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Abstract
Lattice conditional independence models [Andersson
and Perlman, Lattice models for conditional indepen-
dence in a multivariate normal distribution, Ann. Statist.
21 (1993), 1318–1358] are a class of models developed first
for the Gaussian case in which a distributive lattice clas-
sifies all the conditional independence statements. The
main result is that these models can equivalently be
described via a transitive directed acyclic graph (TDAG)
in which, as is normal for causal models, the conditional
independence is in terms of conditioning on ancestors
in the graph. We demonstrate that a parallel stream of
research in algebra, the theory of Hibi ideals, not only
maps directly to the lattice conditional independence
models but gives a vehicle to generalise the theory from
the linear Gaussian case. Given a distributive lattice
(i) each conditional independence statement is associ-
ated with a Hibi relation defined on the lattice, (ii) the
directed graph is given by chains in the lattice which cor-
respond to chains of conditional independence, (iii) the
elimination ideal of product terms in the chains gives
the Hibi ideal and (iv) the TDAG can be recovered from
a special bipartite graph constructed via the Alexan-
der dual of the Hibi ideal. It is briefly demonstrated
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2 CAINES et al.

that there are natural applications to statistical log-linear
models, time series and Shannon information flow.

MSC 2020
62R01, 05E40, 13P25, 06D50 (primary)

1 INTRODUCTION

Lattice conditional independence (LCI) are a special type of statistical graphical models intro-
duced by Andersson and Perlman [2] in the context of linear Gaussian models. The idea is
that in the case of a distributive lattice of linear subspaces associated with the marginal mod-
els, all conditional independence statements could be classified via the intersections (meets) on
the lattice. The theory comes with an important duality which links the LCI models isomor-
phically to a transitive-directed acyclic graph (TDAG) from [1], so that LCI could be seen as
providing an important class of causal models. More precisely, each intersection on the lattice
is mapped to a conditional independence statement conditioning on common ancestors in the
TDAG.
The LCI models that arise from a TDAG are not in general graphical models based on directed

acyclic graphs (DAGs) or undirected graphs (UGs). An important subclass of a graphical model is
a decomposable graphical model, see [16], and it is possible to confuse these with the LCI models.
There is an overlap between the two classes; see [1, 5]. An added complexity is that some DAG
models give the same set of CIs as UGs; TheDAGs equivalent to the samemodel are calledMarkov
equivalent. TheTDAGmodels have a unique set of CI statements but are not in general represented
by UGs.
In this paper, we study LCI models through the lens of algebraic statistics, by connecting them

to so-called Hibi rings that are both predicated on distributive (Boolean) lattices. Hibi rings and
their properties have been extensively studied in commutative algebra; see, for example, [6, 9, 11].
The key point linking the two areas is the fact that for LCI models every member of the lattice
is associated with a marginal distribution. This means that, initially, the algebraic relations are
associated with margins. The existence of a connection between LCI models and Hibi ideals was
suggested by Beerenwinkel, Eriksson and Sturmfels [3] within the context of Gröbner basis theory
and maximum likelihood estimation. Here, we develop the algebraic connection in more detail,
particularly in the relationship to the duality with the TDAG representation. The insight is that
the TDAG representation that is related to conditional probability statements, suggests that there
should be a representation of this duality in the algebraic context. This is indeed the case and,
remarkably, the relation is that the Hibi (marginal) representation is the toric elimination ideal
from the products of conditional probabilities given by the TDAG. Moreover, the TDAG itself can
be read from a special bipartite graph arising from a particular Alexander duality.
In [4] it was suggested that LCI models have wide applicability, and in that paper, the applica-

tion to time series was discussed. The work by [12] is a continuation of this approach in which a
more formal link to Granger causality has beenmade. This, in particular, prompts the inclusion of
time series as one of themain applications. Another application is to Shannon information where
the LCI models lead to additive models for information.
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LATTICE CONDITIONAL INDEPENDENCE MODELS AND HIBI IDEALS 3

The outline of the paper is as follows. In Section 1.1, wewill give an elementary review of the LCI
models with their connections to other types of statistical models, and in Section 1.2, we discuss
the linear (Gaussian) case. In Section 2, we will describe the Hibi ideals. Section 3 will link all
the concepts together. This includes an understanding of the effect of reversing the arrows in the
TDAG. The final sections cover the two applications: time series and Shannon information.

1.1 Elementary considerations

In teaching elementary statistics and probability theory, there is something of a conundrum in
the expression of independence and CI. This is seen in as simple an example as two independent
binary random variables 𝑋1, 𝑋2 = {0, 1}. Let

𝑝𝑖𝑗 = prob{(𝑋1 = 𝑖) ∩ (𝑋2 = 𝑗)} (𝑖, 𝑗 = 0, 1).

The issue is that there are two ways of expressing independence. Writing the margins as

𝑝𝑖+ =
∑
𝑗=0,1

𝑝𝑖𝑗 and 𝑝+𝑗 =
∑
𝑖=0,1

𝑝𝑖𝑗,

the first way of expressing independence is

𝑝𝑖𝑗 = 𝑝𝑖+𝑝+𝑗 (𝑖, 𝑗 = 0, 1).

The second, and equivalent, condition (given all the 𝑝𝑖𝑗 > 0) is

𝑝00𝑝11 − 𝑝10𝑝01 = 0.

In the algebraic context, this can be seen as a toric ideal condition in a certain polynomial ring,
which is at the foundation of algebraic statistics for log-linear models. That is to say it arises as
the elimination ideal from the power product representation

𝑝𝑖𝑗 = 𝑠𝑖𝑡𝑗,

or its log-linear equivalent

log 𝑝𝑖𝑗 = 𝜃𝑖 + 𝜙𝑗,

where 𝑠𝑖 = exp(𝜃𝑖) and 𝑡𝑗 = exp(𝜙𝑗).
With three binary random variables 𝑋1, 𝑋2, 𝑋3, for the CI statement

𝑋1⟂⟂ 𝑋2 |𝑋3,

we have either the marginal version

𝑝𝑖𝑗𝑘𝑝++𝑘 = 𝑝𝑖+𝑘𝑝+𝑗𝑘 (𝑖, 𝑗, 𝑘 = 0, 1), (1.1)
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4 CAINES et al.

or the toric ideal with one generator for each level of 𝑋3

𝑝000𝑝110 − 𝑝010𝑝100 = 0

𝑝001𝑝111 − 𝑝011𝑝101 = 0.

The key idea in this paper is that the version (1.1) relies on a special set of margins indexed by sub-
sets of indices {𝑖𝑗𝑘, 𝑗𝑘, 𝑖𝑘, 𝑘}, which form a lattice generated by the 2-subsets {𝑗𝑘, 𝑖𝑘} under unions
and intersections. We note, immediately, that there is a version of (1.1) for discrete random vari-
ables or continuous random variables and for larger collections of index sets. Let [𝑛] = {1, … , 𝑛}.
For any subset of indices 𝐼 ⊂ [𝑛], then, with slight abuse of notation we write 𝑝𝐼 for the 𝐼-margin
(summing or integrating over variables in [𝑛] ⧵ 𝐼).
Thus, let 𝐼, 𝐽 ⊂ [𝑛]. Then the CI statement

𝑋𝐼⧵𝐽⟂⟂ 𝑋𝐽⧵𝐼 |𝑋𝐼∩𝐽, (1.2)

is represented by

𝑝𝐼∪𝐽𝑝𝐼∩𝐽 = 𝑝𝐼𝑝𝐽 (given that 𝑝𝐼 > 0 for all 𝐼). (1.3)

This is somewhat lazy notation: we should write this strictly as

𝑝𝐼∪𝐽(𝑥𝐼∪𝐽)𝑝𝐼∩𝐽(𝑥𝐼∩𝐽) = 𝑝𝐼(𝑥𝐼)𝑝𝐽(𝑥𝐽), (1.4)

for all 𝑥 = (𝑥1, … , 𝑥𝑛) in the support of the distribution.
This shows the relationship with the sublattice generated by 𝐼 and 𝐽 in which the join operator

is the union of sets ∪, and the meet operator is the intersection of sets ∩. More precisely, a term
such as𝑝𝐼 is used both as terms in lattice theory and a (possiblymarginal) probability distribution,
in the continuous case a probability density function. We see clearly also how from an abstract
point of view, (1.3) is a toric term indexed by the lattice.
One aim of the present paper is to show that if we have a Boolean (distributive) lattice formed

from collection of sets 𝕀, then there is a probability model associated with 𝕀 such that every
union/intersection formula of the type (1.3) gives a CI statement of the type (1.4). Moreover, we
demonstrate the connection with the associated toric ideal of the lattice.
The toric ideal associated with a distributive lattice is called a Hibi ideal after the work of Hibi

in [11]. Moreover, it does indeed hold that this defines a class of probability models which is legiti-
mate to call lattice conditional independence (LCI) because exactly such models were introduced
in the Gaussian (normal) case. The advantages of the algebraic approach usingHibi ideals are that
(i) we can define LCI models for any type of random variables, discrete or continuous, (ii) entities
such as the TDAG associated with the LCI model have a purely algebraic realisation and (iii) the
ideal theory can be used to make statements about the probability models. One algebraic concept
is that of the Alexander duality, which we will show has a precise relationship to the underlying
TDAG.

Definition 1.1 (TDAG). A DAG 𝐺 = ([𝑛], 𝐸) is transitive (TDAG) if {𝑖 → 𝑗} ∈ 𝐸 and {𝑗 → 𝑘} ∈ 𝐸

imply that {𝑖 → 𝑘} ∈ 𝐸 (see Figures 2 and 3).
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LATTICE CONDITIONAL INDEPENDENCE MODELS AND HIBI IDEALS 5

1.2 Linear LCI models

Multivariate normal LCImodels are defined in terms of collections ofmarginal distributions based
on a distributive lattice of subsets of indices, as described above andwill bemademore formal later
in the paper. The meet and join of the lattice will give intersections and unions of vector spaces
associated with the margins.
Let us now discuss a single CI statement as in (1.2) for a (zero mean) multivariate normal ran-

dom vector 𝑋 = (𝑋1, … , 𝑋𝑛)
𝑇 . Let the full rank covariance matrix be Γ. First, we factor Γ in some

standard way: Γ = 𝐴𝐴𝑇, where𝐴 is a square matrix. We can then think of 𝑋 as arising from what
is sometimes called a moving average representation

𝑋 = 𝐴𝑍,

where 𝑍 is the zeromeanmultivariate normal random variable with the covariancematrix 𝐼𝑛 (the
𝑛 × 𝑛 identity matrix). For index sets 𝐼, 𝐽 and 𝐾 = 𝐼 ∩ 𝐽 we can express, by selecting appropriate
rows of 𝐴, the corresponding random vector as

𝑋𝐼 = 𝐴𝐼𝑍, 𝑋𝐽 = 𝐴𝐽𝑍, 𝑋𝐾 = 𝐴𝐾𝑍,

with covariance matrices, respectively:

Γ𝐼 = 𝐴𝐼𝐴
𝑇
𝐼 , Γ𝐽 = 𝐴𝐽𝐴

𝑇
𝐽 , Γ𝐾 = 𝐴𝐾𝐴

𝑇
𝐾.

(Note that 𝐴𝐼 denotes the submatrix of 𝐴 on the rows indexed by 𝐼). Using a standard formula
known as Schur complement, the covariance matrix between 𝑋𝐼 and 𝑋𝐽 conditional on 𝑋𝐾 is

𝐴𝐼𝐴
𝑇
𝐽 − 𝐴𝐼𝐴

𝑇
𝐾(𝐴𝐾𝐴

𝑇
𝐾)

−1𝐴𝐾𝐴
𝑇
𝐽 . (1.5)

For CI in the Gaussian case, it is necessary and sufficient that the matrix at (1.5) is zero.
Note that 𝑃𝐾 = 𝐴𝑇

𝐾
(𝐴𝐾𝐴

𝑇
𝐾
)−1𝐴𝐾 is the orthogonal projection operator onto the row space

of 𝐴𝐾 . Similarly, we can construct the orthogonal projections 𝑃𝐼 = 𝐴𝑇
𝐼
(𝐴𝐼𝐴

𝑇
𝐼
)−1𝐴𝐼 and 𝑃𝐽 =

𝐴𝑇
𝐽
(𝐴𝐽𝐴

𝑇
𝐽
)−1𝐴𝐽 for the row spaces of 𝐴𝐼 and 𝐴𝐽 , respectively. The CI condition can then be seen

to be equivalent to

𝑃𝐼(𝐼𝑛 − 𝑃𝐾)𝑃𝐽 = 0.

It is important to note that the condition is equivalent to the commutativity condition

𝑃𝐼𝑃𝐽 = 𝑃𝐽𝑃𝐼 (= 𝑃𝐾),

which is necessary and sufficient for the CI.
If we extend the argument to all𝑋𝐼, 𝐼 ∈ 𝕀, where 𝕀 is a distributive sublattice, then we see that it

is necessary and sufficient that all projections 𝑃𝐼 , for all 𝐼 ∈ 𝕀 in the lattice commute. This implies
that they are simultaneously diagonalisable with spectrum (eigenvalues) being 0 or 1. In fact the
location of the values 1 in [𝑛] in the spectrum of each projector 𝐼, 𝐽, 𝐾 ∈ [𝑛] corresponds precisely
to the indicator of the corresponding index set: 𝑃𝐼 = diag(𝑞1, … , 𝑞𝑛) where 𝑞𝑖 = 1 for 𝑖 ∈ 𝐼 and 0
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6 CAINES et al.

otherwise. For example, for the sets 𝐼 = 13, 𝐽 = 23, and𝐾 = 3we have the eigenvalues (spectrum)
{1, 0, 1}{0, 1, 1} and {0, 0, 1}. The sets where the spectrum is non-zero are amodel for a subset lattice
which is equivalent to the original lattice.
Important in the theory of LCI is that every distributive lattice, which we here associate with

the collection of index sets 𝕀, arises from a TDAG and vice versa: any distributive lattice defines
a TDAG. Although we will study this in more detail in Section 3.1 (see also Definition 3.1), we
can simply describe this 1-1 correspondence as follows. The corresponding TDAG, 𝐺([𝑛], 𝐸) has
𝑛 vertices labelled by 1, … , 𝑛, where each 𝑖 corresponds to an 𝑋𝑖, 𝑖 = 1, … , 𝑛 in our probability
model, and 𝑖 → 𝑗 is in the edge set 𝐸 if and only if 𝑖 is in the ancestral set of 𝑗, meaning: 𝑖 ⩽ 𝑗 in
the partial ordering defined by the lattice.

2 HIBI IDEALS AND LCI MODELS

In [11], Hibi introduced a class of algebras which nowadays are called Hibi rings. They are toric
rings attached to finite posets, and may be viewed as natural generalisations of polynomial rings.
We first recall the construction of Hibi ideals associated to distributive lattices. Recall that a poset
in which every two elements have a ‘meet’ and a ‘join’ is called a lattice. A lattice (, ∨, ∧) is
distributive if the following additional identities hold for all 𝑥, 𝑦 and 𝑧 in :

𝑥 ∧ (𝑦 ∨ 𝑧) = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧) and 𝑥 ∧ (𝑦 ∨ 𝑧) = (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧).

Given a poset 𝑄, a non-empty subset 𝐼 ⊆ 𝑄 is called an order ideal of 𝑄 if for any 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝑄,
𝑗 < 𝑖 implies that 𝑗 ∈ 𝐼. We denote (𝑄) for the set of order ideals of 𝑄. Note that if we define
the union of sets ∪ as the join operator and the intersection of sets ∩ as the meet operator, then
((𝑄), ∩, ∪) is naturally a distributive lattice.
Before defining Hibi ideals, we first fix our notation. Consider the poset 𝑄 on the elements

1, 2, … , 𝑛 and the polynomial ring 𝑅 = ℂ[𝑧1, … , 𝑧𝑛, 𝑦1, … , 𝑦𝑛] over the field of complex numbers
on the variables 𝑧𝑖, 𝑦𝑖 , where variables 𝑧𝑖, 𝑦𝑖 are corresponding to the element 𝑖 of 𝑄. For every
order ideal 𝐼 ⊆ 𝑄 we associate the monomials 𝑢𝐼 ∶=

∏
𝑖∈𝐼 𝑧𝑖

∏
𝑖∉𝐼 𝑦𝑖 and 𝑢′𝐼 ∶=

∏
𝑖∈𝐼 𝑧𝑖 . Then we

define the following polynomial maps:

𝜑𝑄 ∶ ℂ[𝑝𝐼 ∶ 𝐼 ∈ (𝑄)] → ℂ[𝑧1, … , 𝑧𝑛, 𝑦1, … , 𝑦𝑛] with 𝑝𝐼 ↦ 𝑢𝐼, (2.1)

and

𝜑′
𝑄 ∶ ℂ[𝑝𝐼 ∶ 𝐼 ∈ (𝑄)] → ℂ[𝑧1, … , 𝑧𝑛] with 𝑝𝐼 ↦ 𝑢′𝐼. (2.2)

Definition 2.1 (Hibi ideal). The Hibi ideal of 𝑄 is defined as 𝐿𝑄 = Ker(𝜑𝑄) = Ker(𝜑′
𝑄
).

The equality above is implicit in Hibi’s seminal paper [11]; see also [6, Theorem 1.1].
Before we explain LCI models in more detail, we recall the notion of join-irreducible elements

of a lattice.

Definition 2.2. Let (, ∧, ∨) be a finite distributive lattice. An element 𝑗 ∈  is called join-
irreducible if 𝑗 = 𝓁1 ∨ 𝓁2 for some 𝓁1,𝓁2 ∈  implies 𝑗 = 𝓁1 or 𝑗 = 𝓁2. Denote by 𝐽() the set
of join-irreducible elements in .
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LATTICE CONDITIONAL INDEPENDENCE MODELS AND HIBI IDEALS 7

y1y2y3y4y5

z3y1y2y4y5

z3z4y1y2y5z2z3y1y4y5

z2z3z4y1y5z1z2z3y4y5 z3z4z5y1y2

z1z2z3z4y5 z2z3z4z5y1

z1z2z3z4z5

∅

3

3423

234123 345

1234 2345

12345

F IGURE 1 (Left) The lattice  of an LCI model. (Note that ∅ is always the unique minimum element of .)
(Right) The monomials 𝑢𝐼 associated to each element 𝐼 of . Note that 𝑧𝑖 corresponds to the lattice point which is
the smallest subset containing 𝑖 (marked in bold in )

3

3423

123 345

3
42

1 5

F IGURE 2 (Left) The TDAG of the above LCI model. (Right) The joint irreducible poset 𝐽()

Example 2.3. In examples, in order to simplify our notation we denote the set {𝑖1, 𝑖2, … , 𝑖𝑡} by
𝑖1𝑖2⋯ 𝑖𝑡, where 𝑖1 < 𝑖2 < ⋯ < 𝑖𝑡. Figure 1 depicts the lattice generated by the sets 123, 234, 345
and the corresponding monomials 𝑢𝐼 for each lattice element 𝐼. The non-empty join-irreducible
elements of  are 3, 23, 34, 123 and 345. The corresponding join-irreducible post is depicted in
Figure 2 (right). We have marked an element in bold, when it is the first time that it shows up in
 (looking at from bottom to top). The corresponding TDAG is shown in left that will be further
explained in Section 3.

Remark 2.4. Note that, every element 𝐼 of 𝐽() is uniquely determined by an element 𝑖 for which
𝐼 is the smallest lattice element containing it. Hence, we may use the notation g𝑖 for its corre-
sponding monomial 𝑢′

𝐼
=
∏

𝑗⩽𝑖 𝑧𝑗 . For example, Figure 1 shows that 123 is the smallest element
of the lattice containing 1, so the monomial 𝑧1𝑧2𝑧3 is denoted by g1. Similarly, we have g2 = 𝑧2𝑧3,
g3 = 𝑧3, g4 = 𝑧3𝑧4 and g5 = 𝑧3𝑧4𝑧5.

Note that the partial order on induces a partial order on 𝐽(). Hence, taking the poset 𝐽(), we
can define the Hibi ideal of 𝐽() or simply the Hibi ideal of the lattice. More precisely, Birkhoff’s
fundamental structure Theorem [22, Theorem 3.4.1] guarantees that the lattices ((𝐽()), ∩, ∪)
and (, ∩, ∪) are isomorphic. One fundamental result in this context is that the Hibi ideal of  is
generated by the following relations (see, for example, [10, Theorem 10.1.3]):

𝑝𝐼𝑝𝐽 − 𝑝𝐼∩𝐽𝑝𝐼∪𝐽 with 𝐼 ⊈ 𝐽 and 𝐽 ⊈ 𝐼 (𝐼, 𝐽 ∈ ).
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8 CAINES et al.

We can now interpret the terms 𝑝𝐼, 𝑝𝐽, 𝑝𝐼∪𝐽, 𝑝𝐼∩𝐽 as marginal probability distributions asso-
ciated with their appropriate margins. The only bit of additional notation we need is the
conditioning sign that we will develop in the next section. Thus, the above binomials in the Hibi
ideal give us the CIs in (1.2).

3 TRANSITIVE DIRECTED ACYCLIC GRAPHS

3.1 The probabilistic interpretation of the join irreducible elements

We start by giving the formal definition of the TDAG associated to a distributive lattice.

Definition 3.1 (TDAG of a lattice). Let  be a distributed lattice whose elements are correspond-
ing to a collection of subsets of [𝑚]. Assume that  has 𝑛 join-irreducible elements. The TDAG
associated with  is a TDAG 𝐺([𝑛], 𝐸) where the vertex 𝑖 represents a join-irreducible element of
 containing 𝑖 for the first time (ordering the join-irreducible elements from bottom to top) and
a directed edge 𝑒 = {𝑖 → 𝑗} belongs to 𝐸 if and only if the join-irreducible elements 𝑖 and 𝑗 are
comparable in the lattice and 𝑖 < 𝑗.

Example 3.2. The associated TDAG of the lattice  in Figure 1 is depicted in Figure 2 (left).

Figures 1 and 2 show the relations between the LCI lattice, the set ofmonomials associatedwith
the lattice and the corresponding TDAG of the lattice. Up to this point the development has been
purely algebraic. Now we interpret the variables 𝑝𝐽 , 𝑧𝑖 and 𝑦𝑘 in probabilistic terms.
We can give a formal meaning, or interpretation, of the 𝑧𝑖 as

𝑧𝑖 = 𝑝{𝑗∶𝑗⩽𝑖}|{𝑗∶𝑗<𝑖},
where 𝑗 ⩽ 𝑖 is in the lattice sense. The notation means that we condition 𝑋𝑖 on the ‘ancestors’ of
𝑋𝑖 , with respect to the lattice. For instance, let us consider the example of the set 123 in the lattice
 in Figure 1. This has an ascending chain of subsets leading to

3 ⊂ 23 ⊂ 123,

and a corresponding chain of monomials:

𝑧3, 𝑧2𝑧3, 𝑧1𝑧2𝑧3.

The interpretation of the 𝑧𝑖 is as the terms in the development of marginal 𝑝123 in terms of
conditions. Thus,

𝑝123 = 𝑝3𝑝23 | 3𝑝123 | 23,
and we make the mapping

𝑧3 ↔ 𝑝3, 𝑧2 ↔ 𝑝23 | 3, 𝑧1 ↔ 𝑝123 | 23.
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LATTICE CONDITIONAL INDEPENDENCE MODELS AND HIBI IDEALS 9

Similarly, let us check 𝑝234. Mapping to the 𝑧𝑖 we have

𝑧2𝑧3𝑧4 →

(
𝑝23
𝑝3

)
𝑝3

(
𝑝34
𝑝3

)
=

𝑝23𝑝34
𝑝3

= 𝑝234.

Note that the last equality derives from the equation𝑝23𝑝34 = 𝑝3𝑝234 arising from the correspond-
ing Hibi ideal. More generally, for every saturated chain of subsets

𝐽0 ⊂ 𝐽1 ⊂ ⋯ ⊂ 𝐽𝑟 = 𝐽

we have that

𝑝𝐽 = 𝑝𝐽0𝑝𝐽1 | 𝐽0𝑝𝐽2 | 𝐽1 ⋯𝑝𝐽 | 𝐽𝑟−1
= 𝑧𝐽0𝑧𝐽1∖𝐽0𝑧𝐽2∖𝐽1 ⋯ 𝑧𝐽𝑟∖𝐽𝑟−1 .

We should note that in our development we increment subsets with a single ‘𝑖’, but in general the
increment can be larger. In those cases, we can extend the definition of the index set, in an obvious
way.We now state and prove the relationship between themarginal and conditional probabilities.

Theorem 3.3. Consider a probability distribution with a set of positive marginals 𝑝𝐽 =
∏

𝑖∈𝐽 𝑧𝑖
where the collection of sets 𝐽 forms a distributive lattice satisfying the Hibi relations. Then

(i) the quantities 𝑧𝑖 are conditional probabilities 𝑧𝑖 = 𝑝{𝑗∶𝑗⩽𝑖} | {𝑗∶𝑗<𝑖};
(ii) the Hibi relations give all conditional independent statements associated with the lattice.

Proof. The conditions satisfied by the Hibi ideal can be rearranged as

𝑝𝐼∪𝐽 =
𝑝𝐼𝑝𝐽
𝑝𝐼∩𝐽

.

Now assume that we have a probability distribution with positive marginals supported on the
lattice. Then the logarithm 𝜙(𝐼) = log 𝑝𝐼 induces a valuation

𝜙(𝐼 ∪ 𝐽) = 𝜙(𝐼) + 𝜙(𝐽) − 𝜙(𝐼 ∩ 𝐽). (3.1)

We then invoke the theory of valuations on a distributive lattice and claim that the conditional
independence relations arise fromMöbius inversion on the lattice, essentially inclusion–exclusion
formula for 𝜙(𝐼). More precisely, considering the saturated chains of subsets

𝐼 ∩ 𝐽 = 𝐽0 ⊂ 𝐽1 ⊂ ⋯ ⊂ 𝐽𝑟 = 𝐽 and 𝐼 ∩ 𝐽 = 𝐼0 ⊂ 𝐼1 ⊂ ⋯ ⊂ 𝐼𝑠 = 𝐼,

Equation (3.1) translates to

𝑝𝐼∪𝐽 =
𝑝𝐼𝑝𝐽
𝑝𝐼∩𝐽

=
𝑝𝐼
𝑝𝐼∩𝐽

𝑝𝐽
𝑝𝐼∩𝐽

𝑝𝐼∩𝐽
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10 CAINES et al.

=

(
𝑝𝐼
𝑝𝐼𝑠−1

⋯
𝑝𝐼1
𝑝𝐼∩𝐽

)(
𝑝𝐽
𝑝𝐽𝑠−1

⋯
𝑝𝐽1
𝑝𝐼∩𝐽

)
𝑝𝐼∩𝐽

=

𝑠∏
𝑖=1

𝑧𝐼𝑖∖𝐼𝑖−1

𝑟∏
𝑗=1

𝑧𝐽𝑗∖𝐽𝑗−1𝑧𝐼∩𝐽. □

3.1.1 The complementary lattice of  and the reverse TDAG

Given a lattice 𝐿 on a collection of subsets 𝕀 of [𝑛], we denote its complementary lattice with 
∗

whose elements are [𝑛]∖𝐼 (for 𝐼 ∈ 𝕀) and are reversely ordered comparing to . In exactly same
way that we have defined the entities for, we can associate the dual entities 𝑞𝐽 and the 𝑦𝑖 for the
complementary lattice . If we want to think of each arrow as a generalisation of time, we might
say we condition on the ‘descendants’ of 𝑖. In the same way, the variable 𝑦𝑖 has an interpretation
as the conditional random variable for the distribution of random variables 𝑌𝑖 defined by the
margins 𝑞𝐽 = 𝑝[𝑛]∕𝑝[𝑛]⧵𝐽 . Given the distribution defined by the 𝑞𝐽 margins:

𝑦𝑖 = 𝑞{𝑗∶𝑗⩾𝑖}∣{𝑗∶𝑗>𝑖},

the question remains as what ideal do we obtain if we eliminate the 𝑦𝑖 from the ideal⟨
𝑞𝐽 −

∏
𝑖∈𝐽

𝑦𝑖 ∶ 𝐽 ∈ (𝑄)

⟩
.

This has an interesting probabilistic interpretation. In Section 3.3, we will see that it relates to
reversing the arrows in the associated TDAG of . We will also connect this graph operation with
the Alexander duality of the corresponding ideal.
Just as we associate a marginal random variable 𝑋𝐼 with every index set 𝐼 ∈ 𝕀, so we associate

a random variable 𝑌𝐽 with every 𝐽 in the complementary lattice ∗ on the subsets 𝕁. The random
variable 𝑌𝐽 is interpreted as having the conditional distribution of 𝑋𝐽 given 𝑋[𝑛]⧵𝐽 . This has the
distribution

𝑞𝐽 =
𝑝[𝑛]

𝑝[𝑛]⧵𝐽
. (3.2)

The duality is clear: writing 𝐼 = [𝑛] ⧵ 𝐽 we have

𝑝𝐼𝑞𝐽 = 𝑝[𝑛].

For the complementary lattice of Figure 1, it can be shown that 𝑌12 and 𝑌45 are independent, as

𝑞12𝑞45 =
𝑝12345
𝑝345

𝑝12345
𝑝123

=
𝑝2
12345

𝑝12345𝑝3
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LATTICE CONDITIONAL INDEPENDENCE MODELS AND HIBI IDEALS 11

=
𝑝12345
𝑝3

= 𝑞1245,

giving the factorisation for the required independence.
The Gaussian case reflects the duality well. If one considers the projection operator 𝑃𝐽 associ-

ated with the Gaussian random variable 𝑋𝐽 then the Gaussian random variable associated with
the random variable 𝑌[𝑛]⧵𝐼 has the orthogonal projector

𝑄[𝑛]⧵𝐼 = 𝐼𝑛 − 𝑃𝐼. (3.3)

In our running example, we can see that

𝑄12𝑄45 = (𝐼 − 𝑃345)(𝐼 − 𝑃123) = 𝐼 − 𝑃345 − 𝑃123 + 𝑃3 = 0,

hence we recognise the conditional independence 𝑌12⟂⟂ 𝑌45 |𝑌3.

3.2 Log-linear models for margins

With a view to statistical modelling, we would like to point out that the 𝑧-representation leads to
log-linear models, not only of the more familiar form for a single probability 𝑝(𝑥) but also for all
the margins. If for a margin for the index set 𝐼 we have the product form

𝑝𝐼(𝑥) =
∏
𝑖∈𝐼

𝑧𝑖(𝑥)

and

log 𝑝𝐼(𝑥𝐼) =
∑
𝑖∈𝐼

𝑢𝑖(𝑥𝐼),

where 𝑢𝑖(𝑥𝐼) = log 𝑧𝑖(𝑥𝐼), then this can be written in exponential form as

𝑝𝐼(𝑥) = exp

{∑
𝑖∈𝐼

𝑢𝑖(𝑥𝐼)

}
.

Because of the dependence on 𝑥𝐼 this should be referred to as a local model. In statistical mod-
elling, one may start with a class of functions  = {𝑢(𝑥𝐼)}, which defines the properties of our
model and extend the class in a parametric way by introducing parameters 𝜃𝑖,𝐼 and writing

log 𝑝𝐼(𝑥) = exp

{∑
𝑖∈𝐼

𝜃𝑖,𝐼𝑢𝑖(𝑥𝐼)

}
.

Similar models can be written down for the 𝑞-margins. We do not discuss statistical analysis in
this paper, but we refer to [18] for an overview in the Gaussian case. Maximum likelihood esti-
mation and other statistical issues in the general case remain open, but we note the promising
contribution from [3].
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12 CAINES et al.

3.3 Alexander duality and a special bipartite graph

Wepromised that the algebraic representationwould yield certain results whichmay prove useful
in the probability theory. Let  be a distributive lattice with join-irreducible poset 𝑄 = 𝐽(); see
Definition 2.2. The significance of Hibi ideals is that the Alexander dual of the monomial ideal
𝑀𝑄 = ⟨𝑢𝐼 ∶ 𝐼 ∈ (𝑄)⟩ can be interpreted as the edge ideal of a special bipartite graph. To be pre-
cise, for a poset𝑄 on 1, … , 𝑛, if we define the bipartite graph𝐺 on the vertex set {𝑧1, … , 𝑧𝑛, 𝑦1, … , 𝑦𝑛}

by saying that {𝑧𝑖, 𝑦𝑗} is an edge of 𝐺 if and only if 𝑖 ⩽ 𝑗 in 𝑄, then the Alexander dual of the ideal
𝑀𝑄 is the edge ideal of 𝐺. It turned out that bipartite graphs obtained in this way are exactly the
Cohen–Macaulay bipartite graphs [9, Lemma 3.1].
We first recall the notion of Alexander duality for squarefree monomial ideals which naturally

arise in this context (see [19, Definition 5.20]).

Definition 3.4 (Alexander dual). Let 𝐾[𝐱] = 𝐾[𝑥1, … , 𝑥𝑛] be a polynomial ring over a filed 𝐾 in
𝑛 variables. Let𝑀 = ⟨𝐱𝑎1 , … , 𝐱𝑎𝑟⟩ be a squarefree monomial ideal in 𝐾[𝐱], that is, it is generated
by monomials 𝐱𝑎𝑖 for 𝑖 = 1, … , 𝑟, where every coordinate of 𝑎𝑖 = (𝑎𝑖,1, … , 𝑎𝑖,𝑛) is either 0 or 1. The
Alexander dual of𝑀 is the monomial ideal𝑀∗ = 𝑚𝑎1 ∩⋯ ∩ 𝑚𝑎𝑟 , where𝑚𝑎𝑖 = ⟨𝑥𝑗 ∶ 𝑎𝑖,𝑗 = 1⟩.
Definition 3.5 (Edge ideal). Let𝐺 be a directed graph on the vertices 1, … , 𝑛. Consider the polyno-
mial ring 𝐾[𝐳, 𝐲] = 𝐾[𝑧1, … , 𝑧𝑛, 𝑦1, … , 𝑦𝑛] on 2𝑛 variables, where 𝑧𝑖, 𝑦𝑖 corresponds to the vertex
𝑖 of 𝐺. The edge ideal of 𝐺 is the ideal 𝐼(𝐺) = ⟨𝑧𝑖𝑦𝑗 ∶ {𝑖 → 𝑗} is an edge of 𝐺⟩.
Example 3.6. Consider our running example depicted in Figures 1 and 2. The ideal𝑀𝑄 is

𝑀𝑄 = ⟨𝑦1𝑦2𝑦3𝑦4𝑦5, 𝑧3𝑦1𝑦2𝑦4𝑦5, 𝑧2𝑧3𝑦1𝑦4𝑦5, 𝑧3𝑧4𝑦1𝑦2𝑦5, 𝑧1𝑧2𝑧3𝑦4𝑦5, 𝑧2𝑧3𝑧4𝑦1𝑦5,
𝑧3𝑧4𝑧5𝑦1𝑦2, 𝑧1𝑧2𝑧3𝑧4𝑦5, 𝑧2𝑧3𝑧4𝑧5𝑦1, 𝑧1𝑧2𝑧3𝑧4𝑧5⟩.

The Alexander dual of𝑀𝑄 is generated by the degree 2 monomials as follows:

𝑀∗
𝑄 = ⟨𝑧3𝑦2, 𝑧3𝑦1, 𝑧2𝑦1, 𝑧3𝑦4, 𝑧3𝑦5, 𝑧4𝑦5, 𝑧1𝑦1, 𝑧2𝑦2, 𝑧3𝑦3, 𝑧4𝑦4, 𝑧5𝑦5⟩,

which is the edge ideal of the TDAG in the left hand of Figure 2, where we have removed the
‘loops’ corresponding to the monomials 𝑧𝑖𝑦𝑖 .

More formally, we have the following corollary [9, Lemma 3.1] adopting our notation.

Corollary 3.7. Let  be a distribute lattice with the joint irreducible poset 𝑄 = 𝐽(). Then the
Alexander dual of the ideal𝑀𝑄 = ⟨𝑢𝐼∶ 𝐼 ∈ (𝑄)⟩ is themonomial ideal𝑀∗

𝑄
generated by 𝑧𝑖𝑦𝑗 , where

𝑖 ⩽ 𝑗 in 𝑄. In particular,𝑀∗
𝑄
is the edge ideal of the TDAG on the vertices 1, … ,𝑚 with the edge set

{𝑖 → 𝑗 ∶ 𝑖 ⩽ 𝑗 in 𝑄}.

This analysis gives a pleasing duality which we state in the following lemma.

Lemma 3.8. Let be a distribute lattice with the joint irreducible poset𝑄 = 𝐽(). Let 𝐼(𝑖) = {𝑗 ∶ 𝑗 ⩽

𝑖} and 𝐽(𝑗) = {𝑘 ∶ 𝑘 ⩾ 𝑗} for 𝑖, 𝑗 in 𝑄. Following the notation of §3.1.1, let 𝑝𝐼 denote the probabilities
associated to  with dual entities 𝑞𝐽 associated to the complementary lattice of . Then, for every
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LATTICE CONDITIONAL INDEPENDENCE MODELS AND HIBI IDEALS 13

𝑖 ⩽ 𝑗 we have that

𝑝𝐼(𝑗)

𝑝𝐼(𝑖)
=

𝑞𝐽(𝑗)

𝑞𝐽(𝑖)
.

Proof. Let𝐺 = 𝐺([𝑛], 𝐸) be the corresponding TDAG of. By Corollary 3.7, for every vertex 𝑖 of𝐺,
{𝑗 → 𝑖} is an edge if 𝑗 is in the set 𝐼(𝑖). Similarly, for the complementary lattice of , {𝑘 → 𝑗} is an
edge in the corresponding TDAG if 𝑘 is in the set 𝐽(𝑗). In other words, the corresponding TDAG
is the reverse of 𝐺, that is, its edges are obtained by reversing the edges of 𝐺. Then, note that for
any member 𝑝𝐼𝑞𝐽 for disjoint sets 𝐼, 𝐽 with 𝐼 ∪ 𝐽 = [𝑛] we have

𝑝𝐼(𝑖)𝑞𝐽(𝑗) = 𝑝𝐼(𝑗)𝑞𝐽(𝑖) = 𝑝[𝑛].

Thus if 𝑖 ⩽ 𝑗 we have

𝑝𝐼(𝑗)

𝑝𝐼(𝑖)
=

𝑞𝐽(𝑗)

𝑞𝐽(𝑖)
,

giving a symmetry in forward and backward conditional independence on the TDAG and the
reverse TDAG. □

As we have seen above, the Alexander dual framework unifies the forward and backward
TDAGs analogously to its role in the paths and cuts duality of algebraic approaches to system
reliability [7, 20]. Moreover, it provides us with various computational toolkits on Macaulay2 [8]
such as the ‘Posets.m2’ package.

4 APPLICATIONS

4.1 Time series

We now give a somewhat larger example showing how to apply the LCI principle to three univari-
ate time series {𝑋1𝑡, 𝑋2𝑡, 𝑋3𝑡}.We define a lattice conditional independencemodel which describes
the conditional independence between the first time series up to time 𝑡 and the third time series
up to time 𝑡, given the second time up to time 𝑡 − 1. Moreover, in the general case this holds for all
𝑡 = 1, 2, …. For 𝑡 = 1, wemay simply assume that𝑋11,𝑋21 and𝑋31 are independent (for simplicity
we have omitted cross-sectional conditional independence).

X11 X12 X13

X21 X22 X23

X31 X32 X33 11 21 31

11, 21,12 21,22 21, 31,32

11, 21, 12, 22,13 21, 22,23 21, 31, 22, 32,33

F IGURE 3 (Left) Time series for 𝑡 = 1, 2, 3. To simplify the graph, the edges 𝑋𝑖1 → 𝑋𝑖3 (for 𝑖 = 1, 2, 3) are
not depicted. (Right) The join-irreducible poset o the corresponding lattice. The variable 𝑧𝑖𝑗 corresponds to the
point which is the smallest subset containing 𝑖𝑗 (marked in bold)
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14 CAINES et al.

Example 4.1. Figure 3 (left) shows the TDAG scheme for three time points. We have simplified
the labelling in themiddle to avoid the double suffix. The corresponding lattice has 45 elements
indexed by the following subsets (ordered by inclusions):

∅, {11}, {21}, {11, 21}, {31}, {11, 31}, {21, 31}, {11, 21, 31}, {11, 21, 12}, {11, 21, 31, 12}, {21, 22},

{11, 21, 22}, {21, 31, 22}, {11, 21, 31, 22}, {11, 21, 12, 22}, {11, 21, 31, 12, 22}, {21, 31, 32},

{11, 21, 31, 32}, {11, 21, 31, 12, 32}, {21, 31, 22, 32}, {11, 21, 31, 22, 32}, {11, 21, 31, 12, 22, 32},

{11, 21, 12, 22, 13}, {11, 21, 31, 12, 22, 13}, {11, 21, 31, 12, 22, 32, 13}, {21, 22, 23}, {11, 21, 22, 23},

{21, 31, 22, 23}, {11, 21, 31, 22, 23}, {11, 21, 12, 22, 23}, {11, 21, 31, 12, 22, 23}, {21, 31, 22, 32, 23},

{11, 21, 31, 22, 32, 23}, {11, 21, 31, 12, 22, 32, 23}, {11, 21, 12, 22, 13, 23}, {11, 21, 31, 12, 22, 13, 23},

{11, 21, 31, 12, 22, 32, 13, 23}, {{21, 31, 22, 32, 33}, {11, 21, 31, 22, 32, 33},

{11, 21, 31, 12, 22, 32, 33}, 11, 21, 31, 12, 22, 32, 13, 33}, {21, 31, 22, 32, 23, 33},

{11, 21, 31, 22, 32, 23, 33}, {11, 21, 31, 12, 22, 32, 23, 33}, {11, 21, 31, 12, 22, 32, 13, 23, 33}.

X11 X12 X13

X21 X22 X23

X31 X32 X33

X14

X24

X34

11 21 31

11, 21,12 21,22 21, 31,32

11, 21, 12, 22,13 21, 22,23 21, 31, 22, 32,33

11, 21, 12, 22, 13, 23,14 21, 31, 22, 32, 23, 33,34 21, 22, 23,24

F IGURE 4 (Left) Time series for 𝑡 = 1, 2, 3, 4 while the curved edges 𝑋𝑖𝑗 → 𝑋𝑖𝑘 (for 𝑖 = 1, 2, 3 and 𝑗 < 𝑘 + 1)
are not depicted above. (Right) The join-irreducible poset of the corresponding lattice. Note that 𝑧𝑖𝑗 corresponds
to the point which is the smallest subset containing 𝑖𝑗 (marked in bold)

Figure 4 (left) shows the corresponding poset 𝑄 = 𝐽() of join-irreducible elements. To verify
that the TDAG is recaptured using the Alexander dual, for 𝑄 in Figure 4 (left), consider the ideal

𝑀𝑄 = ⟨𝑦11𝑦21𝑦31𝑦12𝑦22𝑦32𝑦13𝑦23𝑦33, 𝑧11𝑦21𝑦31𝑦12𝑦22𝑦32𝑦13𝑦23𝑦33,
𝑧21𝑧31𝑧22𝑧32𝑧23𝑧33𝑦11𝑦12𝑦13, … , 𝑧11𝑧21𝑧31𝑧12𝑧12𝑧32𝑧13𝑧23𝑧33⟩

generated by 45 monomials associated to the subsets above. Then the Alexander dual of𝑀𝑄 is

𝑀∗
𝑄 = ⟨𝑧11𝑦12, 𝑧21𝑦12, 𝑧21𝑦22, 𝑧21𝑦32, 𝑧31𝑦32, 𝑧11𝑦13, 𝑧21𝑦13, 𝑧12𝑦13, 𝑧22𝑦13, 𝑧21𝑦23, 𝑧22𝑦23, 𝑧21𝑦33,

𝑧31𝑦33, 𝑧32𝑦33, 𝑧22𝑦33, 𝑧11𝑦11, 𝑧21𝑦21, 𝑧31𝑦31, 𝑧12𝑦12, 𝑧22𝑦22, 𝑧32𝑦32, 𝑧13𝑦13, 𝑧23𝑦23, 𝑧33𝑦33⟩.
Now, following Corollary 3.7 we obtain the edge representation of the time series in Figure 3 (left)
by removing the ‘loops’ corresponding to the monomials 𝑧𝑖𝑗𝑦𝑖𝑗 in𝑀∗

𝑄
.

To preserve the conditional independence as time progresses, we need to show how to update
the TDAG and the associated join-irreducible poset. If we add another time layer, then the new
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LATTICE CONDITIONAL INDEPENDENCE MODELS AND HIBI IDEALS 15

join-irreducible poset has one more layer with the index sets

{11, 12, 13, 14, 21, 22, 23}, {21, 22, 23, 24}, {21, 22, 23, 31, 32, 33, 34}.

These are the generators which appear at the top of the previous poset for 𝑡 = 1, 2, 3:

{11, 12, 13, 21, 22}, {21, 22, 23}, {21, 22, 31, 32, 33}.

It should be clear, then, that the rule for updating the lattice is just to update the ancestral sets at
each time point. But this also has a rule in terms of the 𝑧𝑖𝑗 . More precisely, we have that

𝑝{11,12,13,14,21,22,23} = 𝑧23𝑧14 ⋅ 𝑝{11,12,13,21,22}

𝑝{21,22,23,24} = 𝑧24 ⋅ 𝑝{21,22,23}

𝑝{21,22,23,31,32,33,34} = 𝑧23𝑧34 ⋅ 𝑝{21,22,31,32,33}.

Thus the rule is to update the lattice generatorswith the conditional probabilities corresponding to
the new arrows. In time series language, 𝑧23, 𝑧14, 𝑧24, 𝑧34 can be considered as the innovations cor-
responding to the conditional independence structure or, to put it more strongly, the innovations
required to preserve the conditional independence. All new lattice-based conditional indepen-
dence statements are obtained by expanding with subsets, inclusions and intersections in the
usual way.

4.1.1 Transfer functions

The 𝑧-products, whichwe have seen are strings of conditional probabilities, facilitate the updating
of time series models, using transfer functions. We only give a sketch, here. We suggest that an
appropriate approach is to use the generators g𝑖 in the sense of Remark 2.4, where 𝑖 uniquely
determines the subset 𝐼 which is the smallest join-irreducible element containing 𝑖). For example,
as depicted in Figure 3 (right), the smallest set containing 13 is {11, 21, 12, 22, 13}. Let us denote
the corresponding monomial with g13 as follows. Thus, the transfer functions can be based on
updating the generators. These are products, or sets of products, but their logarithms give linear
functions, creating a log-linear time series.
More precisely, in our example in Figure 3 the generators corresponding to the top-layer at time

𝑡 = 3 are given by

g13 = 𝑧11𝑧21𝑧12𝑧22𝑧13,

g23 = 𝑧21𝑧22𝑧23,

g33 = 𝑧21𝑧31𝑧22𝑧32𝑧33.

Taking the same LCI structure advancing to 𝑡 = 4, as depicted in Figure 4, we multiple entrywise
by a new vector, namely

𝑢1𝑡 = 𝑧14𝑧23,

𝑢2𝑡 = 𝑧24,

𝑢3𝑡 = 𝑧24𝑧34.
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16 CAINES et al.

We can express the updating symbolically, with obvious notation, by

g𝑖,𝑡+1 = g𝑖𝑡◦𝑢𝑖𝑡,

for every 𝑖 = 1, … , 3, where ◦ is the Schur (entrywise) product. Taking logarithms we write:

log(g𝑖,𝑡+1) = log(g𝑖𝑡) + log(𝑢𝑖𝑡).

Now, using the shift operator 𝑆 from time series we can write this as

𝑆 ⋅ log(g𝑖𝑡) = log(g𝑖𝑡) + log(𝑢𝑖𝑡),

leading to

(𝑆 − 1) log(g𝑖𝑡) = + log(𝑢𝑖𝑡),

and formally

log(g𝑖𝑡) = (𝑆 − 1)−1 log(𝑢𝑖𝑡),

= 𝑇(1 − 𝑇)−1 log(𝑢𝑖𝑡),

Here 𝑇 = 𝑆−1 is the reverse (backward in time) shift operator. Then, by expanding

(1 − 𝑇)−1 = 1 + 𝑇 + 𝑇2 +⋯ ,

and with suitable initial conditions, we can develop the process in terms of the ‘innovations’ 𝑢𝑖𝑡,
noting that 𝑇 log(𝑢𝑖𝑡) = log(𝑢𝑖,𝑡−1).

4.2 Information flow

The Shannon information associated with the margin 𝐼 is

𝐻(𝐼) = E{log(𝑝𝐼(𝑋𝐼))},

where the expectation E is with respect to the full joint distribution (although we could compute
the expectation with respect to the marginal random variable 𝑋𝐼). Taking logarithms and then
expectation of the Hibi relations (assuming positivity of the probabilities) we have

𝑝𝐼(𝑋)𝑝𝐽(𝑋) = 𝑝𝐼∩𝐽(𝑋)𝑝𝐼∪𝐽(𝑋),

and we see that𝐻 is a valuation on our distributive lattice: for all pairs 𝐼, 𝐽 ∈  we have

𝐻(𝐼 ∧ 𝐽) + 𝐻(𝐼 ∨ 𝐽) = 𝐻(𝐼) + 𝐻(𝐽).

The theory of valuations on distributive lattices is famously developed by Rota [15, 21]. It is impor-
tant to note that, whereas 𝜙(𝐼) = log 𝜙𝐼 coming from a probability evaluation in Theorem 4.2
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LATTICE CONDITIONAL INDEPENDENCE MODELS AND HIBI IDEALS 17

depends on the argument 𝑋𝐼 , that is a local evaluation, the expectation in the evaluation of Shan-
non information removes the random variable 𝑋𝐼 , leaving only the index 𝐼. Thus, we may write
𝐻(𝐼) as a numerical quantity attached directly to the margin 𝐼. For example, we can again use
simple suffix notation. Thus, for simple conditional expectation we write:

𝐻(123) = 𝐻(23) + 𝐻(34) − 𝐻(3).

Moreover, we have a TDAG representation of change in information. Returning to our running
TDAG left branch 3 ⊂ 23 ⊂ 123 from Figure 1, we have

𝐻(123) = 𝐻(3) + {𝐻(23) − 𝐻(3)} + {𝐻(123) − 𝐻(23)}. (4.1)

The three terms on the right hand side correspond respectively to the arrows in our TDAG: 3 →
1, 3 → 2, 2 → 1 (see Figure 2). We see that the TDAG describes a (cumulative) additive model for
information. The transitive closure edge 3 → 1 simply contributes 𝐻(3) to the total information
at node 1.
The increments along each edge have an interpretation in terms of the Shannon result for

disjoint index sets 𝐼, 𝐽:

𝐻(𝐼 ∪ 𝐽) = 𝐻(𝐼) + E𝐼{𝐻(𝐽 | 𝐼)}.
Thus, in our example we can write

𝐻(123) = 𝐻(3) + 𝐸3𝐻(2 | 3) + 𝐸23𝐻(1 | 23). (4.2)

This interpretation of the TDAG as representing an information flow diagram, holds generally
for LCI models, and is reminiscent of various types of compartmental flow models, for fluids, or
perhaps a better analogy is for energy, recalling that Shannon entropy is the negative of Shannon
information. Essentially, it arises from the underlying Markov structure.
We express this result as an informally stated theorem, without proof.

Theorem 4.2. The TDAG of an LCImodel provides an additive informationmodel in which to each
edge (𝑖 → 𝑗) is associated energy increment:𝐻(𝐼) − 𝐻(𝐽) where 𝐼 = 𝐽 ∪ {𝑖}.

As we mentioned in the discussion above Theorem 4.2, one property of valuations on dis-
tributive lattices is the existence of inclusion–exclusion lemma. This allows us to express the
information for any union of index sets in the lattice in terms of alternating sums related to
intersections. Again from our running example using the index sets {123, 234, 345} we have

𝐻(12345) = 𝐻(123 ∪ 234 ∪ 345)

= 𝐻(123) + 𝐻(234) + 𝐻(345) − 𝐻(23) − 𝐻(3) − 𝐻(34) + 𝐻(3)

= 𝐻(123) + 𝐻(234) + 𝐻(345) − 𝐻(23) − 𝐻(34).

Note that the complexity of the first inclusion–exclusion identity is simplified. The simplification
here is an example of a property called the running intersection property, which we now explain.
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18 CAINES et al.

Definition 4.3. A sequence of index sets 𝐼1, … , 𝐼𝑘 has the running intersection property if for any
triple 𝐼𝑖, 𝐼𝑗, 𝐼𝑘 with 𝑖 < 𝑗 < 𝑘 we have 𝐼𝑖 ∩ 𝐼𝑘 ⊂ 𝐼𝑗 .

The result we have used is the following, which is known as Rota’s inclusion–exclusion
principle; see, for example, [13, 14].

Lemma 4.4. For a sequence of index sets  = {𝐼1, … , 𝐼𝑘}with the running intersection property and
a valuation 𝜙(𝐼) on the distributed lattice generated by , we have the simplified inclusion–exclusion
formula as

𝜙
(
∪𝑘
𝑖=1

𝐼𝑖
)
=

𝑘∑
𝑖=1

𝜙(𝐼𝑖) −

𝑘∑
𝑖,𝑗=1, 𝑖<𝑗

𝜙(𝐼𝑖 ∩ 𝐼𝑗).

It is worth noting that the fact that the generators of the LCI have the running intersection
property shows that if we only consider the first-order intersections, then we have a decompos-
able graphical model [17]. We see this here in that the LCI gives many more inclusion–exclusion
formulas than the single one above. For the LCI model every information associated with a mar-
gin, 𝐸𝐼 is the sum of the information associated with each conditional probability given by a 𝑧𝑖
(for 𝑖 ∈ 𝐼).

5 DISCUSSION

This paper is a contribution to the area of algebraic statistics but one which is somewhat dif-
ferent from the usual log-linear models’ approach which leads to a toric representation for the
raw probabilities. There is a toric representation, but for the marginal distributions. It is based
on the simple observation that the distributive lattice definition of Hibi ideals is identically pro-
viding an exact mapping to a distributive lattice-based probabilistic model, called an LCI model.
These were originally introduced for Gaussian models where the lattice arises from a particular
selection of margins, but the formula is now quite general. The TDAG dual representation of the
LCI model also has a purely algebraic representation in terms of a special bipartite graph arising
fromAlexander duality, a theory discovered independently of the probabilistic representation. The
toric representation derives as the elimination ideal generated by certain products of variables 𝑧𝑖
that can be themselves associated with conditional independences, and the log 𝑧𝑖 give the terms
in (i) appropriate log-linear models, (ii) time series models and (iii) models for Shannon infor-
mation. We suggest that this algebraic underpinning of LCI models will help make them more
widely applicable.
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