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Abstract

We propose to model matrix time series based on a tensor CP-decomposition. Instead of

using an iterative algorithm which is the standard practice for estimating CP-decompositions,

we propose a new and one-pass estimation procedure based on a generalized eigenanalysis con-

structed from the serial dependence structure of the underlying process. A key idea of the new

procedure is to project a generalized eigenequation defined in terms of rank-reduced matrices

to a lower-dimensional one with full-ranked matrices, to avoid the intricacy of the former of

which the number of eigenvalues can be zero, finite and infinity. The asymptotic theory has

been established under a general setting without the stationarity. It shows, for example, that

all the component coefficient vectors in the CP-decomposition are estimated consistently with

the different error rates, depending on the relative sizes between the dimensions of time series

and the sample size. The proposed model and the estimation method are further illustrated

with both simulated and real data; showing effective dimension-reduction in modelling and

forecasting matrix time series.

Keywords: Dimension-reduction; Generalized eigenanalysis; Matrix time series; Tensor CP-decomposition.

1



1 Introduction

Let Yt = (yi,j,t) be a p × q matrix time series, i.e. there are p · q recorded values at each time

t from, for example, p individuals and over q indices or variables, and yi,j,t is then the value of

the j-th variable on the i-th individual at time t. With available observations Y1, . . . ,Yn, the

goal is to build a dynamic model for Yt and to forecast the future values Yn+ℓ for ℓ ≥ 1. With

moderately large p and q, any direct attempts based on the time series ARMA framework are

unlikely to be successful due to overparametrization. We seek a low-dimensional structure via a

tensor canonical polyadic (CP) decomposition. To this end, we denote by Y the p× q × n tensor

with Y1, . . . ,Yn as its n frontal slices (Kolda and Vader 2009). Then yi,j,t is the (i, j, t)-th element

Y. Conceptually we decompose yi,j,t into two parts:

Y = X+ E , (1)

where all the dynamic structure of Y is reflected by X, and the frontal slices of E ≡ (εi,j,t)

are matrix white noise, i.e. Cov(εi,j,t, εk,ℓ,s) = 0 for any t ̸= s. The key idea is to perform a

CP-decomposition for X, i.e. to express it as a sum of rank one tensors (see (2) below). This

effectively represents the dynamic structure of matrix process Yt in terms of that of a vector

process, and, hence, achieving an effective dimension-reduction in modeling the dynamic behavour

of the process.

The ‘workhorse’ method for CP-decompositions is the so-called alternative least squares (ALS)

algorithm which is easy to understand and to implement. See Section 3.4 of Kolda and Bader

(2009) and the references therein. However it has obvious drawbacks. For example, an ALS

algorithm takes many iterations to converge. It is not guaranteed to converge to the global min-

imum even for moderately large p, q or n. Furthermore it depends sensitively on the selection

of the initial values. Substantial effort has been made to improve the convergence and the per-

formance of the ALS algorithm, including, among others, Anandkumar et al. (2014), Liu et at.

(2014), Colombo and Vlassis (2016), Sun at al. (2017), Sharan and Valiant (2017), Wang and

Song (2017), Zhang and Xia (2018), and Han and Zhang (2021).

We propose a new and one-pass estimation procedure in this paper. The new method is

inspired by Sanchez and Kowalski (1990) which transforms a CP-decomposition into a generalized

eigenanalysis problem. While Sanchez and Kolwalski’s approach does not require iteration, it only

works for the noise-free cases with E ≡ 0 in (1). In contrast, our new procedure eliminates the

impact of the noise by incorporating the serial dependence into the estimation. More importantly,

to overcome the intricacy in solving a generalized eigenequation defined by rank-reduced matrices

(see Section 7.7 of Golub and Van Load (2013)), we project a high-dimensional generalized eigen-
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equation to a lower-dimensional one in which the matrices are full-ranked, and the corresponding

eigenvectors are uniquely determined upto the scaling and reflection indeterminacy.

Most existing literature on matrix time series is based on the factor modelling via the Tucker

decomposition; see Chen and Chen (2019), Chen et al. (2020), and Wang et al. (2019). The key

difference between our approach and a Tucker decomposition based approaches is two fold: First,

a Tucker decomposition represents a matrix process as a linear combination of a smaller matrix

process while a CP-decomposition is more canonical in the sense that it represents a matrix process

in terms of a vector process; see also the real data example in Section 5.2 below. Secondly, a Tucker

decomposition entails more conventional factor models, and, therefore, we only need to identify

and to estimate factor loading spaces, for which the standard factor model methods (e.g. Lam and

Yao (2012), and Chang et al. (2015)) are applicable. However for a CP-decomposition, we need

to identify and to estimate the component coefficient vectors precisely. Therefore a radically new

inference procedure is required. The other approaches for modelling matrix time series includes:

the matrix-coefficient autoregressive models of Chen et al. (2021), the bilinear transformation

segmentation method of Han et al. (2021a). Han et al. (2021b) models tensor time series also

based on a CP-decomposition. But their approach is radically different from ours, as the CP-

decomposition is estimated based on an iterative simultaneous orthogonalization algorithm with

a warm-start initialization using the so-call composite principal component analysis for tensors;

see Section 3 of Han et al. (2021b). Note that our estimation is an one-pass procedure, and no

iterations are required.

The rest of the paper is organized as follows. The matrix time series model based on a CP-

decomposition is presented in Section 2. Section 3 deals with the model identification and presents

the newly proposed estimation procedure. The key idea of our approach is first elucidated for

weakly stationary processes. The formal identification result and the estimation procedure are

presented under a general setting without the stationarity condition. The asymptotic results,

including the convergence rates for the estimated component vectors in the CP-decomposition,

are presented in Section 5. Numerical illustration with both simulated and real data sets is given

in Section 6. All the technical proofs are relegated to the Appendix.

For a positive integer m, write [m] = {1, . . . ,m}, and denote by Im the m×m identity matrix.

Denote by I(·) the indicator function. For an m1 × m2 matrix H = (hi,j)m1×m2 , let ∥H∥2,

rank(H), σmin(H) and vec(H) be, respectively, its spectral norm, its rank, its smallest singular

value, and a vector obtained by stacking together the columns of H. Specifically, if m2 = 1, we

use |H|2 = (
∑m1

i=1 h
2
i,1)

1/2 to denote the ℓ2-norm of the m1-dimensional vector H. Denote by H+,

an m2 × m1 matrix, the Moore-Penrose inverse of H such that H+H = Im2 . When m1 = m2,

denote by tr(H) the trace of H. For any m × r matrix H, denote by M(H) the linear space

3



spanned by the r columns of H. Let ⊗ and ◦ denote the Kronecker product and the vector outer

product, respectively.

2 Models

We impose a low-dimensional dynamic structure in model (1) as follows:

Y =
d∑

ℓ=1

aℓ ◦ bℓ ◦ xℓ + E , (2)

where aℓ = (a1,ℓ, . . . , ap,ℓ)
T and bℓ = (b1,ℓ, . . . , bq,ℓ)

T are, respectively, p × 1 and q × 1 constant

vectors, and xℓ = (x1,ℓ, . . . , xn,ℓ)
T is an n× 1 random vectors, and d ≥ 1 is an unknown integer.

Furthermore we assume d < min(p, q). Put

A ≡ (ai,ℓ)p×d = (a1, . . . ,ad) and B ≡ (bj,ℓ)q×d = (b1, . . . ,bd) .

Then componentwisely (2) admits the representation

yi,j,t =

d∑
ℓ=1

ai,ℓbj,ℓxt,ℓ + εi,j,t . (3)

Hence the dynamic structure in Y is entirely determined by that of the d times series x1, . . . ,xd.

There is a clearly scaling indeterminacy in (2), as the triple (aℓ,bℓ,xℓ) can be replaced by

(αℓaℓ, βℓbℓ, γℓxℓ) as long as αℓβℓγℓ = 1. We assume that all aℓ and bℓ are unit vectors (i.e.

|aℓ|2 = |bℓ|2 = 1). Once aℓ and bℓ are specified, |xℓ|2 will be determined by (2) accordingly. Note

that a1, . . . ,ad (or b1, . . . ,bd) are not required to be orthogonal with each other.

Model (2) is resulted from applying the CP-decomposition to X in (1), where d is the or-

der of the CP-decomposition. Note that this decomposition is unique upto the scaling and

permutation indeterminacy if R(A) + R(B) + R(X ) ≥ 2d + 2, where X = (x1, . . . ,xd) and

R(·) = max{k : any k columns of the matrix are linear independent}. Such requirement provides

a sufficient condition for the uniqueness (Kolda and Bader 2009, p.467). See also Theorems 1.5

and 1.7 of Domanov and De Lathauwer (2014) for more refined results on the uniqueness of the

CP-decomposition. The setting adopted by Dunlavy et al. (2011) is equivalent to (2) with E ≡ 0.

Though yi,j,t is a linear combination of xt,1, . . . , xt,d under (2), the factor representation of

the model admits some special structure, i.e. the elements of the factor loading matrix are of

the form of ai,ℓbj,ℓ; see (3). In fact, we need to identify and estimate all the vectors in the first

term on the RHS of (2) precisely (upto the permutation and scaling indeterminacy). Therefore
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the conventional factor model estimation methods such as Lam and Yao (2012) and Chang et al.

(2015) do not apply.

The frontal slice equation of (2) admits the form

Yt =
d∑

ℓ=1

aℓ ◦ bℓ xt,ℓ + εt =
d∑

ℓ=1

xt,ℓ aℓb
T
ℓ + εt = AXtB

T + εt , (4)

where Xt = diag(xt,1, . . . , xt,d) and εt denotes the p× q matrix with εi,j,t as its (i, j)-th element.

We impose the following regularity condition on the model.

Condition 1. It holds that rank(A) = rank(B) = d. Furthermore, E(εt) = 0 for any t, E(εt ⊗

εs) = 0 for all t ̸= s, and E(xt,ℓεs) = 0 for any ℓ ∈ [d] and (t, s).

3 Identification and estimation

3.1 The key idea

Let B+ ≡ (b1, . . . ,bd)T be the Moore-Penrose inverse of B, i.e. bT
kb

ℓ = I(k = ℓ) for k, ℓ ∈ [d].

Hence it follows from (4) that

Ytb
ℓ = xt,ℓaℓ + εtb

ℓ , ℓ ∈ [d] . (5)

When εt ≡ 0, this leads to Ytb
ℓ = λYt+1b

ℓ with λ = xt,ℓ/xt+1,ℓ. Thus, bℓ can be obtained

from solving this generalized eigenequation. This is essentially the idea of Sanchez and Kowalski

(1990). We proceed differently from this point onwards in order (i) to eliminate the impact of non-

zero εt, (ii) to increase the estimation efficiency by augmenting the information over time t, and

(iii) to overcome the intricacy in solving a generalized eigenequation with rank-reduced matrices,

as the number of the eigenvalues of such an equation may be 0, finite or infinite; see Section

7.7 of Golub and Van Load (2013). To highlight the key idea of our new approach, we proceed

within this subsection with the assumption that {Yt} and {εt} are both weakly stationary. This

stationarity condition will be relaxed hereafter when we formally present the identification result,

the estimation method, and the associated asymptotic theory.

As {εt} is uncorrelated with {xt,k} (see Condition 1 above), it is easy to eliminate the impact

of εt. For example, let ξt be a linear combination of Yt, and let Σk = Cov(ξt−k,Yt) for any

k ≥ 1. It follows from (5) that Σ2b
ℓ = λℓΣ1b

ℓ with λℓ = Cov(xt,ℓ, ξt−2)/Cov(xt,ℓ, ξt−1). Hence

the rows of B+ are the eigenvectors of the generalized eigenequation

ΣT
1Σ2b = λΣT

1Σ1b . (6)
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With min(p, q) > d, bothΣ1 andΣ2 have the ranks not greater than d, asΣk = ACov(ξt−k,Xt)B
T;

see (4). Thus the generalized eigenequation (6) can have infinite number of eigenvalues and the

minimum gap between the eigenvalues can be 0, which makes the identification of those ‘cor-

rect’ eigenvectors, both theoretically and empirically, extremely difficult (if not impossible). To

avoid this intricacy, below we project the q-dimensional genealized eigen-problem (6) into a d-

dimensional one in which the matrices are full-ranked.

For a given integer K ≥ 1, define

M1 =

K∑
k=1

ΣkΣ
T
k and M2 =

K∑
k=1

ΣT
kΣk . (7)

In practice, both p and q are much greater than d. It is reasonable to assume rank(M1) =

rank(M2) = d. Perform the spectral decomposition:

M1 = PΛ1P
T and M2 = QΛ2Q

T , (8)

where P andQ are, respectively, p×d and q×dmatrices, the columns of P andQ are, respectively,

the d orthonormal eigenvectors corresponding to the d non-zero eigenvalues of M1 and M2, and

Λ1 and Λ2 are the diagonal matrices with the corresponding eigenvalues as the diagonal elements.

Recall Σk = AGkB
T, where Gk = Cov(ξt−k,Xt) is a diagonal matrix; see (4). Then

M1 = A

( K∑
k=1

GkB
TBGk

)
AT and M2 = B

( K∑
k=1

GkA
TAGk

)
BT .

This, together with (8), implies that

A = PU and B = QV , (9)

where U and V are two d× d invertible matrices. Furthermore all the columns of U and V are

unit vectors, which is implied by the assumption that all aℓ and bℓ are unit vectors.

To identifyA and B, we only need to identifyU andV, which can be solved from a generalized

eigenequation with two full-ranked matrices. To this end, define d×dmatrix process Zt = PTYtQ.

It follows from (4) and (9) that

Zt = UXtV
T +∆t =

d∑
ℓ=1

xt,ℓuℓv
T
ℓ +∆t , (10)

where ∆t = PTεtQ is uncorrelated with Xs, and uℓ and vℓ are, respectively, the ℓ-th column of

6



U and V. Choose ηt to be a linear combination of Zt such that Wk ≡ Cov(ηt−k,Zt) is full-ranked

for k = 1, 2. This condition is equivalent to Cov(ηt−k, xt,ℓ) ̸= 0 for k = 1, 2 and ℓ ∈ [d], which can

be fulfilled easily. Then the same argument towards (6) implies that the rows of the d× d inverse

matrix V−1 are the eigenvectors of the generalized eigen-equation

WT
1W2v = λWT

1W1v , (11)

which has exactly d eigenvectors, corresponding to the d eigenvalues λℓ = Cov(xt,ℓ, ηt−2)/Cov(xt,ℓ, ηt−1)

for ℓ ∈ [d]. Furthermore those d eigenvectors are unique upto the scaling and reflection indetermi-

nacy if those d eigenvalues are distinct. To compute V from V−1, the lengths of the rows of V−1

must be correctly specified, which, unfortunately, cannot be determined by (11). Note that (10)

implies W1(V
−1)T = UCov(ηt−1,Xt) with the diagonal matrix Cov(ηt−1,Xt). Recall |uℓ|2 = 1

for any ℓ ∈ [d]. Hence the columns of U = (u1, . . . ,ud) can be identified as follows:

uℓ =
W1v

ℓ

|W1vℓ|2
, ℓ ∈ [d] ,

where v1, . . . ,vd are the d eigenvectors of (11). By the symmetry, the columns of V = (v1, . . . ,vd)

are obtained as follows:

vℓ =
WT

1u
ℓ

|WT
1u

ℓ|2
, ℓ ∈ [d] ,

where u1, . . . ,ud are the d eigenvectors of the generalized eigen-equation W1W
T
2u = λW1W

T
1u

which shares the same eigenvalues as (11). With U and V specified above, A and B can be

determined by (9).

3.2 Identification of A and B

We summarize the finding in Section 3.1 in Proposition 1 below. The notation is more cumbersome

as we present the result for a more general process without the stationarity condition. But the

key idea remains the same.

Let ξt be a linear combination of Yt (e.g. the first principal component of vec(Yt)). For any

k ≥ 1, define

ΣY,ξ(k) =
1

n− k

n∑
t=k+1

E[{Yt − E(Ȳ)}{ξt−k − E(ξ̄)}] , (12)
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where Ȳ = n−1
∑n

t=1Yt, and ξ̄ = n−1
∑n

t=1 ξt. For some prescribed integer K ≥ 1, let

M1 =
K∑
k=1

ΣY,ξ(k)ΣY,ξ(k)
T and M2 =

K∑
k=1

ΣY,ξ(k)
TΣY,ξ(k) ,

which reduces to (7) with the the stationarity condition. Under Condition 2 below, perform

the spectral decomposition as in (8), and define Zt = PTYtQ. Let ηt = eTvec(Zt) be a linear

combination of Zt for some constant vector e ∈ Rd2 . Put

ΣZ,η(k) =
1

n− k

n∑
t=k+1

E[{Zt − E(Z̄)}{ηt−k − E(η̄)}] ,

where Z̄ = n−1
∑n

t=1 Zt, and η̄ = n−1
∑n

t=1 ηt. Any e ∈ Rd2 such that the associated d × d

matrix {ΣZ,η(1)
TΣZ,η(1)}−1ΣZ,η(1)

TΣZ,η(2) has d distinct eigenvalues is valid for the identi-

fication of U and V. See Proposition 1 below. Write Θ = Ip ⊗ {(Q ⊗ P)e} and ΣY̊(k) =

(n − k)−1
∑n

t=k+1 E[{Yt − E(Ȳ)} ⊗ vec{Yt−k − E(Ȳ)}]. Then ΣZ,η(k) defined above can be

reformulated as

ΣZ,η(k) = PTΘTΣY̊(k)Q . (13)

Condition 2. It holds that rank(M1) = rank(M2) = d. Furthermore the nonzero eigenvalues of

M1 and M2 are uniformly bounded away from zero.

Proposition 1. Let Conditions 1 and 2 hold, and the eigenvalues of the d× d matrix

{ΣZ,η(1)
TΣZ,η(1)}−1ΣZ,η(1)

TΣZ,η(2)

be distinct. Then A and B are uniquely defined as in (9) upto the scaling and permutation inde-

terminacy, where the columns of U = (u1, . . . ,ud) and V = (v1, . . . ,vd) are defined, respectively,

as

uℓ =
ΣZ,η(1)v

ℓ

|ΣZ,η(1)vℓ|2
and vℓ =

ΣZ,η(1)
Tuℓ

|ΣZ,η(1)Tuℓ|2
,

with vℓ and uℓ, ℓ ∈ [d], being, respectively, the eigenvectors of the generalized eigenequations

ΣZ,η(1)
TΣZ,η(2)v = λΣZ,η(1)

TΣZ,η(1)v and ΣZ,η(1)ΣZ,η(2)
Tu = λΣZ,η(1)ΣZ,η(1)

Tu . (14)

Furthermore those two generalized eigenequations share the same d eigenvalues.

Remark 1. (i) It is important that the orders of the eigenvectors {vℓ} and {uℓ} are in accordance

with the order of the d shared eigenvalues of the two equations in (14) such that the ℓ-th columns
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of A and B obtained in (9) are paired together in model (4).

(ii) It is easy to see from (14) that vℓ and uℓ are, respectively, the eigenvectors of matrices

{ΣZ,η(1)
TΣZ,η(1)}−1ΣZ,η(1)

TΣZ,η(2) and {ΣZ,η(1)ΣZ,η(1)
T}−1ΣZ,η(1)ΣZ,η(2)

T.

3.3 Estimation of d and (A,B)

With the available observations Y1, . . . ,Yn, we define

Σ̂Y,ξ(k) =
1

n− k

n∑
t=k+1

(Yt − Ȳ)(ξt−k − ξ̄)

for k ≥ 1. When p · q diverges faster than n1/2, Σ̂Y,ξ(k) is no longer a consistent estimator for

ΣY,ξ(k) in (12) under ∥ · ∥2. In the spirit of Bickel and Levina (2008), we define the threshold

estimators for M1 and M2 as follows:

M̂1 =
K∑
k=1

Tδ1{Σ̂Y,ξ(k)}Tδ1{Σ̂Y,ξ(k)
T} and M̂2 =

K∑
k=1

Tδ1{Σ̂Y,ξ(k)
T}Tδ1{Σ̂Y,ξ(k)} , (15)

where Tδ1(·) is a threshold operator Tδ1(W) = {wi,jI(|wi,j | ≥ δ1)}m1×m2 for any matrix W =

(wi,j)m1×m2 with the threshold level δ1 ≥ 0. We choose δ1 > 0 when p, q ≫ n. When δ1 = 0, M̂1

and M̂2 are defined directly based on the sample covariance matrices Σ̂Y,ξ(k) without truncation,

which is appropriate when, for example, p and q are fixed.

To estimate the rank d, let λ̂1 ≥ · · · ≥ λ̂p ≥ 0 be the eigenvalues of M̂1. Following Chang et

al. (2015), we define

d̂ = arg min
j∈[R]

λ̂j+1 + cn

λ̂j + cn
, (16)

where R = ⌊αmin(p, q)⌋ for some prescribed constants α ∈ (0, 1) and cn → 0+. In practice, we

may set α = 0.5. The convergence rate of cn will be specified in Theorem 1 and Remark 3 in Section

4. Note that the true eigenvalues of M1 satisfy the condition λ1 ≥ · · · ≥ λd > 0 = λd+1 = · · · = λp

(see Condition 2). Adding a small constant cn > 0 in (16) is to avoid the ratio “0/0”. Theorem

1 shows that d̂ is consistent, i.e. P(d̂ ̸= d) → 0 as n → ∞.

Now let P̂ be the p × d̂ matrix of which the columns are the d̂ orthonormal eigenvectors of

M̂1 corresponding to its d̂ largest eigenvalues, and Q̂ be the q × d̂ matrix of which the columns

are the d̂ orthonormal eigenvectors of of M̂2 corresponding to its d̂ largest eigenvalues. Define

Ẑt = P̂TYtQ̂ and η̂t = eTvec(Ẑt) (17)
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for some constant vector e ∈ Rd̂2 with bounded ℓ2-norm. Based on (13), we put

Σ̂Z,η(k) = P̂TΘ̂TTδ2{Σ̂Y̌(k)}Q̂ , k = 1, 2 , (18)

where δ2 ≥ 0 is the threshold level, Θ̂ = Ip ⊗ {(Q̂⊗ P̂)e}, and

Σ̂Y̌(k) =
1

n− k

n∑
t=k+1

(Yt − Ȳ)⊗ vec(Yt−k − Ȳ) . (19)

Now the estimators for A and B are defined as

Â = P̂Û and B̂ = Q̂V̂ , (20)

where Û = (û1, . . . , ûd̂), V̂ = (v̂1, . . . , v̂d̂), and

ûℓ =
Σ̂Z,η(1)v̂

ℓ

|Σ̂Z,η(1)v̂ℓ|2
, v̂ℓ =

Σ̂Z,η(1)
Tûℓ

|Σ̂Z,η(1)Tûℓ|2
, ℓ ∈ [d̂] .

In the above expression, v̂1, . . . , v̂d̂ are the d̂ eigenvectors of the d̂× d̂ matrix {Σ̂Z,η(1)
TΣ̂Z,η(1)}−1

Σ̂Z,η(1)
TΣ̂Z,η(2), and û1, . . . , ûd̂ are those of {Σ̂Z,η(1)Σ̂Z,η(1)

T}−1Σ̂Z,η(1)Σ̂Z,η(2)
T. Furthermore,

the two sets of eigenvectors are arranged such that the corresponding eigenvalues are in the

descending order in module. See Remark 1 above.

By (4), we have vec(Yt) = (B ⊗ A)vec(Xt) + vec(εt). Write H = B ⊗ A and S = {(k −

1)(d + 1) + 1 : k ∈ [d]}. Denote by H·,S the submatrix of H including the columns of H

indexed by S. Since Xt = diag(xt,1, . . . , xt,d), by omitting the zero components in vec(Xt),

we know vec(Yt) = H·,S(xt,1, . . . , xt,d)
T + vec(εt). Define Ĥ = B̂ ⊗ Â. We can recover Xt by

X̂t = diag(x̂t,1, . . . , x̂t,d̂) with (x̂t,1, . . . , x̂t,d̂)
T = Ĥ+

·,Ŝ
vec(Yt) and Ŝ = {(k−1)(d̂+1)+1 : k ∈ [d̂]}.

4 Asymptotic properties

As we do not impose the stationarity on {Yt}, we use the concept of ‘α-mixing’ to characterize

the serial dependence of {Yt} with the α-mixing coefficients defined as

α(k) = sup
r

sup
A∈Fr

−∞,B∈F∞
r+k

|P(A ∩B)− P(A)P(B)| , k ≥ 1 , (21)

where Fs
r is the σ-field generated by {Yt : r ≤ t ≤ s}. To simplify our presentation, we first

present the theoretical results for the most challenging scenario with p, q ≫ n in Theorems 1

and 2, and then give the associated results in Remark 3 for the cases with fixed (p, q) or (p, q)
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diverging at some polynomial rate of n. We need the following regularity conditions.

Condition 3. (i) There exists a universal constant C1 > 0 such that maxk∈[K] ∥ΣY,ξ(k)∥2 ≤ C1.

(ii) WriteΣY,ξ(k) = {σ(k)
y,ξ,i,j}p×q. It holds that maxi∈[p]

∑q
j=1 |σ

(k)
y,ξ,i,j |

ι ≤ s1 and maxj∈[q]
∑p

i=1 |σ
(k)
y,ξ,i,j |

ι ≤

s2 for some universal constant ι ∈ [0, 1), where s1 and s2 may, respectively, diverge together with

p and q.

Condition 4. (i) There exist some universal constants C2 > 0, C3 > 0 and r1 ∈ (0, 2] such that

maxi∈[p]maxj∈[q]maxt∈[n] P(|yi,j,t| > x) ≤ C2 exp(−C3x
r1) and maxt∈[n] P(|ξt| > x) ≤ C2 exp(−C3x

r1)

for any x > 0. (ii) There exist some universal constants C4 > 0, C5 > 0 and r2 ∈ (0, 1] such that

the mixing coefficients α(k) given in (21) satisfy α(k) ≤ C4 exp(−C5k
r2) for all k ≥ 1.

Recall ΣY,ξ(k) is a p × q matrix. Condition 3(i) requires the singular values of ΣY,ξ(k) to

be uniformly bounded away from infinity for any k ∈ [K], which is a mild condition. Condition

3(ii) imposes sparsity on ΣY,ξ(k). Notice that ΣY,ξ(k) = AGkB
T for some d×d diagonal matrix

Gk. Under some sparsity condition on A and B, applying the technique used to derive Lemma

5 of Chang et al. (2018), we can show that Condition 3(ii) holds for certain (s1, s2). Condition 4

is a common assumption in the literature on ultrahigh-dimensional data analysis, which ensures

exponential-type upper bounds for the tail probabilities of the statistics concerned when p, q ≫ n.

See Chang et al. (2021) and reference therein. The α-mixing assumption in Condition 4(ii) is mild.

Causal ARMA processes with continuous innovation distributions are α-mixing with exponentially

decaying α-mixing coefficients, so are stationary Markov chains satisfying certain conditions; see

Section 2.6.1 of Fan and Yao (2003). Stationary GARCH models with finite second moments

and continuous innovation distributions are also α-mixing with exponentially decaying α-mixing

coefficients; see Proposition 12 of Carrasco and Chen (2002). Under certain conditions, VAR

processes, multivariate ARCH processes, and multivariate GARCH processes are all α-mixing

with exponentially decaying α-mixing coefficients; see Hafner and Preminger (2009), Boussama

et al. (2011) and Wong et al. (2020). If we only require maxi∈[p]maxj∈[q]maxt∈[n] P(|yi,j,t| >

x) = O{x−2(l+τ)} for any x > 0, maxt∈[n] P(|ξt| > x) = O{x−2(l+τ)} for any x > 0 and α(k) =

O{k−(l−1)(l+τ)/τ} as k → ∞ with two constants l > 2 and τ > 0, we can apply Fuk-Nagaev-type

inequalities to construct the upper bounds for the tail probabilities of the statistics concerned for

which our procedure still work when p, q diverge at some polynomial rate of n. See Remark 3(ii)

below. Let

Π1,n = (s1s2)
1/2{n−1log(pq)}(1−ι)/2 .

Theorem 1 below shows that the ratio-based estimator d̂ defined in (16) is consistent.
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Theorem 1. Let Conditions 1–4 hold and the threshold level δ1 = C∗{n−1 log(pq)}1/2 for some

sufficiently large constant C∗ > 0. For any cn in (16) satisfying Π1,n ≪ cn ≪ 1, it holds that

P(d̂ = d) → 1 as n → ∞, provided that Π1,n = o(1) and log(pq) = o(nc) for some constant c > 0

depending only on r1 and r2 specified in Condition 4.

To investigate the asymptotic properties of the estimator (Â, B̂) in (20), we first assume d̂ = d.

Due to the consistency of d̂ presented in Theorem 1, we can prove, using the same arguments

below Theorem 2.4 of Chang et al. (2015), that the same results still hold without the assumption

d̂ = d. See Remark 2 below.

Proposition 2. Let Conditions 1–4 hold and the threshold level δ1 = C∗{n−1 log(pq)}1/2 for

some sufficiently large constant C∗ > 0. If d̂ = d, there exist some orthogonal matrices E1 and E2

such that ∥P̂E1−P∥2 = Op(Π1,n) = ∥Q̂E2−Q∥2, provided that Π1,n = o(1) and log(pq) = o(nc)

for some constant c > 0 depending only on r1 and r2 specified in Condition 4.

Recall the columns of P and Q are, respectively, the d orthonormal eigenvectors corresponding

to the d non-zero eigenvalues of M1 and M2. The presence of E1 and E2 accounts for the

indeterminacy of those eigenvectors due to reflections and/or possible tied (non-zero) eigenvalues.

Let ẽ = (E2 ⊗E1)
Te, with e ∈ Rd2 involved in (17) for the definition of η̂t = eTvec(Ẑt), and

ΣZ,η̃(k) = PTΘ̃TΣY̊(k)Q , k ≥ 1 ,

where Θ̃ = Ip ⊗ {(Q ⊗ P)ẽ}, and ΣY̊(k) is specified in (13). As indicated in Lemma 2 in the

Appendix, ET
1 Σ̂Z,η(k)E2 is consistent to ΣZ,η̃(k) under ∥·∥2 rather than ΣZ,η(k) given in (13). In

comparison to ΣZ,η(k), we replace e by ẽ in defining ΣZ,η̃(k). As we discussed above Condition

2, the selection of e for the identification of U and V is not unique. Define

S̃1 = ΣZ,η̃(1)
TΣZ,η̃(1) , S̃2 = ΣZ,η̃(1)

TΣZ,η̃(2) ,

S̃∗
1 = ΣZ,η̃(1)ΣZ,η̃(1)

T , S̃∗
2 = ΣZ,η̃(1)ΣZ,η̃(2)

T .

Let µ̃ℓ = c̃2,ℓc̃
−1
1,ℓ with c̃k,ℓ = (n − k)−1

∑n
t=k+1 ẽ

TE[vec{Zt−k − E(Z̄)}{xt,ℓ − E(x̄ℓ)}]. Under

Condition 5 below, Proposition 1 indicates that the columns of U = (u1, . . . ,ud) and V =

(v1, . . . ,vd) can be also defined, respectively, as

uℓ =
ΣZ,η̃(1)v

ℓ

|ΣZ,η̃(1)vℓ|2
and vℓ =

ΣZ,η̃(1)
Tuℓ

|ΣZ,η̃(1)Tuℓ|2
,
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with vℓ and uℓ being, respectively, the eigenvectors of the generalized eigenequations

S̃2δ = µ̃ℓS̃1δ and S̃∗
2δ = µ̃ℓS̃

∗
1δ . (22)

The following conditions are needed in our theoretical analysis.

Condition 5. (i) All the values µ̃1, . . . , µ̃d are finite and distinct. (ii) The eigenvalues of S̃1 are

uniformly bounded away from zero.

Condition 6. (i) There exists a universal constant C6 > 0 such that maxk∈{1,2} ∥ΣY̊(k)∥2 ≤ C6.

(ii) WriteΣY̊(k) = {σ(k)
ẙ,r,s}p2q×q. It holds that maxr∈[p2q]

∑q
s=1 |σ

(k)
ẙ,r,s|

ι ≤ s3 and maxs∈[q]
∑p2q

r=1 |σ
(k)
ẙ,r,s|

ι ≤

s4 for some universal constant ι specified in Condition 3(ii), where s3 and s4 may, respectively,

diverge together with p and q.

Under Condition 5, vℓ and uℓ can be uniquely identified by the generalized eigenequations (22)

upto the scaling and permutation indeterminacy. Recall ΣY̊(k) is a (p2q)× q matrix. Condition

6(i) requires the largest singular value of ΣY̊(k) is uniformly bounded away from infinity. Our

technical proofs indeed allow maxk∈{1,2} ∥ΣY̊(k)∥2 to diverge with n. We impose Condition

6(i) just for simplifying the presentation. Condition 6(ii) imposes some sparsity requirement on

ΣY̊(k). Same as our discussion above for the validity of Condition 3(ii) imposed on the sparsity

of ΣY,ξ(k), Condition 6(ii) holds automatically for certain (s3, s4) under some sparsity condition

imposed on the loading matrices A and B.

Let βv,ℓ and βu,ℓ be the eigenvectors with unit ℓ2-norm of the generalized eigenequations (22)

associated with µ̃ℓ, i.e., S̃2βv,ℓ = µ̃ℓS̃1βv,ℓ and S̃∗
2βu,ℓ = µ̃ℓS̃

∗
1βu,ℓ. By Condition 5(ii), we know

S̃1 and S̃∗
1 are two invertible symmetric matrices. Hence, βv,ℓ and βu,ℓ are, respectively, also the

eigenvectors of the eigenequations S̃−1
1 S̃2δ = µ̃ℓδ and (S̃∗

1)
−1S̃∗

2δ = µ̃ℓδ. For given βv,ℓ and βu,ℓ,

there exist two d× (d− 1) matrices Rv,ℓ and Ru,ℓ such that (βv,ℓ,Rv,ℓ) and (βu,ℓ,Ru,ℓ) are two

orthogonal matrices. For any ℓ ∈ [d], define

θℓ = σmin(R
T
v,ℓS̃

−1
1 S̃2Rv,ℓ − µ̃ℓId−1) and θ∗ℓ = σmin{RT

u,ℓ(S̃
∗
1)

−1S̃∗
2Ru,ℓ − µ̃ℓId−1} , (23)

the smallest singular values of RT
v,ℓS̃

−1
1 S̃2Rv,ℓ − µ̃ℓId−1 and RT

u,ℓ(S̃
∗
1)

−1S̃∗
2Ru,ℓ − µ̃ℓId−1, respec-

tively. Under Condition 5(i), we know minℓ∈[d] θℓ > 0 and minℓ∈[d] θ
∗
ℓ > 0. Such defined θℓ and

θ∗ℓ can be viewed as the extension of the concept “eigen-gap” in symmetric matrices to non-

symmetric matrices. If S̃−1
1 S̃2 is a symmetric matrix, such defined θℓ is actually the eigen-gap

minj: j ̸=ℓ |µ̃j − µ̃ℓ|. Write Â = (â1, . . . , âd̂) and B̂ = (b̂1, . . . , b̂d̂). Define

Π2,n = (s3s4)
1/2{n−1log(pq)}(1−ι)/2 .
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Theorem 2 indicates that the columns of Â and B̂ defined in (20) are, respectively, consistent to

those of A and B upto the scaling and permutation indeterminacy.

Theorem 2. Let Conditions 1–6 hold and the threshold levels δ1 = C∗{n−1 log(pq)}1/2 and

δ2 = C∗∗{n−1 log(pq)}1/2 for some sufficiently large constants C∗ > 0 and C∗∗ > 0. If d̂ = d, there

exists a permutation of (1, . . . , d), denoted by (j1, . . . , jd), such that |κ1,ℓâjℓ − aℓ|2 = (1 + θ−1
ℓ ) ·

Op(Π1,n + Π2,n) and |κ2,ℓb̂jℓ − bℓ|2 = {1 + (θ∗ℓ )
−1} · Op(Π1,n + Π2,n) for any ℓ ∈ [d] with some

κ1,ℓ, κ2,ℓ ∈ {−1, 1}, provided that (Π1,n+Π2,n)max{1, d1/2θ−1
ℓ , d1/2(θ∗ℓ )

−1, d1/2θ−2
ℓ , d1/2(θ∗ℓ )

−2} =

o(1) and log(pq) = o(nc) for some constant c > 0 depending only on r1 and r2 specified in

Condition 4. Here, the term Op(Π1,n +Π2,n) holds uniformly over ℓ ∈ [d].

For two m × r half orthogonal matrices H1 and H2 satisfying HT
1H1 = HT

2H2 = Ir, the

distance between the two linear spaces M(H1) and M(H2) is given by

dist{M(H1),M(H2)} =

√
1− 1

r
tr(H1HT

1H2HT
2 ) .

For any unit ℓ2-norm vectors ĉ and c, we know |κĉ− c|22 ≥ 1− tr(ĉĉTccT) with any κ ∈ {−1, 1}.

Hence, when d̂ = d, by Theorem 2, dist{M(âjℓ),M(aℓ)} = (1 + θ−1
ℓ ) · Op(Π1,n + Π2,n) = op(1)

and dist{M(b̂jℓ),M(bℓ)} = {1 + (θ∗ℓ )
−1} ·Op(Π1,n +Π2,n) = op(1) for any ℓ ∈ [d].

Remark 2. For any matrices H1 = {h(1)
1 , . . . ,h

(1)
d1

} ∈ Rm×d1 and H2 = {h(2)
1 , . . . ,h

(2)
d2

} ∈ Rm×d2 ,

we can measure the difference between H1 and H2 by

ρ(H1,H2) = max
ℓ∈[d1]

min
j∈[d2]

dist{M(h
(1)
ℓ ),M(h

(2)
j )} .

When d̂ = d, Theorem 2 yields that ρ(Â,A) = {1 + (minℓ∈[d] θℓ)
−1} · Op(Π1,n + Π2,n) and

ρ(B̂,B) = {1 + (minℓ∈[d] θ
∗
ℓ )

−1} ·Op(Π1,n +Π2,n). Write φn = {1 + (minℓ∈[d] θℓ)
−1}(Π1,n +Π2,n).

For any ϵ > 0, there exists some constant Cϵ > 0 such that P{ρ(Â,A) > Cϵφn | d̂ = d} ≤ ϵ.

Together with Theorem 1, we have P{ρ(Â,A) > Cϵφn} ≤ P{ρ(Â,A) > Cϵφn | d̂ = d}P(d̂ =

d) + P(d̂ ̸= d) ≤ ϵ + o(1) → ϵ, which implies {1 + (minℓ∈[d] θℓ)
−1}(Π1,n + Π2,n), the convergence

rate of ρ(Â,A) conditional on d̂ = d, is also the convergence rate of ρ(Â,A). Identically, we also

know {1 + (minℓ∈[d] θ
∗
ℓ )

−1}(Π1,n +Π2,n) is the convergence rate of ρ(B̂,B).

Remark 3. (i) If p and q are fixed constants, we can select the threshold levels δ1 = δ2 = 0 in (15)

and (18). In this scenario, Conditions 3 and 6 hold automatically with ι = 0 and (s1, s2, s3, s4)

being some fixed constants, and Condition 4 can be replaced by the weaker requirements that

maxi∈[p]maxj∈[q]maxt∈[n] E(|yi,j,t|2ν) = O(1), maxt∈[n] E(|ξt|2ν) = O(1), and
∑∞

k=1{α(k)}1−2/ν =

O(1) for some constant ν > 2. Under these conditions, using the Davydov inequality, we have
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Theorem 1, Proposition 2 and Theorem 2 hold with Π∗
1,n = Π∗

2,n = n−1/2 and Π∗
1,n ≪ cn ≪ 1,

provided that (Π∗
1,n +Π∗

2,n)max{1, θ−2
ℓ , (θ∗ℓ )

−2} = o(1).

(ii) If p and q diverge at some polynomial rate of n, we can replace Condition 4 by the

weaker requirements maxi∈[p]maxj∈[q]maxt∈[n] P(|yi,j,t| > x) = O{x−2(l+τ)} for any x > 0,

maxt∈[n] P(|ξt| > x) = O{x−2(l+τ)} for any x > 0, and α(k) = O{k−(l−1)(l+τ)/τ} as k →

∞ with some constants l > 2 and τ > 0. Under these conditions, if the threshold levels

δ1 = C∗(pq)
1/ℓn−1/2 and δ2 = C∗∗(pq)

2/ℓn−1/2 in (15) and (18) for some sufficiently large

constants C∗ > 0 and C∗∗ > 0, Theorem 1, Proposition 2 and Theorem 2 hold with Π∗
1,n =

(s1s2)
1/2{(pq)1/ℓn−1/2}1−ι, Π∗

2,n = (s3s4)
1/2{(pq)2/ℓn−1/2}1−ι and Π∗

1,n ≪ cn ≪ 1, provided that

(Π∗
1,n +Π∗

2,n)max{1, d1/2θ−1
ℓ , d1/2(θ∗ℓ )

−1, d1/2θ−2
ℓ , d1/2(θ∗ℓ )

−2} = o(1).

5 Numerical studies

5.1 Simulation

We illustrate the finite-sample performance of the proposed method by simulation based on model

(2) or, equivalently, model (3). Recall xℓ = (x1,ℓ, . . . , xn,ℓ)
T. In our simulation, the elements of

the loading matrices A and B are drawn from the uniform distribution on [−3, 3] independently

with the restriction rank(A) = d = rank(B), and x1, . . . ,xd are independent AR(1) processes

with independent N (0, 1) innovations, and the autoregressive coefficients drawn from the uniform

distribution on [−0.95, −0.6] ∪ [0.6, 0.95]. The elements of the error term E in (2) are drawn

from N (0, 1) independently. We set d ∈ {1, 3, 6}, n ∈ {300, 600, 900}, and p, q taking values

between 4 and 256. To specify ξt in our procedure, we perform the principal component analysis

for the (pq)-dimensional time series vec(Yt), and select ξt as the average of the first m principal

components corresponding to the eigenvalues which count for at least 99% of the total variations.

Similarly, we select η̂t in the same way with replacing Yt by Ẑt. We only present the results for

the cases with p ≥ q. More numerical results can be found in the supplementary material.

First we estimate d by (16) with cn = 0. Table 1 reports the relative frequency estimates of

P(d̂ = d) with K ∈ {3, 5, 7} and δ = 0 in (15) based on 2000 repetitions. When d = 1, we observe

d̂ ≡ d in all the simulation replications. For d > 1, the relative frequency estimates of P(d̂ = d)

increase as K, n, p and q increase in most of the cases. The results based on different selections

of cn are similar to those with cn = 0. To evaluate the errors in estimating the columns of A, we
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define the difference measure between A and Â:

L(A, Â) =


√

1− (AT
∗ Â)2 , if d̂ = d = 1 ,

1

2d(d− 1)

d∑
j=1

( ∑d
i=1 |ri,j |

maxi∈[d] |ri,j |
+

∑d
i=1 |rj,i|

maxi∈[d] |rj,i|
− 2

)
, if d̂ = d ≥ 2 ,

where A∗ is the column-normalized A with each column being a unit vector, ri,j is the (i, j)-th

element of A+
∗ Â. We take the convention that (maxi∈[d] |ri,j |)−1

∑d
i=1 |ri,j | = d if maxi∈[d] |ri,j | =

0. Note that L(A, Â) always takes value between 0 and 1. When d̂ = d ≥ 2, L(A, Â) is the

divergence measure of Amari et al. (1996). Denote by I∗d a d× d diagonal matrix with the main

diagonal elements being either 1 or −1. When Â is a ‘perfect’ estimate (i.e. free from errors),

A+
∗ Â will be a column-permutation of I∗d, and L(A, Â) = 0. Analogously, we can also define the

same measure between B and B̂.

Our extensive simulation indicates the estimation errors for the columns of A and B with

different K ∈ {3, 5, 7} are almost the same. We only present the results for A with K = 3 in

Figure 1, and report the results for B and for A with K ∈ {5, 7} in the supplementary material.

For each selected (p, q, d), the estimation error decreases as the sample size n increases. When

d > 1, the estimation error decreases when p and/or q increases. However, such phenomenon is

not true for d = 1 in general and can be only observed in the cases with p = q.

Figure 1: The boxplots of L(A, Â) with K = 3 based on 2000 repetitions.
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Table 1: Relative frequency estimates of P(d̂ = d) based on 2000 repetitions.

n (p, q) K = 3 K = 5 K = 7 (p, q) K = 3 K = 5 K = 7

d = 1

300 (4, 4) 100.00 100.00 100.00 (32, 4) 100.00 100.00 100.00

600 100.00 100.00 100.00 100.00 100.00 100.00

900 100.00 100.00 100.00 100.00 100.00 100.00

300 (8, 8) 100.00 100.00 100.00 (64, 4) 100.00 100.00 100.00

600 100.00 100.00 100.00 100.00 100.00 100.00

900 100.00 100.00 100.00 100.00 100.00 100.00

300 (16, 16) 100.00 100.00 100.00 (128, 4) 100.00 100.00 100.00

600 100.00 100.00 100.00 100.00 100.00 100.00

900 100.00 100.00 100.00 100.00 100.00 100.00

300 (32, 32) 100.00 100.00 100.00 (256, 4) 100.00 100.00 100.00

600 100.00 100.00 100.00 100.00 100.00 100.00

900 100.00 100.00 100.00 100.00 100.00 100.00

d = 3

300 (8, 8) 78.50 79.65 79.35 (32, 8) 88.45 89.95 91.15

600 81.45 81.10 80.90 91.35 92.80 93.20

900 87.65 87.15 86.75 94.05 94.75 95.35

300 (16, 16) 89.75 91.45 92.40 (64, 8) 88.60 91.55 92.80

600 93.00 93.50 94.15 92.70 94.20 95.35

900 94.40 94.30 94.90 96.15 96.80 97.10

300 (32, 32) 94.55 96.55 96.95 (128, 8) 91.70 93.95 95.10

600 94.70 95.90 96.80 95.20 96.15 96.75

900 97.20 97.90 98.30 97.20 97.20 97.60

300 (64, 64) 95.40 96.75 97.90 (256, 8) 92.35 94.35 95.60

600 96.90 98.00 98.75 95.05 96.50 96.80

900 98.15 98.50 98.95 97.50 98.15 98.20

d = 6

300 (12, 12) 73.35 78.15 81.85 (32, 12) 84.80 90.65 94.35

600 76.15 80.00 82.45 89.15 93.45 95.05

900 82.20 85.10 86.50 91.15 94.30 95.75

300 (16, 16) 81.70 87.05 89.40 (64, 12) 88.60 93.80 96.15

600 84.65 87.45 90.65 91.30 96.10 97.25

900 87.30 90.50 93.20 93.35 96.15 97.40

300 (32, 32) 91.15 95.10 96.55 (128, 12) 90.80 95.40 96.90

600 92.75 96.05 97.60 92.45 95.95 98.20

900 92.85 96.05 98.10 94.90 97.20 98.25

300 (64, 64) 95.00 98.25 99.05 (256, 12) 90.30 95.25 97.65

600 95.40 98.35 99.25 92.80 96.70 98.30

900 96.40 98.40 99.45 95.70 97.70 98.95

5.2 A real data analysis

In this section, we analyze the monthly returns of the 100 portfolios from January 1990 to

December 2017. The portfolios include all NYSE, AMEX, and NASDAQ stocks, which are

constructed by the intersections of 10 levels of size (market equity) and 10 levels of the book

equity to market equity ratio (book to equity ratio, BE). The data were downloaded from

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html. Although

this website provides monthly return data from July 1926 to June 2021, there are many missing
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values in the early years. We restrict the time period from January 1990 to December 2017 to

avoid the large numbers of missing data and large fluctuations. The data can be represented

as the 10 × 10 matrix Yt = (yi,j,t) for t = 1, . . . , 336 (i.e. p = q = 10, n = 336), where yi,j,t

is the return of the portfolio at the i-th level of size and j-th level of the BE-ratio at time t.

We impute the missing values by the weighted averages of the three previous months, i.e. set

yi,j,t = 0.5yi,j,t−1 + 0.3yi,j,t−2 + 0.2yi,j,t−3 for missing yi,j,t.

We standardize each of the 100 component time series {yi,j,t}nt=1 so that they have mean zero

and unit variance. To economize the notation, we still use yi,j,t to denote the standardized data.

Figure 2 shows the plots of the standardized return series {yi,j,t}nt=1, for i, j = 1, . . . , 10. The rows

in Figure 2 correspond to the ten levels of size and the columns correspond to the ten levels of the

BE-ratio. Notice that the ranges of the vertical values are not the same, and the figures are not

directly comparable. All the 100 return series appear to be stationary. The ACF (autocorrelation

functions) plots of these 100 time series indicate that most series have significant ACF at the first

lag, and all series do not show any seasonal patterns. The cross correlations between different

time series are mostly significant at time lags 0 and 1.

Figure 2: The plots of the return series of the portfolios formed on different levels of size (by
rows) and book to equity ratio (by columns). The horizontal axis represents time and the vertical
axis represents the monthly returns. The ranges of the vertical values are not the same.

We apply our model (4) to fit the standardized matrix time series {Yt}336t=1; leading to d̂ ≡ 1
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with K = 3, 5 or 7. See (16). In the sequel, we only present the results with K = 5. The results

based on K ∈ {3, 7} are almost identical and thus omitted here. Based on (20), we obtain Â =

(0.46, 0.36, 0.33, 0.34, 0.29, 0.24, 0.31, 0.30, 0.26, 0.21)T and B̂ = (0.27, 0.35, 0.29, 0.31, 0.34, 0.31, 0.30,

0.26, 0.35, 0.36)T. Following the arguments in the end of Section 3.3, we can recover the latent

time series {x̂t,1}336t=1. Figure 3 displays the plots of time series {x̂t,1}336t=1 and its ACF, which shows

that the autocorrelations of {x̂t,1}336t=1 is significant at the first lag that is consistent to the ACF

patterns of Yt. The Akaike information criterion (AIC) suggests to fit {x̂t,1}336t=1 by an AR(1)

model. Hence, to model this 10× 10 matrix time series Yt, our method essentially only needs to

estimate one parameter in an AR(1) model. We also consider to fit the matrix time series Yt by

following methods:

Figure 3: The plots of the latent time series {x̂t,1}336t=1 and its ACF.

• (UniARMA) For each of 100 component time series {yi,j,t}336t=1, we fit an ARMA model

specified by AIC; leading to the estimation for 135 coefficient parameters in the total 100

models.

• (SVAR) Fit a sparse VAR(ℓ) model to {vec(Yt)}336t=1 using the R-function sparseVAR in

the R-package bigtime. The AIC selects ℓ = 27, and there are 270000 parameters to be

estimated.

• (MAR) Fit {Yt}336t=1 by the matrix-AR(1) of Chen et al. (2021), which involves 200 param-

eters.

• (TS-PCA) Apply the principle component analysis for time series of Chang et al. (2018)

to the 100 dimensional time series {vec(Yt)}336t=1 using the R-package HDTSA, leading to 98

univariate time series and one two-dimensional time series. For the obtained univariate time

series, we fit it by an ARMA model with the order determined by the AIC. For the obtained
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Table 2: Fitting errors for the monthly data from year 1990 to 2017. The
computational time is conducted on the Windows platform with Intel(R)
Core(TM) i7-8550U CPU at 1.99 GHz.

Proposed TS-PCA FAC UniARMA SVAR MAR

RMSE 0.9914 1.0021 0.9923 0.9895 0.9985 0.9613

MAE 0.7433 0.7501 0.7436 0.7417 0.7443 0.7235

# Parameters 1 93 1 135 270000 200

time (seconds) 0.2493 6.3387 1.2064 7.0821 1723.5310 1.8343

two-dimensional time series, we fit it by an VAR model with the order determined by the

AIC. There are in total 93 parameters in the models.

• (FAC) Apply the factor model of Wang et al. (2019) to matrix time series {Yt}336t=1. Based

on their method, we find there is only one factor. We fit the latent factor series by an AR(1)

model specified by the AIC which only needs to estimate one parameter.

While UniARMA, SVAR and MAR model Yt or vec(Yt) directly, our proposed method, TS-PCA

and FAC seek dimension reduction first and then model the resulting low-dimensional time series.

Both RMSE and MAE, defined as below, of the fitted models are listed in Table 2:

RMSE =

{
1

33600

336∑
t=1

10∑
i=1

10∑
j=1

(ŷi,j,t − yi,j,t)
2

}1/2

, MAE =
1

33600

336∑
t=1

10∑
i=1

10∑
j=1

|ŷi,j,t − yi,j,t| .

Among the three dimension-reduction methods, our proposed method has the smallest RMSE

and MAE, while MAR achieves the overall minimum RMSE and MAE.

We also evaluate the post-sample forecasting performance of these methods by performing

the one-step and two-step ahead rolling forecasts for the 24 monthly readings in the last two

years (i.e. 2016 and 2017). For each s = 1, . . . , 24, we use our proposed method and the other

five methods to fit {Yt}311+s
t=s and then obtained the one-step forecast of Y312+s denoted by

Ŷ312+s = {ŷ(s)i,j,312+s}10×10. For our proposed method, TS-PCA and FAC, if the dimension of the

obtained latent time series is larger than 1 we fit it by a VAR model with the order determined

by the AIC, otherwise we fit it by an ARMA model with the order determined by the AIC. The

two-step ahead forecasts are obtained by plug-in the one-step forecasts into the models. The

post-sample forecasting performance is evaluated by the rRMSE and rMAE defined as

rRMSE =

[
1

2400

24∑
s=1

10∑
i=1

10∑
j=1

{ŷ(s)i,j,312+s − yi,j,312+s}2
]1/2

,

rMAE =
1

2400

24∑
s=1

10∑
i=1

10∑
j=1

∣∣ŷ(s)i,j,312+s − yi,j,312+s

∣∣ .
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Table 3: One-step and two-step ahead forecasting errors for the
monthly readings in the last two years 2016 and 2017.

Proposed TS-PCA FAC UniARMA SVAR MAR

h = 1

rRMSE 0.7678 0.7795 0.7703 0.7724 0.7690 0.8067

rMAE 0.5609 0.5755 0.5643 0.5652 0.5614 0.5948

h = 2

rRMSE 0.7067 0.7163 0.7055 0.7083 0.7076 0.7043

rMAE 0.5179 0.5245 0.5162 0.5198 0.5180 0.5144

Table 3 summarizes the post-sample forecasting rRMSE and rMAE. The newly proposed method,

in spite of its simplicity, exhibits the promising post-sample forecasting performance, as its rRMSE

and rMAE are the smallest in one-step ahead forecasting among all the methods concerned, and

are the 2nd smallest in the two-step ahead forecast for which only MAR has slightly smaller

rRMSE and rMAE.

Appendix

Throughout the Appendix, we use C ∈ (0,∞) to denote a generic finite constant that does not

depend on (n, p, q, d), and may be different in different uses. For two sequences of positive numbers

{an} and {bn}, we write an ≲ bn or bn ≳ an if lim supn→∞ an/bn ≤ c0 for some constant c0 > 0.

A Proofs of Theorem 1 and Proposition 2

Recall Π1,n = (s1s2)
1/2{n−1log(pq)}(1−ι)/2. To construct Theorem 1 and Proposition 2, we need

the following lemma whose proof is given in Section C.1.

Lemma 1. Under Conditions 1, 3 and 4, if the threshold level δ1 = C∗{n−1 log(pq)}1/2 for some

sufficiently large constant C∗ > 0, we have ∥M̂1−M1∥2 = Op(Π1,n) = ∥M̂2−M2∥2, provided that

Π1,n = o(1) and log(pq) = o(nc) for some constant c > 0 depending only on r1 and r2 specified in

Condition 4.

A.1 Proof of Theorem 1

Denote by λ̂1 ≥ · · · ≥ λ̂p and λ1 ≥ · · · ≥ λp, respectively, the eigenvalues of M̂1 and M1. By

Lemma 1, we have maxi∈[p] |λ̂i−λi| ≤ ∥M̂1−M1∥2 = op(cn) for some cn = o(1) satisfying Π1,n =

o(cn). By Condition 2, we know λd ≥ C, and λd+1 = · · · = λp = 0. Hence, (λ̂d+1+cn)/(λ̂d+cn)
P→

0, (λ̂j+1+cn)/(λ̂j+cn)
P→ λj+1/λj > 0 for any j < d, and (λ̂j+1+cn)/(λ̂j+cn)

P→ 1 for any j > d,

which implies (λ̂d+1+ cn)/(λ̂d+ cn) = minj∈[R](λ̂j+1+ cn)/(λ̂j + cn) with probability approaching

one. This indicates that P(d̂ = d) → 1 as n → ∞. We complete the proof of Theorem 1. □
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A.2 Proof of Proposition 2

Denote by λ1,1 ≥ · · · ≥ λ1,p and λ2,1 ≥ · · · ≥ λ2,q, respectively, the eigenvalues of M1 and M2.

It follows from Condition 2 that λ1,1 ≥ · · · ≥ λ1,d > 0 = λ1,d+1 = · · · = λ1,p and λ2,1 ≥ · · · ≥

λ2,d > 0 = λ2,d+1 = · · · = λ2,q. Notice that λ1,d and λ2,d are uniformly bounded away from zero.

Lemma 1 of Chang et al. (2018) implies that ∥P̂E1 −P∥2 ≤ 8λ−1
1,d∥M̂1 −M1∥2 ≤ C∥M̂1 −M1∥2

and ∥Q̂E2 − Q∥2 ≤ 8λ−1
2,d∥M̂2 − M2∥2 ≤ C∥M̂2 − M2∥2, where E1 and E2 are two orthogonal

matrices. Together with Lemma 1, we complete the proof of Proposition 2. □

B Proof of Theorem 2

Recall Π1,n = (s1s2)
1/2{n−1log(pq)}(1−ι)/2 and Π2,n = (s3s4)

1/2{n−1log(pq)}(1−ι)/2. Write Πn =

Π1,n +Π2,n. For Σ̂Z,η(k) defined as (18), we write Ŝ1 = Σ̂Z,η(1)
TΣ̂Z,η(1), Ŝ2 = Σ̂Z,η(1)

TΣ̂Z,η(2),

Ŝ∗
1 = Σ̂Z,η(1)Σ̂Z,η(1)

T and Ŝ∗
2 = Σ̂Z,η(1)Σ̂Z,η(2)

T. Recall S̃1 = ΣZ,η̃(1)
TΣZ,η̃(1), S̃2 = ΣZ,η̃(1)

TΣZ,η̃(2),

S̃∗
1 = ΣZ,η̃(1)ΣZ,η̃(1)

T and S̃∗
2 = ΣZ,η̃(1)ΣZ,η̃(2)

T. To construct Theorem 2, we need the following

lemmas. The proofs of Lemmas 2 and 3 are given in Sections C.2 and C.3, respectively. Lemma

4 is Corollary 7.2.6 of Golub and Van Load (2013).

Lemma 2. Under Conditions 1–4, and 6, if the threshold levels δ1 = C∗{n−1 log(pq)}1/2 and

δ2 = C∗∗{n−1 log(pq)}1/2 for some sufficiently large constants C∗ > 0 and C∗∗ > 0, we have

maxk∈{1,2} ∥ET
1 Σ̂Z,η(k)E2−ΣZ,η̃(k)∥2 = Op(Πn) for (E1,E2) specified in Proposition 2, provided

that Πn = o(1) and log(pq) = o(nc) for some constant c > 0 depending only on r1 and r2 specified

in Condition 4.

Lemma 3. Under conditions of Lemma 2, we have ∥ET
2 Ŝ1E2−S̃1∥2 = Op(Πn) = ∥ET

2 Ŝ2E2−S̃2∥2
and ∥ET

1 Ŝ
∗
1E1 − S̃∗

1∥2 = Op(Πn) = ∥ET
1 Ŝ

∗
2E1 − S̃∗

2∥2 for (E1,E2) specified in Proposition 2.

Lemma 4. Suppose W,∆ ∈ Cd×d and that R = (r1,R2) ∈ Cd×d is unitary with r1 ∈ Cd.

Assume

RHWR =

 λ vH

0 D22

 and RH∆R =

 ϵ γH

δ ∆22

 ,

where H denotes the conjugate transpose. Let θ be the smallest singular value of D22−λId−1, and

denote by ∥ · ∥F the Frobenius norm of ·. If θ > 0 and 5∥∆∥F(1+ 5θ−1|v|2) ≤ θ, then there exists

u ∈ Cd−1 with |u|2 ≤ 4θ−1|δ|2 such that r̃1 = (r1+R2u)/
√
1 + uHu is a unit ℓ2-norm eigenvector

for W +∆. Moreover, 1− (rH
1 r̃1)

2 ≤ 16θ−2|δ|22.

Now we begin to prove Theorem 2. Let {β̂v,1, . . . , β̂v,d} and {βv,1, . . . ,βv,d} be, respectively,

the eigenvectors of Ŝ−1
1 Ŝ2 and S̃−1

1 S̃2 with unit ℓ2-norm, i.e., Ŝ−1
1 Ŝ2β̂v,ℓ = µ̂ℓβ̂v,ℓ and S̃−1

1 S̃2βv,ℓ =
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µ̃ℓβv,ℓ for any ℓ ∈ [d]. Write β̂
∗
v,ℓ = ET

2 β̂v,ℓ with E2 specified in Proposition 2. Then β̂
∗
v,ℓ is

the eigenvector of ET
2 Ŝ

−1
1 Ŝ2E2 associated with eigenvalue µ̂ℓ. Under Condition 5(i), applying

Lemma 4 with W = S̃−1
1 S̃2, W + ∆ = ET

2 Ŝ
−1
1 Ŝ2E2 and r1 = βv,ℓ, it holds that |κℓβ̂∗

v,jℓ
−

βv,ℓ|2 ≲ θ−1
ℓ ∥ET

2 Ŝ
−1
1 Ŝ2E2 − S̃−1

1 S̃2∥2 for any ℓ ∈ [d] provided that 5∥ET
2 Ŝ

−1
1 Ŝ2E2 − S̃−1

1 S̃2∥F(1 +

5θ−1
ℓ ∥S̃−1

1 S̃2∥2) ≤ θℓ, where κℓ ∈ {−1, 1}, (j1, . . . , jd) is a permutation of (1, . . . , d), and θℓ is

given in (23). Without loss of generality, we assume (j1, . . . , jd) = (1, . . . , d). For any ℓ ∈ [d], let

Φℓ =

∣∣∣∣κℓET
1 Σ̂Z,η(1)β̂v,ℓ

|Σ̂Z,η(1)β̂v,ℓ|2
−

ΣZ,η̃(1)βv,ℓ

|ΣZ,η̃(1)βv,ℓ|2

∣∣∣∣
2

with E1 specified in Proposition 2. In this sequel, we will specify the convergence rate of Φℓ.

Recall ΣZ,η̃(k) = PTΘ̃TΣY̊(k)Q, where Θ̃ = Ip ⊗ {(Q ⊗ P)(E2 ⊗ E1)
Te}. Note that

∥Θ̃∥2 = |e|2 = O(1). By Condition 6(i), ∥ΣZ,η̃(k)∥2 ≤ ∥P∥2∥Θ̃∥2∥Q∥2∥ΣY̊(k)∥2 ≤ C for

any k = 1, 2, which implies ∥S̃2∥2 ≤ ∥ΣZ,η̃(1)∥2∥ΣZ,η̃(2)∥2 ≤ C. Recall S̃1 and ET
2 Ŝ1E2 are

two symmetric matrices. Denote by λ1 ≥ · · · ≥ λd and λ̂1 ≥ · · · ≥ λ̂d, respectively, the eigen-

values of S̃1 and ET
2 Ŝ1E2. By Condition 5(ii), we have λd > 0 is uniformly bounded away

from zero. By Lemma 3, |λ̂d − λd| ≤ ∥ET
2 Ŝ1E2 − S̃1∥2 = op(1), which implies ∥ET

2 Ŝ
−1
1 E2 −

S̃−1
1 ∥2 ≤ ∥ET

2 Ŝ
−1
1 E2∥2∥ET

2 Ŝ1E2 − S̃1∥2∥S̃−1
1 ∥2 = Op(Πn). By Triangle inequality and Lemma

3, ∥ET
2 Ŝ

−1
1 Ŝ2E2 − S̃−1

1 S̃2∥2 ≤ ∥ET
2 Ŝ

−1
1 E2 − S̃−1

1 ∥2∥ET
2 Ŝ2E2 − S̃2∥2 + ∥S̃−1

1 ∥2∥ET
2 Ŝ2E2 − S̃2∥2 +

∥ET
2 Ŝ

−1
1 E2− S̃−1

1 ∥2∥S̃2∥2 = Op(Πn), which implies |κℓβ̂∗
v,ℓ−βv,ℓ|2 = θ−1

ℓ ·Op(Πn) for any ℓ ∈ [d].

Note that κℓET
1 Σ̂Z,η(1)β̂v,ℓ = κℓET

1 Σ̂Z,η(1)E2β̂
∗
v,ℓ. By Lemma 2 and Triangle inequality, it holds

that |κℓET
1 Σ̂Z,η(1)β̂v,ℓ−ΣZ,η̃(1)βv,ℓ|2 ≤ ∥ET

1 Σ̂Z,η(1)E2−ΣZ,η̃(1)∥2|κℓβ̂
∗
v,ℓ|2+∥ΣZ,η̃(1)∥2|κℓβ̂

∗
v,ℓ−

βv,ℓ|2 = (1 + θ−1
ℓ ) · Op(Πn) for any ℓ ∈ [d]. Then |κℓET

1 Σ̂Z,η(1)β̂v,ℓ|2 ≥ |ΣZ,η̃(1)βv,ℓ|2 − op(1).

By Condition 5(ii), |ΣZ,η̃(1)βv,ℓ|22 = βT
v,ℓS̃1βv,ℓ ≥ λd > C, which implies |κℓET

1 Σ̂Z,η(1)β̂v,ℓ|2 ≥ C

with probability approaching one. Due to |Σ̂Z,η(1)β̂v,ℓ|2 = |κℓET
1 Σ̂Z,η(1)β̂v,ℓ|2, by Triangle in-

equality, ||Σ̂Z,η(1)β̂v,ℓ|−1
2 −|ΣZ,η̃(1)βv,ℓ|−1

2 | ≤ |κℓET
1 Σ̂Z,η(1)β̂v,ℓ|−1

2 |ΣZ,η̃(1)βv,ℓ|−1
2 |κℓET

1 Σ̂Z,η(1)β̂v,ℓ−

ΣZ,η̃(1)βv,ℓ|2 = (1+θ−1
ℓ )·Op(Πn) for any ℓ ∈ [d]. Hence, Φℓ ≤ |κℓET

1 Σ̂Z,η(1)β̂v,ℓ|−1
2 |κℓET

1 Σ̂Z,η(1)β̂v,ℓ−

ΣZ,η̃(1)βv,ℓ|2 + ||κℓET
1 Σ̂Z,η(1)β̂v,ℓ|−1

2 − |ΣZ,η̃(1)βv,ℓ|−1
2 ||ΣZ,η̃(1)βv,ℓ|2 = (1 + θ−1

ℓ ) ·Op(Πn).

Write Â = (â1, . . . , âd) and P̃ = P̂E1. For any ℓ ∈ [d], κℓâℓ = κℓP̂ûℓ = |Σ̂Z,η(1)β̂v,ℓ|−1
2 κℓP̃ET

1 Σ̂Z,η(1)β̂v,ℓ.

Recall A = (a1, . . . ,ad) with aℓ = Puℓ = |ΣZ,η̃(1)βv,ℓ|−1
2 PΣZ,η̃(1)βv,ℓ. By Proposition 2 and

Triangle inequality, we have |κℓâℓ − aℓ|2 ≤ ∥P̃ − P∥2 + Φℓ = (1 + θ−1
ℓ ) · Op(Πn) for any ℓ ∈ [d].

Write B̂ = (b̂1, . . . , b̂d). Analogously, we can also prove |κℓ∗b̂ℓ − bℓ|2 = {1 + (θ∗ℓ )
−1} ·Op(Πn) for

any ℓ ∈ [d], where κℓ∗ ∈ {−1, 1}. We complete the proof of Theorem 2. □
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C Proofs of auxiliary lemmas

C.1 Proof of Lemma 1

We first show that, with δ1 = C∗{n−1 log(pq)}1/2 for some sufficiently large constant C∗ > 0,

∥Tδ1{Σ̂Y,ξ(k)} −ΣY,ξ(k)∥2 = Op(Π1,n) (24)

for any k ∈ [K], provided that log(pq) = o(nc) for some constant c > 0.

To simplify the notation, we write Σ̂Y,ξ(k) = (σ̂
(k)
i,j )p×q and ΣY,ξ(k) = (σ

(k)
i,j )p×q. Write

nk = n− k and ȳi,j = n−1
∑n

t=1 yi,j,t. Then we have

σ̂
(k)
i,j − σ

(k)
i,j =

1

nk

n∑
t=k+1

{yi,j,tξt−k − E(yi,j,tξt−k)} −
{
ȳi,j
nk

n∑
t=k+1

ξt−k −
E(ȳi,j)
nk

n∑
t=k+1

E(ξt−k)

}

−
{

ξ̄

nk

n∑
t=k+1

yi,j,t −
E(ξ̄)
nk

n∑
t=k+1

E(yi,j,t)
}
+ {ȳi,j ξ̄ − E(ȳi,j)E(ξ̄)}

= : Ii,j(1) + Ii,j(2) + Ii,j(3) + Ii,j(4) .

Under Condition 4(i), applying Lemma 2 of Chang et al. (2013), we have P{|yi,j,tξt−k−E(yi,j,tξt−k)| >

x} ≲ exp(−Cxr1/2) for any x > 0. Write |·|+ = max(·, 0). Notice that {yi,j,tξt−k−E(yi,j,tξt−k)}nt=k+1

is an α-mixing sequence with α-mixing coefficients {α(|m − k|+)}m≥1, where α(·) is given in

(21) in Section 4. Together with Condition 4(ii), Lemma 7 of Chang et al. (2021) implies

P{|Ii,j(1)| ≥ x} ≲ exp(−Cnx2) + exp(−Cnr̃xr̃) for any x ∈ (0, 1), where r̃−1 = 1 + 2r−1
1 + r−1

2 .

Since E(yi,j,t) = O(1) and E(ξt) = O(1) for any t ∈ [n], applying Lemma 7 of Chang et al. (2021)

again, P{|Ii,j(2) + Ii,j(3) + Ii,j(4)| ≥ x} ≲ exp(−Cnx2) + exp(−Cnřxř) for any x ∈ (0, 1), where

ř−1 = 2 + |r−1
1 − 1|+ + r−1

2 . Then Z := maxi∈[p]maxj∈[q] |σ̂
(k)
i,j − σ

(k)
i,j | = Op[{n−1 log(pq)}1/2],

provided that log(pq) = o(nc) for some constant c > 0 depending only on r1 and r2.

By Triangle inequality, ∥Tδ1{Σ̂Y,ξ(k)}−ΣY,ξ(k)∥2 ≤ ∥Tδ1{ΣY,ξ(k)}−ΣY,ξ(k)∥2+∥Tδ1{Σ̂Y,ξ(k)}−

Tδ1{ΣY,ξ(k)}∥2, where Tδ1{ΣY,ξ(k)} = (σ
(k)
i,j I{|σ

(k)
i,j | ≥ δ1})p×q. On the one hand, ∥Tδ1{ΣY,ξ(k)}−

ΣY,ξ(k)∥22 ≤ [maxi∈[p]
∑q

j=1 |σ
(k)
i,j |I{|σ

(k)
i,j | < δ1}][maxj∈[q]

∑p
i=1 |σ

(k)
i,j |I{|σ

(k)
i,j | < δ1}]. By Condi-

tion 3(ii), we have
∑q

j=1 |σ
(k)
i,j |I{|σ

(k)
i,j | < δ1} ≤ δ1−ι

1 s1 and
∑p

i=1 |σ
(k)
i,j |I{|σ

(k)
i,j | < δ1} ≤ δ1−ι

1 s2,

which implies that ∥Tδ1{ΣY,ξ(k)} −ΣY,ξ(k)∥2 ≤ δ1−ι
1 (s1s2)

1/2. On the other hand, we have

∥Tδ1{Σ̂Y,ξ(k)} − Tδ1{ΣY,ξ(k)}∥22 ≤
[
max
i∈[p]

q∑
j=1

∣∣σ̂(k)
i,j I{|σ̂

(k)
i,j | ≥ δ1} − σ

(k)
i,j I{|σ

(k)
i,j | ≥ δ1}

∣∣]

×
[
max
j∈[q]

p∑
i=1

∣∣σ̂(k)
i,j I{|σ̂

(k)
i,j | ≥ δ1} − σ

(k)
i,j I{|σ

(k)
i,j | ≥ δ1}

∣∣]
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=: I(1)× I(2) . (25)

By Triangle inequality, I(1) ≤ maxi∈[p]
∑q

j=1 |σ̂
(k)
i,j −σ

(k)
i,j |I{|σ̂

(k)
i,j | ≥ δ1, |σ(k)

i,j | ≥ δ1}+maxi∈[p]
∑q

j=1 |σ̂
(k)
i,j |I{|σ̂

(k)
i,j | ≥

δ1, |σ(k)
i,j | < δ1}+maxi∈[p]

∑q
j=1 |σ

(k)
i,j |I{|σ̂

(k)
i,j | < δ1, |σ(k)

i,j | ≥ δ1} =: I(1, 1) + I(1, 2) + I(1, 3). Recall

Z = maxi∈[p]maxj∈[q] |σ̂
(k)
i,j − σ

(k)
i,j |. By Condition 3(ii), I(1, 1) ≤ Z × maxi∈[p]

∑q
j=1 I{|σ̂

(k)
i,j | ≥

δ1, |σ(k)
i,j | ≥ δ1} ≤ Zδ−ι

1 s1. Applying Triangle inequality and Condition 3(ii) again, we have

I(1, 2) ≤ maxi∈[p]
∑q

j=1 |σ̂
(k)
i,j − σ

(k)
i,j |I{|σ̂

(k)
i,j | ≥ δ1, |σ(k)

i,j | < δ1} + maxi∈[p]
∑q

j=1 |σ
(k)
i,j |I{|σ

(k)
i,j | <

δ1} ≤ δ1−ι
1 s1 +maxi∈[p]

∑q
j=1 |σ̂

(k)
i,j − σ

(k)
i,j |I{|σ̂

(k)
i,j | ≥ δ1, |σ(k)

i,j | < δ1}. Taking θ ∈ (0, 1), by Triangle

inequality and Condition 3(ii), we have maxi∈[p]
∑q

j=1 |σ̂
(k)
i,j − σ

(k)
i,j |I{|σ̂

(k)
i,j | ≥ δ1, |σ(k)

i,j | < δ1} ≤

maxi∈[p]
∑q

j=1 |σ̂
(k)
i,j − σ

(k)
y,ξ,i,j |I{|σ̂

(k)
i,j | ≥ δ1, |σ(k)

i,j | ≤ θδ1} + maxi∈[p]
∑q

j=1 |σ̂
(k)
i,j − σ

(k)
i,j |I{|σ̂

(k)
i,j | ≥

δ1, θδ1 < |σ(k)
i,j | < δ1} ≤ Z × maxi∈[p]

∑q
j=1 I{|σ̂

(k)
i,j − σ

(k)
i,j | ≥ (1 − θ)δ1} + Zθ−ιδ−ι

1 s1. Thus,

I(1, 2) ≤ Z × maxi∈[p]
∑q

j=1 I{|σ̂
(k)
i,j − σ

(k)
i,j | ≥ (1 − θ)δ1} + Zθ−ιδ−ι

1 s1 + δ1−ι
1 s1. Meanwhile, by

Triangle inequality and Condition 3(ii), we have I(1, 3) ≤ maxi∈[p]
∑q

j=1 |σ̂
(k)
i,j − σ

(k)
i,j |I{|σ̂

(k)
i,j | <

δ1, |σ(k)
i,j | ≥ δ1} + maxi∈[p]

∑q
j=1 |σ̂

(k)
i,j |I{|σ̂

(k)
i,j | < δ1, |σ(k)

i,j | ≥ δ1} ≤ Zδ−ι
1 s1 + δ1−ι

1 s1. Hence,

I(1) ≲ Zδ−ι
1 s1 + δ1−ι

1 s1 + Zθ−ιδ−ι
1 s1 + Z × maxi∈[p]

∑q
j=1 I{|σ̂

(k)
i,j − σ

(k)
i,j | ≥ (1 − θ)δ1}. Select-

ing δ1 = C∗{n−1 log(pq)}1/2 for some sufficiently large C∗ > 0, by Markov inequality, we have

P[maxi∈[p]
∑q

j=1 I{|σ̂
(k)
i,j − σ

(k)
i,j | ≥ (1− θ)δ1} > λ] ≤ λ−1

∑p
i=1

∑q
j=1 P{|σ̂

(k)
i,j − σ

(k)
i,j | ≥ (1− θ)δ1} ≤

Cλ−1 for any λ > 1, provided that log(pq) = o(nc) for some constant c > 0 depending only

on r1 and r2, which implies maxi∈[p]
∑q

j=1 I{|σ̂
(k)
i,j − σ

(k)
i,j | ≥ (1 − θ)δ1} = Op(1). Recall Z =

Op[{n−1 log(pq)}1/2]. Therefore, I(1) = Op[s1{n−1 log(pq)}(1−ι)/2]. Analogously, we also have

I(2) = Op[s2{n−1 log(pq)}(1−ι)/2]. By (25), we have ∥Tδ1{Σ̂Y,ξ(k)} − Tδ1{ΣY,ξ(k)}∥2 = Op(Π1,n)

for any k ∈ [K]. Together with ∥Tδ1{ΣY,ξ(k)} − ΣY,ξ(k)∥2 ≤ δ1−ι
1 (s1s2)

1/2 = O(Π1,n), we

complete the proof of (24).

Due to M̂1 =
∑K

k=1 Tδ1{Σ̂Y,ξ(k)}Tδ1{Σ̂Y,ξ(k)
T} and M1 =

∑K
k=1ΣY,ξ(k)ΣY,ξ(k)

T, by Tri-

angle inequality, (24) and Condition 3(i), ∥M̂1 − M1∥2 ≤
∑K

k=1 ∥Tδ1{Σ̂Y,ξ(k)} − ΣY,ξ(k)∥22 +

2
∑K

k=1 ∥ΣY,ξ(k)∥2∥Tδ1{Σ̂Y,ξ(k)}−ΣY,ξ(k)∥2 = Op(Π1,n), provided that Π1,n = o(1) and log(pq) =

o(nc) for some constant c > 0 depending only on r1 and r2. Analogously, we also have ∥M̂2 −

M2∥2 = Op(Π1,n). □

C.2 Proof of Lemma 2

By the same arguments for (24), if δ2 = C∗∗{n−1 log(pq)}1/2 for some sufficiently large constant

C∗∗ > 0, we have ∥Tδ2{Σ̂Y̌(k)} − ΣY̊(k)∥2 = Op(Π2,n). Write P̃ = P̂E1 and Q̃ = Q̂E2 for

(E1,E2) specified in Proposition 2. Then ET
1 Σ̂Z,η(k)E2 = P̃TΘ̂TTδ2{Σ̂Y̌(k)}Q̃. Since ∥Θ̂−Θ̃∥2 =

|{Q̂ ⊗ P̂ − (QET
2 ) ⊗ (PET

1 )}e|2 ≲ ∥Q̂ ⊗ P̂ − (QET
2 ) ⊗ (PET

1 )∥2 ≤ ∥Q̂E2 − Q∥2 + ∥P̂E1 − P∥2,

by Proposition 2, we have ∥Θ̂ − Θ̃∥2 = Op(Π1,n). Note that ∥Θ̂∥2 = ∥Θ̃∥2 = |e|2 = O(1) and

25



ΣZ,η̃(k) = PTΘ̃TΣY̊(k)Q. Together with Condition 6(i), we have maxk∈{1,2} ∥ET
1 Σ̂Z,η(k)E2 −

ΣZ,η̃(k)∥2 = Op(Πn) with Πn = Π1,n +Π2,n. □

C.3 Proof of Lemma 3

Recall ΣZ,η̃(k) = PTΘ̃TΣY̊(k)Q with Θ̃ = Ip ⊗{(Q⊗P)(E2 ⊗E1)
Te}, and ∥Θ̃∥2 = |e|2 = O(1).

By Condition 6(i), we have maxk∈{1,2} ∥ΣZ,η̃(k)∥2 ≤ C. Note that S̃1 = ΣZ,η̃(1)
TΣZ,η̃(1) and

Ŝ1 = Σ̂Z,η(1)
TΣ̂Z,η(1). By Triangle inequality and Lemma 2, ∥ET

2 Ŝ1E2− S̃1∥2 ≤ ∥ET
1 Σ̂Z,η(1)E2−

ΣZ,η̃(1)∥22+2∥ΣZ,η̃(1)∥2∥ET
1 Σ̂Z,η(1)E2−ΣZ,η̃(1)∥2 = Op(Πn). Analogously, we can also construct

other results. □
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Supplementary Material for “Modelling Matrix Time Series via

a Tensor CP-Decomposition” by Jinyuan Chang, Jing He, Lin

Yang and Qiwei Yao

Table 4: The averages and standard deviations (in parentheses) of the estimation

errors for Â and B̂ when d = 1 based on 2000 repetitions. All numbers in the
table are the true numbers multiplied by 100 for ease of presentation.

K = 3 K = 5 K = 7

(p, q) n L(A, Â) L(B, B̂) L(A, Â) L(B, B̂) L(A, Â) L(B, B̂)

(4, 4) 300 0.91(0.82) 0.91(0.84) 0.96(0.83) 0.95(0.85) 0.98(0.84) 0.97(0.87)

600 0.69(0.65) 0.70(0.66) 0.73(0.67) 0.73(0.67) 0.75(0.68) 0.75(0.67)

900 0.48(0.45) 0.48(0.42) 0.51(0.47) 0.50(0.43) 0.52(0.47) 0.52(0.44)

(8, 8) 300 0.63(0.35) 0.63(0.36) 0.66(0.36) 0.66(0.37) 0.67(0.36) 0.67(0.37)

600 0.49(0.27) 0.48(0.27) 0.51(0.28) 0.51(0.28) 0.52(0.28) 0.52(0.28)

900 0.35(0.19) 0.34(0.18) 0.36(0.20) 0.36(0.19) 0.37(0.20) 0.37(0.19)

(16, 16) 300 0.45(0.22) 0.45(0.21) 0.47(0.22) 0.47(0.22) 0.48(0.22) 0.48(0.22)

600 0.34(0.16) 0.34(0.16) 0.36(0.16) 0.36(0.16) 0.37(0.16) 0.37(0.16)

900 0.24(0.11) 0.24(0.11) 0.25(0.11) 0.25(0.11) 0.26(0.11) 0.26(0.11)

(32, 32) 300 0.32(0.14) 0.32(0.14) 0.34(0.14) 0.34(0.14) 0.34(0.14) 0.34(0.14)

600 0.24(0.10) 0.24(0.10) 0.25(0.11) 0.26(0.11) 0.26(0.11) 0.26(0.11)

900 0.17(0.07) 0.17(0.07) 0.18(0.07) 0.18(0.08) 0.18(0.07) 0.19(0.08)

(32, 4) 300 1.02(0.72) 0.30(0.25) 1.07(0.73) 0.31(0.25) 1.09(0.72) 0.31(0.25)

600 0.78(0.52) 0.22(0.19) 0.82(0.52) 0.24(0.19) 0.83(0.52) 0.24(0.19)

900 0.54(0.36) 0.15(0.12) 0.57(0.37) 0.16(0.13) 0.58(0.37) 0.17(0.13)

(64, 4) 300 1.02(0.75) 0.21(0.18) 1.07(0.76) 0.22(0.19) 1.09(0.75) 0.22(0.18)

600 0.78(0.55) 0.16(0.15) 0.82(0.55) 0.17(0.16) 0.84(0.55) 0.17(0.16)

900 0.55(0.42) 0.11(0.09) 0.58(0.42) 0.11(0.09) 0.59(0.42) 0.12(0.09)

(128, 4) 300 1.03(0.65) 0.15(0.12) 1.08(0.66) 0.16(0.13) 1.10(0.66) 0.16(0.12)

600 0.79(0.49) 0.11(0.08) 0.83(0.50) 0.12(0.08) 0.85(0.50) 0.12(0.09)

900 0.55(0.34) 0.08(0.06) 0.58(0.35) 0.08(0.07) 0.60(0.35) 0.08(0.07)

(256, 4) 300 1.04(0.62) 0.10(0.07) 1.08(0.63) 0.11(0.08) 1.11(0.63) 0.11(0.08)

600 0.79(0.48) 0.08(0.06) 0.83(0.49) 0.08(0.06) 0.85(0.49) 0.08(0.06)

900 0.55(0.33) 0.05(0.04) 0.58(0.34) 0.06(0.04) 0.59(0.34) 0.06(0.04)

(4, 32) 300 0.30(0.27) 1.00(0.69) 0.31(0.27) 1.05(0.70) 0.32(0.28) 1.08(0.71)

600 0.22(0.19) 0.77(0.51) 0.23(0.19) 0.80(0.51) 0.24(0.20) 0.82(0.52)

900 0.16(0.13) 0.54(0.36) 0.17(0.14) 0.57(0.38) 0.17(0.14) 0.58(0.37)

(4, 64) 300 0.21(0.21) 1.03(0.79) 0.22(0.22) 1.08(0.80) 0.22(0.21) 1.10(0.80)

600 0.16(0.15) 0.79(0.56) 0.16(0.15) 0.82(0.57) 0.17(0.15) 0.84(0.58)

900 0.11(0.10) 0.55(0.42) 0.12(0.10) 0.58(0.42) 0.12(0.11) 0.60(0.43)

(4, 128) 300 0.14(0.11) 1.01(0.58) 0.15(0.12) 1.06(0.59) 0.15(0.12) 1.09(0.59)

600 0.11(0.08) 0.78(0.42) 0.12(0.08) 0.82(0.43) 0.12(0.08) 0.84(0.43)

900 0.08(0.05) 0.54(0.29) 0.08(0.05) 0.57(0.30) 0.08(0.06) 0.59(0.30)

(4, 256) 300 0.10(0.09) 1.03(0.75) 0.11(0.09) 1.08(0.76) 0.11(0.09) 1.10(0.75)

600 0.08(0.08) 0.79(0.61) 0.08(0.08) 0.83(0.61) 0.09(0.08) 0.85(0.61)

900 0.06(0.05) 0.55(0.40) 0.06(0.05) 0.58(0.41) 0.06(0.06) 0.59(0.41)
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Table 5: The averages and standard deviations (in parentheses) of the estimation

errors for Â and B̂ when d = 3 based on 2000 repetitions. All numbers in the
table are the true numbers multiplied by 100 for ease of presentation.

K = 3 K = 5 K = 7

(p, q) n L(A, Â) L(B, B̂) L(A, Â) L(B, B̂) L(A, Â) L(B, B̂)

(8, 8) 300 4.02(5.74) 4.03(5.61) 4.12(5.84) 4.11(5.62) 4.25(6.07) 4.18(5.71)

600 3.58(5.44) 3.61(5.48) 3.37(4.98) 3.44(5.10) 3.33(4.86) 3.45(5.06)

900 2.96(5.04) 2.94(5.00) 2.98(5.17) 2.98(5.09) 2.89(4.94) 2.92(5.01)

(16, 16) 300 1.77(3.36) 1.82(3.48) 1.71(3.31) 1.77(3.44) 1.67(3.08) 1.72(3.21)

600 1.59(3.43) 1.56(3.33) 1.62(3.43) 1.58(3.33) 1.60(3.40) 1.56(3.27)

900 1.26(3.00) 1.26(2.85) 1.25(2.95) 1.23(2.75) 1.22(2.82) 1.20(2.66)

(32, 32) 300 0.82(2.15) 0.83(2.26) 0.86(2.25) 0.86(2.41) 0.88(2.33) 0.88(2.43)

600 0.79(2.46) 0.77(2.32) 0.80(2.50) 0.80(2.43) 0.83(2.60) 0.82(2.49)

900 0.63(2.13) 0.60(1.96) 0.65(2.24) 0.63(2.17) 0.65(2.18) 0.62(2.06)

(64, 64) 300 0.44(1.34) 0.43(1.32) 0.44(1.37) 0.43(1.36) 0.48(1.53) 0.47(1.51)

600 0.45(1.97) 0.45(2.11) 0.46(2.06) 0.45(2.17) 0.47(2.09) 0.47(2.22)

900 0.32(1.39) 0.32(1.29) 0.35(1.60) 0.35(1.46) 0.32(1.52) 0.32(1.39)

(32, 8) 300 1.89(3.61) 1.84(3.52) 1.94(3.69) 1.90(3.62) 1.91(3.63) 1.87(3.53)

600 1.80(3.79) 1.82(3.89) 1.81(3.80) 1.81(3.85) 1.83(3.82) 1.81(3.79)

900 1.27(2.66) 1.25(2.41) 1.34(2.88) 1.31(2.64) 1.38(2.94) 1.34(2.69)

(64, 8) 300 1.36(3.07) 1.34(2.90) 1.42(3.28) 1.43(3.24) 1.42(3.11) 1.41(3.01)

600 1.12(2.59) 1.14(2.67) 1.10(2.54) 1.12(2.65) 1.10(2.55) 1.12(2.67)

900 0.97(2.52) 0.99(2.46) 0.98(2.64) 0.98(2.51) 0.97(2.58) 0.96(2.42)

(128, 8) 300 1.06(2.90) 1.06(2.87) 1.06(2.90) 1.06(2.90) 1.10(3.02) 1.10(3.03)

600 1.00(2.75) 1.00(2.70) 0.98(2.69) 0.98(2.68) 1.01(2.84) 1.01(2.76)

900 0.67(1.86) 0.66(1.83) 0.69(1.98) 0.69(2.00) 0.66(1.76) 0.66(1.82)

(256, 8) 300 0.78(2.13) 0.78(2.11) 0.80(2.28) 0.81(2.30) 0.81(2.26) 0.82(2.29)

600 0.64(1.89) 0.65(1.90) 0.66(1.99) 0.65(1.95) 0.71(2.17) 0.69(2.09)

900 0.49(1.41) 0.50(1.49) 0.49(1.36) 0.49(1.37) 0.47(1.34) 0.48(1.36)

(8, 32) 300 1.90(3.51) 1.87(3.52) 1.87(3.39) 1.83(3.36) 1.97(3.56) 1.91(3.48)

600 1.77(3.51) 1.76(3.53) 1.82(3.76) 1.81(3.70) 1.76(3.54) 1.76(3.50)

900 1.43(3.42) 1.40(3.25) 1.46(3.45) 1.47(3.47) 1.48(3.54) 1.49(3.54)

(8, 64) 300 1.37(3.00) 1.39(2.95) 1.35(3.01) 1.33(2.91) 1.40(3.06) 1.39(2.97)

600 1.19(2.78) 1.19(2.74) 1.20(2.79) 1.20(2.78) 1.20(2.87) 1.22(2.91)

900 1.00(2.64) 1.01(2.62) 1.02(2.75) 1.02(2.69) 0.99(2.66) 1.00(2.65)

(8, 128) 300 1.09(2.93) 1.07(2.89) 1.05(2.73) 1.03(2.67) 1.08(2.76) 1.05(2.69)

600 0.83(2.23) 0.83(2.32) 0.82(2.09) 0.84(2.21) 0.85(2.20) 0.87(2.27)

900 0.69(2.06) 0.68(1.98) 0.69(2.12) 0.69(2.04) 0.73(2.33) 0.73(2.28)

(8, 256) 300 0.74(2.01) 0.77(2.06) 0.74(1.97) 0.76(2.05) 0.74(1.95) 0.76(2.00)

600 0.74(2.28) 0.74(2.48) 0.71(2.22) 0.72(2.38) 0.73(2.32) 0.74(2.44)

900 0.49(1.72) 0.49(1.68) 0.51(1.76) 0.50(1.73) 0.51(1.77) 0.51(1.75)
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Table 6: The averages and standard deviations (in parentheses) of the estimation

errors for Â and B̂ when d = 6 based on 2000 repetitions. All numbers in the
table are the true numbers multiplied by 100 for ease of presentation.

K = 3 K = 5 K = 7

(p, q) n L(A, Â) L(B, B̂) L(A, Â) L(B, B̂) L(A, Â) L(B, B̂)

(12, 12) 300 5.00(3.29) 5.02(3.26) 5.03(3.30) 5.00(3.21) 5.00(3.35) 4.99(3.30)

600 4.64(3.14) 4.65(3.15) 4.61(3.06) 4.64(3.10) 4.60(3.11) 4.59(3.10)

900 4.00(2.79) 4.02(2.84) 3.91(2.77) 3.92(2.85) 3.99(2.85) 3.97(2.88)

(16, 16) 300 3.32(2.38) 3.33(2.41) 3.34(2.48) 3.33(2.47) 3.37(2.57) 3.39(2.56)

600 2.96(2.36) 2.97(2.36) 2.96(2.39) 2.96(2.38) 2.97(2.29) 2.96(2.28)

900 2.56(2.12) 2.56(2.13) 2.60(2.27) 2.58(2.21) 2.63(2.20) 2.60(2.19)

(32, 32) 300 1.55(1.60) 1.55(1.67) 1.56(1.59) 1.54(1.59) 1.59(1.58) 1.57(1.60)

600 1.37(1.50) 1.36(1.47) 1.37(1.51) 1.36(1.49) 1.39(1.52) 1.39(1.52)

900 1.10(1.22) 1.09(1.21) 1.16(1.30) 1.17(1.31) 1.17(1.34) 1.15(1.31)

(64, 64) 300 0.76(0.99) 0.76(0.98) 0.76(0.98) 0.76(0.95) 0.76(0.97) 0.76(0.97)

600 0.67(0.89) 0.66(0.89) 0.66(0.90) 0.66(0.88) 0.67(0.87) 0.67(0.89)

900 0.55(0.82) 0.56(0.85) 0.57(0.86) 0.57(0.86) 0.57(0.84) 0.58(0.85)

(32, 12) 300 2.81(2.27) 2.82(2.23) 2.79(2.21) 2.80(2.22) 2.93(2.33) 2.94(2.33)

600 2.54(2.09) 2.54(2.10) 2.52(2.18) 2.51(2.16) 2.52(2.13) 2.53(2.16)

900 2.19(2.01) 2.15(1.93) 2.18(1.99) 2.15(1.96) 2.21(2.04) 2.20(2.03)

(64, 12) 300 2.02(1.94) 2.03(1.92) 1.98(1.76) 1.96(1.75) 1.99(1.79) 1.98(1.77)

600 1.87(1.85) 1.89(1.89) 1.84(1.82) 1.85(1.81) 1.82(1.75) 1.83(1.74)

900 1.56(1.54) 1.54(1.52) 1.49(1.48) 1.49(1.50) 1.53(1.59) 1.53(1.59)

(128, 12) 300 1.51(1.57) 1.51(1.57) 1.48(1.47) 1.49(1.50) 1.48(1.50) 1.48(1.55)

600 1.34(1.44) 1.34(1.42) 1.35(1.52) 1.33(1.44) 1.36(1.47) 1.37(1.48)

900 1.14(1.35) 1.15(1.36) 1.08(1.23) 1.08(1.25) 1.11(1.33) 1.12(1.31)

(256, 12) 300 1.10(1.23) 1.11(1.26) 1.09(1.27) 1.10(1.29) 1.09(1.29) 1.09(1.29)

600 0.97(1.17) 0.99(1.19) 0.96(1.11) 0.95(1.13) 0.96(1.14) 0.97(1.18)

900 0.84(1.09) 0.85(1.10) 0.86(1.14) 0.86(1.14) 0.84(1.13) 0.84(1.12)

(12, 32) 300 2.72(2.24) 2.72(2.22) 2.74(2.20) 2.74(2.19) 2.79(2.21) 2.81(2.22)

600 2.51(2.08) 2.52(2.09) 2.55(2.12) 2.54(2.12) 2.52(2.10) 2.52(2.07)

900 2.23(1.99) 2.22(1.97) 2.27(2.03) 2.27(2.03) 2.20(1.93) 2.21(1.96)

(12, 64) 300 1.99(1.69) 2.01(1.76) 2.03(1.76) 2.03(1.80) 2.02(1.81) 2.01(1.79)

600 1.83(1.75) 1.82(1.75) 1.85(1.70) 1.83(1.69) 1.86(1.77) 1.86(1.76)

900 1.52(1.53) 1.52(1.52) 1.55(1.58) 1.54(1.56) 1.56(1.62) 1.56(1.59)

(12, 128) 300 1.49(1.52) 1.50(1.62) 1.49(1.50) 1.50(1.60) 1.53(1.57) 1.52(1.63)

600 1.37(1.49) 1.36(1.46) 1.33(1.47) 1.32(1.44) 1.34(1.45) 1.33(1.43)

900 1.13(1.33) 1.14(1.35) 1.07(1.21) 1.09(1.23) 1.06(1.24) 1.09(1.29)

(12, 256) 300 1.15(1.31) 1.16(1.32) 1.17(1.35) 1.16(1.33) 1.13(1.34) 1.13(1.33)

600 1.03(1.22) 1.02(1.25) 1.00(1.18) 0.99(1.15) 1.02(1.23) 1.03(1.23)

900 0.81(1.04) 0.80(1.05) 0.81(1.06) 0.81(1.07) 0.81(1.07) 0.82(1.08)
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