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Abstract
The Dirichlet process was introduced by Ferguson in 1973 to use with Bayesian nonparametric inference problems. A lot of
work has been done based on the Dirichlet process, making it the most fundamental prior in Bayesian nonparametric statistics.
Since the construction of Dirichlet process involves an infinite number of random variables, simulation-based methods are
hard to implement, and various finite approximations for the Dirichlet process have been proposed to solve this problem.
In this paper, we construct a new random probability measure called the truncated Poisson–Dirichlet process. It sorts the
components of a Dirichlet process in descending order according to their random weights, then makes a truncation to obtain a
finite approximation for the distribution of the Dirichlet process. Since the approximation is based on a decreasing sequence
of random weights, it has a lower truncation error comparing to the existing methods using stick-breaking process. Then
we develop a blocked Gibbs sampler based on Hamiltonian Monte Carlo method to explore the posterior of the truncated
Poisson–Dirichlet process. This method is illustrated by the normal mean mixture model and Caron–Fox network model.
Numerical implementations are provided to demonstrate the effectiveness and performance of our algorithm.

Keywords Dirichlet process · Poisson–Dirichlet process · Bayesian nonparametric hierarchical models · Normal mean
mixture models · Gibbs sampling · Hamiltonian Monte Carlo

1 Introduction

The Dirichlet process is a class of random probability
measures; it was introduced by Ferguson (1973) to solve
nonparametric inference problems from a Bayesian point of
view. Since then, much research has been done based on the
Dirichlet process, making its distribution a most fundamen-
tal prior in Bayesian nonparametric statistics. In the original
work of Ferguson (1973), the Dirichlet process was defined
by requiring its finite-dimensionalmarginal distribution to be
a Dirichlet distribution. An equivalent representation based
on the normalised jumps of a gamma process can also be
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found in the same work. Later on, Sethuraman (1994) gave a
constructive definition for Dirichlet process using the stick-
breakingmethod.Amore general class of randomprobability
measures called the stick-breaking priors was studied by Ish-
waran and James (2001), and the blocked Gibbs sampler
for the posterior of the corresponding Bayesian hierarchical
models was also developed. We refer to Yamato (2020) for
a summary of different construction methods and properties
of the Dirichlet process.

Due to the infinite-dimensional support of the Dirich-
let process, both the stick-breaking representation and the
gamma process representation involve an infinite number of
random variables. This is desirable in Bayesian nonparamet-
ric statistics as it makes the prior rich enough to incorporate
any given information. However, with an infinite number of
random variables, it is difficult to apply simulation-based
methods for posterior inference. In the existing literature,
there are two approaches to work with infinite-dimensional
priors, namely marginalisation and truncation.

The marginalisation approach was introduced by Esco-
bar (1994), it marginalises the distribution of the Dirichlet
process via the Blackwell–MacQueen Pólya urn scheme
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(Blackwell and MacQueen 1973) and leads to a powerful
Markov chain Monte Carlo method. This approach is widely
used in Dirichlet process hierarchical models. However, it
suffers from the side effect of, taking the nonparametric hier-
archical model as an example, making inference based only
on the latent variables. See Ishwaran and James (2001) for a
further discussion about its limitations.

The truncation approach replaces the infinite-dimensional
prior with a finite-dimensional approximation. An initial
study of a finite approximation of the Dirichlet process is
Muliere and Tardella (1998). Using a random stopping rule,
they designed an approximation method for Dirichlet pro-
cess that is able to control the truncation error a priori.
Ishwaran and Zarepour (2000) proposed the weak limit rep-
resentation and almost sure truncation for Dirichlet process,
and developed a blocked Gibbs sampler for the posterior of
the corresponding hierarchical models. Ishwaran and James
(2001) studied the finite approximation of the stick-breaking
priors. These methods have been built based on the stick-
breaking representation of Dirichlet process. On the other
hand, Zarepour and Al Labadi (2012) and Argiento et al.
(2016) used the gamma process representation to develop
the approximation; they also analysed the truncation error
of this method. A comprehensive investigation and charac-
terisation of different truncation methods can be found in
Campbell et al. (2019).

The goal of this work is to propose a new class of random
probability measures called the truncated Poisson–Dirichlet
process, and use it to approximate the distribution of the
Dirichlet process. The name that we have chosen for the ran-
dom probability measure is inspired by the work of Kingman
(1975), who showed that the ranked random weights of a
Dirichlet process follow the Poisson–Dirichlet distribution.
Our random probability measure takes the advantage of the
Poisson–Dirichlet distribution in the way that it is based on
a decreasing sequence of random weights, thus leading to a
lower truncation error comparing to other methods. More-
over, we group together the smaller random weights into a
single term and leave it in the truncated Poisson–Dirichlet
process. This differs from the existing literature where the
smaller randomweights are usually removed. Themotivation
of this construction arises from a variation of the Caron–Fox
network model (Caron and Fox 2017, see also Williamson
2016) where the focus is given to themost popular nodes.We
will briefly explain the application of the truncated Poisson–
Dirichlet process in such models.

Then we develop a posterior sampling algorithm for the
truncated Poisson–Dirichlet process. To demonstrate the
usage of the algorithm,we fit the truncated Poisson–Dirichlet
process into the normal mean mixture model and Caron–Fox
network model, then design the posterior inference method
for these models. Numerical illustrations are provided based
on simulated and real-world data sets.

The paper is organised as follows. Section 2 reviews
the basic properties of the Dirichlet process. Section 3
summarises some of the common approximations for the
Dirichlet process. Section4 constructs the truncatedPoisson–
Dirichlet process and provides a simulation algorithm for
such a process. We also analyse the truncation error in this
section. Section 5 develops the posterior sampling algorithm.
Section 6 illustrates the application of our method in the nor-
mal mean mixture model and Caron–Fox network model.
Section 7 provides the numerical illustrations. Section 8 sets
out some topics for future study.

2 Construction of the Dirichlet process

In this section, we review the construction and basic proper-
ties of the Dirichlet process. Let α > 0 be the concentration
parameter and H be the reference distribution, a probability
measure P = DP(αH) is called a Dirichlet process if for
each measurable partition (B1, . . . , Bk) of the sample space,
the distribution

(P(B1), . . . ,P(Bk)) ∼ Dir(αH(B1), . . . , αH(Bk)),

where Dir(. . . ) denotes the Dirichlet distribution.
InBayesian nonparametric statistics, it ismore common to

use different representations of the Dirichlet process. There
are two well-known representations in literature, namely the
stick-breaking representation and the gamma process repre-
sentation.

The stick-breaking representation was introduced by
Sethuraman (1994) as a constructive definition of the Dirich-
let process, they showed that a Dirichlet process can be
represented as

P̃∞(.) =
∞∑

i=1

p̃iδKi (.), (1)

where δKi (.) denotes a point mass at Ki , and Ki are inde-
pendent and identically distributed random variables with
distribution H . The variables { p̃i }∞i=1 are random weights
independent of Ki , such that 0 < p̃i < 1 and

∑∞
i=1 p̃i = 1

almost surely. They are constructed by the stick-breaking
method:

p̃1 = V1 and p̃i = (1 − V1) . . . (1 − Vi−1)Vi , (2)

for i = 2, 3, . . . , where Vi are independent Beta(1, α) ran-
dom variables for α > 0. Throughout this paper, we will use
the tilde notation to emphasise that the sequence { p̃i }∞i=1 is
presented in its original order. The subscript of infinity in
P̃∞ means the expression involves infinite terms, it will be
replaced by a finite number if we apply a truncation. Notice
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that the sequence of random weights ( p̃1, p̃2, . . . ) follows a
GEM distribution with parameter α.

TheDirichlet process can also be represented by the jumps
of a gamma process. Consider a gamma process τα with Lévy
measure v(dw) = w−1e−w1(0,∞)(w)dw at time α, then τα

has the Lévy–Khintchine representation

E(exp(−βτα))

= exp

(
−α

∫ ∞

0
(1 − e−βw)w−1e−wdw

)
.

Let {Ji }∞i=1 be the ranked jumps of τα such that J1 > J2 >

. . . and τα = ∑∞
i=1 Ji , and let the sequence {pi }∞i=1 be

defined as pi := Ji/τα for i = 1, 2, . . . , it follows imme-
diately that pi > 0 and

∑∞
i=1 pi = 1 with probability 1.

Ferguson (1973) showed that the random probability mea-
sure

P∞(.) =
∞∑

i=1

piδKi (.) =
∞∑

i=1

Ji∑∞
j=1 J j

δKi (.), (3)

is a Dirichlet process with concentration parameter α and
reference distribution H . Since J1 > J2 > . . . , the
random weights {pi }∞i=1 are decreasing, this differs from
stick-breaking representation (1). Moreover, the sequence of
random weights (p1, p2, . . . ) follows a Poisson–Dirichlet
distribution with parameter α.

The gamma process representation (3) has an equivalent
expression which is known as the Ferguson–Klass represen-
tation (Ferguson and Klass 1972):

P∞(.) =
∞∑

i=1

N−1(�i )∑∞
j=1 N

−1(� j )
δKi (.),

where �i = E1 + · · · + Ei , Ei ∼ Exp(1) are i.i.d. exponen-
tial random variables, and N−1(x) is the inverse of the tail
distribution of αv(dw), i.e.,

N (x) = α

∫ ∞

x
w−1e−wdw, for x > 0.

In spite of the elegant expression, the inverse function
N−1(x) is analytically intractable and an approximate eval-
uation is needed, see Wolpert and Ickstadt (1998) for more
details.

Since the random variables Ki are independent and identi-
cally distributed, the difference between the representations
(1) and (3) hinges on the orderings of their random weights.
McCloskey (1965) (see also Perman et al. 1992; Pitman
1996a) showed that the randomweights of the stick-breaking
representation are a size-biased permutation of that of the
gamma process representation, meaning that { p̃i }∞i=1 is the
same sequence as {pi }∞i=1 but presented in a random order

(pσ1 , pσ2 , . . . ), where P(σ1 = i) = pi , and for k distinct
i1, . . . , ik ,

P(σk = ik | σ1 = i1, . . . , σk−1 = ik−1)

= pik

1 − (pi1 + · · · + pik−1)
.

An index i with a bigger ‘size’ pi tends to appear earlier in
the permutation, hence the name ‘size-biased permutation’.
On the other hand, we revert to {pi }∞i=1 by sorting { p̃i }∞i=1 in
descending order. Note that these are exactly the connections
between the GEM and Poisson–Dirichlet distributions.

Although both P̃∞ and P∞ are Dirichlet processes, they
will lead to different approximation methods. In the next
section, we review some of the common approximations for
Dirichlet process in literature.

3 Approximation for the Dirichlet process

As we saw in the previous section, the construction of the
Dirichlet process involves an infinite number of random vari-
ables, and this may cause some difficulties in the simulation
ofDirichlet process basedmodels. To avoid this problem, var-
ious randomprobabilitymeasures have been proposedwhose
distributions approximate the Dirichlet process. These ran-
dom probability measures can be understood as truncated
versions of the Dirichlet process. In this section, we review
some of the approximation methods in literature.

The most straightforward approximation is to truncate the
stick-breaking representation (1) at a positive integer N . To
guarantee that the truncation leads to a well-defined proba-
bility measure, we set VN = 1 in (2), then we have obtained
the almost sure truncation of Dirichlet process:

P̃N (.) =
N∑

i=1

p̃iδKi (.). (4)

Using P̃N as the prior, Ishwaran and Zarepour (2000) con-
structed a Bayesian semiparametric model and developed a
blocked Gibbs sampler for posterior inference. The sampling
algorithm is based on the results of Connor and Mosimann
(1969), who showed that the posterior of P̃N is a generalised
Dirichlet distribution, it follows that the prior is conjugate
for multinomial sampling. Therefore, we are able to sample
from the posterior efficiently, and this is an advantage of the
almost sure truncation. A generalisation of this model based
on the stick-breaking prior can be found in Ishwaran and
James (2001).

It remains to choose an adequate truncation level N . A
larger N makes the approximation more accurate, but it also
brings more terms into the prior, and eventually into the pos-
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terior sampling algorithm. To this end, Muliere and Tardella
(1998) proposed a random stopping rule for P̃N which con-
trols the approximation error a priori, Ishwaran and Zarepour
(2000) derived an explicit result for the approximation error,
and Griffin (2016) introduced an adaptive truncation method
which allows the truncation level to be decided by the algo-
rithm and so can avoid large errors in approximating the
posterior.

Alternatively, the approximation can be obtained from the
gamma process representation (3). Since the infinite sum
appears in both the numerator and denominator of (3), a trun-
cation should also be applied to both of them, such that the
resulting random probability measure involves only a finite
number of random variables. Zarepour and Al Labadi (2012)
considered the following approximation for P∞:

PZA
N (.) =

N∑

i=1

Ji∑N
j=1 J j

δKi (.),

which truncates both the numerator and denominator of (3)
at the first N terms. The construction guarantees that PZA

N is
a valid probability measure. Moreover, it only involves the
largest N jumps of the underlying gamma process; hence it
is possible to sample from this random probability measure
and use it in simulation. Zarepour and Al Labadi (2012) used
a gamma distribution Ga(α/N , 1) to approximate the Lévy
measure of the gamma process, then sampled from the jumps
via the inverse transform method. Al Labadi and Zarepour
(2014) generalised this idea to the two-parameter Poisson–
Dirichlet process and normalised inverse-Gaussian process.

The truncation can also be made to the Lévy measure
v(dw)of the underlyinggammaprocess.Recall that a gamma
process has infinite activity because its Lévy measure inte-
grates to infinity, i.e.,

∫ ∞
0 w−1e−wdw = ∞. By truncating

the Lévy measure from below, we obtain an underlying pro-
cess with finite activity. Argiento et al. (2016) considered the
truncated Lévy measure

ρε(dw) = w−1e−w1(ε,∞)(w)dw, for ε > 0,

and constructed the random probability measure:

P̃ABG
ε (.) =

Nε∑

i=0

J̃i
∑Nε

j=0 J̃ j

δKi (.),

where { J̃i }Nε

i=0 are i.i.d. jumps from the density ρε(dw)/(
∫ ∞
ε

ρε(dw)), and Nε ∼ Pois(
∫ ∞
ε

ρε(dw)) denotes the total num-
ber of jumps, which is almost surely finite. As ε → 0,
P̃ABG

ε converges to the Dirichlet process in distribution;
hence it provides a finite approximation for the Dirichlet pro-
cess. The aim of Argiento et al. (2016) was to approximate
the normalised generalised gamma (NGG) process, and the

approximation for Dirichlet process can be viewed as a spe-
cial case of their results.

In Bayesian nonparametric statistics, it is possible to use
the Dirichlet process prior in its original form but apply a
truncation to the posterior instead. Ferguson (1973) showed
that the posterior of a Dirichlet process is again a Dirich-
let process with an extra point mass for each observation,
this property implies a sampling algorithm for the poste-
rior distribution which is known as the ‘Chinese restaurant
process’ (see Pitman 2006). Since the posterior of a Dirich-
let process still involves infinite terms, Gelfand and Kottas
(2002) suggested to apply the truncation directly to the pos-
terior. A generalisation of this approach for the Pitman–Yor
process prior can be found in Ishwaran and James (2001),
whose posteriorwas given byPitman (1996b).More recently,
James et al. (2009) derived a general result about the posterior
of the normalised random measure with independent incre-
ment (NRMI), andBarrios et al. (2013) studied the truncation
method for the posterior of the NRMIs. This approach has
the advantage of using the prior in its original form, while the
truncation method for posterior is similar to what we have
introduced above. For example, the random stopping rule
Nε := inf{i ∈ N | Ji+1/

∑i
j=1 J j < ε} can be used to trun-

cate the posterior of aDirichlet process. Thismachinery stops
sampling when the relative size of the newly sampled jump
is small enough, thus involving a finite number of random
variables. Argiento et al. (2010) provided an upper bound
for the ignored jump sizes in this method.

As we have seen above, a lot of effort has been devoted to
dealing with the problem of infinite random variables in the
Dirichlet process. In this paper, we provide a new solution
to this problem. Our method is inspired by the following
observation. Let {Ji }∞i=1 be the jumps of a gamma process
τα sorted in descending order. Conditioning on the largest
N jumps J1, . . . , JN , the sum of the smaller jumps τ N−

α :=∑∞
i=N+1 Ji is a truncated gamma process, and it admits the

Lévy–Khintchine representation

E

(
exp(−βτ N−

α ) | J1, . . . , JN

)

= exp

(
−α

∫ JN

0
(1 − e−βw)w−1e−wdw

)
.

We view the right hand side of the equation as the Laplace
transformof τ N−

α , then derive the density of τ N−
α by inverting

this Laplace transform. In the meanwhile, the exact simu-
lation algorithm for a truncated gamma process has been
well-studied in literature. Since a truncated gamma process
can be viewed as an exponentially tiltedDickmanprocess,we
can sample from a Dickman process and use rejection sam-
pling to include the exponential tilt. For the exact simulation
algorithm of the Dickman process, see Devroye and Fawzi
(2010), Fill and Huber (2010), Chi (2012) and Cloud and
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Huber (2017). More recently, Dassios et al. (2019) designed
an exact simulation algorithm that samples from the truncated
gamma process directly. Using these results, we provide a
new approximation for the Dirichlet process. We will split
the random weights of P∞ (see Eq. 3) into two parts:

i. the largest N random weights,

p1 := J1∑∞
j=1 J j

, . . . , pN := JN∑∞
j=1 J j

; (5)

ii. the sum of the smaller random weights,

r :=
∞∑

i=N+1

pi =
∑∞

i=N+1 Ji∑∞
j=1 J j

. (6)

This is a straightforward truncation for the gamma pro-
cess representation (3), without changing the total mass or
Lévymeasure.Moreover,we reserve the term (

∑∞
j=N+1 J j )/

(
∑∞

J=1 J j ) of the random probability measure and explain
it as an indicator for the proportion of the sample space not
belonging to the largest N random weights. Therefore, our
method can be explained as a rearrangement of the random
weights according to their importance.

If we need a motivation, apart from the approximation
for Dirichlet process, for our truncation method, the recent
research Caron and Fox (2017) andWilliamson (2016) about
network model should be mentioned. Next, we briefly intro-
duce their models with some simplifications. Let P̃∞ be a
Dirichlet process, and let G be a sample of P̃∞, then G has
the format

∑∞
i=1 p̃iδKi (.). We denote by Ki the index, or

identifier, of a node in the network, and p̃i the relative pop-
ularity of this node. We also use the notation (s, r) for the
links in the network, where s is the index of the sending node,
and r is the index of the receiving node. Assume that each
link chooses its origin and destination according to G inde-
pendently, then a network model containing n links can be
summarised as

G ∼ P̃∞

s j , r j
i.i.d.∼ G, j = 1, . . . , n.

(7)

In other words, each link in the network is a sample of the
product measure G × G, and the Dirichlet process P̃∞ can
be viewed as a prior for the relative popularities of the nodes.
A node with a higher relative popularity is more likely to
send or receive a link, hence more active in the network.
Williamson (2016) derived the explicit predictive distribution
for this model using a two-dimensional version of the Pólya
urn scheme.

A more general network model was considered by Caron
and Fox (2017), where the popularity of the nodes are mod-

elled by the jump sizes of a gamma process. Let { J̃i }∞i=1
be the jumps of a gamma process τα without ordering,
and let each node Ki have the popularity J̃i . Assume that
the links choose their origins and destinations according to∑∞

i=1( J̃i/τα)δKi (.), which is clearly a sample of the Dirich-
let process. Moreover, assume that the total number of links
follows aPoisson distributionwithmean τ 2α . Then theCaron–
Fox network model can be written as

G ∼ P̃∞
M ∼ Poisson(τ 2α)

s j , r j
i.i.d.∼ G =

∞∑

i=1

J̃i

τα

δKi (.), j = 1, . . . , M .

(8)

Conditioning on the total number of links M , model (8)
reverts to model (7). However, the Poisson assumption is
useful in the analysis of some real-world networks where
each link has an associated count.

Next, Caron and Fox (2017) suggested to split the nodes
into the following two clusters: (i) the nodes with at least
one link, (ii) the nodes without any link. Then they proposed
a method that estimates the popularity parameter J̃i of each
node in the former cluster, and the total popularity parame-
ter of the nodes in the latter cluster. We emphasise that this
method estimates the actual popularity parameters J̃i , not
only their relative weights J̃i/τα . Hence, the model prior
must be built based on the jumps of a gamma process, rather
than the stick-breaking random weights p̃i .

Inspired by the novel works of Caron and Fox (2017) and
Williamson (2016), we want to design a prior that deals with
the ‘networkwith key nodes’ scenario, meaning that wewant
to focus on the nodes with the highest popularity parameters.
Think about a network where a small proportion of nodes
occupy the majority of links, while most of the nodes have
very few links. An example of this scenario is the social net-
work, where a few top users enjoy the majority of followers,
while most of the users have very few followers. It is natu-
ral for us to focus on the most popular users. On the other
hand, there are many practical applications where only the
most popular nodes are relevant. For example, in the ‘who
to follow suggestions’ function on a social network, we only
expect the most popular users to appear, and an estimation
for all the users would be unnecessary and too costly. As a
result, we will not estimate the popularity parameters of all
the nodes, but only the most popular ones. For this purpose,
we sort all the popularity parameters { J̃i }∞i=1 in descending
order and focus on the largest N terms, namely J1, . . . , JN .
The smaller popularity parameters are grouped together in
terms of

∑∞
i=N+1 Ji . Given the observations from the net-

work, we would like to estimate (J1, . . . , JN ,
∑∞

i=N+1 Ji ).
This can be done if we replace the prior of model (8) by a ran-
domprobabilitymeasurewith randomweights in terms of (5)

123



   30 Page 6 of 20 Statistics and Computing            (2023) 33:30 

and (6), and that is exactly the truncated Poisson–Dirichlet
process.

4 The truncated Poisson–Dirichlet process

From the previous section, we know that it is a common
trick to avoid the infinite number of random variables in
Dirichlet process by ignoring the smaller randomweights. In
this section, we construct a new random probability measure
called the truncated Poisson–Dirichlet process. This random
probability measure provides a finite approximation for the
distribution of Dirichlet process using the randomweights in
terms of (5) and (6).

Definition 1 (Truncated Poisson–Dirichlet process) For a
positive integer N , a truncated Poisson–Dirichlet process is
defined as

PN (.) =
N∑

i=1

piδKi (.) + rδKN+1(.),

with

pi := Ji∑∞
j=1 J j

, for i = 1, . . . , N ,

and

r :=
∑∞

i=N+1 Ji∑∞
j=1 J j

,

where {Ji }∞i=1 denotes the ranked jumps of a gamma process
τα , such that J1 > J2 > · · · and τα = ∑∞

i=1 Ji ∼ Ga(α, 1),
α > 0; K1, . . . , KN , KN+1 are i.i.d. random variables with
distribution H , and δKi (.) is a point mass at Ki .

When N → ∞,PN converges toP∞ almost surely. Thus,
it provides a finite approximation for the distribution of the
Dirichlet process. The truncated Poisson–Dirichlet process
still involves an infinite sum, but conditioning on J1, . . . , JN ,
the sum of smaller jumps

∑∞
i=N+1 Ji is a truncated gamma

process. To derive its density, we first prepare the following
lemma.

Lemma 1 (Density of a truncated gamma process) Let Zα,μ

be a truncated gamma process with the Lévy–Khintchine rep-
resentation

E(exp(−βZα,μ))

= exp

(
−α

∫ 1

0
(1 − e−βw)w−1e−μwdw

)
,

and let gZ (z;α,μ) be the density of Zα,μ, then

gZ (z;α,μ) =
n−1∑

i=0

(−α)i

i ! Li (z)

for n − 1 < z ≤ n, n = 1, 2, . . . , where Li (t) is defined
recursively as follows:

L0(z) = eα�(0,μ) μα

�(α)
zα−1e−μz, for z > 0,

and

Li+1(z) =
∫ z−i

1
Li (z − s)s−1e−μsds, for z > i + 1.

Proof The density of Zα,μ can be derived via inverse Laplace
transform, we have

gZ (z;α,μ)

= L−1{E(exp(−βZα,μ))}

= L−1
{
exp

(
−α

∫ 1

0
(1 − e−βw)w−1e−μwdw

)}

= L−1
{
exp

(
−α

∫ ∞

0
(1 − e−βw)w−1e−μwdw

)

× exp

(
α

∫ ∞

1
(1 − e−βw)w−1e−μwdw

)}

= L−1
{
(1 + β/μ)−α exp

(
α

∫ ∞

1
w−1e−μwdw

)

× exp

(
−α

∫ ∞

1
e−βww−1e−μwdw

)}

= L−1
{
(1 + β/μ)−αeα�(0,μ)

×
∞∑

k=0

(−α)k

k!
(∫ ∞

1
e−βww−1e−μwdw

)k}
,

(9)

where �(0, μ) is the exponential integral

�(0, μ) =
∫ ∞

μ

w−1e−wdw.

From the Laplace transform of a gamma random variable,
we know

L−1
{

eα�(0,μ)

(1 + β/μ)α

}
= eα�(0,μ) μα

�(α)
zα−1e−μz,

denote this function by L0(z), then the last line of (9) can be
inverted by convolution. ��

To illustrate the result of Lemma 1, we plot the density
gZ (z;α,μ) with different values of α and μ in Fig. 1. We
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Fig. 1 Density of the truncated gamma process and the numerical
inverse Laplace transform results

also apply the CME method (see Horváth et al. 2020) to
invert the Laplace transform of Zα,μ numerically at some
fixed points, and plot the results as stars. From the figure we
can see that both methods produce similar results.

Nowwe can useLemma1 to derive the conditional density
of

∑∞
i=N+1 Ji given J1, . . . , JN .

Corollary 2 Let {Ji }∞i=1 be the ranked jumps of a gamma pro-
cess τα . Denote by τ N−

α := ∑∞
i=N+1 Ji the sum of the smaller

jumps, then τ N−
α has the conditional Lévy–Khintchine rep-

resentation

E

(
exp(−βτ N−

α ) | J1, . . . , JN

)

= exp

(
−α

∫ JN

0
(1 − e−βw)w−1e−wdw

)
.

It follows that the conditional density of τ N−
α , given J1, . . . ,

JN , is

fα,JN (w)dw = J−1
N gZ

(
wJ−1

N ;α, JN

)
dw,

where gZ (z;α,μ) is provided in Lemma 1.

Proof The Lévy–Khintchine representation of τ N−
α follows

from the basic properties of Poisson random measure, see
Kyprianou (2006). It can be written as

E

(
exp(−βτ N−

α ) | J1, . . . , JN

)

= exp

(
−α

∫ 1

0
(1 − e−β JN w)w−1e−JN wdw

)
,

then the conditional density of τ N−
α is a direct consequence

of Lemma 1. ��

Then we can derive the joint density of the jump sizes of
the gamma process used in Definition 1.

Theorem 3 Let {Ji }∞i=1 be the ranked jumps of a gamma pro-
cess τα with Lévy measure w−1e−w1(0,∞)(w)dw at time α.
Denote by Rk := Jk+1/Jk the ratio between the (k + 1)-th
and k-th largest jumps, and set τ N−

α := ∑∞
i=N+1 Ji , then the

joint density of the random vector (J1, R1, . . . , RN−1, τ
N−
α )

is

P(J1 ∈ dx1, R1 ∈ dr1, . . . , RN−1 ∈ drN−1, τ
N−
α ∈ dy)

= exp

(
−α

∫ ∞

x1r1...rN−1

w−1e−wdw

)

× αN

x1r1 . . . rN−1
e−x1(1+r1+r1r2+···+r1r2...rN−1)

× fα,x1r1...rN−1(y)dydrN−1 . . . dr1dx1,

where x1 ∈ (0,∞), rk ∈ (0, 1) for k = 1, . . . , N − 1,
y ∈ (0,∞), and fα,x1r1...rN−1(y) is the density of a truncated
gamma process with the Lévy measurew−1e−w1(0,x1r1...rN−1)

(w)dw at time α.

Proof The joint density of the largest N jumps of a gamma
process follows from the basic properties of Poisson random
measure (see Kyprianou 2006):

P(J1 ∈ dx1, . . . , JN ∈ dxN )

= exp

(
−α

∫ ∞

xN

w−1e−wdw

)

× αN

x1 . . . xN
e−(x1+···+xN )dxN . . . dx1,

where x1 > x2 > · · · > xN > 0. Then the joint den-
sity of (J1, R1, . . . , RN−1) can be obtained by changing the
variables with xk = x1

∏k−1
i=1 ri , for k = 2, . . . , N . The con-

ditional density of
∑∞

i=N+1 Ji is given by Corollary 2, and
this completes the proof. ��

Next, we provide a simulation algorithm for the ran-
dom vector (J1, . . . , JN , τ N−

α ). The algorithm consists two
stages; we first applied the rejection method introduced
by Rosiński (2001) (see also Godsill and Kı ndap 2022;
Imai and Kawai 2013) to sample from the largest N jumps
(J1, . . . , JN ) of the gamma process, then use the exact simu-
lation algorithm for truncated gammaprocess inDassios et al.
(2019) to simulate the sum of smaller jumps τ N−

α . We refer
to Algorithm 3.2 of Dassios et al. (2019) as AlgorithmTG(t ,
μ), and attach the full steps in Appendix A.

Proof of Algorithm 1 We apply the rejection method to sam-
ple from (J1, . . . , JN ). This method uses a dominating point
process Xα with Lévymeasure v0(dw) := w−1(1+w)−1dw

at timeα. Since v0(dw) has the tail probability
∫ ∞

x v0(dw) =
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Table 1 Sample averages of the
largest 5 jumps of a gamma
process, the sample size is 104

and CPU is at 2.80 GHz

Algorithm J1 J2 J3 J4 J5 τ 5−α Sum Time (s)

α = 0.5 True mean 0.3788 0.0855 0.0245 0.0076 0.0024 0.0012 0.5000 N.A.

HMC 0.3772 0.0842 0.0249 0.0086 0.0027 0.0014 0.4990 72.7881

Algorithm 1 0.3758 0.0848 0.0243 0.0077 0.0025 0.0012 0.4963 0.5651

α = 1.0 True mean 0.6250 0.2097 0.0884 0.0404 0.0192 0.0183 1.0000 N.A.

HMC 0.6108 0.2066 0.0840 0.0380 0.0174 0.0170 0.9739 98.5934

Algorithm 1 0.6248 0.2097 0.0886 0.0405 0.0191 0.0182 1.0009 0.5950

α = 1.5 True mean 0.8066 0.3241 0.1624 0.0881 0.0494 0.0694 1.5000 N.A.

HMC 0.7983 0.3124 0.1547 0.0833 0.0449 0.0639 1.4575 122.4333

Algorithm 1 0.8066 0.3242 0.1624 0.0882 0.0496 0.0695 1.5007 0.6864

α = 2.0 True mean 0.9519 0.4246 0.2361 0.1392 0.0882 0.1593 2.0000 N.A.

HMC 0.9549 0.3981 0.2204 0.1419 0.0845 0.1553 1.9550 133.8877

Algorithm 1 0.9564 0.4310 0.2378 0.1423 0.0882 0.1620 2.0178 0.7195

Algorithm 1 Simulation algorithm for the random vector
(J1, . . . , JN , τ N−

α )

1: Set k ← 1, i ← 1, �0 ← 0.
2: while k ≤ N do
3: Set �i ← �i−1 + Exp(1).
4: Set xi ← (exp(�i /α) − 1)−1.
5: Set Ui ← Uniform[0, 1].
6: if Ui ≤ (1 + xi ) exp(−xi ) then
7: Set Jk ← xi and k ← k + 1.
8: end if
9: Set i ← i + 1.
10: end while
11: Set τ N−

α ← JN × AlgorithmTG(α, JN ).
12: Output (J1, . . . , JN , τ N−

α ).

α ln(x−1 + 1), which can be inverted explicitly, we sample
from the ranked jumps of Xα via Step 4. The i th largest
jump of Xα is accepted with probability (1 + xi ) exp(−xi ).
We refer to in Rosiński (2001), Godsill and Kı ndap (2022)
and Imai and Kawai (2013) for more details.

Conditioning on (J1, . . . , JN ), the Lévy–Khintchine rep-
resentation of τ N−

α is (see the proof of Corollary 2):

E

(
exp(−βτ N−

α ) | J1, . . . , JN

)

= exp

(
−α

∫ 1

0
(1 − e−β JN w)w−1e−JN wdw

)
,

it follows that τ N−
α

d= JN ×Zα,JN , where Zt,μ denotes a trun-
cated gammaprocesswith Lévymeasurew−1e−μw1{0<w<1}
dw at time t , and the exact simulation algorithm for Zt,μ can
be found inAppendixA, seeDassios et al. (2019) for a further
discussion. ��

We present the numerical results of Algorithm 1 with
N = 5 and various values for α in Table 1. We also use the
Hamiltonian Monte Carlo method (Neal 2011, to be intro-
duced in Sect. 5) to sample from the joint density given in

Theorem 3. From the table we can see that Algorithm 1 sim-
ulates the jumps of the gamma process exactly, and it is very
efficient. In fact, Rosiński (2001) gave that the average num-
ber of rejected jumps of the dominating process Xα is αγ ,
where γ is the EulerMascheroni constant. Therefore, to sam-
ple from the largest N jumps of the gamma process, we only
need to generate (N + αγ ) number of exponential and uni-
form random variables respectively in average. Moreover,
Algorithm 1 simulates the jumps in succession, thus it is
very easy to include a random stopping rule. For example, to
apply the random truncation level Nε introduced in Sect. 3,
we only need to replace the fixed truncation level N by Nε

in the algorithm.
To close this section, we analyse the truncation error of

the truncated Poisson–Dirichlet process. From Definition 1,
we can see that the truncation error is revealed by the tail
probability of the Poisson–Dirichlet process. Let {pi }∞i=1 be
the random weights of a Poisson–Dirichlet process, we are
interested in the tail probability defined as

r =
∞∑

i=N+1

pi =
∑∞

i=N+1 Ji∑∞
j=1 J j

=
∑∞

i=N+1 Ji

J1 + · · · + JN + ∑∞
j=N+1 J j

.

Conditioning on J1, . . . , JN , we can express the tail proba-
bility in terms of

{r = y | J1, . . . , JN }

=
{ ∞∑

i=N+1

Ji = y

1 − y
(J1 + · · · + JN ) | J1, . . . , JN

}
.

Since the densities of J1, . . . , JN and
∑∞

i=N+1 Ji have been
given in Theorem 3 and Corollary 2, we can integrate out the
condition to derive the explicit distribution of r . However, the
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Fig. 2 Comparison between the tail probabilities of the Dirichlet and
Poisson–Dirichlet processes

integral is too complicated to calculate, and we will provide
some numerical results for the tail probability instead, see
Fig. 2.

We compare the numerical results to the truncation error of
the almost sure truncation, for which an explicit result can be
found in Ishwaran and Zarepour (2000) (see also Ishwaran
and James 2001). Let { p̃i }∞i=1 be the random weights of a
Dirichlet process defined as (2), for each non-negative integer
N and each positive integer r , they showed that

E

(( ∞∑

i=N+1

p̃i

)r)
=

(
α

α + r

)N

, (10)

and

E

( ∞∑

i=N+1

p̃r
i

)
=

(
α

α + r

)N
�(r)�(α + 1)

�(α + r)
. (11)

These results provide an upper bound for the tail probability
of the Poisson–Dirichlet process. It is clear from the defi-
nition that

∑N
i=1 pi ≥ ∑N

i=1 p̃i almost surely for any fixed
N , then

∑∞
i=N+1 pi ≤ ∑∞

i=N+1 p̃i , and (
∑∞

i=N+1 pi )
r ≤

(
∑∞

i=N+1 p̃i )
r . Combine this with (10), we have that

E

(( ∞∑

i=N+1

pi

)r)
≤

(
α

α + r

)N

.

Moreover, since p1 > p2 > · · · , the sequence {pr
i }∞i=1 is

decreasing, i.e., pr
1 > pr

2 > · · · , it follows that ∑N
i=1 pr

i ≥∑N
i=1 p̃r

i . On the other hand, the event {∑∞
i=1 pr

i =∑∞
i=1 p̃r

i } must be true, then we deduce that
∑∞

i=N+1 pr
i ≤

∑∞
i=N+1 p̃r

i . Combining this with (11), we get

E

( ∞∑

i=N+1

pr
i

)
≤

(
α

α + r

)N
�(r)�(α + 1)

�(α + r)
.

In Fig. 2, we plot the sample average of the tail probability
of the Poisson–Dirichlet process, as well as the explicit tail
probability of the Dirichlet process. The figure shows that we
can use the truncated Poisson–Dirichlet process with values
of α up to 10 and still have a reasonable truncation error if
the truncation level is high enough, for example N = 50.
Also, the figure implies a smaller truncation error arising
from the truncated Poisson–Dirichlet process, comparing to
the almost sure truncation.

5 Posterior of the truncated
Poisson–Dirichlet process

In this section, we develop the posterior sampling algorithm
for the truncated Poisson–Dirichlet process. We first work
out the posterior, which follows from the Bayes’ Theorem.

Proposition 4 For a sequence of i.i.d. observations X =
(X1, . . . , Xn) from a truncated Poisson–Dirichlet process P
with concentration parameter α, if n j = card{Xi = K j } is
the number of Xi s which equal K j , for j = 1, . . . , N + 1,
then the posterior is proportional to

π(P, α | X)

∝ xn1+n2+···+nN
1 rn2+···+nN

1 . . . rnN
N−1ynN+1

(� + y)n

× P(J1 ∈ dx1, R1 ∈ dr1, . . . ,

RN−1 ∈ drN−1, τ
N−
α ∈ dy)π(α),

(12)

where n = ∑N+1
j=1 n j is the total number of observations,

� := x1(1 + r1 + · · · + r1r2 . . . rN−1) denotes the sum
of the largest N jumps of the prior, the joint density of
(J1, R1, . . . , RN−1, τ

N−
α ) is given in Theorem 3, and π(α)

denotes the prior of the hyperparameter α.

Proof Conditioning on the truncated Poisson–Dirichlet pro-
cess prior, the likelihood function follows a multinomial
distribution,

P(K | P, α)

=
(

x1
� + y

)n1( x1r1
� + y

)n2
. . .

×
(

x1r1r2 . . . rN−1

� + y

)nN
(

y

� + y

)nN+1

;

then the proposition is a direct consequence of Bayes’ The-
orem. ��
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To sample from the conditional distribution (12), one way
is to sample from π(P | K, α) for a fixed α, then update α

according to the conditional density π(α | P)with conjugate
sampling or a Metropolis step. This approach was taken for
the almost sure truncation of the Dirichlet process, see Ish-
waran and Zarepour (2000). If we choose the same approach
for the truncated Poisson–Dirichlet process, we can sample
from (12) for a fixed α by rejection sampling. The joint den-
sity of (J1, R1, . . . , RN−1, τ

N−
α ) is taken to be the envelope

because its exact simulation algorithm has been developed
in Theorem 1. However, this method might be inefficient
because the ratio between the target density and envelope is
maximised at

(
x1

� + y

)n1 (
x1r1

� + y

)n2
. . .

×
(

x1r1r2 . . . rN−1

� + y

)nN
(

y

� + y

)nN+1

≤
(n1

n

)n1 (n2

n

)n2
. . .

(nN

n

)nN
(nN+1

n

)nN+1
,

when n is large, the acceptance rate could be low, and a lot
of iterations are needed until a candidate is accepted.

For an efficient exploration of π(P, α | K), we use the
Hamiltonian Monte Carlo method (see Neal 2011, see also
Caron and Fox 2017 Section 7.2 for a similar application
in posterior sampling) within the Gibbs sampler to update
(x1, r1, . . . , rN−1). The HMC method updates the variables
according to the gradient of the log-posterior, hence lead-
ing to a higher acceptance rate than the rejection sampling
method described above. For the update of the remaining
mass y and hyperparameter α, we apply a rejection sampling
step. This step makes use of the exact simulation algorithm
for truncated gammaprocess, seeAppendixA. In conclusion,
the sampling algorithm for (12) is given as follows.

Step 1 update (x1, r1, . . . , rN−1) given the rest using the
HMC method;

Step 2 update the remaining mass y and hyperparameter
α given the rest by rejection sampling.

To facilitate the HMC method, we express the posterior
in terms of unconstrained variables. Since x1 ∈ (0,∞) and
ri ∈ (0, 1), we define

X := log(x1) and Ri := tan(π(ri − 0.5)), (13)

for i = 1, . . . , N − 1, such that both X and Ri are uncon-
strained. Then we rewrite the posterior as

π(X , R1, . . . , Rn−1 | y, α,K)

∝ (eX )n1+n2+···+nN

×
(
1

2
+ 1

π
arctan(R1)

)n2+···+nN

. . .

×
(
1

2
+ 1

π
arctan(RN−1)

)nN

(� + y)−n

× exp

(
−α

∫ ∞




w−1e−wdw

)
1



e−� fα,
(y)

× eX
(
1

π

1

1 + R2
1

)
. . .

(
1

π

1

1 + R2
N−1

)

× d RN−1 . . . d R1d X ,

where


 := eX
(
1

2
+ 1

π
arctan(R1)

)
× . . .

×
(
1

2
+ 1

π
arctan(RN−1)

)
,

and

� := eX
[
1 +

(
1

2
+ 1

π
arctan(R1)

)
+ · · ·

+
(
1

2
+ 1

π
arctan(R1)

)
× · · ·

×
(
1

2
+ 1

π
arctan(RN−1)

)]
.

And the log-posterior is given by

log(π(X , R1, . . . , Rn−1 | y, α,K))

= C + (n1 + n2 + · · · + nN )X

+ (n2 + · · · + nN ) log

(
1

2
+ 1

π
arctan(R1)

)
+ . . .

+ nN log

(
1

2
+ 1

π
arctan(RN−1)

)

− n log(� + y)

− α

∫ ∞




w−1e−wdw − log(
) − �

+ log( fα,
(y)) + X

+ log

(
1

π

1

1 + R2
1

)
+ · · · + log

(
1

π

1

1 + R2
N−1

)
,

where C is a scaling constant independent of X , R1, . . . ,

RN−1.
Next,weneed to calculate the gradient of the log-posterior.

The calculation is straightforward except for the derivative
of log( fα,
(y)) with respect to X and Ri . To this end, we
first calculate the derivative of a truncated gamma density
fα,x (y) as follows.
When 0 < y ≤ x , the ratio 0 < y/x ≤ 1. From Lemma 1

and Corollary 2 we know the density involves only one term,
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that is,

fα,x (y) = 1

x
gZ

( y

x
;α, x

)
= eα�(0,x) 1

�(α)
yα−1e−y,

then the derivative is

d

dx
fα,x (y) = − αx−1e−x eα�(0,x) 1

�(α)
yα−1e−y

= − αx−1e−x fα,x (y).

Next, we consider the range x < y ≤ 2x . In this case,
1 < y/x ≤ 2, and the density involves two terms,

fα,x (y)

= eα�(0,x) 1

�(α)
yα−1e−y

− α

∫ y/x

1
eα�(0,x) 1

�(α)
(y − xs)α−1e−ys−1ds,

then the derivative is

d

dx
fα,x (y)

= −αx−1e−x
(

eα�(0,x) 1

�(α)
yα−1e−y

− α

∫ y/x

1
eα�(0,x) 1

�(α)
(y − xs)α−1e−ys−1ds

)

+ αeα�(0,x) 1

�(α)
e−y x−1(y − x)α−1.

The first term of this derivative can be written as −αx−1e−x

fα,x (y), while for the second term, we have

αeα�(0,x) 1

�(α)
e−y x−1(y − x)α−1

= αx−1e−x eα�(0,x) 1

�(α)
(y − x)α−1e−(y−x)

= αx−1e−x fα,x (y − x)1{y>x}.

Thus, the derivative is given by

d

dx
fα,x (y)

= −αx−1e−x (
fα,x (y) − fα,x (y − x)1{y>x}

)
.

(14)

In general, it can be shown by induction that the derivative
has the format (14) for any (k−1)x < y ≤ kx , k = 1, 2, . . . .
However, the calculation is quite complicated, so we provide
an inverse Laplace transform method towards this result.
From Lemma 1 and Corollary 2 we can see that in each
subinterval (k − 1)x < y ≤ kx , the functions fα,x (y) and

d
dx fα,x (y) are continuous in y and x , we then have for each
subinterval that

L−1
{∫ ∞

0
e−β y d

dx
fα,x (y)dy

}
1{(k−1)x<y≤kx}

= L−1
{

d

dx

∫ ∞

0
e−β y fα,x (y)dy

}
1{(k−1)x<y≤kx}

= L−1
{
−αx−1e−x (1 − e−βx )

× exp

(
−α

∫ x

0
(1 − e−βw)w−1e−wdw

)}

× 1{(k−1)x<y≤kx}
= −αx−1e−x (

fα,x (y) − fα,x (y − x)1{y>x}
)

× 1{(k−1)x<y≤kx}.

Then the derivative of log( fα,x (y)) is

d

dx
log( fα,x (y))

= −αx−1e−x
(
1 − fα,x (y − x)1{y>x}

fα,x (y)

)
,

and this enables us to calculate the derivative of log( fα,
(y))

with respect to X and Ri ,

d

d X
log( fα,
(y))

= −αe−


(
1 − fα,
(y − 
)1{y>
}

fα,
(y)

)
,

and

d

d Ri
log( fα,
(y))

= −αe−


(
1 − fα,
(y − 
)1{y>
}

fα,
(y)

)

× 1

π(1 + R2
i )

(
1

2
+ 1

π
arctan(Ri )

)−1

.

Now we are ready to use the HMC method to update
the variables (X , R1, . . . , RN−1). Let L ≥ 1 be the num-
ber of leapfrog steps and ε > 0 be the step size. For a
concise presentation of the algorithm steps, we denote by
W1:N := (X , R1, . . . , RN−1) the variables, and D(W1:N ) :=
D(X , R1, . . . , RN−1) = ∇ log(π(X , R1, . . . , Rn−1 | y,

α,K)) the gradient of the log-posterior. The HMC method
samples the momentum variables p ∼ N (0, IN ), then sim-
ulate L steps of the Hamiltonian via the following steps:

p̃(0) ← p + (ε/2)D(W1:N ),

W̃ (0)
1:N ← W1:N ;
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and for l = 1, . . . , L − 1,

W̃ (l)
1:N ← W̃ (l−1)

1:N + ε p̃(l−1),

p̃(l) ← p̃(l−1) + εD(W̃ (l)
1:N );

finally, set

W̃1:N ← W̃ (L−1)
1:N + ε p̃(L−1),

p̃ ← −
{

p̃(L−1) + (ε/2)D(W̃1:N )

}
.

The proposal W̃1:N = (X̃ , R̃1, . . . , R̃N−1) is accepted if

U [0, 1] ≤ π(W̃1:N | y, α,K)

π(W1:N | y, α,K)
exp

(
−1

2

N∑

i=1

( p̃i
2 − p2i )

)
.

We then output (x1, r1, . . . , rN−1) using the inverse trans-
form of (13), and Step 1 is completed.

For Step 2, we need to update the remaining mass y and
the hyperparameter α. We will use the acceptance–rejection
method to sample from the conditional density of y and α:

π(y, α | x1, r1, . . . , rN−1,K)

= C
ynN+1

(� + y)n
exp

(
−α

∫ ∞

x1r1...rN−1

w−1e−wdw

)

× αN fα,x1r1...rN−1(y)π(α)

= C ′ ynN+1

(� + y)n

× exp

(
−α

(
ν2 +

∫ ∞

x1r1...rN−1

w−1e−wdw

))

× αN+ν1−1 fα,x1r1...rN−1(y),

where α, y ∈ (0,∞), C and C ′ are scaling constants, and
π(α) ∼ Ga(ν1, ν2) is the prior for α. Conditioning on α and
(x1, r1, . . . , rN−1), we can sample from the truncated gamma
density fα,x1r1...rN−1(y) using the exact simulation algorithm
in Appendix A. Thus, we choose the envelope

C ′′αN+ν1−1

× exp

(
−α

(
ν2 +

∫ ∞

x1r1...rN−1

w−1e−wdw

))

× fα,x1r1...rN−1(y),

whereC ′′ is a scaling constant. To sample from the envelope,
we first simulate a gamma random number

α̃ ∼ Ga

(
N + ν1, ν2 +

∫ ∞

x1r1...rN−1

w−1e−wdw

)
,

then sample from fα̃,x1r1...rN−1(ỹ). The ratio between the tar-
get density and the envelope is maximised at

C ′

C ′′
ynN+1

(� + y)n
≤ C ′

C ′′
nnN+1

N+1

nn

(n − nN+1)
n−nN+1

(�)n−nN+1
,

thus, the candidates α̃ and ỹ are accepted if

U [0, 1]

≤
(

n

nN+1

ỹ

� + ỹ

)nN+1
(

n

n − nN+1

�

� + ỹ

)n−nN+1

,

and this completes Step 2.
The quantity ỹ/(� + ỹ) on the right hand side of the

inequality above represents the tail probability of a truncated
Poisson–Dirichlet process, and nN+1 stands for the number
of latent variables in this cluster. When the truncation level
N is large enough, we expect both quantities to be small, and
the acceptance rate should be high. If the truncation level
N is not large enough, these quantities could be larger. But
since the envelope sampling algorithm is very efficient, the
acceptance–rejection method may still be feasible. In more
extreme cases, we could include y andα in theHMCsampler.
To this end, we include Y := log(y) and A := log(α) in (13)
to obtain unconstrained variables.

Finally, we output the accepted candidates of (x1, r1, . . . ,
rN−1, y) and α. The posterior jump sizes of the gamma pro-
cess are derived from J1 = x1, J2 = x1r1, . . . , JN =
x1r1 . . . rN−1, and the posterior randomweights are given by

p1 = J1
� + y

, . . . , pN = JN

� + y
, r = y

� + y
,

where � = J1 + · · · + JN .
From the output we can see that the truncated Poisson–

Dirichlet process differs from the almost sure truncation (4)
in the following two aspects. First, we include the largest N
random weights in the posterior inference, while the almost
sure truncation is based on arbitrary N random weights. The
largest random weights would be helpful if we want to focus
on the most important components in the model. Second,
our method is targetted at the jump sizes of the underlying
gamma process, which are not available in the almost sure
truncation. The jump sizes are critical to some researches, for
example the Caron–Fox network model, and the truncated
Poisson–Dirichlet process should be used in this case.
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6 Models based on truncated
Poisson–Dirichlet process

In this section, we consider two models based on the trun-
cated Poisson–Dirichlet process, and discuss their posterior
inference method.

Consider a Bayesian nonparametric hierarchical model of
the format

(Xi | Yi ) ∼ π(Xi | Yi ), i = 1, . . . , n,

(Yi | P) ∼ P,

P ∼ P.

(15)

In this model, X1, . . . , Xn represent the observations, they
are assumed to be independent conditionally on the latent
variables Y1, . . . , Yn . The latent variables Yi are independent
and identically distributed according to P , and P is a sample
of the random probability measure P . We refer to P as the
model prior.

If we use aDirichlet process forP , (15) reverts to aDirich-
let process hierarchical model. Since the Dirichlet process
prior is conjugate to multinomial sampling, the model pos-
terior can be obtained by integrating over P and exploiting
the Pólya urn scheme. This approach leads to a marginalised
version of the Bayesian nonparametric hierarchical model:

(Xi | Yi ) ∼ π(Xi | Yi ), i = 1, . . . , n,

(Y1, . . . , Yn) ∼ π∞(Y1, . . . , Yn),

π∞(dY1, . . . , dYn) ∼ H(dY1)

n∏

i=2

{
α

α + i − 1
H(dYi )

+ 1

α + i − 1

i−1∑

j=1

δY j (dYi )

}
,

where π∞(dY1, . . . , dYn) denotes the distribution of a Pólya
urn scheme.

The marginalisation method is widely used in Bayesian
nonparametric statistics as it can be implemented easily.
However, since the Dirichlet process prior is integrated out
by marginalisation, this approach has the side effect of mak-
ing inference based on the latent variables Y1, . . . , Yn only.
To combat this problem, Ishwaran and Zarepour (2000) (see
also Ishwaran and James 2002) replaced P by the almost
sure truncation P̃N (see Eq. 4). This leads to an approxi-
mation for the Dirichlet process hierarchical model which
is almost indistinguishable from its limit when N is large
enough. Moreover, a direct inference for P̃N can be obtained
using this method.

Following this idea, we provide a new approximation for
model (15). Our method is to replace the Dirichlet process
prior P by a truncated Poisson–Dirichlet process PN . To
facilitate the posterior sampling algorithm, we recast the

model completely in terms of random variables, then model
(15) is approximated by

(Xi | Z,K) ∼ π(Xi | ZKi ), i = 1, . . . , n,

(Ki | P) ∼
N∑

i=1

piδi (.) + rδN+1(.),

P ∼ PN ,

Z ∼ π(Z),

(16)

where K = (K1, . . . , Kn) are the classifiers that relate the
random variables Z = (Z1, . . . , Zn) to the latent variables
Yi , i.e., Yi = ZKi . We will devise a blocked Gibbs sampler to
explore the posterior distribution of model (16), denoted by
π(P,Z,K | X). The sampler draws iteratively from the con-
ditional distributions π(P,Z | K,X) and π(K | P,Z,X),
thus producing the posterior values (P(b),Z(b),K(b)).

Next, we use the normal mean mixture model to illustrate
the posterior sampling algorithm.Thesemodels are in the for-
mat of (15) with (Xi | Yi ) ∼ N (Yi , σX ), where σX denotes
the variance. In the clustering problems, σX is assumed to
be a known constant; while in the predictive density estima-
tion problems, σX is a parameter that needs to be estimated.
For now we assume that σX is known; this condition will
be released to obtain a Bayesian semiparametric hierarchical
model later. Using the approximation (16), we express the
normal mean mixture model as

(Xi | Z,K) ∼ N (ZKi , σX ), i = 1, . . . , n,

(Ki | P) ∼
N∑

i=1

piδi (.) + rδN+1(.),

(Zk | θ, σZ ) ∼ N (θ, σZ ),

(θ | σθ ) ∼ N (0, σθ ),

(σ−1
Z | τ1, τ2) ∼ Ga(τ1, τ2),

(α | ν1, ν2) ∼ Ga(ν1, ν2),

(17)

where P is a sample of the truncated Poisson–Dirichlet pro-
cess PN .

In model (17), we use hyperparameters θ and σZ for the
distribution of Zk , and choose normal and inverse gamma
priors for these hyperparameters respectively. Since the pri-
ors are conjugate, the hyperparameters can be updated easily.
To obtain noninformative priors, we choose a large value for
σθ , i.e., σθ = 1000, and use small values for τ1 and τ2, i.e.,
τ1 = τ2 = 0.001.Note thatα is directly related to the number
of distinct clusters. A large α encourages the mass to spread
among distinct Ki values, while a small α means the mass
will concentrate on a few clusters. We choose a gamma prior
for α due to its flexibility, as we can manipulate the num-
ber of distinct clusters by adjusting the hyperparameters ν1
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and ν2. More importantly, the gamma prior will simplify the
update procedure for α in the posterior sampling algorithm.

Next,we design aGibbs sampling scheme for the posterior
of (17). To implement the blocked Gibbs sampler, we need to
draw from the following conditional distributions iteratively:

(P, α | K), (18)

(Z | K, θ, σZ ,X), (19)

(K | P,Z,X), (20)

(θ | Z, σZ ), (21)

(σZ | Z, θ). (22)

The first step (18) samples from the posterior of the truncated
Poisson–Dirichlet process, then updates the concentration
parameter. This can be done using the algorithm introduced
in Sect. 5. To sample from (19), (20), (21) and (22), we follow
the standard procedure in literature. The means Z can be
updated using the conditional density

f (Z | K, θ, σZ ,X)

∝
{ m∏

j=1

f (ZK ∗
j
| θ, σZ )

∏

{i :Ki =K ∗
j }

f (Xi | ZK ∗
j
)

}

× f (Z K | θ, σZ ),

where {K ∗
1 , . . . , K ∗

m} denote the m unique values in the set
K. For each element of

{
K ∗
1 , . . . , K ∗

m

}
, we sample from ZK ∗

j
according to

(ZK ∗
j
| K, θ, σZ ,X) ∼ N (θ∗

j , σ
∗
Z j

),

where θ∗
j = σ ∗

Z j
(θ/σZ + ∑

{i :Ki =K ∗
j } Xi/σX ), σ ∗

Z j
=

(n j/σX +1/σZ )−1, and n j is the number of times K ∗
j occurs

inK. Also, for each j ∈ K−{K ∗
1 , . . . , K ∗

m}, we sample from
Z j ∼ N (θ, σZ ) independently.

The conditional distribution for K is given by

(K j | P,Z,X) ∼
N∑

i=1

p∗
i, jδi (.) + r∗

j δN+1(.),

where

(p∗
1, j , . . . , p∗

N , j , r∗
j )

∝
(

p1 exp

( −1

2σX
(X j − Z1)

2
)

, . . . ,

pN exp

( −1

2σX
(X j − Z N )2

)
,

r exp

( −1

2σX
(X j − Z N+1)

2
))

.

The conditional distribution of θ and σZ are conjugate.
We sample from θ according to (θ | Z, σZ ) ∼ N (θ∗, σ ∗

θ ),
where

θ∗ = σ ∗
θ

σZ

N+1∑

i=1

Zi and σ ∗
θ = (N/σZ + 1/σθ )

−1.

And for the conditional distribution of σZ , we sample from

(σ−1
Z | Z, θ) ∼ Ga

(
τ1 + N/2, τ2 +

N+1∑

i=1

(Zi − θ)2/2

)
.

These steps are taken from Ishwaran and James (2002) and
Ishwaran and Zarepour (2000), they complete all the steps
of the blocked Gibbs sampler and enables us to sample from
the posterior of model (17).

The blocked Gibbs sampler can be extended to estimate
the variance of the underlying normal distribution. By view-
ing the variance σX as an unknown parameter, we get a
Bayesian semiparametric hierarchical model where (Xi |
Yi , σX ) ∼ N (Yi , σX ). We choose an inverse gamma prior
for σX :

σ−1
X ∼ Ga(γ1, γ2) (23)

with γ1 = γ2 = 0.001, such that the prior is noninformative.
Then σX can be updated by conjugation

(σ−1
X | X,Z,K)

∼ Ga

(
γ1 + n/2, γ2 +

n∑

i=1

(Xi − ZKi )
2/2

)
.

(24)

We add an extra step (24) into the blocked Gibbs sampler,
and use the updated value of σX in other steps. This gives
us a sampler for the normal mean mixture model with an
unknown variance.

The normal mean mixture model demonstrates the feasi-
bility of the truncated Poisson–Dirichlet process in clustering
and predictive density estimation problems. However, these
problems can also be solved using the almost sure truncation,
and it still remains to justify the novelty of our method. To
this end, we provide an application of the truncated Poisson–
Dirichlet process in the Caron–Fox network model.

As discussed in Sect. 3, the construction of the truncated
Poisson–Dirichlet process is partially motivated by the ‘net-
work with key nodes’, meaning that we want to estimate the
largest N popularity parameters in the network. The two-
dimensional Pólya urn scheme in Williamson (2016) is not
applicable in this problem because the popularity parame-
ters are integrated out by marginalisation; while the method
in Caron and Fox (2017) hinges on the estimation of the
popularity parameters of all the nodes with at least one link.
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To our best knowledge, no literature has focused on the most
popular nodes in aCaron–Fox networkmodel.We replace the
Dirichlet process prior in model (7) by a truncated Poisson–
Dirichlet process PN and consider the network model

G ∼ PN

s j , r j
i.i.d.∼ G =

N∑

i=1

Ji

τα

δi (.) + τ N−
α

τα

δN+1(.),
(25)

for j = 1, . . . , n, where {Ji }∞i=1 are the ranked jumps of a
gamma process τα , they denote the popularity parameters of
the nodes in the network; and τ N−

α = ∑∞
i=N+1 Ji is the total

popularity parameter of the less popular nodes.
Next, we discuss the posterior inference procedure for

model (25). For a set of observations from the network, we
need to count the number of links of all the nodes and find out
the largest N values, namely n1, . . . , nN ; they are explained
as the number of links of the N nodes with the highest pop-
ularity parameters. The other links are grouped together in
terms of nN+1 := ∑∞

i=N+1 ni and understood as the total
number of links of the less popular nodes. Then we input the
data {n1, . . . , nN , nN+1} into the posterior of model (25),
which is given in Proposition 4, and use the algorithm in
Sect. 5 to sample from it. Note that we will only output the
jump sizes J1, . . . , Jn, , τ N−

α in this case.
We emphasise that this method estimates the actual popu-

larity parameters (J1, . . . , JN , τ N−
α ), not only their weights,

and this makes the model more flexible. For example, to
include the Poisson assumption about the total number of
links, we only need to multiply the posterior distribution (12)
by a Poisson probability mass function. See Caron and Fox
(2017) for a further discussion on the choice of the prior forα,
as well as the applications of the posterior inference results.

7 Numerical implementations

In this section, we present some numerical results for the
models introduced in Sect. 6. We first study the normal mean
mixture model with a known variance. Consider a mixture of
three normal distributions whose means are {−3, 1, 2} with
equal probabilities and variance σX = 1, we simulate n = 45
observations from the model, then run the blocked Gibbs
sampler and record the posterior mean values. We use the
truncation level N = 45 for the truncated Poisson–Dirichlet
process prior, and choose a Ga(2, 2) prior for α. In the HMC
step, we use the leapfrog steps L = 10 and the step size
ε = 0.25. The numerical results are presented in Fig. 3.

The outcome of the blocked Gibbs sampler can be used to
estimate the predictive density for a new observation Xn+1.
We denote by f (Xn+1 | X) the predictive density for Xn+1

conditioning on the current observationsX = (X1, . . . , Xn),
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Fig. 3 Posterior mean values based on 45 observations, each obser-
vation Xi is sampled from a normal mean mixture model with mean
{−3, 1, 2} with equal probabilities and variance σX = 1. Values for Xi
and true values for μX are denoted by green cross and red plus respec-
tively. The plot is based on 4500 sampled values following an initial
2500 iteration burn-in using the blocked Gibbs sampler

and Yn+1 the latent variable of this new observation, then

f (Xn+1 | X)

=
∫

N (Xn+1 | Yn+1, σX )dπ(Yn+1, σX | X)

=
∫∫

N (Xn+1 | Yn+1, σX )

× dπ(Yn+1 | P)dπ(P, σX | X).

Since we have used a truncated Poisson–Dirichlet process
prior, the probability measure P has the format P(.) =∑N

i=1 piδZi (.) + rδZ N+1(.), and the inner integral can be
expressed as

∫
N (Xn+1 | Yn+1, σX )dπ(Yn+1 | P)

=
N∑

i=1

piN (Xn+1 | Zi , σX )

+ rN (Xn+1 | Z N+1, σX ).

(26)

Thus, the predictive density f (Xn+1 | X) can be estimated
by averaging (26) over the posterior values from different
iterations. In Fig. 4, we randomly select fifty iterations and
use their posterior values to evaluate (26). From the figure we
can see that the posterior induces two modes for the model,
but it cannot distinguish between the two modes 1 and 2
which are close to each other.

The performance of the blocked Gibbs sampler can also
be seen from the clustering of observations, which is revealed
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Fig. 4 Fifty randomly selected predictive densities of the format (26).
The true values for Xi are presented by the histogram. The plot is based
on 4500 sampled values following an initial 2500 iteration burn-in using
the blocked Gibbs sampler
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Fig. 5 Proportions of the number of distinct values in K(b), b =
1, . . . , 4500. N = 45

by the number of distinct values in K(b). We count the num-
ber of distinct values from each iteration and record their
proportions in Fig. 5. The figure shows that the posterior dis-
tribution has at least two clusters, and it is unlikely to have
more than ten clusters. Then we re-run the blocked Gibbs
sampler with a higher truncation level N = 250 for the trun-
cated Poisson–Dirichlet process prior, and count the number
of distinct values in K(b) again. From Fig. 6 we can see that
the proportions are similar as before, although the posterior
distribution has at most eight clusters in this case.

For real-world data sets, we also need to estimate the vari-
ance σX , and this leads us to the normal mean mixture model
with an unknown variance. Next, we provide an illustration
basedon the galaxyvelocities data inRoeder (1990). The data
contains the relative velocities of 82 galaxies from six well-

2 3 4 5 6 7 8
Number of clusters

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

P
ro

ba
bi

lit
y

Fig. 6 Proportions of the number of distinct values in K(b), b =
1, . . . , 4500. N = 250
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Fig. 7 Posterior mean values (km/sec. * 0.001) of the galaxy velocities
data. The observations Xi are denoted by green cross. The plot is based
on 2500 sampled values following an initial 2500 iteration burn-in using
the blocked Gibbs sampler with N = 82 and α ∼ Ga(2, 4)

separated conic sections of space. Escobar and West (1995)
analysed the data using a Dirichlet process mixture model,
while Ishwaran and Zarepour (2000) replaced the Dirichlet
process by the almost sure truncation (see Eq. 4). We reanal-
yse the data using the normal mean mixture model (17) with
an unknown variance, and record the posterior mean values
in Fig. 7. Then we estimate the predictive density (26) using
the outcome of the blocked Gibbs sampler and present the
numerical results in Fig. 8. We can see that there seems to
be six distinct modes in the predictive density. This finding
is in line with the results of Escobar and West (1995) and
Ishwaran and Zarepour (2000).

We provide another illustration for the normal mean mix-
ture model with unknown variance using the Mexican stamp
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Fig. 8 Twenty-five randomly selected predictive densities of the format
(26). The densities are evaluated over the same partition

Fig. 9 Posterior mean values (mm * 100) of the stamp thickness data.
The observations Xi are denoted by green cross. The plot is based on
2500 sampled values following an initial 2500 iteration burn-in using
the blocked Gibbs sampler with N = 150 and α ∼ Ga(2, 2)

thickness data. The 1872–1874 Hidalgo postage stamps of
Mexico were printed on handmade paper, and their thickness
varies considerably. Izenman and Sommer (1988) tested the
number of modes in thickness by analyzing 485 thickness
data and concluded that there were seven modes, namely
0.072, 0.080, 0.090, 0.100, 0.110, 0.120 and 0.130 mm. Ish-
waran and James (2002) used a normal mean mixture model
with the almost sure truncation of Dirichlet process to esti-
mate the predictive density. We revisit the data using model
(17) with an unknown variance, and record the numerical
results in Figs. 9 and 10. From the figures we can recognise
seven distinct modes in the predictive density, and the val-
ues of the modes are similar to the results of Izenman and
Sommer (1988).

Fig. 10 Fifty randomly selected predictive densities of the format (26).
The densities are evaluated over the same partition
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Fig. 11 Simulated observation of 6000 links, each link is sampled from
the truncated Poisson–Dirichlet process network model (25) with trun-
cation level N = 10 and concentration parameter α = 5

Next, we provide an numerical implementation for the
Caron–Fox network model. We first generate simulated
observations from model (25). Using the algorithm intro-
duced in Sect. 4, we draw a sample G from the model prior
PN . Thenwe choose the origins and destinations for the links
according to G. Since each link involves two nodes, we need
to draw 2n independent samples from G. We record the sim-
ulated observations in Fig. 11. Note that the number in each
box denotes the amount of linkswith the same origin and des-
tination. Then we apply the posterior sampling algorithm to
estimate the popularity parameters of the nodes. The numer-
ical results are presented in Fig. 12. The figure shows that
our method recovers the popularity parameters of the prior
very well.
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Fig. 12 Posterior values of the popularity parameters. The true values
of (J1, . . . , JN , τ N−

α ) are denoted by green cross. The plot is based on
2500 sampled values following an initial 2500 iteration burn-in using
the blocked Gibbs sampler with N = 10 and α ∼ Ga(0.001, 0.001)

Finally, we investigate the complexity of our posterior
sampling algorithm, and compare it to complexity of the
blocked Gibbs sampler based on almost sure truncation,
which can be found in Ishwaran and Zarepour (2000). Here
we explain the complexity as the total number of random
variables generated by the algorithm,which contributes to the
majority of the computation time. For the normal mean mix-
turemodel, our posterior sampler differs from the almost sure
truncation method only in step (18), hence we only record
the complexity of this step. While for the network model,
the almost sure truncation is not applicable. In Table 2, we
present the complexities of different algorithms. From the
table we can see that our sampler generates more random
variables than the almost sure truncation method. In fact,
the truncated Poisson–Dirichlet process is not expected to
outperform the existing methods based on the almost sure
truncation. The purpose of our method is to include the
actual jump sizes (J1, . . . , JN , τ N−

α ) into estimation, and that
requires more computation.

8 Discussion

In this research, we construct a new random probability mea-
sure called the truncated Poisson–Dirichlet process, and use
it to approximate the distribution of the Dirichlet process.
Then we develop a posterior inference method for the trun-
catedPoisson–Dirichlet process, and illustrate its usage in the
normal mean mixture model and Caron–Fox network model.

There are several topics worth a further study. First, our
truncation method can be easily extended to the posterior
of a Dirichlet process. This means the standard Dirichlet
process can be used as the prior, and the posterior will be
truncated instead. A similar idea in literature was mentioned
in Sect. 3. Another topic is to generalise our truncation
method to the Pitman-Yor process and generalised gamma
process, this will make use of the algorithms introduced
by Dassios and Zhang (2021) and Dassios et al. (2020).
Moreover, we will investigate the application of our method
in the analysis of real-world network data sets, where the
generalised gamma process will be considered. Finally, the
truncated Poisson–Dirichlet process seems appropriate for
theBayesian nonparametric Plackett–Lucemodel (seeCaron
and Teh 2012; Caron et al. 2014), and we will study it in a
future work.
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Table 2 Complexity of the
posterior sampling algorithm
based on different priors, AST
and TPD stand for the almost
sure truncation and truncated
Poisson–Dirichlet process
respectively, CPU is at 2.80 GHz

Problem Prior N Iterations Uniform Beta Gamma Normal Time (s)

Normal mean AST 45 7000 0 308000 7000 0 4.3541

Estimation TPD 45 7000 93436 21812 7000 315000 96.9472

Galaxy AST 82 5000 0 405000 5000 0 5.5732

Velocity TPD 82 5000 70871 16957 5000 410000 147.1075

Stamp AST 150 5000 0 745000 5000 0 29.9868

Thickness TPD 150 5000 76196 18732 5000 750000 487.1008

Network AST N.A. N.A. N.A. N.A. N.A. N.A. N.A.

Analysis TPD 10 5000 5724797 1782282 85891 50000 96.7071
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Appendix A: Simulation of truncated gamma
process

In this appendix, we attach Algorithm 3.2 of Dassios et al.
(2019). This algorithm exactly samples from a truncated
gamma process Zt,μ with Lévy–Khintchine representation

E(exp(−βZt,μ))

= exp

(
−t

∫ 1

0
(1 − e−βw)w−1e−μwdw

)
.

Algorithm 2 Exact simulation of Zt,μ

1: Set S = 0.
2: Numerically minimise

C(ν, δ)

= �(δ)e−μ

ν(1 − δ)e
e�(0,μ) exp(�(0,μ)+ν+log(μ))

× μexp(�(0,μ)+ν+log(μ))

× eν exp(�(0,μ)+ν+log(μ))

× (�(exp(�(0, μ) + ν + log(μ)) + δ))−1 ,

record the optimal value ν∗ and δ∗, and set C = C(ν∗, δ∗).
3: Generate U1 ∼ U [0, 1] and set T = − log(U1)/ν

∗.
4: Generate Y ∼ Beta(T , δ∗), U2 ∼ U [0, 1], and set

M = Y − 1 + (1 − Y ) exp(−U2 log(1 − Y )).

5: Generate V1 ∼ U [0, 1], if

V1 ≤ 1

C

�(δ∗)
ν∗

e�(0,μ)T μT eν∗T

�(T + δ∗)

× − log(1 − Y )

(1 − Y )δ
∗−1 e−μ(1+M),

then accept (T , M). Otherwise, go to Step 3.
6: If T > t , continue to Step 7.Otherwise, set S = S+1+M , t = t−T ,

and go to Step 3.
7: Generate U3 ∼ U [0, 1] and set X = U1/t

3 .
8: Generate V2 ∼ U [0, 1]. If

V2 ≤ exp(−μX),

then accept X . Otherwise, go to Step 7.
9: Return S + X .
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