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F or those fortunate enough to be unfamiliar 
with it, Snakes and Ladders is a children’s 
board game of no skill and no mathematical 
interest. The game, also known as Chutes and 
Ladders, uses a board that is in essence a strip 
of squares, from 1 to 100. A sample board is 

shown in Figure 1. Each player starts in square 0 (just off 
the board), and players take turns. On each turn, a player 
rolls a usual six-sided die and advances by a number of 
squares equal to the roll of the die. The twist is that some 
squares (“ladders”), when you land on them, advance 
you to a later square, and some (“snakes”) put you back 
to an earlier square. The goal is to be first to reach square 
100.

A key point is that the players are independent. They 
could as well play separately, each counting how many 
moves they took, and compare notes at the end: the one 
with the smaller number of moves wins. This, along with 
the fact that no skill is involved (there are no choices to 
make), is why I disparaged the game as being of no (math-
ematical) interest; but actually, there are some mathemati-
cally interesting aspects.

In particular, as the game is played, both players tend to 
advance, but there are frequent setbacks. When you are at 
square i and your opponent is at j, it is natural to wonder 
who has the advantage. We’ll say that square i is “better 
than” j (and write i ≻ j ) if a player at i is more likely to win 
than one at j: if the two players bet even odds on the out-
come over multiple games, then in the long run, the player 
at i would come out ahead. Are later squares always better? 
Probably not, since it’s probably better to have the possibil-
ity of a long ladder just ahead of you than to be just past 
it. Does it even make sense to ask what square is better, or 
does it depend on your opponent’s square? Specifically, 
might the game be “intransitive”: is it possible that square i 
is better than j, and j better than k, but k is better than i, so 
that i ≻ j ≻ k ≻ i?

We will answer these questions. We are not aware of the 
intransitivity question having been asked before for Snakes 
and Ladders. Along the way, we’ll visit Markov chains, 
simulation, a paradox of size-biased sampling of geometric 
random variables, and intransitive dice.

We’ll begin with a soupçon of history and some pesky 
details. Then we will find the expected number of rolls to 
reach square 100, using simulation (and exploring the size-
biased sampling paradox), then Markov chains. In the next 

section, we find the winning edge between two cells and 
look for intransitive triples, first using Markov chains and 
then simulations. We then discuss intransitivity in dice, 
and conclude by connecting such dice directly to Snakes 
and Ladders.

History, Details, and the Markov Chain
Snakes and Ladders is widely agreed to derive from an 
Indian game, called gyān chaupar in Hindi, making its way 
to Victorian England as a side effect of British colonialism. 
The “infobox” of the Snakes and Ladders Wikipedia page 
[11] asserts without attribution that the game has been 
played since the second century CE, while a number of 
sources credit its origin to the thirteenth century poet and 
philosopher Sant Dnyaneshwar, but again without citing 
any basis. The scholarly article [7] cites concrete evidence 
for the game’s having been played in the eighteenth century 
and says that it “is doubtless much older,” but that since 
board materials are ephemeral, “[u]ntil earlier evidence is 
available, the origins ... of the game must remain obscure.” 
(See also [8, Conclusions].) The boards vary in size, as do the 
numbers of snakes and ladders and their positions, depic-
tion, and labeling, but the game play remains the same.

Wherever played, the game was meant to be morally edu-
cational. Virtuous ladders, and vices represented by snakes, 
would bring you toward or away from some version of 
heaven. Their depiction and labeling would suit the moral-
ity of the time and place, a Victorian version, for example, 
having a ladder of Penitence leading to a square of Grace.

Whether or not morally instructive, the game is a fine 
illustration of randomness.

An important detail for us is what it means to win. One 
definition is that if you are the first to finish you win, but 
that would give an unfair advantage to the first player. (A 
Markov chain analysis of this version of Snakes and Lad-
ders is given in [1].) In our house we play fair: the game 
goes in rounds (in each round, player 1, then player 2), and 
a player wins if they finish in a round and the other player 
does not. So, if player 1 finishes, player 2 has one last turn: 
if they also finish, the game is a draw. Either way, we can 
consider the two players separately and simply count how 
many rounds it takes for each to finish: in our fair version, 
the player finishing in an earlier round wins, and if both 
finish in the same round, it is a draw.
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With this fair version, i ≻ j means that if one player is in 
square i and the other in j in the same round, then i wins 
more often than j (with draws not counting either way): in 
the long run, i has a winning advantage.

Our main interest is in “intransitivity,” i.e., in whether 
there is a “triangle” (or longer cycle) of squares such that 
i ≻ j ≻ k ≻ ⋯ ≻ i . The notion of intransitivity is natural 
in the fair version, where we consider squares i, j, and k all 
in the same round. (It is less natural in the unfair version, 
where we must take into account whose move it is. There, 
perhaps we’d look for a 4-cycle where square i having the 
move has an advantage over square j without it, which in 
turn has an advantage over square k with, that over square 
l without, and that over square i with.)

Let’s return to the game’s setup and clarify some details. 
First, an example. In our board, there is a ladder from 
square 4 to 14. This means that square 4 can never be oc-
cupied: if, for example, a player is on square 3 and rolls a 1, 
they move to square 14.

There are two minor details. One is how you finish. If 
you overshoot 100, does that count as a finish, do you stay 
in the same square to try again on the next turn, or do you 
“reflect” back from 100? We arbitrarily choose the “reflect-
ing” version: for example, from 99, a roll of 3 would bring 
you 1 step forward to 100, then 2 steps back to 98, where 
on our board there is a snake, so you’d wind up at 78. A 
second detail is that sometimes the game is played with the 
rule that if a player rolls a 6, they are allowed an extra roll 
in the same turn; it makes no essential difference, and we 
eschew this complication.

To recapitulate, in essence, the game consists of a set of 
squares, or “states.” From each state, there are six possible 
next states, the one obtained depending on the roll of the 
die. Such a game defines a Markov chain. (See Figure 2.) Our 
board has 82 states, including 0 and 100: squares that are the 
starting point of a snake or ladder do not appear as states, 
since it is impossible to wind up in such a square. The winner 
is the first player to reach a specified state (100 in our case).

Expected Time to Finish
Let’s return now to our questions. It is natural to wonder, 
first, to what degree being farther along the board is actu-
ally helpful, and by how much. For each state (each board 
square that is not the start of a snake or ladder), what is the 
expected number of moves from that state to the end state 
(100), that is, the number of moves it would take, on aver-
age, in the limit over an infinite number of games?

Figure 3 shows that indeed it is generally better to be 
farther advanced along the board—later squares have for 

Figure 1.  A sample Snakes and Ladders board. This sam-
ple, owned by the author, bears no identifying marks or 
copyright. Squares are numbered in a serpentine pattern, 
moving to the right through the bottom row, left in the row 
above it, and so on.

Figure 2.  The Snakes and Ladders board of Figure 1, laid out 
from top to bottom and left to right. Each square has an index 
(lower right corner) from 1 to 105, and a value (center) corre-
sponding to a state of the Markov chain. Your previous value, 
plus your die roll (from 1 to 6), gives an index, whose value is 
the index of your new square. For example, from square 5, a 
roll of 4 brings you to index 9 and thus, via a ladder, to state 31 
(the value in the square of index 9). The starting state is 0 (not 
shown). The finishing square of 100 is followed by the squares 
to which you are redirected (your next state) if you overshoot 
100. Squares that are the starting point of a snake or ladder are 
shown in gray: they are not Markov chain states because it is 
impossible to wind up in such a square. The occupiable squares, 
shown in white, have their value equal to their index.
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the most part a lower expected time (i.e., number of turns) 
to completion—but there are many exceptions. For in-
stance, the situation is successively worse from squares 22 
to 27, because square 28 is a ladder to 84, and being a bit 
earlier maximizes the chance of landing at that ladder.

The results shown in Figure 3 are drawn from more detailed 
results (not presented in this paper) giving for each state i, the 
probability that starting in state i, the game finishes within k 
moves; in principle this should be done for all k from 0 through 
∞ , but in practice, the probability that the game has not ended 
after 1,000 moves is less than 10−14 (no matter what square you 
begin on), so we limited calculation to this number. This infor-
mation is equivalent to knowing, for each k, the probability 
that the game ends precisely on the kth roll: the differences in 
successive “by time k” probabilities are the “at time k” prob-
abilities, and the cumulative sums of the “at k” probabilities are 
the “by k” probabilities. There are two methods of going about 
finding this information: simulation of the game and calcula-
tion from the Markov transition matrix.

Simulation
Since these questions were just a flicker of curiosity, not a 
serious research agenda, it was natural to address them by 
a quick and easy simulation. We can program a computer 
to start a player in a specified square i, perform a simulated 
die roll, advance the player accordingly, and continue 
likewise until the player finishes. Repeating this for square 
i gives a sample of the game lengths that with a large num-
ber of repetitions should be an accurate sample of the true 
distribution of the duration.

Observing that the game is memoryless, the simulation can 
be done much more efficiently. Memorylessness means that 
if we are in square i, the remaining time until the end of the 
game is independent of what came earlier (though of course 

dependent on the random future die rolls). Thus, instead of 
getting just a single duration out of one game simulation, 
we can get many. Suppose a simulated game visits squares 
0, 2, 6, 10, 6, 9,… , 100 . (From square 10, a roll of 6 brings 
you to square 6 via a snake at 16.) If there were 50 rolls in all, 
this play gives 51 simulated values: from 0 the game ended in 
50 steps, from 2 in 49 steps, and so on, until from 100 it end-
ed in 0 steps. Note that from the first 6, the game ends in 48 
steps, and from the second 6 in 46 steps: the simulation can 
give several remaining-time samples for a single i. All in all, a 
play of n steps gives n samples (ignoring the final 100), much 
better than playing a whole game to get just one sample.

Size‑Biased Sampling
The latter method, if you look at it from a certain angle, 
appears wrong. If we start a simulation from i, clearly the 
duration from that visit of i is what we want. The memory-
lessness tells us that for later visits to i, the time remaining 
until the finish is also a valid sample. But paradoxically, those 
later visits to i obviously have shorter game durations than 
the starting one. Though this approach seems wrong, in fact, 
it is right; the mystery lies in size-biased sampling. (The 
“bus waiting time paradox” is a beautiful example. If buses 
come on average once an hour but randomly—technically, 
following a Poisson process of rate 1—the expected time 
from one bus to the next is one hour. But from the moment 
you arrive at the bus stop, the expected time to the next bus 
is an hour, and by symmetry, the expected time since the 
previous bus is also an hour, giving an expected time of two 
hours between these two buses. This appears paradoxical.)

Here, intuitively, while it is true that looking at later vis-
its to i would lead to smaller estimates of the game duration 
(certainly compared to the first visit to i in the same game 
simulation), countering this is that long games, with more 

Figure 3.  Expected number of moves to finish versus state (square number). The game starts in state 0. The ending state is 100, 
so from it, the expected time to finish is 0. There are gaps at, for example, positions 1 and 4, because these board squares are not 
states: in this case, they are ladders to 38 and 14. Being farther along the board is generally helpful, but not consistently so.
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visits to i, are overrepresented in the sampling. It’s not obvi-
ous that these two effects exactly balance one another, but—
trusting to the memorylessness perspective—they must.

To check, we can calculate. From state i, let p be the 
probability that i is visited again before the end of the 
game. In that event, let D be the distribution of time until 
the next visit to i. And let D′ be the distribution of time 
from the final visit of i until the game’s end. For a given 
visit to i, let K be the number of visits to i during the game 
(including this visit, but no earlier ones, if this was not the 
first). Conditional upon K = k , the length of the game is 
∑k

s=1 As + B , where As ∼ D are independent random vari-
ables for the revisit durations (each As having distribution 
D), and B ∼ D� is the time to get from the final visit of i to 
the finish. So K tells us everything: if the two methods of 
simulation result in the same distribution of K, then they 
give (in the long run) the same sampling of game durations. 
This, then, is just a question of two ways of sampling the 
geometric random variable K.

For the first method of simulation, K is just geometrically 
distributed with parameter p:

For the second method, of all the visits to i sampled in all 
the games, we wish to know what fraction of these had 
exactly k more visits before the game’s end (including this 
visit but no earlier ones). For k ≥ 1 , this is

a game with t visits to i occurs with probability pt−1(1 − p) , 
gives one kth to last visit to i iff t ≥ k , and gives t visits to i 
in all. It is not hard to check that this expression simplifies 
to pk−1(1 − p) . That is, the fraction of i-visits that are kth to 
last ones in the second simulation approach is the same as 
the first approach’s probability that there are k visits to i, 
and the two approaches do (as they must) lead to the same 
result.

The Markov Chain
The Snakes and Ladders Markov chain, like any other, is 
completely described by its transition matrix A. For states 
i and j, Aij is the probability of moving from state i to 
state j in one step. Here, for example, A17,19 = 1∕6 : only 
a die roll of 2 brings us from 17 to 19. To get from i to j in 
exactly two steps means moving from i to some k in one 
step and k to j in the next, which happens with probabil-
ity 

∑

k AikAjk = (A2)ij . Repeating this gives a fundamental 
property of Markov processes, namely that the probability 
of getting from i to j in exactly s steps is (As)ij.

The probability, starting from i, of reaching the final 
state 100 in s steps is given by (As)i,100 . Specifically, the 
finishing state is “absorbing”: from state 100 there is prob-
ability 1 of returning to 100 ( A100,100 = 1 ) and probability 0 
of moving to any other state. In this case, (As)i,100 repre-
sents the probability of being in the finish state at time 
s, perhaps having reached it earlier. Writing fi(s) for the 

ℙ (K = k) = pk−1(1 − p) .

ℙ (K = k) =

∑

t≥k p
t−1(1 − p)

∑

t≥1 t ⋅ p
t−1(1 − p)

;

probability that the game duration from i is exactly s, we 
have fi(s) = (As)i,100 − (As−1)i,100.

Calculating fi(s) for s from 0 to say 1000 gives, for each 
i, the distribution of game lengths (the only error being the 
< 10−14 fraction of games that are longer than 1000 rolls). 
The expected duration of the game from i is simply

This leads to the results shown in Figure 3.

Pair Competitions and Intransitivity
What about the probability that a player in state i finishes 
in fewer rounds than an opponent in state j? For a state 
i, define gi(s) =

∑

t≤s fi(s) ; this is the probability that the 
game has finished within time s, starting from i. For i to 
beat j means that i finishes in some round s by which j has 
not yet finished, so i beats j with probability

Truncating this to a finite sum gives our estimate of the 
probability Qij that i beats j. We compute this for all pairs 
i, j. Specifically, for each s we compute the array of all 
fi(s)(1 − gj(s)) (an “outer product” of the vector of all fi(s) 
with that of all gj(s) ). This calculation is perhaps not as 
elegant as it could be, but since the outer product array 
can be computed faster than a single matrix product A ⋅ As 
(they are of the same dimension, square over the number of 
states), it is efficient enough.

Define the “excess” Xij of i over j by Xij = Qij − Qji , the 
win probability of i over j versus that of j over i. If on each 
game the winner received £1, with no money exchanged 
for a draw, Xij would be i’s average winnings playing 
against j. We won’t need it, but the probability of a draw is 
just 1 − Qij − Qji.

Our original question translates to whether there are 
states i, j, k such that Xij , Xjk , and Xki are all positive. 
Specifically, let’s look for such states where Xij ≥ c , Xjk ≥ c , 
and Xki ≥ c , and c is as large as possible. We found this us-
ing a trick something like a matrix product, but that way 
is no faster than trying all triples of states, so let us not 
explain it but just assert that we found the best triple.

The result is that states 69, 79, and 73 form such a tri-
angle, each with a winning advantage at least 1

2
% over the 

next in the cycle. Specifically, state 69 has a winning ad-
vantage over state 79 of X69,79 ≈ 0.0077 , with larger win-
ning advantages of X79,73 ≈ 0.0112 and X73,69 ≈ 0.0171 . 
The respective win probabilities are Q69,79 ≈ 0.4970 , 
Q79,73 ≈ 0.4990 and Q73,69 ≈ 0.4930 ; they are less than 1/2 
because there are also draws. (Each corresponding loss 
probability is given by L = Q − X , and the draw prob-
ability by 1 − Q − L . Draws are relatively rare, under 4% 
in these three cases, which is unsurprising given that the 
number of moves to finish ranges from about 20 to 40, 
and a draw requires a coincidence that the two players 

∞
∑

s=0

s ⋅ fi(s) .

Qij ∶=

∞
∑

s=0

fi(s)(1 − gj(s)) .
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take exactly the same number of moves.) The time-to-
finish distribution for each of these three states (e.g., f69 
in the notation of the previous subsection) is shown in 
Figure 4.

Check by Simulation . . .
These results were checked against simulations. Start-
ing from 0, we simulated 100,000 games, with a total of 
about 4.4 million die rolls; the maximum game length 
observed was under 500 rolls. Following the “efficient” 
simulation approach above, each of the three states in 
question was visited at least 25,000 times. Compared 
with the calculated winning advantages above, namely 
0.0077, 0.0112, and 0.0171, the simulated ones were 
about 0.0090, 0.0096, and 0.0172, not very precise agree-
ment. A second simulation gave similar results: 0.0081, 
0.0127, 0.0146. Each simulation’s time is dominated by 
the game play, taking under three minutes in an inef-
ficient implementation. Simulations with 10,000 games 
are even less accurate, often showing negative values 
rather than the positive ones desired. A simulation with 
one million (1M) games takes five minutes (in a quickly 
improved implementation) and gives results wonderfully 
close to the calculated ones: 0.0072, 0.0115, and 0.0171 
(each off by at most 0.0005 from the Markov chain 
calculation).

This simulation method has the advantage that it gener-
ates data for all squares. However, it has some implementa-
tion complications and thus possible errors.

 . . . and Check It Twice
To be sure, I also quickly tried the very simplest “dumb” 
simulation: simulating just the time of a single game started 
from a given state. I simulated 1M games from each of these 
three states and computed the fraction of them in which 

player 1 beat player 2. This gave an estimate of 0.0067, 
0.0100, 0.0177. This is not terribly accurate, but about 
what you should expect statistically: each player wins 
about half the time (draws are rare), which would mean a 
number of wins distributed as B(1M, 1∕2) ; this has stand-
ard deviation 

√

1∕2 ⋅ (1 − 1∕2) ⋅ 1M = 500 , leading to typi-
cal errors of 500∕1M = 0.0005 in each probability estimate.

Other than simplicity, an advantage of this method 
is that we are assured that each square is represented 
by 1M samples. In the method in which 1M games were 
played and each contributed as many samples as its 
length, altogether some 44M samples were generated, 
but that works out to only about 500,000 per state, 
and square 69 was underrepresented, with only about 
261,000 samples.

On the other hand, the “dumb” method’s comparison of 
the starting squares “game by game” is inefficient, since we 
could just as well compare square 69’s game #1 with square 
79’s game #17, in principle, 1M times 1M comparisons for 
each pair of starting squares. This can be done efficiently, 
since the game length was always under 500, so for each 
starting square, a histogram of the 1M duration samples is 
quite compact. This gave a better estimate, 0.0074, 0.0111, 
0.0176, using exactly the same simulation data. The cruder 
method does have one advantage, though: the 106 “games 
between” player 1 and player 2 are all independent, so it 
is straightforward to estimate the variance in the winning-
advantage estimate. The cleverer method here makes 1012 
comparisons from these 106 games, but they are not inde-
pendent, and the variance of its estimate, while smaller, is 
harder to estimate.

Intransitive Dice
Despite having been open to the theoretical possibility of 
there being intransitivity in Snakes and Ladders, I was 
struck by it; I did not know anything else like it. I expected 

Figure 4.  Fraction of simulated games of each duration, starting from squares 69, 79, and 73. For visual clarity, only durations up 
to 25 are shown; the maximum observed duration over 1 million games per starting square was under 500.
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that something related must be known, and did an inter-
net search, but not knowing the right keywords, I did not 
quickly find anything. I reached out to a couple of colleagues 
and got an almost immediate response: “intransitive dice.”

Intransitive Random Variables and Dice
The roots of this sort of intransitivity go back to a “para-
dox of three random variables” [9], namely that it is pos-
sible for three independent random variables X, Y, and Z to 
have

The paper [9] even makes reference to practical applica-
tions in which the random variables represent the breaking 
strengths of iron bars.

The concept was popularized in a “Mathematical Games” 
column by Martin Gardner [4], based on intransitive dice in-
vented sometime earlier by Bradley Efron. Here, the random 
variables are the rolls of dice, and the relation X ≻ Y that X 
beats Y may be defined, as in (1), that ℙ (X > Y) > 1∕2 or 
(analogous to our Snakes and Ladders interpretation) that 
ℙ (X > Y) > ℙ (Y > X) . There is, as usual, a nice Wikipedia 
article [10] on the topic of intransitive dice.

Examples of Intransitive Dice
One example in the Wikipedia article features three six-
sided dice, die A labeled 2, 2, 6, 6, 7, 7, die B labeled 
1, 1, 5, 5, 9, 9, and die C labeled 3, 3, 4, 4, 8, 8. Setting aside 
the conventionality and physical practicality of six sides, we 
can as well think of these as three-sided dice, die A labeled 
2, 6, 7, die B labeled 1, 5, 9, and die C labeled 3, 4, 8. All face 
values are distinct, so there are no ties. Die A beats B 5/9 of 
the time, for an advantage of 1/9; B beats C with the same 
advantage; and C beats A with the same advantage.

A smaller example, still with all face values distinct (no 
ties), uses dice with three, three, and two faces: A = 2, 3, 8 , 
B = 1, 6, 7 , and C = 4, 5 . Then A beats B w.p. (with prob-
ability) 5/9 (if A is 8 or B is 1); B beats C w.p. 2/3 (if B is 6 
or 7); and C beats A w.p. 2/3 (if A is 2 or 3).

If we allow ties and insist only on a winning advantage 
(not necessarily winning w.p. greater than 1/2), there is an 
example, again with fair dice with 2, 3, and 3 faces, but us-
ing only 7 distinct values: A = 2, 3, 7 , B = 1, 4, 6 , C = 3, 4 . 
Here A beats B w.p. 5/9 (when A is 7 or B is 1) and never 
draws, for a winning advantage of 1/9; B beats C only w.p. 
1/2 (when B is 6, or B is 5 and C is 3), but draws w.p. 1/6 
and loses w.p. 1/3, for a winning advantage of 1/6; C beats 
A symmetrically to how B beats C.

If we allow “unfair” dice, with arbitrary probabilities, a 
particularly understandable example has dice with 1, 2, and 
2 sides. We can take B = 2 (deterministically), A = 1, 3 with 
probabilities 1/3, 2/3 respectively, and C = 1, 4 with prob-
abilities 5/9, 4/9. Clearly, A beats B w.p. 2/3, and B beats C 
w.p. 5/9. Finally, C beats A w.p. 4/9 (whenever C = 4 ), while 
A beats C w.p. 2∕3 × 5∕9 = 10∕27 (only when A = 3 and 
C = 1 ), giving this case a winning advantage of 2/27.

There can be no smaller example: it would have to have 
dice with 1, 1, and 2 sides. Without loss of generality, a 

(1)ℙ (X > Y) >
1

2
, ℙ (Y > Z) >

1

2
, ℙ (Z > X) >

1

2
.

one-sided die A must have a larger value than the one-sided 
die B, in which case, since B wins over C, A must also win 
over C.

Recent Research on Intransitive Dice
There is some recent serious research on intransitive dice. 
Conrey et al. [2] seek to understand how common intransi-
tivity is. Specifically, they define a random n-sided die to 
be one whose face values (a1,… , an) are drawn from 1,… , n 
and average to (n + 1)∕2 . They conjectured that for three 
such dice, knowing that A ≻ B and B ≻ C says essentially 
nothing about the probability that A ≻ C.

This was proved in the collaborative project Polymath 
13 [5, 6], which showed that for three random dice, the 
eight possible tournaments (which of A, B, and C beats 
which others) are asymptotically equally likely. (It was also 
conjectured in [2] and proved in [6] that ties of the sort 
ℙ (X > Y) = ℙ (Y > X) are rare.) Cornacchia and Hązła [3] 
show that for four such dice, the equivalent conjecture is 
false: not all tournaments are asymptotically equally likely. 
Specifically, on four dice there are 26 = 64 possible tourna-
ments, of which 4! = 24 are transitive, a 3/8 fraction, but 
the probability that a tournament is transitive is, asymp-
totically, strictly above 3/8.

A Transparent Snakes and Ladders 
Example
An anonymous referee suggested constructing a minimal 
example of a Snakes and Ladders board exhibiting intran-
sitivity. We leave this problem open in its literal sense, but 
we produce a board for which the intransitivity is obvious, 
not dependent on hard to verify calculations.

To be faithful to the spirit of this challenge, we will use a 
standard die, with six sides and labels 1 to 6. However, we will in 
essence simulate three 6-sided dice, A, B, and C, with faces labeled

(2)
A ∶ 2, 2, 2, 2, 3, 4; B ∶ 1, 1, 1, 4, 4, 4; C ∶ 1, 2, 3, 3, 3, 3.

Figure 5  The complete board, annotated.
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It is easy to check that they are intransitive.
We will arrange that a player with simulated roll 4 finishes 

immediately, a player with a 3 will finish on the next roll, 
while a 2 requires two more rolls, and a 3 one more. (It is thus 
convenient to have the narrowest range of labels possible, and 
complete enumeration shows that (2) is best possible: there is 
no set of three intransitive dice using only the labels 1 to 3.)

Our board is illustrated in Figure 5. Intransitivity occurs 
with player A starting in cell 1, B in cell 8, and C in cell 15. 
Cell 43 is the winning cell. Cell 36’s meaning is “1 roll to 
go”: the board construction means it always takes exactly 
1 roll to finish from this cell. Likewise, cell 29 means “2 to 
go,” and cell 22 means “3 to go.”

As in Figure 2, the value shown in the cell’s center is 
where this cell takes you via a ladder (our construction has no 
snakes), or the cell’s own number if you can remain there. In 
contrast to Figure 2, here the gray cells are those that can be 
occupied (1, 8, 15, 22, 29, 36, 43); the rest are all ladders.

Player A’s rolls of 1–4, 5, and 6, corresponding to imag-
ined die labels of 2 (four times), 3, and 4, respectively bring 
it to cells 29 (“2 more rolls to go”), 36 (“1 to go”), and 43 
(done). Any roll of 1 to 6 starting from the “3 to go” cell 22 
brings a player to the “2 to go” cell 29, and likewise start-
ing from the “1 to go” and “2 to go” cells 29 and 36.

The board is not very small, but it directly translates a 
set of intransitive dice to a Snakes and Ladders board with 
intransitivity among cells 1, 8, and 15: the six cells after 
each of these simulate the faces of the corresponding die.

A few details. As it stands, players B and C cannot come 
to their starting squares. If desired, this can be rectified by 
adding six squares at the start of the board, with ladders to the 
starting squares for A, A, B, B, C, and C (the squares currently 
numbered 1, 1, 8, 8, 15, and 15), with all squares renumbered 
appropriately. This randomly gives a player the role A, B, or C.

The board can be made slightly smaller, at the expense of 
clarity. The last of the “3 to go” cells, cell 28, could itself be 
used as the base of the “2 to go” cells, with all of the “3 to go” 
ones having ladders to 28; the same could be done for the “1 
to go” and “2 to go” cells. Also, the three dice and the faces 
within them could be reordered so that some faces can be used 
by two dice. Specifically, the dice of (2) could be laid out on the 
board as follows:

Another potential improvement would replace the “x to go” 
trick by simply positioning the players appropriately (depend-
ing on their simulated rolls) and letting them race to the finish. 
However, this blurs the outcomes—a player in the rear can get 
lucky and overtake one more advanced—and it is challenging 
to preserve the intransitivity.
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