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Abstract
A central goal in Cognitive Science is understanding the mechanisms that
underlie cognition. Here, we contend that Cognitive Science, despite in-
tense multidisciplinary efforts, has furnished surprisingly few mechanistic
insights. We attribute this slow mechanistic progress to the fact that cog-
nitive scientists insist on performing underdetermined exercises, deriving
overparametrised mechanistic theories of complex behaviours and seeking
validation of these theories to the elusive notions of optimality and biologi-
cal plausibility. We propose that mechanistic progress in Cognitive Science
will accelerate once cognitive scientists start focusing on simpler explananda
that will enable them to chart an atlas of elementary cognitive operations.
Looking forward, the next challenge for Cognitive Science will be to un-
derstand how these elementary cognitive processes are pieced together to
explain complex behaviour.
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Generating mechanistic theories of cognitive capacities is inevitably hard since the-
ories in the empirical sciences are underdetermined by data. Researchers abduce theories
not only on the basis of empirical observations but also on theoretical grounds, such as con-
siderations about computability, parsimony, learnability, evolvability and more (Van Rooij,
2008; van Rooij & Baggio, 2021). We start by observing that in Cognitive Science, two
notions – naturally linked to Marr’s computational and implementational levels of anal-
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ysis (Marr, 1982) – are routinely used to support the abduction of mechanistic theories:
optimality and biological plausibility.

In this letter, we argue that seeking for ‘seals of approval’ from the auxiliary notions
of optimality and biological plausibility is rather fruitless and revealing of a bigger issue.
That is, theories in Cognitive Science are underdetermined by data to such a large extent,
that auxiliary notions often become the primary criteria for theory selection (see related
debates, Jones & Love, 2011; Lieder & Griffiths, 2020; Love, 2021; Rahnev & Denison,
2018). We postulate that a more productive trajectory should exactly address the issue of
underdetermination drastically, by first focusing on simple behaviours that are amenable
to mechanistic explanation; and then by carefully examining how these simple mechanisms
can give rise to more complex behaviour.

Optimality as a seal of approval

Optimality is an elusive notion because its definition depends on a number of arbi-
trary assumptions. However, optimality can be used in a more constrained fashion by defin-
ing an optimal algorithm with regards to a certain criterion and assumptions. Typically,
showing that an algorithm derived from or linked to optimality principles can quantitatively
account for behavioural data, is perceived as a superior explanation in Cognitive Science,
spanning more than one levels of Marr’s analyses, answering what, why and how questions
concerning cognitive capacities. However, a priori assuming that an ‘optimal’ algorithm is
the most satisfying computational account is unwarranted (Guest & Martin, 2021). Due to
this misconception, the link between ‘optimal’ algorithms and the empirical reality often
ends up being loose. That is, cognitive scientists readily validate ‘optimal’ algorithms once
they quantitatively approximate a set of generic datapoints. However, the empirical tests
that should probe the core assumptions of the algorithm are typically absent (van Rooij &
Baggio, 2021).

For example, the drift-diffusion model (Ratcliff, 1978) is a decision-making algo-
rithm that manages speed-accuracy trade-offs in a statistically optimal fashion, but does so
narrowly only in specific and idealised environments (Moran, 2015). The narrow optimality
that the drift-diffusion model exhibits, has wrongly served as ‘a seal of approval’. Cognitive
and mathematical psychologists have focused on how well this model can explain countless
generic datasets; the (often trivial) theoretical and empirical tests that could have falsified
the model (or that could have ‘improved’ auxiliary aspects of the model without challeng-
ing core assumptions - see Lakatos, 1976) were postponed for almost four decades (Pirrone
et al., 2018; Pirrone et al., 2022; Teodorescu et al., 2016). For instance, do decision-makers
actually integrate difference in evidence? Do they even integrate evidence at all (Cisek
et al., 2009; Edmunds et al., 2020)? Are there limits on the temporal window of infor-
mation integration (Usher & McClelland, 2001)? Do people optimise speed-accuracy or
speed-value trade-offs (Pirrone et al., 2014)? Interestingly, crucial observations obtained in
‘strong inference’ experiments (Platt, 1964) cast doubts on the validity of the algorithm.

Biological plausibility as a seal of approval

Biological plausibility is the extent to which a proposed mechanistic theory is con-
sistent with the way the brain represents and processes information. It is reasonable to
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assume that mechanistic theories must have viable neural implementations. However, akin
to the notion of optimality, biological plausibility can be flexibly defined. A lot might be
known about how single neurons work, but how computations scale-up in neural popula-
tions or how different brain regions communicate during complex tasks is a topic of intense
investigation (Pessoa, 2022).

Even though it is a fuzzy concept, biological plausibility is often used as a seal of
approval for mechanistic theories of complex behaviour (Busemeyer et al., 2019; Love, 2021;
Roe et al., 2001; Usher & McClelland, 2004). For instance, neural network models often
enjoy an elevated status as superior explanations of behaviour. However, the similarities
between artificial and biological neural networks are rather superficial (see Gurney, 2018).
The fact that artificial neural networks mimic instances of complex behaviour could just be
a byproduct of their complexity and clever engineering techniques (Bowers et al., 2022). A
common criticism is that neural network models end up as opaque as the brain itself.

The notion of biological plausibility can also mask the failure of certain mechanistic
models in explaining and predicting behaviour. To illustrate, divisive normalisation is
thought to be a canonical neural computation describing the way neurons represent inputs
in the visual cortex (Louie et al., 2013). The idea that the inputs to a neuron are divisively
normalised by their sum was recently applied in a decision-making model for 3-alternative
value-based choices. In this setting, divisive normalisation predicts that the discriminability
between the two strong alternatives is reduced when the weakest alternative increases in
value. Nevertheless, the empirical robustness of this effect has been doubted (Gluth et
al., 2020). More generally, the assumption that the neural computations underlying visual
representation also underlie representation of value-based options is unwarranted.

Searching for canonical mechanisms

Reflecting on the examples above we postulate that if optimality or biological plau-
sibility considerations weigh in heavily or even precede mechanistic descriptions, favouring
a certain class of models is unavoidable and potentially misleading. Optimality and biolog-
ical plausibility are flexible notions, and thus cannot be reliably used for theory selection,
let alone as primary criteria. Ultimately, the strongest test of a mechanistic model lies in
its ability to explain behaviour. Can’t cognitive scientists focus directly on mechanistic ex-
planations of behaviour? Adopting Marr’s ‘top-down’ perspective, earlier influential frame-
works (Anderson, 2013) discarded direct mechanistic explanations as being by-definition
arbitrary. There are simply too many possible mechanistic explanations for a single be-
havioural phenomenon. We partly accept this assessment. Mechanistic explanations can be
arbitrary, not by-definition, but when the targeted behaviours are overly complex. With the
holy grail in Cognitive Science being the explanation of complex, sophisticated behaviours
mechanistic stagnation is unsurprising.

We propose that before understanding the mechanisms via which humans do maths,
play chess, or procrastinate, cognitive scientists need first to definitively understand the
mechanisms via which humans retain, recall, forget, select and integrate information at the
simplest level. Such mechanisms sound trivial but remain poorly understood. Mechanistic
discovery of simple behaviours has been happening in a domain-specific fashion within Cog-
nitive Psychology and Neuroscience but what is currently missing is theoretical unification
by connecting findings across domains such as memory, attention, or simple choice in order
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to chart the basic computational blocks of cognition. This endeavour should be intensi-
fied and assisted by advances in invasive and non-invasive neurophysiological techniques
that permit the more detailed observation of information representation and processing in
humans and other animals. While this approach is not immune to design choices and as-
sumptions, highlighting what human cognition can do routinely across domains, mitigates
the risks that conclusions are task-dependent or dependent upon specific assumptions. We
believe that this approach lies somewhat closer to mechanisms in the trade-off between com-
plexity and mechanistic observability, and as such is a promising plan to tackle fundamental
questions pertaining cognition.

Our proposal is not merely a call for ‘keeping it simple’. The next challenge after
understanding these simple mechanisms, is understanding how these simple mechanisms
are pieced together during complex behaviours. Towards this direction, we advocate for
a more sophisticated reductionist approach where the core aspects of complex tasks are
abstracted away into less complex bespoke tasks that simultaneously probe more than one
cognitive processes and their interactions (Brunton et al., 2013). Waskom et al. (2019) dis-
cuss examples from the literature, and propose practical recommendations regarding how
experimental techniques from sensory research could be exported to fields such as the study
of decision making and executive control using simple parametrised stimuli that allow to
manipulate the timing and strength of information. Similarly, Tsetsos et al. (2012) built
multi-attribute context effects into a seemingly innocuous evidence accumulation task by
manipulating the temporal correlations among the incoming evidence samples. Obtaining
‘psychophysical analogues’ of behavioural phenomena that are typically described in con-
sumer choice experiments facilitates a more direct mechanistic explanation of the factors
that dictate our consumer choices.

Recent proposals, promising to accelerate our mechanistic understanding, in-
volve both ‘computational-first’ (Lieder & Griffiths, 2020), and ‘implementational-first’
(Kriegeskorte & Douglas, 2018) approaches as ways of narrowing down the vast space
of possible algorithms. We acknowledge that both these proposals are cautious in their
usage of optimality and biological plausibility, beyond the superficial ‘seal of approval’ us-
age. However, fundamental theorising tools in these approaches (e.g., neural networks or
Markov chain Monte Carlo sampling) assume that basic computational operations (e.g.,
argmax or integration), are implemented in stylised ways. We believe that these proposals
should mitigate the tangible risk of these basic computational operations being implemented
fundamentally differently in biological brains.

In conclusion, we contend that if both the processes and the inputs that feed into
these processes are unknown, claims about cognitive capacities supported by optimality or
biological plausibility claims are vacuous. We promote a bottom-up approach (Love, 2015;
Waskom et al., 2019) more narrowly and intensely focused within Marr’s algorithmic level of
analysis. Certainly, we do not claim that other levels of analysis should be dispensed with,
but believe that discovering canonical algorithms can naturally feed back to the question of
optimality (Moran & Tsetsos, 2018; Tsetsos et al., 2016) or neural implementation (Luyckx
et al., 2020) in less ambiguous terms, by enabling the characterisation of the trade-offs that
the cognitive system solves within its neural realisation.
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