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Abstract

We show that any measurable selection valued correspondence induced by the composi-

tion of an -tuple of real-valued Caratheodory functions with an upper Caratheodory

() correspondence has fixed points if the underlying  correspondence in the compo-

sition contains a continuum valued  sub-correspondence. As an application we show

that all uncountable-compact discounted stochastic games (DSG) satisfying the usual
assumptions have Nash payoff selection correspondences having fixed points provided of

course that the  Nash correspondence contains a continuum valued  Nash sub-

correspondence. Fu and Page (2022) have shown that all such DSG, in fact, have 
Nash correspondences containing continuum valued  Nash sub-correspondences - im-

plying, therefore, that all DSG satisfying the usual assumptions have stationary Markov
perfect equilibria.
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1 Introduction

We show that any measurable selection valued correspondence induced by the composition

of an -tuple of real-valued Caratheodory functions with an upper Caratheodory ()

correspondence (a  composition correspondence) has fixed points if the underlying 

correspondence in the composition contains a continuum valued  sub-correspondence.

Fixed point problems involving measurable selection valued correspondences induced

by  compositions arise often in economics and game theory. One of the most interesting

examples, but by no means the only example, is provided by game theoretic models of

the formation of trading networks. The basic idea is to model the problem of forming a

short term trading network as a discounted stochastic game of network formation in which

the actions available to each player are the pieces of the network controlled by the player.

Players’ stationary Markov perfect equilibrium network formation strategies then generate

the network and induce the equilibrium Markov process of network formation. It is this

equilibrium Markov process of network formation which is the key to understanding the

true nature, causes and remedies for endogenous systemic risks - risks which were realized

in the financial crisis of 2007-2008 - a crisis which almost brought down the world’s

banking and monetary system. In order for this approach to systemic risk to work, we

must be able to show that players have stationary Markov perfect equilibria () in

network formation strategies (i.e., that  exist in such models of strategic network

formation). Therein lies the importance of the fixed point result we prove in this paper.

The existence or nonexistence of stationary Markov equilibria for uncountable-compact

discounted stochastic games has been an open question from the time of the 1976 paper

by Himmelberg, Parthasarathy, Raghavan, and Van Vleck on -equilibria in stationary

strategies.1 Thanks to the seminal work of Blackwell (1965) on dynamic programming, we

know that a discounted stochastic game (DSG) has stationary Markov perfect equilibria
if and only if the parameterized, state-contingent collection of one-shot games underlying

the discounted stochastic game has a Nash payoff correspondence (an example of a 

composition correspondence) that induces a selection correspondence having fixed points.

But to date, no fixed point result exists which can be used to show that the Nash pay-

off selection correspondence has fixed points. This is not surprising because Nash payoff

selection correspondences are, in general, neither convex valued nor closed valued in the

appropriate topology (in this case the weak star topology). However, as we will show

here (and as was already suggested in Page, 2015), the problem can be solved by approxi-

mate fixed point methods, provided the underlying upper Caratheodory () Nash payoff

correspondence contains a contractible-valued  sub-correspondence (implying that the

induced selection correspondence has fixed points). We show here that this will be the

case if the underlying  Nash correspondence (in the  composition) contains a 

sub-correspondence taking closed, connected values in the set of Nash equilibria.2 By re-

solving this fixed point problem, and therefore by resolving the  existence problem

for the class of DSG most relevant to the analysis of endogenous systemic risk in large
complex systems (such as banking systems), we will open a new pathway to understanding

and controlling systemic risk. We will consider in more detail below the application of

our fixed point result to resolving the  existence problem in uncountable-compact

discounted stochastic games.

1We will often refer to a finite-player, nonzero-sum discounted stochastic game in which players’strategy

sets are compact metric spaces and the state space is uncountable as an uncountable-compact discounted

stochastic game. Such games are common in financial trading models.
2Fu and Page (2022) have shown that for the collecion of parameterized, state-contingent one-shot

games underlying any discounted stochastic game (satisfying the usual assumptions) the  Nash cor-

respondence belonging to this one-shot game, always contains a  sub-correspondence taking closed,

connected values in the set of Nash equilibria.
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2 Primitives, Assumptions, and Preview

Let (Ω Ω ) be a probability space where Ω is a complete, separable metric space with

metric Ω, Ω the Borel -field generated by the Ω-open sets in Ω, and  a regular

Borel probability measure. Let  := [− ] for  = 1 2    , and   0 and

 := 1 × · · · ×  = [− ] ⊂ . Also, let  := 1 × · · · ×  where for

each  = 1 2    ,  is a convex, compact metrizable subset of a locally convex

Hausdorff topological vector space  equipped with a metric 
compatible with the

locally convex topology inherited from . Finally, equip  with sum of absolute values

metric,  ( 
0) :=

P
 ( 

0
) :=

P
 | − 0| and equip  with the sum metric,

 :=
P

 
, compatible the product topology inherited from  = 1 × · · · ×.

Next, let L∞ := L∞1 × · · · × L∞ , where for each  = 1 2    , L∞ is a convex,
weak star compact metrizable subset of L∞ , the Banach space of -equivalence classes
of -essentially bounded, measurable, real-valued functions, where  ∈ L∞ if and only if

() := (1()     ()) ∈  a.e. []. Equip L∞ with the sum metric, ∗ :=
P

 ∗
,

compatible the weak star product topology inherited from L∞ . Finally, let  () be
the hyperspace of nonempty -closed subsets of 

Consider an upper Caratheodory () correspondence,

N (· ·) : Ω×L∞ −→  (), (1)

jointly measurable in ( ) and upper semicontinuous in  for each . We call the col-

lection of upper semicontinuous correspondences, {N ( ·) :  ∈ Ω} the USCO part (Hola
and Holy, 2015), and {N (· ) :  ∈ L∞ } the measurable part of the  correspondence

N . Denote by UCΩ×L∞

- () the collection of all such  correspondences.

Next consider the  -valued Caratheodory function,

(  ) −→ (  ) := (1(  )     (  )) ∈  , (2)

measurable in  and jointly continuous in ( ), and let

P(· ·) : Ω×L∞ −→  ( ) (3)

denote the composition of  correspondence N (· ·) with the -tuple of Caratheodory
functions, (1(· · ·)     (· · ·)). For each ( ) ∈ Ω×L∞ we have

P( ) := ( N ( ))

:= {((  )     (  )) ∈  :  ∈ N ( )}

⎫⎬⎭ (4)

The correspondence, P(· ·), is also a  correspondence. As noted in the introduction,

we will call such a correspondence a  composition correspondence.

Each  composition correspondence, P(· ·) ∈ UCΩ×L∞

- ( ), induces a measurable

selection valued correspondence,

 −→ S∞(P(· )) := S∞(P) = S∞((· N (· ))),

:= {(·) ∈ L∞ : () ∈ P( ) a.e. []}

⎫⎬⎭ (5)

where for each  ∈ L∞ , S∞(P) is the collection of -equivalence classes of a.e. measurable
selections of P(· ), i.e., functions (·) in L∞ such that () ∈ P( ) a.e. []. We will
show that for all such  composition correspondences,

 −→ S∞(P(· )) = S∞((· N (· ))) (6)
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if the underlying  correspondence, N (· ·) ∈ UCΩ×L∞

- (), contains a continuum

valued sub-correspondence, (· ·) ∈ UCΩ×L∞

- () (i.e., a  correspondence (· ·) taking

continuum values such that ( ·) ⊂ N ( ·) for all ) then its  composition

correspondence,

( ) −→ ( ) := (  ( )) := {(1( 1 )     (  )) ∈  :  ∈ ( )}
induces a selection sub-correspondence,

 −→ S∞((· )) = S∞((·  (· )))

:= {(·) ∈ L∞ : () ∈ ( ) a.e. []}

⎫⎬⎭ (7)

that is weak star upper semicontinuous and has fixed points. Thus while the original

selection correspondence,  −→ S∞(P), may fail to be weak star upper semicontinuous,
its selection sub-correspondence,

 −→ S∞((· ))
induced by a continuum valued  sub-correspondence (· ·) will be weak star upper
semicontinuous, and more importantly, will have fixed points.

We will refer to all the assumptions made above concerning spaces and correspondences

as [A-1].

2.1 Comments

(1) Given the probability space, (Ω Ω ), metric spaces, ( ) compact and ( )

separable, consider an arbitrary set-valued mapping or a correspondence, Γ, from Ω× 

into  taking nonempty values in , denoted

Γ : Ω×  −→  (). (8)

For any metric space ()  () will denote the collection of all nonempty subsets

of , and  () :=  () will denote the collection of all nonempty and  -closed

subsets of  (we will often leave off the subscript denoting the metric). Given  and ,

we have for any subset  of  the following definitions,

Γ− () := { ∈  : Γ() ∩  6= ∅}
and

Γ− () := { ∈ Ω : Γ() ∩  6= ∅}

⎫⎬⎭ (9)

where for fixed , Γ(·) := Γ( ·), and for fixed , Γ(·) := Γ(· ). Finally, let
Γ−() := {( ) ∈ Ω×  : Γ( ) ∩  6= ∅} (10)

Let  and  be the Borel -fields in  and  (respectively). We have the following

definitions. Given correspondence, Γ(· ·), we say that,
(a) Γ(·) is weakly measurable (or measurable) if for all  open in , Γ− () ∈ Ω,

(b) Γ(·) is upper semicontinuous if for all  closed , Γ− () is -closed,
(c) Γ(· ·) is product measurable if for all  open in , Γ−() ∈ Ω × .

(d) Γ(· ·) is upper Caratheodory if Γ(· ·) is product measurable and for each , Γ(·)
is upper semicontinuous.

For  a separable metric space, weak measurability of Γ(·) implies that for each ,

Γ(·) := {( ) ∈ Ω× :  ∈ Γ()} ∈ Ω × . (11)
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Finally, for  compact and Γ(· ·) upper Caratheodory, we have by Lemma 3.1 in Kucia
and Nowak (2000) that the mapping

 −→ Γ(·) ∈  ( ×) (12)

is measurable - i.e., for  an open subset of  ×, (Γ(·)(·))−() ∈ Ω, where

(Γ(·)(·))−() := { ∈ Ω : Γ(·) ∩  6= ∅} (13)

(2) Let ( ) be any metric space. Consider the hyperspace of nonempty, -closed

subsets of ,  (). The distance from a point  ∈  to a set  ∈  () is given by

() := inf
0∈

( 
0). (14)

Given two sets  and  in  (), the excess of  over  is given by

 () := sup
∈

 ( ). (15)

The given two sets  and  in  (), the Hausdorff distance in  () between  and

 is given by

 () = max{ ()  ()} (16)

If ( ) is separable, then ( ()  ) is a separable metric space. If ( ) is compact,

then ( ()  ) is a compact metric space (see Aliprantis and Border, 2006). Often we

will write  rather than  - when the underlying metric is clear.

(3) Again let ( ) be any metric space.  is said to be connected if it cannot be

written as the union of two nonempty, disjoint open subsets of . Equivalently,  is

connected if and only if the only subsets of  that are open and closed in  are the empty

set and  itself. If  is compact and connected it is called a continuum.

2.2 ∗-Convergence and -Convergnece in L∞
A sequence, {} ⊂ L∞ , converges weak star to ∗ = (∗1(·)     ∗(·)) ∈ L∞ , denoted
by  −→

∗
∗, if and only if

Z
Ω

h() ()i () −→
Z
Ω

h∗() ()i () (17)

for all (·) ∈ L1 .
A sequence, {} ⊂ L∞ ,-convergences (i.e., Komlos convergence - Komlos, 1967) to

∗ ∈ L∞ , denoted by  −→


∗, if and only if every subsequence, {(·)},  {(·)} has
an arithmetic mean sequence, {b(·)}, where

b(·) := 1



X
=1

(·) (18)

such that b() −→


∗() a.e. [] (19)

The relationship between ∗-convergence and -convergence is summarized via the fol-

lowing results which follow from Balder (2000): For every sequence of value functions,
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{} ⊂ L∞ , and ∗ ∈ L∞ the following statements are true:

(i) If the sequence {} -converges to ∗, then {} ∗-converges to ∗

(ii) The sequence {} ∗-converges to ∗ if and only if
every subsequence {} of {} has a further subsequence, { },

-converging to ∗.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (20)

For any sequence of value function profiles, {} in L∞ it is automatic that



Z
Ω

k()k ()  +∞ (21)

Thus, by the classical Komlos Theorem (1967), any such sequence, {}, has a subse-
quence, {} that -converges to some -limit, ∗ ∈ L∞ .

3 USCOs and Upper Caratheodory Correspondences

3.1 USCOs

We have compact metric spaces (L∞  ∗) and ( ). Let UL∞ - () := U(L
∞
   ())

denote the collection of all upper semicontinuous correspondences taking nonempty, -

closed (and hence -compact) values in . Following the literature, we will call such

mappings, USCOs (see Crannell, Franz, and LeMasurier, 2005, Anguelov and Kalenda,

2009, and Hola and Holy, 2009). Given any N ∈ UL∞

- (), denote by UL∞ - ()[N ]

the collection of all sub-USCOs belonging to N, that is, all USCOs  ∈ UL∞

- () whose

graph,

 := {( ) ∈ L∞ × :  ∈ ()} ,
is contained in the graph of N ,

N := {( ) ∈ L∞ × :  ∈ N ()} .

We will call any sub-USCO,  ∈ UL∞

- ()[N ] a minimal USCO belonging to N , if for

any other sub-USCO,  ∈ UL∞

- ()[N ],  ⊆  implies that  =  (see

Drewnowski and Labuda, 1990). We will use the special notation, [N ], to denote the
collection of all minimal USCOs belonging to N .

3.2 Upper Caratheodory Sub-Correspondences

Consider the  correspondence ( ) −→ N ( ), and let

UCΩ×L∞

- ()[N (· ·)] := UCN (22)

denote the collection of all upper Caratheodory mappings belonging to N (· ·). Thus,
(· ·) ∈ UCN if and only if (· ·) ∈ UCΩ×L∞


- () and

( ·) ⊂ N ( ·) for all 

We will refer to the  correspondence (· ·) as a  sub-correspondence belonging to

N (· ·).
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3.3 Connectedness and Caratheodory Approximability

Consider the  composition correspondence,

( ) −→ P( ) := ( N ( )) (23)

where N (· ·) ∈ UCΩ×L∞

- () and the function,

(  ) −→ (  ) := (1( 1 )     (  )) ∈  , (24)

is Caratheodory, measurable in  and jointly continuous in ( ). For all  sub-

correspondences, (· ·) ∈ UCN the induced sub-correspondence,

( ) −→ ( ) := (  ( ))

:= {(1( 1 )     (  )) ∈  :  ∈ ( )}

⎫⎬⎭ (25)

is a  sub-correspondence belonging to P(· ·). Thus, (· ·) ∈ UCP . Each  sub-

correspondence in UCP induces a selection sub-correspondence,  −→ S∞((· )), and
we will show that if the underlying  sub-correspondence, (· ·) ∈ UCN , is continuum
valued then this selection sub-correspondence has fixed points. Thus, we will show that

there exists ∗ ∈ L∞ , such that

∗ ∈ S∞((· ∗)) ⊂ S∞(P(· ∗)) ⊂ L∞  (26)

For a particular  = 1 2    , consider the  sub-correspondence,

( ) −→ ( ) := (  ( )) ∈  (). (27)

Definitions 1 (Caratheodory Approximable  Correspondences)

We say that (· ·) ∈ UCΩ×L∞

- () is Caratheodory approximable if for each   0

there is a Caratheodory function, (· ·) : Ω×L∞ −→ , having the property that for

each ( ) ∈ Ω×L∞ and each ( ( )) ∈ L∞ ×  there exists (
 ) ∈ ( ·)

such that

∗( 
) + (


( ) )  . (28)

We call this Caratheodory function, (· ·), an -Caratheodory selection of (· ·) - or
equivalently, a Caratheodory function,  : Ω×L∞ −→ , such that for each 

( ·) ⊂ ∗×
(( ·)). (29)

By Corollary 4.3 in Kucia and Nowak (2000), a sufficient condition for (· ·) to
be Caratheodory approximable, and therefore, for (· ·) to have for each   0 an -

Caratheodory selection, is for the  sub-correspondence, (· ·), to have closed, interval
values. If ( ) −→ ( ) is continuum valued, then because the image of a continuum

under a continuous real valued is a closed bounded interval, for each  = 1 2    , the

 sub-correspondence,

( ) −→ ( ) := (  ( )), (30)

will be interval valued, and therefore Caratheodory approximable. As a consequence,

we will be able to show that there exists ∗ = (∗1      
∗
) ∈ L∞ such that for each

 = 1    

∗() ∈ ( 
∗
 ( 

∗)), (31)
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or equivalently,

∗() ∈ 1( 
∗
1  ( 

∗))× · · · × ( 
∗
 ( 

∗)) (32)

By implicit measurable selection (Theorem 7.1, Himmelberg, 1975), there exists a -

valued, measurable function, ∗(·), such that ∗() ∈ ( ∗) a.e. [] and

∗() = (1( ∗1  
∗())     ( ∗ 

∗())) ∈ ( ∗) (33)

Thus, we will be able to conclude from our fixed point result that there exists (∗ ∗)
such that for  a.e. [],

∗() ∈ ( ∗) ⊂ P( ∗)
and

∗() ∈ ( ∗) ⊂ N ( ∗).

⎫⎬⎭ (34)

To show this, all that is required is that we show that for each , ∗() ∈ ( 
∗
 ( 

∗))
a.e. [].

4 A Fixed Point Theorem for Measurable Selection

Valued Correspondences Induced by  Composi-

tion Correspondences

We will show here, under assumptions [A-1], that for any  composition correspondence,

( ) −→ P( ) := ( N ( )), (35)

if there exists a  sub-correspondence, (· ·) ∈ UCN , taking continuum values in 

(closed and connected values in ), then for each  = 1 2    , the  composition

sub-correspondence,

( ) −→ ( ) := (  ( )), (36)

takes closed, interval values in , and therefore, by Corollary 4.3 in Kucia and Nowak

(2000), (· ·) is Caratheodory approximable. As a consequence, we will be able to show
that there exists a function ∗ ∈ L∞ such that

∗() ∈ P( ∗) a.e. [],
or equivalently,

∗ ∈ S∞(P∗).
Here is our main result.

Theorem (A selection correspondence induced by a  composition correspondence has

fixed points if the underlying  correspondence contains a continuum valued 

sub-correspondence)

Suppose assumptions [A-1] hold. Let

( ) −→ P( ) := ( N ( ))
be a  composition correspondence where N (· ·) ∈ UCΩ×L∞


- () and

(  ) −→ (  ) ∈  is Caratheodory. If the  correspondence, N (· ·), contains
a  sub-correspondence, (· ·), taking closed connected values in , then there exists

∗ ∈ L∞ such that

∗() ∈ P( ∗) a.e. [].

7



Proof: As noted above, because (· ·) takes closed and connected values, the induced
 composition sub-correspondence,

( ) −→ ( ) := {(1( 1 )     (  )) :  ∈ ( )}

⊂ 1( 1 ( ))× · · · × (  ( ))

:= 1( )× · · · × ( )

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (37)

is such that for each  = 1 2    , the  sub-correspondence,

( ) −→ ( ) := {(  ) ∈  :  ∈ ( )}

takes closed interval values in , implying via Corollary 4.3 in Kucia and Nowak (2000)

that (· ·) is Caratheodory approximable. Thus, there is a sequence of -tuples of

Caratheodory functions,

{(· ·)} := {(1 (· ·)     (· ·))}, (38)

such that for each  and for each ( ) ∈ Ω × L∞ there exists for each , (  ) ∈
( ·) such that,

∗( 
) + (


 ( ) 


 ) 

1
· . (39)

Next, consider the mapping from L∞ to L∞ given by

 −→ () := (· ) := (1 (· )     (· )) ∈ L∞ . (40)

Observe that for each , (·) is continuous (i.e.,  −→
∗

∗ implies that () −→
∗

(∗)). This is true because for each   −→
∗

∗ implies that for each  ∈ Ω, as
 −→ ∞, ( ) −→


( ∗) ∈  . Therefore, for  ∈ L1 chosen arbitrarily,

( ) ()
® −→


h( ∗) ()i a.e. [], implying, by the Dominated Convergence

Theorem (Ash, 1972) that as  −→∞,Z
Ω


( ) ()

®
() −→

Z
Ω

h( ∗) ()i ()

Since the choice of  ∈ L1 was arbitrary, we can conclude that if  −→
∗

∗, then

(· ) −→
∗

(· ∗) ∈ L∞ . By the Brouwer-Schauder-Tychonoff Fixed Point Theorem
(e.g., see Aliprantis-Border, 17.56, 2006), for each , there exists  ∈ L∞ such that

 = () := (· ). (41)

Thus, we have for each  a set, , of -measure zero such that

() = ( ) for all  ∈ Ω\ (42)

Letting ∞ := ∪ - so that, (∞) = 0 - we have for each  = 1 2   and for each

 = 1 2    , that

 () =  ( 
) for all  ∈ Ω\∞, (∞) = 0 (43)

8



Call the equation (43), one for each , the Caratheodory equation and call the sequence,

{}, in L∞ the Caratheodory fixed point sequence

For each pair of -tuples of Caratheodory approximating functions and fixed points,

((· ·) ), consider the measurable function,

 −→ min()∈(·)[∗(
 ) + (


 ( 

) )], (44)

By Lemma 3.1 in Kucia and Nowak (2000) the graph correspondence,  −→ ( ·),
is measurable, and therefore, by the continuity of the function

( ) −→ [∗(
 ) + (


 ( 

) )]

on L∞ × , there exists for each , a measurable (everywhere) selection of ( ·),

 −→ (  ) ∈ L∞ ×  (45)

solving the minimization problem (44) state-by-state (see Himmelberg, Parthasarathy,

and VanVleck, 1976). Moreover, we have by the Caratheodory approximability of 

sub-correspondences,

{1(· ·)     (· ·)},
and (39) above that for the sequences of optimal selections, {((·)  (·))},  = 1 2    ,
where for each  and for each ,  ∈ L∞ and  ∈ , we have for each  and for each

,

∗(
  )| {z }


+ (

 ( 

) )| {z }


 1
· . (46)

Given (42) and (46), we have for the sequences,

{(· ·) } and {(·)  (·)}  = 1 2    , (47)

that for all  ∈ Ω\∞ and for all ,

∗(
  ) + (


 () 


)| {z }



 1
· , (48)

for each , where for each  and for each ,  −→  is L∞ -valued, while  −→  is

-valued, and

 := (

1     


) ∈ 1( 

1
 )× · · · × ( 


 ) for all  ∈ Ω. (49)

Next, because (L∞  ∗) is a compact metric space we can assume without loss of

generality that the sequence of fixed points in L∞ , {}, -converges to some ∗ ∈ L∞ ,
implying that  −→

∗
∗ and therefore implying, via (46)A, that  −→

∗
∗ uniformly in

 and . Moreover, by (48)C, we have that

b = 1


X
=1

 −→


∗() a.e. [], (50)

where for each ,  ∈ ( 

 ) for all . By the properties of -convergence, for

each  = 1 2 3   , there is a set, b, of -measure zero such that for all  and for all

9



 ∈ Ω\ b as  −→∞

b+ = 1


X
=1

+ −→
∗(),

and

b+ () = 1


X
=1

+ () −→


∗().

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(51)

Letting b∞ := ∪∞=1 b we have for  = 1 2 3   , that for each player the truncated

sequences, {+
(·) }∞=1 and {+ (·)}∞=1, have arithmetic mean sequences, {b+(·) }∞=1 and

{b+ (·)}∞=1, converging pointwise to ∗(·) off the set b∞ of -measure zero where the

exceptional set b∞ is independent of .

Because ( ·) is ∗--upper semicontinuous and because for each ,  −→
∗

∗

uniformly in  and , we have for each  and  and for any sequence of  = 1 2   ,

increasing to ∞, that there is a sequence {} increasing to ∞, such that for all  ≥
 the -open ball, 

( 1

 ( 

∗)), about ( ∗) of radius 1


with closure given

by the closed, convex ball, 
( 1

 ( 

∗)), is such that for each  ∈ Ω,  ≥  and

 = 1 2   .

( 
(+)
 ) ⊂ 

(
1



 ( 
∗)) ⊂ 

(
1



 ( 
∗)) (52)

Moreover, for all  ∈ Ω\(∞ ∪ b∞),  ≥  , and  = 1 2   , we have for each 


+
 ∈ ( 

(+)
 ) ⊂ 

(
1



 ( 
∗)), (53)

where recall for each ,  and + , (
(+)
  

+
 ) ∈ ( ·) solves,

min
()∈(·)

[∗(
+ ) + (

+
 ( +) )]

Because for each , 
( 1

 ( 

∗)) is closed and convex, we have for each , each

 and each  ∈ Ω\(∞ ∪ b∞) that
b+ ∈ 

(
1



 ( 
∗)) for all  ≥  and  = 1 2    , (54)

By -convergence we have for each  ∈ Ω\(∞ ∪ b∞), each , and each  ≥  ,b+ −→


∗() as  = 1 2   , goes to∞, implying that for each  and  ∈ Ω\(∞∪ b∞),
∗() ∈ 

(
1



 ( 
∗)) for all . (55)

Thus, we have for each  and for each  ∈ Ω\(∞ ∪ b∞)
∗() ∈ ( 

∗) = ( 
∗
 ( 

∗))

implying via implicit measurable selection (Theorem 7.1, Himmelberg, 1975) that there

exists

∗() = (∗1()     
∗
()) ∈ ( ∗) a.e. []
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such that

∗() = (1( ∗1  
∗())     ( ∗ 

∗())) ∈ ( ∗)

:= {(1( ∗1  )     ( ∗ )) :  ∈ ( ∗)}

⊂ P( ∗) a.e. [].

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (56)

Q.E.D.

5 One-Shot Games and StationaryMarkov Perfect Equi-

libria for Discounted Stochastic Games

An -player, non-zero sum, discounted stochastic game, DSG, is given by the following
primitives:

DSG :=

⎧⎪⎪⎨⎪⎪⎩ (Ω Ω )| {z }
probability space


©
(Φ()  (  ·))∈

ª
()| {z }

the one-shot game

 (·| ·)| {z }
law of motion

⎫⎪⎪⎬⎪⎪⎭ 

(57)

where Ω is the state space, Ω is the -field of events, and  is a probability measure.

For each player ,  is the set of all possible actions available to player , while Φ() is

the feasible set of actions available to player  in state . Finally,  ∈ (0 1) is player 0
discount rate and (  ·) is player 0 payoff function in state  given valuations (or
prices)  ∈ L∞ (see assumptions [A-1]), and (·| ·) is the law of motion in state . If
players holding value function profile  = (1     ) ∈ L∞ choose feasible action profile,

 = (1     ) ∈ Φ1()× · · · ×Φ() = Φ()

in state  then the next state 0 is chosen in accordance with probability measure
(·| ) ∈ ∆(Ω) and player 0 expected payoff is given by

(  ) := (1− )( ) + 

Z
Ω

(
0)(0| ). (58)

We will denote by, G(), the -player one-shot game in state  underlying the DSG
when players hold valuations  := (1     ).

Formally, the DSGs we will consider here satisfy the following list of assumptions (a
list we think of as the usual assumptions), labeled [](1)-(11):3

(1)  = the set of players, consisting of  players indexed by  = 1 2     and each

having discount rate given by  ∈ (0 1).
(2) (Ω Ω ), the state space where Ω is a complete separable metric spaces with metric

Ω, equipped with the Borel -field, Ω, upon which is defined a probability measure, .

(3)  := 1 × · · · × , the space of players’ payoff profiles,  := (1     ), such that

for each player ,  := [− ],   0, and is equipped with the absolute value

metric, ( 
0
) := | − 0| and  is equipped with the sum metric,  :=

P
  .

(4)  := 1 × · · · × :=
Y


 ⊂  :=
Y


, the space of player action profiles,

 := (1     ), such that for each player ,  is a convex, compact metrizable

3We note that assumptions [](1)-(11) include assumptions [-1].
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subset of a locally convex Hausdorff topological vector space  and is equipped with a

metric, 
 compatible with the locally convex topology inherited from , and  is

equipped with the sum metric,  :=
P

 


(5)  −→ Φ(), is player 0 measurable action constraint correspondence, defined on
Ω taking nonempty, convex, 

-closed (and hence compact) values in .

(6)  −→ Φ() := Φ1()× · · · ×Φ(), players’ measurable action profile constraint
correspondence, defined on Ω taking nonempty, convex, and -closed (hence compact)

values in 

(7) L∞ , the Banach space of all -equivalence classes of measurable (value) functions,
(·) defined on Ω with values in  a.e. [], equipped with metric ∗


compatible with

the weak star topology inherited from L∞ .
(8) L∞ := L∞1 × · · · × L∞ ⊂ L∞, the Banach space of all -equivalence classes of
measurable (value) function profiles, (·) := (1(·)     (·)), defined on Ω with values
in  a.e. [], equipped with the sum metric ∗ :=

P
 ∗

compatible with the weak

star product topology inherited from L∞ .
(9) S∞(Φ(·)), the set of all -equivalence classes of (Ω 

)-measurable functions

(selections), (·) defined on Ω such that in () ∈ Φ() a.e. [], and

S∞(Φ(·)) = S∞(Φ1(·))× · · · × S∞(Φ(·)) (59)

the set of all -equivalence classes of measurable profiles (selection profiles),

(·) = (1(·)     (·)), defined on Ω such that

() ∈ Φ() := Φ1()× · · · ×Φ() a.e. []

(10) (· ·) : Ω× −→  is player 0 affine, Caratheodory stage payoff function (i.e.,
for each , ( ·) is -continuous on , for each  (· ) is (Ω )-measurable

on Ω, and for each ( −) and each 0 and 1 in ,

( 
0
 + (1− )1 −) = ( 

0
 −) + (1− )( 

1
 −) (60)

for all  ∈ [0 1].
(11) (·|· ·) : Ω× −→ ∆(Ω) is the law of motion defined on Ω× taking values in

the space of probability measures on Ω, having the following properties: (i) each

probability measure, (·| ), in the collection

(Ω×) := {(·| ) : ( ) ∈ Ω×} (61)

is absolutely continuous with respect to  (denoted (Ω×)  ), (ii) for each

 ∈ Ω, (|· ·) is measurable on Ω×, and (iii) the collection of probability density

functions,

 := {(·| ) : ( ) ∈ Ω×} , (62)

of (·| ) with respect to  is such that for each state , the function

( −) −→ (0|  −) (63)

is continuous in  and affine in  a.e. [] in 0.

A one-shot game then is a collection of strategic form games,

G(Ω×L∞ ) :=
©G() : ( ) ∈ Ω×L∞ ª  (64)
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where each ( )-game in the collection is given by

G() :=

⎧⎪⎨⎪⎩ Φ()| {z }
feasible actions

 (  (· ·))| {z }
payoff function

⎫⎪⎬⎪⎭
∈

, (65)

Under assumptions [], in a ( )-game player 0 payoff function, given by

 −→ (  ) := (1− )( ) + 

Z
Ω

(
0)(0| )(0) (66)

is jointly continuous in action profiles,  = (1     ), and for any sequence of value

function-action profiles pairs, {( )}, if  −→
∗

∗ and  −→


∗ then for each ,

(  ) −→


( ∗ ∗) (i.e., ( · ·) is jointly continuous in ( )). Thus, the  -
valued players’ payoff function, (· · ·), is a Caratheodory function: ∗×-continuous in
( ) for each , and (Ω  )-measurable in  on Ω for each ( ).4

A stationary Markov strategy for player , is a (Ω 
)-measurable function, (·) :

Ω −→ , such that () ∈ Φ() a.e. []. Because the strategy, (·), is not time
dependent, the strategy, (·), is stationary, and because the action in  chosen by

the strategy, () ∈ , depends only on the current state, , for states off a set of -

measure zero, the strategy, (·), is Markov. Thus, the collection of all player  stationary
Markov strategies is given by S∞(Φ(·)), the collection of all -equivalence classes of a.e.
measurable selections of Φ(·).5 A Markov strategy profile is given by,

(1(·)     (·)) ∈ S∞(Φ1(·))× · · · × S∞(Φ(·)),

where

S∞(Φ(·)) = S∞(Φ1(·))× · · · × S∞(Φ(·))
is the collection of all such profiles.

Let

 ((·))() :=
⎧⎨⎩ ( ()) for  = 1R

Ω
(

0 (0))−1(0| ()) for  ≥ 2
(67)

denote the  period expected immediate payoff to player  under Markov strategy profile

(·) starting at state  given law of motion (·|· ·). Here, for  ≥ 2, (·| ()) is defined
recursively by

(| ())

=
R
Ω
(|0 (0))−1(0| ())

⎫⎬⎭ (68)

The discounted expected payoff to player , with discount rate  ∈ (0 1), over an infinite
time horizon under stationary Markov strategy profile (·) starting at state  is given by

∞ ((·))() :=
P∞

=1 
−1
  ((·))() (69)

4Abusing the notation a bit, ∗× denotes the summ metric, ∗ +  . Therefore,

∗× := ∗ +  

5 Such a strategy is stationary because it does not depend on time (the same strategy applies at all

time points). Such a strategy is Markov because the action choice specified by the strategy is a function

of the current state - and nothing else.
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A stationary Markov strategy profile ∗(·) ∈ S∞(Φ(·)) is a stationary Markov perfect
equilibrium if for all players ,

∞ (
∗
(·) ∗−(·))() ≥ ∞ (

0
(·) ∗−(·))(), a.e. [] in , (70)

for all other strategies, 0(·) ∈ S∞(Φ(·)). In particular, a , ∗(·) ∈ S∞(Φ(·)),
is a profile of strategies such that for each player and for almost all initial states, ,

the discounted sum of player 0 expected payoffs is maximal under strategy ∗(·) given
the strategies, ∗−(·) being used by the other players. We know from Blackwell (1965)

(see also Himmelberg, Parthasarathy, and VanVleck, 1976), and their results for dynamic

programming, that a discounted stochastic game satisfying assumptions [] will have a

stationary Markov perfect equilibrium, ∗(·) ∈ S∞(Φ(·)) if and only if there exists a
profile of value functions, ∗ ∈ L∞ such that together, (∗ ∗(·)), are such that for each
player  and a.e. [] in 

(1) ∗() = ( 
∗
 
∗())

:= (1− )( 
∗()) + 

R
Ω
∗(

0)(0| ∗())(0),
and

(2) ( 
∗
 
∗
() 

∗
−()) = max∈Φ() ( 

∗
  

∗
−()).

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (71)

The first condition is the Bellman condition. The second condition is the Nash condition.

The Bellman condition can be rewritten as

for each player 

∗() = ( 
∗
 
∗()) ∈ ( 

∗
N ( ∗)) a.e. []

or equivalently

∗() := (∗1()     
∗
()) ∈ P( ∗) a.e. []

⎫⎪⎪⎬⎪⎪⎭ (72)

We note that if the latter inclusions holds, then the profile of value functions, ∗ ∈ L∞ , is a
fixed point of the Nash payoff selection correspondence,  −→ S∞(P), and in particular,
we have, ∗ ∈ S∞(P∗), and we can deduce via implicit measurable selection methods that
there exists ∗ ∈ S∞(N∗). In particular, by our fixed point result above we know that

if the  Nash correspondence, N (· ·), has  Nash sub-correspondence, (· ·), taking
closed, connected values, then for the induced  Nash payoff sub-correspondence, (· ·),
given by

( ) = (  ( )), (73)

there exists ∗ ∈ L∞ such that

∗() ∈ ( ∗) ⊂ P( ∗) a.e. [] (74)

Then by implicit measurable selection (e.g., see Theorem 7.1 in Himmelberg, 1975), there

exists a profile, ∗(·) = (∗1(·)     ∗(·)), of a.e. measurable selections of  −→ ( ∗),
such that for each player  = 1 2    ,

∗() = ( 
∗
 
∗()) ∈ ( 

∗
 ( 

∗)) := ( 
∗) a.e. [] (75)

We have then for each player  that the state-contingent prices given by value function,

∗(·) ∈ L∞ , incentivizes the continued choice by each player , of action strategy, ∗(·),
and for the value function-strategy profile pair, (∗ ∗(·)) ∈ S∞(∗)×S∞(∗), we have
that

∗() = ( ∗ ∗()) ∈ ( ∗) and ∗() ∈ ( ∗) a.e. [], (76)

implying that

∗() ∈ P( ∗) and ∗() ∈ N ( ∗) a.e. []. (77)
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Thus, for value function-strategy profile pair, (∗ ∗(·)), we have for each player  =
1 2     and for  a.e. [], that (∗ ∗(·)) satisfies the Bellman condition (1 above)
as well as satisfies the Nash condition (2 above). Thus, ∗(·) ∈ S∞(N∗) is a stationary

Markov perfect equilibrium of a DSG satisfying assumptions [], incentivized by state-
contingent prices, ∗ ∈ S∞(P∗).

6 Comments

(1) Note that, due to the fact that Komlos convergence implies weak star convergence,

the arguments given in the latter part of the proof above of our Theorem (see expressions

(50)-(55) above) establish that the  Nash payoff sub-correspondence induces a weak

star upper semicontinuous selection sub-correspondence,  −→ S∞().
(2) Fu and Page (2022) establish that all DSG satisfying assumptions [] above have

 Nash correspondences given by a bundle of minimal  Nash correspondences each

of which takes minimally essential, closed connected Nash values. Given that all DSG
satisfying the usual assumptions have one-shot games satisfying assumptions [], all such

DSG have Nash payoff selection correspondences having fixed points - implying that all
such DSG have stationary Markov perfect equilibria ().
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