in Figure 2 are the Shapley Values by individual by explanatory variable, 

the 𝜙 ሺ𝑥,ሻ in Equation (12), with the explanatory variables on the vertical axis and the Shapley 

Values on the horizontal axis. The explanatory variables are ranked from the most Shapley 

Important (Has a Partner) to the least (Physical Health), as shown in Figure 1. 

The colors of the dots reveal whether the explanatory variable for that individual has a high 

or low value, ranked by color intensity ranging from red (high) to blue (low). Overlapping dots 

create ‘clouds’ that help to illustrate the distribution of the Shapley Values.  

The patterns in Figure 2 allow a more-detailed understanding of the average absolute values 

plotted in Figure 1. Consider, for instance, Has a Partner, which is the most important explanatory 

variable: the two highest values of this variable, from Section 2, are 0.685 and 0.530, for being 

married with and without children respectively. The associated Shapley Values for these two 

highest values of Has a Partner in the first row of Figure 2 are represented by the red and purple 

dots, respectively. As can be seen, the Shapley Values of the Has a Partner variable are mostly 
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clustered in the [0.1, 0.35] or [–0.9, –0.5] intervals: being Married with or without children 

increases life satisfaction, on average, by 0.1 to 0.35 points relative to the “average prediction for 

the dataset” (Molnar, 2019). Conversely, the two lowest values that the Has a Partner variable 

takes, 0 and -0.004 (for being single with and without children respectively), correspond to the 

blue Shapley Values and are associated with lower life satisfaction of 0.5 to 0.9 points. 

 

Figure 2: Shapley Values by individual by explanatory variable – Original Model 

 

Notes: The dots in each line represent the Shapley Values (as shown on the horizontal axis) for each individual 
for the variable indicated. The redder dots refer to higher values of the explanatory variable in question, and the 
bluer dots to lower values. Shapley Values at the individual level are calculated from the Random Forest fitted 
on training-test split 1. 
 

The results are even more interesting for Emotional Health. As this explanatory variable is 

more continuous, the Shapley Values are distributed more uniformly. Having a high value of 

Emotional Health increases life satisfaction by 0.1 to 0.45 points. There is also a long left tail: 

predicted life satisfaction can be up to 0.8 points lower for the individuals with the lowest values 

of emotional health.  
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Criminality (Good Conduct) is the third-most important variable. The highest value here is 

for those who reported no crimes. As is evident from the figure, having no criminal record has 

only a small impact on predicted life satisfaction; instead, having committed crimes can sharply 

reduce satisfaction by up to 0.7 points. The logic here is that while no criminal record is normal 

(and so does not make the individual much more satisfied with life), having reported crimes is 

associated with sharply lower satisfaction. The same pattern is found for being employed and 

good physical health: being employed and not having health problems do not have positive effects 

on life satisfaction, but the lack of them (being unemployed or having health problems) has a 

sizeable negative effect. Health problems having such a large effect may reflect the relatively 

young age (34) of our sample. 

Last, low income does not strongly negatively affect life satisfaction (the majority of the blue-

dot Shapley Values are close to zero), but there is a large positive impact of higher income, of up 

to 0.7 points.  

This ranking of explanatory variables is important for policy. Population life satisfaction can 

then be improved by focusing on the individuals in the left tails of the Shapley Values. Here 

Emotional Health, Family situation, Unemployment and Criminality appear central, as the 

explanatory variables associated with the largest drops in life satisfaction. 

 

    4.1.2. Average Mean Absolute Shapley Values: Extended Model 

Figure 3 and Table 8 show the results for the Extended model. Marital Status and Emotional 

Health behave similarly to Has a Partner and Emotional Health in the Original model. The 

individual Shapley Values for this extended set of variables, analogous to those for the Original 

model in Figure 2, appear in Figure 4. Many of these variables seem to have a systematic 

relationship with life satisfaction, as revealed by the separate clusters of dots according to the 

variable’s different values (and the color of the individual dots). 
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Figure 3: Average Mean Absolute Shapley Values in the Extended Model. 
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Table 8. Average Mean Absolute Shapley Values in the Extended dataset 

Explanatory variable Average MASV SD MASV 

Marital Status 0.26 0.008 

Emotional Health 0.15 0.009 

Tenure status 0.12 0.009 

Number of rooms in the household 0.09 0.008 

Whether health limits everyday activities 0.09 0.006 

Smoking habits 0.08 0.007 

Log Income 0.06 0.004 

Number of natural children in the household 0.04 0.005 

Number of people in the household 0.04 0.003 

Good Conduct 0.04 0.004 

Whether registered disabled 0.04 0.006 

Main Activity  0.04 0.003 

Highest academic qualification  0.03 0.005 

Female 0.03 0.004 

Whether father is alive 0.02 0.003 

Alcohol units in a week by category 0.02 0.003 

Whether mother is alive 0.02 0.003 

BMI category 0.01 0.002 

Type of accommodation 0.01 0.002 

Physical Health 0.01 0.001 

Number of non-natural children in the household 0.01 0.001 

Notes: This table shows the Average Mean Absolute Shapley Values in the Extended dataset. Standard deviations 
appear in the right-hand column. 
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Figure 4: Shapley Values by Individual by Explanatory Variable – Extended Dataset 

 

Notes: The dots in each line represent the Shapley Values (as shown on the horizontal axis) for each individual 
for the variable indicated. The redder dots refer to higher values of the explanatory variable in question, and the 
bluer dots to lower values. Shapley Values at the individual level are calculated from the Random Forest fitted 
on training-test split 1. 
 
  
Marital Status in the Extended model is a different variable from Has a Partner in the Original 

model, as it now does not include the presence of children (children appear in a separate variable), 
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and takes on more values than simply Single or Married, now including Separated, Divorced, and 

Widowed (which are assigned the values of 3, 2 and 1 respectively, the lowest values for this 

variable). There is wide variation in the marginal effects for marital status, where the highest 

values (representing Married and Cohabiting, with values of 6 and 5) have a positive impact of 

up to 0.3 life-satisfaction points, but Single, Separated, Divorced or Widowed have large negative 

effects of 0.3 to 0.9 points. 

Health limiting everyday activity has the largest negative impact on predicted life satisfaction, 

of up to 1 point, and behaves in the same way as Disability and Criminality (Good Conduct). 

Physical health, which is towards the bottom of Figure 4, has almost no effect on life satisfaction. 

We might wonder whether this reflects the inclusion of both disability and health limitations in 

the Extended Model. However, dropping these latter two continues to produce only very small 

Shapley Values (as illustrated in Figures 1 and 2, where this is the only physical-health variable). 

Our age-34 respondents report only few of the 15 health conditions in Appendix B: over-three 

quarters have none, and only 5% report two or more.  

The impact of Emotional Health is again more-continuously distributed, with a large effect as 

illustrated in Figure 3. Some of the other explanatory variables are of more marginal importance, 

including gender, education, number of children, number of people in the household, and the type 

of accommodation. The first two of these were equally relatively unimportant in the Original 

Model. 

 

4.2 Comparing Mean Absolute Shapley Values to the Linear Regression Coefficients 

The MASV associated with an explanatory variable is its average absolute marginal effect on 

the predicted dependent variable. This measure is intuitively comparable to the coefficients from 

linear regression, which also reflect the marginal effect of a unitary change in the explanatory 

variable on the dependent variable. We here compare the two, taking only the Random Forest 

with 4000 trees fitted on training set 1. Insignificant coefficients (p-values > 0.05) are reported as 

0. We start with the Original model.  
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    4.2.1 Shapley Values and Regression Coefficients: Original model 

It is intuitive to compare the MASVs, which reflect the mean absolute marginal impact of 

each explanatory variable, to the absolute linear regression coefficients. The results appear in 

Table 9, where the variables are ranked by MASV. The ranking in the two columns is identical 

for the continuous variables (which are all standardized). The comparison between the two 

columns is more difficult to carry out for Employed and Female, as these two coefficients are not 

standardized. The estimated coefficients are therefore larger than they would have been had the 

variables been standardized. On the other hand, standardization has no impact in Random Forests. 

 

Table 9. Random Forest Mean Absolute Shapley Values and Absolute Linear Regression 
Coefficients – Original Model 

Explanatory variable MASV |Coefficients| 

Has a Partner 0.355 0.470 

Emotional Health 0.177 0.293 

Good Conduct 0.096 0.134 

Log Income 0.092 0.117 

Ed. Achievement 0.051 0.078 

Female 0.047 0.216 

Employed 0.034 0.988 

Physical Health 0.021 0.000 

Notes: This table compares Mean Absolute Shapley Values calculated from the optimized Random Forest to the 
Absolute Linear Regression Coefficients. All variables are standardized but the Employed and Female dummies in 
the Original model. 

 
 

    4.2.2 Shapley Values and Regression Coefficients: Extended Model 

The comparison in the Extended Model is less straightforward. While the Shapley Values in 

this case can be interpreted in the same way as for the Original Model, this is not the case for the 

Ridge Regression Coefficients, as in the Extended Model we have added multiple (ordinal) 

multiclass categorical explanatory variables that are divided into dummies. We thus require a 

unique measure for these explanatory variables that is comparable to the MASVs from all of the 

coefficients on the associated dummies. We here choose the absolute weighted mean coefficient 

over all of the associated dummies, with the weights being the fraction of individuals in each of 



30 

the explanatory-variable categories. In this case, since the coefficients are from a Ridge 

regression, they also are standardized. 

Formally, suppose that the explanatory variable 𝑋 is a multiclass categorical variable with k 

categories, split into k dummies for the Ridge Regression. Let 𝜒, be the proportion of individuals 

in the training set in the lth category of explanatory variable j: 

                                                           𝜒, ൌ  ଵ

ೝೌ
∑ 𝐼൫𝑥, ൌ 𝑙൯ೝೌ
ୀଵ                                 (15)                      

where 𝐼ሺ𝑥, ൌ 𝑙ሻ is the indicator function with value 1 if individual i belongs to the lth category 

of the jth explanatory variable, and 0 otherwise. Then, given the 𝛽መ,ଵ, … . ,𝛽መ, estimated Ridge 
Regression coefficients, the Derived Coefficient is: 

                                                                      𝛽መ ൌ ∑ 𝜒,ห𝛽መ,ห

ୀଵ   .                                            (16)                                  

We only carry out this calculation for the multiclass categorical explanatory variables (which 

are indicated by underlined coefficients in the final column below). Numerical discrete variables 

(whether binary, such as Female, or with multiple values, like Number of People in the 

Household), and the variables that are treated as numerical continuous (Log Income and 

Emotional Health) enter the Ridge Regression as they are, and the absolute coefficient in the table 

below is entered directly from the regression output.  

 

Table 10. Random Forest Mean Absolute Shapley Values and Absolute Ridge 
Regression Coefficients – Extended Model 

Explanatory variable MASV |Coefficients| 

Marital Status 0.260 0.292 

Emotional Health 0.138 0.190 

Tenure Status 0.113 0.105 

Number of rooms in the household 0.100 0.110 

Whether health limits everyday activities 0.089 0.104 

Smoking Habits 0.066 0.076 

Log Income 0.055 0.067 

Good Conduct 0.047 0.060 

Number of natural children in the household 0.043 0.001 

Registered disabled 0.041 0.050 

Number of people in the household 0.039 0.022 

Main Activity 0.031 0.090 
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Highest academic qualification 0.031 0.048 

Female 0.029 0.136 

Alcohol units in a week by category 0.024 0.054 

Father is alive 0.022 0.090 

BMI category 0.018 0.034 

Mother is alive 0.017 0.047 

Physical Health 0.008 0.009 

Type of Accommodation 0.007 0.009 

Number of non-natural children in the household 0.006 0.029 

Notes: This table compares Mean Absolute Shapley Values calculated from the optimized Random Forest to the 
Absolute Ridge Regression Coefficients. The results are from the Extended model. The underlined coefficients in 
the final column are calculated using Equation (16).   
 

 

In Table 10, the values of the multiclass categorical explanatory variables (calculated via 

Equation (16)) are underlined. The two most important variables in both columns are marital 

status and emotional health. The most-notable difference between the two columns of Table 10 

is the estimated effect of Female (which is standardized in Ridge Regression): here the MASV is 

more than four times smaller than the associated Ridge coefficient. In the Ridge Regression, 

Female is the third most-important explanatory variable. But in terms of MASVs it is only the 

14th most-important explanatory variable However, the estimated Ridge Regression coefficients 

should perhaps be taken with a grain of salt, as there is some risk that they overestimate the 

expected marginal impact of the explanatory variables on the dependent variable, given the 

assumed linearity of the dependent variable in the parameters and, under the linearity assumption, 

their bias. We conclude this section by discussing Permutation Importance, to assess the impact 

of each explanatory variable in determining the model’s predictive accuracy. 

 

4.3 Permutation Importance 

The idea of Permutation Importance is simple. Once we have randomized, via shuffling, one 

of the explanatory variables in the test set, say the jth, its Permutation Importance is defined as 

the difference between the scoring metric that we consider (in our case, the MSE) calculated from 

the actual 𝑋 and its shuffled version, 𝑋∗ , keeping all of the other variables unshuffled at their 

original values. This operation is performed multiple times, and Permutation Importance is then 
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calculated as the average difference in the scoring metric across the multiple repetitions. While 

this operation can be carried out for both the test and training sets (see Breiman, 2001), we here 

consider only the Test Set, as this represents a diagnostic measure of predictive accuracy. The 

results refer to the Random Forest on train-test split 1. 

Table 11. Random Forest Permutation Importance – Original Model 

Explanatory variable Weight (Standard Deviation) 

Has a Partner 0.113 (0.011) 

Emotional Health 0.043 (0.006) 

Log Income 0.024 (0.005) 

Good Conduct 0.013 (0.004) 

Employed 0.009 (0.002) 

Female 0.004 (0.002) 

Physical Health 0.004 (0.002) 

Educational Achievement 0.002 (0.001) 

 
Notes: This table shows Permutation Importance calculated on the Test Set of the Original Model considering the 
best-performing Random Forest, measuring the fall in predictive accuracy across 100 shuffles of each explanatory 
variable. The figures in parentheses are standard deviations. 

    

Table 12. Random Forest Permutation Importance –Extended Model 

Explanatory variable Weight (Standard Deviation) 

Marital Status 0.064 (0.007) 
Whether health limits everyday activities 0.028 (0.005) 
Emotional Health 0.027 (0.004) 
Log Income 0.011 (0.003) 
Main activity 0.010 (0.002) 
Tenure Status 0.010 (0.003) 
Smoking habits 0.007 (0.002) 
Number of rooms in the household 0.006 (0.003) 
Good Conduct 0.004 (0.002) 
Number of natural children in the household 0.003 (0.001) 
Whether Registered Disabled 0.003 (0.002) 
Number of people in the household 0.003 (0.002) 
Whether father is alive 0.002 (0.001) 
Female 0.002 (0.001) 
Whether mother is alive 0.001 (0.001) 
Highest Academic Qualification 0.001 (0.001) 
Alcohol units in a week by category 0.001 (0.001) 
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Type of Accommodation 0.000 (0.000) 
Number of non-natural children in the household 0.000 (0.000) 
Physical Health 0.000 (0.000) 
BMI weight status category 0.000 (0.001) 

Notes: This table shows Permutation Importance calculated on the Test Set of the Extended Model considering 
the best-performing Random Forest, measuring the fall in predictive accuracy across 100 shuffles of each explanatory 
variable. The figures in parentheses are standard deviations. 

 

The first intuitive finding from Tables 11 and 12 is that, in the Original Model with 8 

explanatory variables, the average marginal impact of randomizing explanatory variables on 

predictive accuracy is greater than in the richer Extended Model with 21 explanatory variables. It 

is also clear that Permutation Importance is not monotonic with respect to the cardinality of the 

explanatory variable. Take, for example, Has a Partner and Log Income in the Original model. 

The former takes on only 4 different values, while the latter is continuous. Hence, when 

randomizing (shuffling) the former, the probability that an individual’s shuffled value is the same 

as their original value is higher, which in turn should mechanically reduce its Permutation 

Importance. Nonetheless, the Permutation Importance of Has a Partner is almost five times higher 

than that of Log Income: Permutation Importance then does capture the actual importance of an 

explanatory variable in predicting life satisfaction, rather than simply modeling the noisy 

characteristics of the explanatory variable itself, such as its cardinality.  

5 Conclusions	

In this paper we have constructed a predictive model for life satisfaction using data from the 

British Cohort Study (BCS). We evaluate the predictive performance of our models relative to 

the benchmark OLS regression in Layard et al. (2014). We first use only the eight original adult 

variables that appeared there (with a different version of self-assessed physical health, as updated 

in Clark and Lepinteur, 2019), and then turn to an Extended model that has 21 explanatory 

variables: 5 of the original 8, plus 16 new variables (some of which are more-detailed versions of 

the other 3 of the original 8). Splitting these categorical variables up into their separate values 

produces 96 dummy variables. 

We found no evidence of improvement in model fit using more-advanced ML methods. In the 

Extended model, we first have to penalize the linear models due to numerical problems including 



34 

multicollinearity, or exclude from the analysis some of the least-populated categories. The 

Extended Model with the 16 new explanatory variables allows us to improve the predictive 

accuracy, in testing, by 5.3% in terms of a lower Average Test MSE figure.  

The best-optimized Random Forest produced no improvement over the Penalized Linear 

Regressions on the test set in the Extended Model.  

Last, to help interpret the importance of the different explanatory variables in the prediction 

of life satisfaction, we considered two model-agnostic interpretability tools applied to the Random 

Forest: Permutation Importance and Shapley Values. The latter allows the comparison of the 

machine-learning results to the estimated coefficients from Penalized Linear Regressions.  

Shapley Values assess the marginal impact of the (significant) different explanatory variables 

at the individual level. In other words, Shapley Values do not pick up the average effect of a one-

unit change in the explanatory variable (as for the coefficients of a linear regression model) but 

the marginal impact of every single value of that explanatory variable. Another advantage of 

using a Machine Learning algorithm like Random Forest, where the explanatory variables do not 

need to be split in dummies (as long as they are ordinal), is that we can take into account the 

categories that we dropped in the Linear Unpenalized Regression. The comparison of the Random 

Forest Shapley Values to the estimated Ridge Regression coefficients suggests that some caution 

should be exercised regarding coefficient size in the latter. This in particular applies to gender: in 

the Extended dataset, there is a significant difference between the Female MASV and the linear 

regression coefficient, with the latter being nine times larger than the former. This is in line with 

Oparina and Srisuma (2022) who, in non-parametric estimation of the measurement error in 

reported life satisfaction, find a negative relation between female and latent life satisfaction (i.e. 

the true value of the variable), but a positive coefficient for reported life satisfaction.   

Our work here has considered the subjective judgment of life satisfaction, but we believe that 

the prediction of objective variables will also benefit from non-linear machine-learning analyses.  

Regarding the most important predictors of life satisfaction, our comprehensive analysis 

confirms that Marital Status as well as Emotional and Physical Health (in terms of limitations to 

everyday activities) are always the most important explanatory variables, in line with the findings 

from the existing literature. 
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Appendix A: Descriptive Statistics 

 

Explanatory Variables Mean SD Min Max 
Log Income 9.28 0.598 6.23 12.4 

Educational Achievement 0.20 0.251 0 0.75 

Employed 0.98 0.130 0 1 

Has a Partner 0.48 0.285 0.00 0.66 

Good Conduct 24.50 1.699 0 25 

Female 0.52 0.500 0 1 

Marital Status - Other missing 0.00 0.018 0 1 

Marital Status - Married 0.54 0.498 0 1 

Marital Status - Cohabiting 0.21 0.404 0 1 

Marital Status - Single (never married) 0.19 0.394 0 1 

Marital Status - Separated 0.02 0.149 0 1 

Marital Status - Divorced 0.03 0.182 0 1 

Marital Status - Widowed 0.00 0.037 0 1 

Type of Accommodation - Not Applicable 0.01 0.076 0 1 

Type of Accommodation - A house or bungalow 0.88 0.326 0 1 

Type of Accommodation - Flat or Maisonette 0.11 0.310 0 1 

Type of Accommodation - Studio flat 0.00 0.044 0 1 

Type of Accommodation - A room / rooms 0.00 0.041 0 1 

Type of Accommodation - Something else 0.00 0.057 0 1 

Tenure Status - Refusal 0.00 0.065 0 1 

Tenure Status - Do not Know 0.00 0.015 0 1 

Tenure Status - Own (outright) 0.05 0.221 0 1 

Tenure Status - Own - buying with help of a mortgage/loan 0.69 0.462 0 1 

Tenure Status - Pay part rent and part mortgage (shared/equity ownership) 0.01 0.067 0 1 

Tenure Status - Rent it 0.19 0.393 0 1 

Tenure Status - Live here rent-free 0.04 0.185 0 1 

Tenure Status - Squatting 0.00 0.015 0 1 

Tenure Status - Other 0.02 0.147 0 1 

Main Activity - Do not know 0.00 0.015 0 1 

Main Activity - Full-time paid employee 0.58 0.494 0 1 

Main Activity - Part-time paid employee (under 30 hours a week) 0.16 0.365 0 1 

Main Activity - Full-time self-employed 0.08 0.273 0 1 

Main Activity - Part-time self-employed 0.02 0.127 0 1 

Main Activity - Unemployed and seeking work 0.02 0.137 0 1 

Main Activity - Full-time education 0.01 0.092 0 1 

Main Activity - On a government scheme for employment training 0.00 0.028 0 1 

Main Activity - Temporarily sick/disabled 0.00 0.042 0 1 
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Main Activity - Permanently sick/disabled 0.02 0.153 0 1 

Main Activity - Looking after home/family 0.10 0.302 0 1 

Main Activity - Other 0.01 0.108 0 1 

Highest Academic Qualification - Do not know 0.00 0.034 0 1 

Highest Academic Qualification - None 0.09 0.286 0 1 

Highest Academic Qualification - CSE 0.15 0.359 0 1 

Highest Academic Qualification - GCSE 0.09 0.289 0 1 

Highest Academic Qualification - GCE O Level 0.24 0.428 0 1 

Highest Academic Qualification - A/S Level 0.02 0.128 0 1 

Highest Academic Qualification - Scottish School Certificate, Higher School Certificate 0.02 0.145 0 1 

Highest Academic Qualification - GCE A Level (or S Level) 0.05 0.225 0 1 

Highest Academic Qualification - Nursing or other para-medical qualification 0.02 0.128 0 1 

Highest Academic Qualification - Other teaching qualification 0.01 0.086 0 1 

Highest Academic Qualification - Diploma of Higher Education 0.08 0.267 0 1 

Highest Academic Qualification - Other degree level qualification such as graduate membership 0.05 0.217 0 1 

Highest Academic Qualification - Degree (e.g. BA, BSc) 0.12 0.325 0 1 

Highest Academic Qualification - PGCE-Post-graduate Certificate of Education 0.02 0.135 0 1 

Highest Academic Qualification - Higher degree (e.g. PhD, MSc) 0.04 0.205 0 1 

Whether Registered Disabled - Do not know 0.00 0.030 0 1 

Whether Registered Disabled - Yes 0.02 0.132 0 1 

Whether Registered Disabled - No but long-term disability 0.63 0.482 0 1 

Whether Registered Disabled - No and no long-term disability 0.35 0.477 0 1 

Whether health limits everyday activities - Yes 0.07 0.258 0 1 

Whether health limits everyday activities - No but health problems since last interview 0.51 0.500 0 1 

Whether health limits everyday activities - No and no health problems since last interview 0.42 0.494 0 1 

BMI weight status category - Insufficient data 0.03 0.164 0 1 

BMI weight status category - Underweight (< 18.5) 0.01 0.119 0 1 

BMI weight status category - Normal (18.5-24.9) 0.47 0.499 0 1 

BMI weight status category - Overweight (25-29.9) 0.33 0.470 0 1 

BMI weight status category - Obese (30 and above) 0.16 0.368 0 1 

Smoking habits - Other missing 0.00 0.011 0 1 

Smoking habits - Never smoked 0.45 0.498 0 1 

Smoking habits - Ex smoker 0.24 0.425 0 1 

Smoking habits - Occasional smoker 0.07 0.246 0 1 

Smoking habits - Up to 10 a day 0.09 0.290 0 1 

Smoking habits - 11 to 20 a day 0.13 0.337 0 1 

Smoking habits - More than 20 a day 0.02 0.144 0 1 

Smoking habits - Daily but frequency not stated 0.00 0.026 0 1 

Alcohol units in a week by category - Never drinks or only on special occasions 0.19 0.392 0 1 

Alcohol units in a week by category - None reported 0.08 0.266 0 1 

Alcohol units in a week by category - 1 to 14 0.48 0.500 0 1 
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Alcohol units in a week by category - 15 to 21 0.10 0.305 0 1 

Alcohol units in a week by category - 22 to 39 0.10 0.294 0 1 

Alcohol units in a week by category - More than 39 0.05 0.226 0 1 

Whether mother is alive - Do not know 0.00 0.032 0 1 

Whether mother is alive - Missing 0.00 0.055 0 1 

Whether mother is alive - Yes in household 0.07 0.254 0 1 

Whether mother is alive - Yes 0.86 0.346 0 1 

Whether mother is alive - No 0.03 0.158 0 1 

Whether mother is alive - No reported dead last sweep 0.04 0.197 0 1 

Whether father is alive - Do not know 0.01 0.105 0 1 

Whether father is alive - Missing 0.00 0.051 0 1 

Whether father is alive - Yes in household 0.05 0.220 0 1 

Whether father is alive - Yes 0.79 0.410 0 1 

Whether father is alive - No 0.05 0.218 0 1 

Whether father is alive - No reported dead last sweep 0.10 0.300 0 1 

Number of people in the household 3.11 1.274 1 10 

Number of natural children in the household 1.09 1.090 0 8 

Number of non-natural children in the household 0.07 0.357 0 4 

Number of rooms in the household 4.70 1.531 1 12 

Physical Health 0.30 0.610 0 4 

Emotional Health 0.83 0.119 0 1 

 

Appendix B: Physical Health 

Physical Health 
 
Please tick all that apply. Have you suffered from any of these…  
 
Hay Fever 

Asthma 

Bronchitis 

Wheezing when you have a cold flu 

Skin problems 

Fit, convulsions, epilepsy 

Persistent joint of back pain 

Diabetes 

Persistent trouble with teeth, gums or mouth 

Cancer 

Stomach or other digestive problems 

Bladder or kidney problems 

Hearing difficulties 
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Frequent problems with periods or other gynecological problems 

Other health problem 

 

Appendix C: Learning Curves 

Learning Curves refer to the behavior of the MSE calculated on the Test Set as function of the 

size of the training set, based on the idea that more-complex data generating processes (DGP) 

may require larger training sets. The understanding of the necessary size of the training set 

required to correctly learn the DGP is useful for a number of reasons. First, should we be 

interested in carrying out new analyses on the same data, we can save time by fitting the new 

algorithms only to the required amount of training data. Second, this can help us to better 

understand the complexity of the underlying DGP. And last, it can provide guidance for the 

training set size required for the analysis of similar, but not identical, data. In the Extended model, 

we limit our discussion to the Ridge Regression, and for the Original model we present the 

Unpenalized Learning Curves. In both the Original and Extended models, all of the five different 

Penalized Linear Regressions considered have similar learning behavior. We also plot the curves 

from Random Forests for both models, trained on non-standardized values.  

       C.1 Learning Curves: Linear Regressions 

 

In the Original model, we start with the Unpenalized Linear Regression. Here the DGP is already 

fully learned with only 2% of individuals in the training set. This is consistent with our finding 

that an Unpenalized Linear Regression is the best choice for these data, and that the linearity 

assumption holds: the correct DGP is learned very quickly. Here, the MSEs converge to the bias 

only. 
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The behavior in the Ridge Regression on the Extended dataset is similar to that in the Unpenalized 

Linear Regression in the Original dataset. In this case, the Test MSE also stabilizes for training 

sets including more than 20% of individuals.  

       C.2 Learning Curves: Random Forest 

 

For the Learning Curves in the Random Forest, in the Original model the DGP is learned 

confidently with 3% of observations in the training set.  

 

The DGP is also confidently learned with 10% of individuals in the training set in the Extended 

model, with the Test MSE thereafter remaining constant. 
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Appendix D: Categories with at most 15 individuals:	
Categories with at most 15 individuals  Number of individuals	
Type of Accommodation - A room / rooms 15 

Main Activity - Don't Know 2 

Main Activity - On a government scheme for employment training 7 

Main Activity - Wholly Retired 1 

Whether registered disabled - Don't Know 8 

Highest academic qualification - Don't Know 10 

Marital Status – Widowed 12 

Marital Status - Other missing 3 

Whether mother is alive - Don't Know 9 

Smoking habits - Daily but frequency not stated 6 

Smoking habits - Other missing 1 

Tenure Status – Squatting 2 

Tenure Status - Don't Know 2 
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