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Abstract
The propensity nature of evolutionary fitness has long been appreciated and is 
nowadays amply discussed (Abrams, 2009, 2012; Ariew & Ernst, 2009; Ariew & 
Lewontin, 2004; Beatty & Finsen, 1989; Brandon, 1978; Drouet & Merlin, 2015; 
Mills & Beatty, 1979; Millstein, 2003, 2016; Pence & Ramsey, 2013; Sober, 1984, 
2001, 2013, 2019; Walsh, 2010; Walsh et al., 2016; etc). The discussion has, how-
ever, on occasion followed long standing conflations in the philosophy of prob-
ability literature between propensities, probabilities, and frequencies. In this paper, 
I apply a more recent conception of propensities in modelling practice (the ‘com-
plex nexus of chance’, CNC) to some of the key issues, regarding the mathematical 
representation of fitness and how it may be regarded as explanatory. The ensuing 
complex nexus of fitness (CNF) emphasises the distinction between biological pro-
pensities and the probability distributions over offspring numbers that they give rise 
to; and how critical it is to distinguish the possession conditions of the underlying 
dispositional (physical and biological) properties from those of their probabilistic 
manifestations.
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1  Introducing the Complex Nexus of Fitness

In evolutionary biology, fitness has long been appreciated by many to be a proba-
bilistic disposition, or propensity, to reproduce successfully (Popper, 1983, pp. 
358ff.; but see particularly Brandon, 1978; and Mills & Beatty, 1979). This propen-
sity interpretation of fitness (PIF) is part of a larger tradition in evolutionary think-
ing that takes fitness or adaptiveness to be a causally explanatory concept (Sober, 
1984, 2011) – and one moreover that can be proudly traced back to the pioneering 
introduction of the concept of probabilistic or indeterministic causation more gen-
erally (Fisher, 1934). Yet, there has been little consensus as to the specific kind of 
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propensity fitness is. On the contrary, there is much disagreement in the field as to 
how to formally represent fitness, how exactly it is an explanatory concept, and what 
exactly it explains. Critics have been quick to latch onto such disagreements to argue 
that fitness is not causally explanatory after all (Walsh et al., 2016), that it does not 
reflect causal relations (Walsh, 2010), and that there are no propensities underlying 
adaptation phenomena in evolutionary biology (Ariew & Ernst, 2009).

The current impasse suggests that there are some fundamental issues at stake 
regarding the nature of propensity and its explanatory power that stand yet to be 
clarified. In a recent state of the art paper, Millstein (2016) argues that there is 
conceptual work to do; and that debates in the philosophy of probability may feed 
profitably into the discussion of the nature of fitness. This paper takes up Mill-
stein’s suggestion and offers a more complex and nuanced framework than is typi-
cally assumed for modelling chancy phenomena in general, the ‘complex nexus of 
chance’ (CNC). 1 Contrary to what has been conventional in the philosophy of prob-
ability, this approach clearly distinguishes propensities from both probabilities and 
the finite frequency data that are used to test them. The distinction allows us to cast 
significant issues that are already discussed in the field in a fresh light – such as the 
debate about whether fitness is long-term or short-term, and the question regarding 
what the appropriate mathematical representation of propensities is. My claim is not 
that applying CNC to fitness solves all outstanding problems in the field, but the 
more modest claim that it bears significantly on a few important problems currently 
discussed in relation with the propensity interpretation of fitness (PIF). I argue 
merely that CNC casts both extant problems and avowed solutions within a different 
and hopefully more promising framework.

I shall focus upon the propensity interpretation of fitness; the name itself fol-
lows the standard convention in the philosophy of probability, in line with Popper’s 
(1959) renowned propensity interpretation of probability. Here the word “interpre-
tation” is to be taken seriously – propensities are meant to provide the ‘semantics’ 
for (objective) probabilities; in other words, they are meant to provide a model for 
what sort of entities probabilities are – one that moreover makes probability state-
ment true. In other words, this identity thesis supposes that propensities provide the 
truth makers for probability statements. It is, however, riddled with difficulties, as 
is by now well known (Eagle, 2004; Humphreys, 1985; Suárez, 2013). More spe-
cifically, the reduction of probability to propensity that it involves can be proven to 
generate several paradoxes and contradictions, most prominently what is known as 
Humphrey’s paradox (Humphreys, 1985). This explains why Popper’s original ver-
sion of the propensity interpretation has few champions in the philosophy of prob-
ability nowadays – even amongst those few of us who continue to defend a role for 
propensities in science generally.

The CNC is one amongst other recent developments in the philosophy of prob-
ability that rejects Popper’s reduction of probability to propensity. But, unlike other 
rejections of Popper’s views, the CNC does not reject the concept of propensity 

1 The CNC is developed fully in Suárez (2020), although the ‘tripartite conception’ of objective prob-
ability that lies at its core goes back to Suárez (2011, 2013, 2017).
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altogether: It does not throw the baby out with the bathwater. Instead, CNC embraces 
a plural metaphysics, where propensities exist independently and give rise in appro-
priate environments to single case chances or objective probabilities. It is these sin-
gle case chances – represented as probability distributions within statistical mod-
els – which in turn account for frequencies in the data. This ‘tripartite distinction’ 
between propensities, probabilities and frequencies is unusual in the philosophy of 
probability literature, since it explicitly abandons the propensity identity at the heart 
of Popper’s view. It favours a distinct and more substantial role for propensities to 
play in the explanation (rather than merely the interpretation) of probabilities. While 
most defenders of propensities believe them to explain observed frequencies, the 
claim that they also explain single case chances is much rarer in the philosophy of 
probability literature – and has to my knowledge never been applied to evolutionary 
fitness.

In this paper, I argue that the application of this framework to evolutionary biol-
ogy yields what may be called the complex nexus of fitness (CNF), which by neces-
sity starts from the assumption that ‘fitness’ is an ambiguous term referring to i) 
statistical data regarding organisms’ actual offspring numbers and their frequen-
cies; ii) probability distributions within population models representing expected or 
hypothetical reproductive successes; and iii) the physical and biological superveni-
ence bases of such model-based probabilities, which are taken to include the dispo-
sitional properties of the relevant organisms. It is critical that CNF does not collapse 
ii) into iii) as does Popper’s identity thesis, and as is often assumed for propensity 
probabilities (Suárez, 2017, 2018). The claim at the heart of the CNF is thus that, 
in considering evolutionary fitness, we must at all points keep neatly distinct the 
propensities from the single case chances that they give rise to, and then both in turn 
from the frequencies that may be observed. I then argue that the careful application 
of this ‘tripartite conception’ allows CNF to overcome some of the objections raised 
against the PIF, by making it explicit that propensities cannot be merely in the busi-
ness of interpreting probabilities, as suggested by the identity thesis, but that they 
must be invoked as separate explanatory entities with respect to single-case chances.

2  Fitness as a Propensity to Adapt: The Issues

My aim is thus to inject some conceptual clarity into the discussion, by offering new 
light on some of the extant answers to the outstanding objections to PIF. The first 
objection I shall focus on concerns the exact formal or mathematical representation 
of fitness as propensity. The relevant discussion here broaches two technical aspects 
of statistical modelling, informing what are sometimes known as the moments prob-
lem and the delayed selection problem (Beatty & Finsen, 1989; Pence & Ramsey, 
2013; Sober, 1984). On the one hand there is the demonstrable empirical fact that 
fitness is often sensitive to higher moments of the statistical distribution for repro-
ductive success. Hence identifying fitness with just the statistical mean average (the 
expected value, or expectation) of a probability distribution will often miss out criti-
cal differences down the lineage. The differences can be so critical as to entirely 
reverse judgements of relative fitness between individual organisms (or traits, or 
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genes – more about this later). But the idea that fitness, understood as a propensity, 
must necessarily be identified with some or other moment of a probability distribu-
tion presupposes that all propensities are statistical functions, or formal moments 
of these distributions. This would be in accordance with the conventional wisdom 
deriving from Popper, but it is nowadays questionable in the philosophy of prob-
ability, and it is indeed rejected by the CNC. In section four of the paper, I conse-
quently suggest that CNF accounts for the statistical modelling of fitness without 
such assumptions, and thus delivers us from the problem of moments. 2

The second narrow technical issue concerns whether fitness is short or long term, 
i.e., whether it involves reproductive success in the most proximate generations, or 
perhaps even just the next generation; or whether, by contrast, fitness refers mean-
ingfully only to reproductive success down the generations – or perhaps even hypo-
thetical success in some infinite reproductive limit. On a propensity interpretation, 
the issue may at first sight seem merely a version of the debate regarding ‘single 
case’ versus ‘long run’ propensity interpretations of probability (Gillies, 2000). If 
so, the delayed selection problem would boil down merely to a difference regarding 
the appropriate type of propensity involved, where those advocating long term fit-
ness would be implicitly if not explicitly adopting a ‘long run’ propensity account. 
However, I argue in section five of this paper that these distinctions are in fact tan-
gential. Long term fitnesses are perfectly compatible with ‘single case’ propensi-
ties, as advocated by the CNC. This has consequences for the precise mathemati-
cal definitions that are appropriate when modelling fitness in different contexts, and 
whether they issue in contradictions.

Then there is the second and more general issue, namely the explanatory role 
of fitness. Advocates of the PIF typically defend the view that fitness is a causally 
explanatory property of biological entities – and for this reason they are sometimes 
known as ‘causalists’ (Abrams, 2012). Critics of the PIF by contrast, tend to view 
fitness as not particularly an explanatory concept – certainly not a causally explana-
tory one –, but rather a descriptive or generalising concept. 3 In the last substantial 

2 As a referee points out, Sober (2001, 2011) already addresses the problem and provides a similar solu-
tion for it; and there are similar views voiced in Beatty and Finsen (1989), Brandon (1990) and Millstein 
(2003, 2016). However, the complex nexus of chance (CNC) allows us to systematize the solution prop-
erly within a general philosophical account of probability.
3 See  Matthen and Ariew (2009), and Walsh, Ariew and Matthen (2016), but also Sober (1984, Ch. 
3) which arguably anticipates the statisticalist view in his critique of the causal role of fitness. In more 
recent work Sober (2011) develops his view and argues that some of the causal explanations provided 
by evolutionary fitness are a priori. Sober appeals to precisely the sort of powers that I invoke as part of 
propensity explanations of single case chances, i.e. dispositional properties (akin to Molière’s ‘dormi-
tive virtue’). However, as Sober points out, these dispositions are probabilistic: Given the appropriate 
testing circumstances these powers give rise not to particular events (as in Molière style deterministic 
dispositions), but to the probabilities of particular events (Mellor, 2005; Suárez, 2014). Sober’s further 
distinction between sources and consequences of fitness differences is also grist to my mill: On a CNC 
account, ‘fitness differences’ amount to differences in single case chances for survival and for reproduc-
tive success. The sources of such differences are propensities, which – as in Sober’s view –, may be said 
to ground and causally explain such chances a priori; while the consequences of fitness differences are 
the observed or predicted differences in traits -- which are of course the ultimate empirical facts, and 
explananda, in evolutionary biology. Thus Sober (1984, 2011) anticipates the tripartite conception, and 
the CNF may be understood to be systematizing and providing precision for some of his distinctions.
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section six of the paper, I argue that CNF shows both ‘causalists’ and ‘statistical-
ists’ to be in part right. 4 Propensities are indeed explanatory entities but, in accord-
ance with CNC they explain not only the frequencies in data: They also explain the 
single case chances that they give rise to within given chance set-ups. However, 
these explanations are of a very different type: While propensities may be said to 
causally explain frequencies, they cannot, on pain of contradiction (Humphreys, 
1985; Suárez, 2013), be said to cause single case chances. 5 Instead, propensities 
may be said to ground such chances (Suárez, 2018). Thus ‘fitness’ is indeed often 
a name for explanatory propensities, but these are typically a set of properties that 
are explanatory in diverse ways. In addition, ‘fitness’ is also a name used for the 
formal probability distributions within statistical models that are adequate for the 
purpose of representing the single case chances manifested by those propensities. 
Here statisticalists are surely right: Such formal probabilities are bereft of any causal 
powers. Finally, ‘fitness’ is also sometimes somewhat confusingly used by practic-
ing biologists to refer to the finite frequencies in the data for reproductive success 
that propensities aim to explain. Thus, the disambiguation of these three distinct but 
mutually related uses of fitness is essential for a better understanding of its explana-
tory power.

My proposal of a complex nexus of fitness is a straightforward application of a 
particular approach to objective chance within the philosophy of probability, the 
complex nexus of chance (CNC). Therefore, it helps to first provide some back-
ground and motivation on the CNC, as it emerges in discussions over the last dec-
ade within the philosophy of probability and statistical modelling. The next section 
introduces some of the relevant considerations in the foundations of probability that 
motivate CNC in the first place. It turns out that many of the objections to the pro-
pensity account of evolutionary fitness are similar to those raised against the propen-
sity and frequency interpretations of probability over the decades. These objections 
have led many to abandoning both propensity and frequency interpretations of prob-
ability (for a compendium of the reasons, see Hájek, 1997, 2009; Eagle, 2004; and 
many of the essays contained in Hájek & Hitchcock, 2016).

CNC answers the objections by following original leads from Paul Humphreys 
himself (1985): It abandons the interpretation of objective Kolmogorov probabilities 
as propensities (thus rejecting the flawed identity thesis); yet it refuses to discard the 
notion of propensity altogether. Instead, CNC recommends using propensities dif-
ferently, as the explanatory grounds for objective single case chances, and this retort 
gets around the objections to propensities in general (Suárez, 2013, 2017, 2018, 
2020). It is thus unsurprising that the same retort also serves to respond to some of 

4 This follows Millstein’s (2006) strategy to combine some claims from each of the ‘causalist’ and ‘sta-
tisticalist’ camps, although the CNF combines them differently – not at the level of the natural selection 
of populations versus the level of individual organisms, but by insisting that propensities at either level 
non-causally ground single case chances.
5 Contrary to what e.g., Brandon and Beatty (1984) are led to assert in their response to Rosenberg 
(1982). More generally, any monistic account that follows Popper’s identity thesis will inevitably be led 
to assert that propensities explain causally whatever frequencies they explain; and there is nothing over 
and above for them to explain in any other way.
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the objections to earlier propensity interpretations of fitness. Indeed, my purpose in 
this essay is to construct an alternative CNF view of fitness that not only dispenses 
with the objections to the propensity interpretation (PIF), but systematically ration-
alises the responses that have been offered to such objections, by showing them to 
be proper application of a more nuanced and complex framework for understanding 
objective probability in science in general.

3  The Complex Nexus of Chance in the Philosophy of Probability

It is nowadays widely accepted 6 that probability is formally defined through the four 
classical Kolmogorov axioms, which can be non-technically summarised (in the dis-
crete and finite case) as follows:

Axiom 1: Probability is a mathematical function or mapping from the domain of 
a logically closed set of propositions {A} onto the range of the unit interval of the 
real numbers: f ∶ {A} → [0, 1]⊆ℜ.
Axiom 2: The probability of a tautology (a logical truth) is always 1: P(Taut) = 1
Axiom 3:The probability of a logical disjunction of mutually exclusive elements 
(say a and b, where each one rules the other out) is the sum of the probability of 
each disjunct: P(a ∨ b) = P(a) + P(b). (This axiom has a notorious generalisation 
to the infinite or infinitesimal case, in the so called axiom of countable additivity).
Axiom 4: The conditional probability of some proposition A given another prop-
osition B is given by Bayes’ theorem:

The philosophical debates have traditionally concerned the interpretation of 
this probability function. According to one school, all probability is subjective 
degree of belief, hence a measure of agents’ ignorance regarding events (or the ini-
tial conditions that would give rise to such events in a deterministic or Laplacean 
universe). We shall instead assume here that probability at least partly – at least 
in some domains –, refers to the objective chances of events, which they possess 
independently of any agents’ knowledge of them. (The assumption that there are 
such chances is innocuous for our purposes, since routine in most natural sciences, 
including evolutionary biology). But what is objective chance, and how can it be an 
interpretation of probability?

The two main philosophical approaches are the frequency and the propensity 
interpretations. Both have played some role in debates regarding the nature of evolu-
tionary fitness. On a frequency interpretation, probability is identified with a ratio of 

P(A|B) = P(A ∧ B)

P(B)
=

P(B|A)P(A)
P(B)

6 Widely but not universally accepted, as is made clear by the raging debates regarding probabilities 
based upon fuzzy, quantum, and intuitionist logic. There is also considerable debate regarding the fourth 
axiom for conditional probability which is ill-defined when the conditioned upon proposition has zero 
probability (i.e. when P(B)=0) – see Hájek (2003) for discussion.
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outcomes of a type within the full sequence of all outcomes. We may refer to this as 
the frequency identity of probability (Reichenbach, 1934/1949). Thus, the probabil-
ity that a coin may land heads, on this interpretation, is simply the ratio or frequency 
of head outcomes in the full set of (either heads or tails) outcomes. If the coin is fair, 
then that ratio is just ½. However, there are some very serious problems with this 
attempt to interpret probability, which are by now well known to philosophers, and 
which many of us think make any frequency interpretation untenable. 7

One problem that I like to emphasise (Suárez, 2020, pp. 36-49) is the explanatory 
circularity problem: frequencies cannot explain other frequencies, so the frequency 
identity renders probabilities explanatorily ineffective vis a vis frequency data. This 
seems contrary to the statistical modelling practice to invoke probabilities precisely 
to explain frequencies in the data. The problem is, as we shall see, acute for the 
kinds of probabilities involved in evolutionary fitness. Another classic objection is 
the reference class problem: the fact that the relevant class of outcome events within 
which one should seek a ratio or frequency of the salient type is always underde-
termined. Consider the coin toss example again: Is the outcome space the set of all 
outcomes of all tosses of all coins, of just some subset of coins, of just the one coin? 
Should we include the outcomes where the coin bounces off, or rebounds, or falls on 
the edge, or is simply not tossed? Should we include all possible outcomes of a simi-
lar kind, since any set of actual outcomes is finite and may always diverge from the 
underlying probability (a phenomenon known as frequency tolerance)?

An alternative that gets around such problems is the propensity interpretation of 
probability, advocated by philosophers such as Karl Popper (1959). On this view, prob-
ability is not to be identified with any frequency but with the underlying propensities or 
dispositional properties (what we have called above the propensity identity). In the case 
of a coin toss, this identifies the chances with either the full set of physical properties 
of the coin, or the toss, or some subset of both. It is often claimed that the propensity 
interpretation is explanatory in a way that the frequency interpretation cannot be since it 
is firmly linked to the conditions or underlying properties that give rise to the frequen-
cies in the first place. Change the conditions, or the properties of the coin (or the coin 
toss, or its setup), and you will also change the frequencies. Yet, whilst the propensity 
identity overcomes some of the objections to the frequency identity, it has problems of 
its own too, related to what is known in the literature as Humphreys’ paradox.

Paul Humphreys (1985) produced an influential argument that the explanatory 
asymmetries that characterize propensities cannot be represented in terms of clas-
sical Kolmogorov conditional probabilities – and that this renders impossible any 
propensity identity. More generally the propensity identity fails both ways (Suárez, 
2013, 2014), as follows. Probabilities are inversible via the fourth axiom of con-
ditional probability: if P (A | B) is well defined then so is P (B | A). Yet, if the 
former has a propensity interpretation, whereby B describes the conditions, or dis-
positional properties of the chance setup, and P (A| B) represents the probability that 
the chance setup yields outcome A, then P (B | A) does not have a propensity inter-
pretation, and in fact has no meaning at all from a propensity point of view, as the 

7 See Hájek (2009) or Suárez (2020) for a description of this and other problems.
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coin toss example illustrates: whatever properties of the coin explain its probability 
of heads, they are not themselves explained, or determined by, the heads outcome. 
On the other hand, Humphreys’ ingenious thought experiment (involving subatomic 
particles being transmitted through a half-silver mirror) shows that some, perhaps 
most, propensities fail to have a coherent representation in terms of conditional 
probabilities. There are some responses to Humphreys’ argument, but the most con-
vincing ones (including Humphreys’ own) abandon any attempt to reduce at least 
some of the relevant physical probabilities to propensities or vice-versa.

The complex nexus of chance (CNC) is on board with these recent rejections of 
the frequency and propensity identities. Instead of trying to reduce the notion of 
probability to either frequency or propensity, CNC fully embraces metaphysical plu-
ralism regarding objective chance, accepting the need for propensities, single case 
chances, and frequencies (Mellor, 2005; Suárez, 2011, 2014, 2017). They are all 
required to make full sense of the diverse uses of chance in the practice of model 
building: Propensities give rise to the probability distributions in models stand-
ing for single case chances that are then empirically confirmed by the frequency 
data obtained in observational and experimental trials. 8 The point of a philosophy 
of science in practice is not to interpret away these categories, but to understand 
them, and, if necessary, to suggest changes in their intricate and productive syner-
gies within the practice of model building (Suárez, 2020). In this spirit I now turn 
to attempts to represent fitness probabilities as either frequencies or propensities, to 
some of the problems they give rise to, and to my argument that an account of fit-
ness as a more complex nexus (CNF) involving all three of them is required.

4  Momentous Paradoxes and the Nature of Statistical Distributions

One initial difficulty in finding an appropriate mathematical representation of fitness 
is the inconvenient fact that there are different statistics that fitness may quite gener-
ally be identified with. The first attempts at a propensity interpretation of fitness (PIF) 
identified fitness with the expected value or expectation of the statistical distribution 
for offspring (Brandon, 1978; Mills & Beatty, 1979). Suppose the possible offspring of 
an organism  O1 are given by  Qi with i= 0, 1, …,n. The statistical distribution over  O1’s 
possible offspring {Q0,  Q1, …,  Qn} in some environment E is then given by some prob-
ability function indexed to organism and environment and defined over the possible off-
spring numbers: ProbO1&E

(
Qi

)
 . The expected value or expectation of this probability 

8 It is important here to understand that while frequency ratios within observed – hence finite – 
sequences of outcomes can provide evidence for or against propensity and single case chance ascriptions, 
this is not their only function. Those frequency ratios do of course objectively independently exist, and 
they provide factual knowledge of the phenomena regardless. In including those frequencies within the 
tripartite division that makes up the complex nexus of chance, I am thus not including the means of 
testing propensity ascriptions within the concept. It is true that such testing will typically involve com-
parison of the probability distributions that represent the theoretical single case chances with observed 
frequencies (also sometimes known as ‘experimental probabilities’), but the comparison is not part of the 
concepts involved. (This consequently has the implication that, in the CNF, ‘fitness’ does not include the 
means of ‘testing’ it; even if the term aptly refers also to those experimental probabilities that biologists 
label ‘measured’, ‘observed’ or ‘experimental’ fitness. I thank a referee for pressing me on this point).
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function is its average, or population mean μ, the so-called first central moment of the 
distribution (Krzanoswki, 1998, pp. 14ff.; Grimmett & Stirzaker, 1982, p. 51):

Suppose the organism  O1 in question has in the given environment 
either no offspring or two offspring with probability ½ in each case. The 
expected value of  O1’s offspring in environment E is then exactly one since: ∑

i ProbO1&E

�
Qi

�
∙ Qi =

1

2
∙ 0 +

1

2
∙ 2 =

2

2
= 1 . The original definition of the propen-

sity interpretation of fitness (PIF) then states that the fitness of organism  O1 in envi-
ronment E is its expected offspring value, namely, in this case, one.

Yet, this definition has come under heavy criticism ever since originally expressed 
(Abrams, 2009; Mills & Beatty, 1979; Sober, 2001 and 2013; etc). Many of the objec-
tions rely upon what may be called the underdetermination of statistical distributions, 
the well-known fact in statistics that an indefinite number of different probability dis-
tributions may have the same expected value, i.e., yield the same expectation over a 
range of outcomes. 9 As an illustration, consider another organism  O2 in the same 
environment E with a distinct statistical distribution over its offspring, defined by a 
different probability function: ProbO2&E

(
Qi

)
 . This organism can only have exactly 

one offspring with certainty, i.e., with probability one. Nevertheless, the expected 
value of  O2’s offspring is the same as  O1’s, since 

∑
i ProbO2&E

�
Qi

�
∙ Qi = 1 ∙ 1 = 1.

It stands to reason, however, that these two organisms,  O1 and  O2, are constitutionally 
distinct, and they differ in their capacities or propensities to reproduce in the given environ-
ment. Hence, there should be significant differences in fitness relative to one another, con-
trary to the definition provided by the original (PIF). This is borne out when considering 
the higher moments of the respective statistical distributions. The second moment about 
the mean of a distribution is the statistic known as the dispersion parameter σ2 of the distri-
bution: �2

O1&E
= Exp

��
Qi − �O1&E

�2�
=
∑

i ProbO1&E

�
Qi

�
∙
�
Qi − �O1&E

�2 . This is 
a representation of what is known as the variance about the mean in a population (roughly: 
how large on average the spread of values is about the mean). The variance is always posi-
tive – since it is a squared quantity – and it is sometimes replaced by another quantity, the 
standard deviation σ, which is simply its square root. The larger a variance about a mean, 
the larger the spread of values exhibited by the random variable. A zero standard deviation 
or variance signals a distribution in which all values coincide with the mean.

The most common empirical models for fitness show that variance in offspring 
statistical distributions with identical expectations can have considerable differential 
effects on reproductive success (Beatty & Finsen, 1989, pp. 24ff.; Sober, 2001, pp. 
30-34; see also Millstein, 2009, p.609ff. for an excellent review; many of the exam-
ples discussed originate in Gillespie, 1974, 1977). In these examples two organisms 
 O1 and  O2 have distinct offspring distribution functions with the same expectation: 

�O
1
&E = ExpO

1
&E{Q} =

∑
i
ProbO

1
&E

(
Qi

)
∙ Qi.

9 Although the objections ride upon such mathematical facts, they are not essentially mathematical but 
biological, and aim to show that the predictive and explanatory power of fitness differences would be left 
unaccounted for (Sober, 2013). They thus take the form: ‘Given such mathematical facts, if fitness were 
associated with expected value, differences in fitness would not be explanatory or predictive since they 
would miss out other relevant statistics of the distribution’.
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�O1&E = �O2&E , because 
∑

i ProbO1&E

�
Qi

�
∙ Qi =

∑
i ProbO2&E

�
Qi

�
∙ Qi . Yet, the 

variance in  O1’s offspring distribution is larger than that in  O2’s , pointing to the fact 
that the first distribution is more widely spread about the mean: 𝜎2

O1&E
> 𝜎2

O2&E
 , 

because 
∑

i ProbO1&E

�
Qi

�
∙
�
Qi − 𝜇O1&E

�2
>
∑

i ProbO2&E

�
Qi

�
∙
�
Qi − 𝜇O2&E

�2 . 
The generic difference in variance between two distributions with the same mean is 
illustrated by the two curves (with equal expected mean value μ = 6,5 in both cases, 
yet differing considerably in variance) in Fig. 1 below.

The mode of both distributions (the ‘peak’) is at the mean value of 6,5, but in the 
interval of integer numbers one of the curves only ranges from having three offspring 
to having nine, while the other ranges all the way from having one to twelve and has 
a standard deviation twice as large. It is by now well known that there is often greater 
reproductive advantage for those organisms (or traits, or genotypes) that have the 
narrower spread, i.e., the smaller variance or standard deviation. Intuitively, a more 
regular reproductive pattern, or a spatially or temporally denser reproductive strategy 
is superior because the advantage brought about by high offspring in any given loca-
tion (or period, say on a given year) does not balance out the disadvantage incurred 
in the lower reproductive success in other locations (or over longer periods). Thus a 
“lowering in the variance in the offspring number […] can only raise the probabil-
ity of leaving offspring behind” (Gillespie, 1974, p. 605). Elliott Sober (2001, pp. 
33-34) explains these cases as failures of the commutativity of expectations, on the 
one hand, and quotients or ratios on the other. Quite generally, the expectation of a 
ratio of two quantities is not the same as the ratio of the expectations of such quan-
tities. Since frequencies are ratios, or proportions of attributes in populations, the 
expectation of a certain frequency in the population is not identical to the ratio of the 
expectations (of attribute, and overall population). This is helpful as an illustration of 
the general phenomenon, particularly for trait fitness. It shows that the phenomenon 
of variance-dependence of fitness is general, and it does not demand any interpreta-
tion of the probabilities at stake. Rather, as I shall argue, the phenomenon calls for 
an explicit distinction between propensities and their probabilistic manifestations in 
single case chances, regardless of how we interpret those chances. 10

In fact, the phenomena are more complex still since the effects of variance (in distri-
butions with identical expectations) on reproductive success are often confounded by 
even higher moments of the statistical distribution. The third moment about the mean 
of a distribution is its skewness, referred to as γ, which serves to pick out asymmetries 
in the tails of the distribution either side of the mean. Formally, the third moment of the 
statistical offspring distribution for organism  O1 is expressed as (Krzanowski, 1998, p. 
16-17) : �O1&E = Exp

��
Qi − �O1&E

�3�
=
∑

i ProbO1&E
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∙
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�3 . A dis-
tribution with γ = 0 is symmetrical about the mean; one with γ > 0 will exhibit a long 
tail of high values and a bunched-up tail of low values; another one with γ < 0, will be 
bunched in the high values with a longer tail in the low values (see fig. 2). Yet both var-
iance and expectation (mean) can remain the same in all three.

10 I have in the past defended a Sober (2010) style no-theory theory of single case chances, but my 
claims are more generally compatible with any sufficiently deflationary account of objective probability 
(Suárez, 2020, chapter 10).
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It turns out that those distributions with larger skewness tend to correspond to 
organisms with greater reproductive success (Beatty & Finsen, 1989; see also the 
informed discussion in Millstein, 2016, pp. 609ff). There are even cases where larger 
skewness trumps lower variance, which in turn may trump higher expectation. In 
other words, lower variance and higher skewness can indicate greater reproductive 
success, and hence greater fitness, regardless of the expectations. The intuitive way 
around such difficulties is to relinquish the identification of fitness with the expected 
value of the statistical distribution for offspring. Instead, one may suppose that fitness 
ought to be identified with the distribution as a whole – not any one statistic thereof. 
And this is moreover a natural move in thinking of the fitness of an organism (or a 
trait, or a genotype) along the lines of a propensity interpretation of probability. Most 
current versions of the propensity interpretation of fitness (PIF) decisively move in 
this direction, and away from identifying fitness with expectation (Beatty & Finsen, 
1989; Brandon, 1990; Pence & Ramsey, 2013; Sober, 2001, 2011, 2013). This move 
away from the identity with frequencies is, of course, entirely natural within the CNF 
– it is in fact a requirement for any application of the CNC to fitness.

The next section raises more general issues and difficulties with current propen-
sity interpretations of the entire statistical distribution for offspring. But it is worth 
noting already that it is compromised by even more complex phenomena regard-
ing the higher moments of the distribution. Not only do higher moments deter-
mine fitness for otherwise statistically identical distributions of reproductive off-
spring. More remarkable still is that the higher moments can occasionally trump 
the lower ones. Thus, a smaller variance can compensate for a smaller expectation, 
as the organism with the lowest expected value turns out to be more reproduc-
tively successful if its variance is considerably smaller; similarly higher skewness 
can occasionally trump larger variance in distributions with identical expectation 
(Beatty & Finsen, 1989, p. 24; Millstein, 2016, p. 609-10). In none of these cases 
is the expected value of a distribution a good measure of fitness. Rather the fact 
that larger skewness can trump lower variance, which in turn can trump higher 
expectation, suggests instead a certain ‘trumping’ hierarchy, with expected value 
at the lowest level, as it were: expected value ➔ variance ➔ skewness.

In other words, whether expected value is or not correlated with fitness will in 
fact depend on the context. Within some environments, as just noted, for some sys-
tems, expected value may even be negatively correlated with fitness. This entails that 
taking the entire distribution, without further qualification, as the propensity fitness 
of the organism is a mistake; the fitness of an organism, for instance, seems always 
relative to a context, since it reflects the effect of the environment on the delicate 
balance of the diverse statistical moments. 11 No pre-determined hierarchy of the 

11 The point is, if anything, more acute if we consider fitness to be a property of traits, not single individ-
ual organisms, as in Sober (2013, 2020) – an option discussed later in the paper. In that case, rather than 
thinking of propensities as the underlying physical and biological properties of an organism, one ought 
to think of fitness propensities as the underlying physical and biological properties of a trait, and as long 
as traits are not defined merely extensionally, the CNF follows: the propensities give rise to probabilities 
(single case chances) for particular traits to reproduce and survive within given environments; and such 
propensities are tested by the usual means by comparison with observed trait frequencies. On a CNF 
account there is no need to reject the view that trait fitness is a propensity.
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features or functions of the offspring distribution, taken by themselves, seems 
sufficient as a reliable indicator of fitness. Thus, something more complex and 
context dependent will be required in the relation between probability distribu-
tions and the underlying propensities. And that is just what CNF can offer. 12

On a complex nexus of fitness (CNF) view this sort of radical depend-
ence upon extrinsic environmental factors, as well as the intrinsic features of 
the mechanisms of reproduction, is only natural. 13 The key is, recall, in the 
distinction between the underlying propensities and the various probability 

Fig. 1  Distributions with different variance but equal mean (© The author)

12 I do not claim priority: Others, such as Brandon (1990), have offered similar solutions, and Millstein 
(2016) endorses Brandon’s approach to distinguish the mathematical representation of fitness from its 
ontology. But the CNF systematises such solutions, which follow naturally from a conception of pro-
pensities as clearly distinct from the single-case chances they give rise to. The former are properties of 
systems, -- relational or otherwise --, while the latter are mathematically representable as probabilities, 
by definition – and no further distinctions are called for.
13 There has been an attempt, by Peter Godfrey-Smith, to revive the ‘extrinsic’ / ‘intrinsic’ distinction 
in evolutionary biology, albeit without any substantive ontological implications (Godfrey Smith, 2009, 
p. 53). Intrinsic biological features or organisms (or traits, or genotypes) are those that “do not depend 
on the existence and arrangement of others”. While they are not more real than extrinsic features, God-
frey Smith claims that intrinsic features are indicative of more paradigmatically Darwinian evolutions by 
natural selection. He even introduces a measure S of supervenience upon intrinsic properties. A high S 
is indicative of a high degree of supervenience of reproductive success upon the intrinsic propensities of 
organisms (traits or genotypes); a low S indicates that reproductive success rather depends on extrinsic 
features, whether they be relational propensities of the environment, including entire ecosystems, or the 
conditions required for the manifestation of the underlying propensities. On the CNF view, biological 
propensities may be intrinsic or extrinsic, in this terminology, depending on the system and nature of 
the case, but there is no sense in which they are more or less ‘Darwinian’. By contrast, the single case 
chances that manifest those propensities are always necessarily ‘extrinsic’, since they are reliant on the 
environmental context and other ‘triggering’ factors.
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distributions that these may give rise to in different contexts. The probability 
distribution that emerges in each context is as responsive to the environmental 
conditions as to the system’s propensities. 14 Note in addition that the propensi-
ties themselves may be more or less intrinsic to a particular organism or popu-
lation – there are also environmental systems, for instance in ecology, which 
possess holistic propensities of their own – nothing in the account rules out 
such holobionts, or any other complex holistic systems. At any rate, the critical 
point is that the underlying propensities first determine the space of possible 
outcomes, and then define the probability distributions over such outcomes. 15 
On this picture, it is not surprising that the environment will often influence 
how the higher moments of a distribution relate to the lower ones in effect-
ing changes in the reproductive success of organisms. In a different environ-
mental context, there may be different extrinsic propensities, and those that are 
intrinsic may manifest themselves in different probability distributions. This is 
certainly so for long term reproductive success, but often also in very short 
generational terms.

Fig. 2  Distributions with different skewness and median but equal mean (© Diva Jain under a CC BY-SA 
4.0 license)

14 Note that this is not the usual claim about the variety of fitnesses (for which see e.g., Millstein, 2016, 
p. 612). It rather states that even with the same underlying propensities, an organism would exhibit dif-
ferent offspring distribution in different environments. The propensities do not vary with the probabilities 
here, because, as already pointed out, the CNF keeps propensities and probabilities (single case chances) 
distinct. So, the regimentation of the language is novel, and the concepts employed are filled in differ-
ently.
15 See Suárez (2018), which also suggests an indexical formulation of the probability distributions to 
keep out any variables representing the propensities out of the chance functions, thus avoiding Hum-
phreys’ like paradoxes. The propensities set up the probabilities and their outcome spaces, thus delimit-
ing the regime of the possible - not the other way around.
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5  Varieties of Propensity and Fitness: The Long Term and the Long 
Run

The literature on propensities distinguishes long run and single case varieties of 
the propensity interpretation of probability (Hacking, 1965). Long run views are 
inspired by empiricist accounts of evidence, concept formation, and belief (Gillies, 
2000), and stay as close as possible to frequency interpretations such as Von Mises’ 
(Von Mises, 1928). In a long run version, propensities generate stable frequencies 
in long, limiting, or infinite sequences of outcomes (depending on the type of long 
run propensity interpretation). The standard illustration employs the tossing of a 
fair coin: A long run theory ascribes propensities to the conditions that generate a 
50-50 frequency in a long, limiting, or infinite sequence of outcomes of the coin 
toss. While long-run propensities are ostensibly identified with the conditions that 
generate sequences and not with the sequences themselves, the sequences must be 
a version of what Von Mises called a ‘collective’: A random sequence with a well-
defined limit and no possible selection function picking out any subsequence within 
it with a different limit. It can thus be argued that long run propensities are indistin-
guishable in practice from frequencies (Suárez, 2014, p. 219).

A single case interpretation, by contrast, identifies propensities with conditions 
that uniquely generate the probabilities that obtain in every single experimental 
trial, regardless of whether they are actualised in any actual or imaginary sequence 
of outcomes. In the coin toss example, propensities are identified with the condi-
tions required to generate a probability distribution over the possible outcomes of 
any given single experimental trial on a chance setup. In any given coin toss, if 
the coin is fair, the probability of heads / tails is ½. The propensity in this case is 
the set of those properties of the chance setup (including the coin) that make it the 
case that the probability is indeed ½ for any given toss. Whether or not this is a 
random sequence (or a Von Mises’ collective) is immaterial to both propensity and 
probability.

In other words, in a coherent single case theory propensities and probabilities 
are distinct – the propensities give rise to the probabilities, and both concepts are 
required to make sense of objectively chancy phenomena. Moreover, testing a single 
case propensity requires displaying some experimental frequency that may support 
or contradict the probability distribution that it prescribes. Hence single case pro-
pensities, if they are in principle to have empirical manifestations and be subject 
to test – as surely most if not all scientific propensities must be – need recourse 
to empirical finite frequencies as the result of experimental trials. In other words, 
adopting a single case propensity theory makes it possible to appreciate the three 
distinct ingredients in any meaningful ascription of objective chance in scientific 
modelling, namely: propensities, probabilities, and frequencies. I refer to this tripar-
tite conception together with their inter-relations, as the ‘complex nexus of chance’, 
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and advocate employing it as an appropriate tool for the analysis of biological fit-
ness. 16

The rejection of long run varieties of the propensity theory, in favour of the sin-
gle case variety, does not necessarily conflict or contradict the view that biological 
fitness is best understood as ‘long term’ as opposed to ‘short term’. A long-term 
view of fitness is not just compatible with a single case propensity interpretation of 
fitness but, I urge, it is best understood in its light: Long-term fitness is not long run 
propensity.

Fitness is viewed as a short-term property of an organism (or a population or a 
trait – more about the differences later), when it entails reproductive success in the 
short term, and possibly in the next generation only. Thus, two organisms  O1 and  O2 
have different relative fitness if their expected (next generation) reproductive success 
is different. This is straightforward only post facto, and in fact only under substantial 
assumptions. Suppose that throughout their existence  O1 has two offspring, and  O2 
only one offspring; and suppose only natural selection was acting (no drift, muta-
tion, migration): On a short-term view of fitness,  O1 is then necessarily fitter than 
 O2.

However, it is well known that the short-term definition of fitness has several par-
adoxical or counterintuitive consequences (Abrams, 2009; Beatty & Finsen, 1989; 
Sober, 2001). There are certain scenarios and environments where short-term repro-
ductive success leads to long term failure and vice-versa (Gillespie, 1977; Pence and 
Ramsey (Pence & Ramsey, 2013, p. 857) refer to this as the delayed selection prob-
lem). The initially least successful organism may enjoy greater reproductive success 
down the road, and go on to gain selective advantage, if there are environmental 
reasons why an early overpopulation may turn out to be deleterious in the long term. 
Thus, suppose that resources suddenly and temporarily become very scarce at the 
next generation. Having to feed and protect equally for two offspring may become 
more costly, to the point perhaps that it may lead to the early extinction of both. 
In this scenario, and environment, having only one offspring at an earlier point in 
time may lead to greater reproductive success down the generations, when resources 
recover.

Even in a two-generation model, with scant environmental variation, it is possible 
for  O1 to have greater reproductive success in the short term, as above, while hav-
ing less reproductive success in the slightly longer two-generation term. The classic 
case is the mutation found in some species of drosophila (Crow & Kimura, 1956). If 
both of  O1’s offspring die before reproducing, but  O2’s sole offspring survives and 
goes on to reproduce,  O2 already has reproductive advantage over  O1 within two 
generations. It is obvious that such reversals are more likely the larger the number of 
generations envisaged, in whatever complex scenarios or environments, particularly 
if overlapping generations are allowed.17

16 See Mellor (2005) for an exposition of single case propensities, and Suárez (2017, 2020) for a defence 
of the tripartite conception in statistical modelling.
17 In as much as an entire lineage may be wiped out if the organism reproduces early in what Godfrey-
Smith (2009, p. 51) calls a ‘strongly competitive’ intergenerational environment.
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Fitness is therefore often best understood to be long term. But how long is 
‘long’? The phenomenon of later (i.e., two or more generations down the road) 
reversals in reproductive success is well established (Sober, 2001), and it is 
hard to see what would constitute an insurmountable number of generations, 
or generational threshold, beyond which no reversals are biologically possible. 
18 For this reason, some defenders of long-term fitness define it in an infinite 
limit. For example, Pence and Ramsey (Pence & Ramsey, 2013, p. 862) define 
it in terms of Tuljapurkar’s (1990) asymptotic sequences of random, non-nega-
tive matrices:

Nonetheless, such limits only obtain under stringent conditions. For instance, 
Pence and Ramsey’s (Infinite Fitness) equation above demands: i) weak ergodicity, 
ii) that the logarithmic moment of the growth rate be bounded and, most impor-
tantly for our purposes, iii) that the probability function be generated by a stationary 
random process. Roughly, a random process, i.e., Brownian motion, is one where 
the values of the dynamical variables at a given time do not determine the next val-
ues; it is stationary if it converges towards its mean or average value. The assump-
tion therefore entails that while no daughter population determines any of its direct 
descendant populations, the series converges towards its mean or average. While this 
does not amount to (PIF), as usually expressed, it does impose a requirement on the 
evolution of populations that may not always be satisfied in stochastic dynamics.

It has in addition been argued (Abrams, 2009; Sober, 2001) that short-term fit-
nesses also have their uses, and can claim legitimately to be real too. It stands to 
reason that the knowledge that  O1’s short-term fitness is greater than  O2’s, even if 
only for the next generation, may be very useful for purposes of both prediction and 
explanation regardless of whether in the longer term  O1’s reproductive success con-
tinues to be greater. Or, to take a more extreme example, suppose that the environ-
ment is such as to generate mass extinction within two generations, anyway; it fol-
lows that the only concept that is explanatory and predictive in that environment is 
short-term fitness. The pluralist would be able to accept both short-term and long-
term fitness. This strikes me as correct: It is not sound scientific methodology, and 
certainly not sensible pragmatic policy, to do away with a concept that has its uses 
– however limited. And there is no better hallmark of reality for any concept than 
finding use within scientific practice.

Yet, if fitness is identified with long run propensity, in accordance with the pro-
pensity identity, there could be no such uses of short-term fitness: nothing short of 
the long run would have any reliable expectation value. So, anyone who accepts 
Sober’s and Abrams’ point regarding the uses of short-term fitness is bound to reject 
long run propensity accounts of fitness. There are yet more general reasons to reject 
them, and most importantly, the tripartite conception at the heart of CNF is perfectly 

F = exp

(
lim
t→∞

1

t ∫ w∈Ω

Pr(�(w) ∙ ln�(w, t))dw

)
(Inf inite Fitness)

18 Biologists tend to define fitness in the long but finite term and remain uncommitted about how long 
that is, which is fine empiricist methodology, but leaves the conceptual questions unanswered.
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compatible with both long-term and short-term fitness. For, recall, the propensi-
ties that are employed by the CNF, and the related CNC account of chance, are not 
identified with probabilities. Instead, propensities are employed to partly explain the 
probabilities that emerge in those contexts in which chance setups operate. While 
such a distinction (between the probabilities for reproductive success and the pro-
pensities of the chance setup that generate them) makes no sense in a frequency 
or long run propensity interpretation of probability, it makes perfect sense in a 
CNC. This means that the propensities, or probabilistic dispositions, of the organ-
ism within its environment may ground all the expected values for its reproductive 
successes – whether short or long term. In cases where the limiting value of fitness 
can be calculated – as in the equation (Infinite fitness) above, whenever all its three 
assumptions apply –, the probability distribution that obtains in each generational 
‘trial’ is indeed given by (Infinite fitness), and the values of reproductive success at 
each generation are simply the random outcomes at each single trial that are con-
sistent with that probability in the limit. The phenomenon does not then differ in 
any significant way from the case of a fair coin, i.e., one whose propensities display 
a single case chance to land heads and tails with equal probability ½ in each trial 
– even though obviously in every trial either heads or tails obtains. 19

The tripartite conception within the CNF thus resolves the conundrum 
between short-term and long-term fitness by making it clear that fitness is a com-
plex notion, that includes propensities and expected values of all statistical dis-
tributions for offspring, whether short or long term. On this view the fitness of 
an organism (or a trait, or a genotype) is not identified with any of the distri-
bution functions. Neither is it identified with the propensities that give rise to 
the distributions; fitness is rather the combination of both within each context. 
Now, this sort of pluralism regarding short versus long term fitness is, of course, 
not entirely new. It is in fact in line with similar views espoused by Beatty and 
Finsen (1989, p. 20), Sober (2001, pp. 29ff), Abrams (2009, pp. 754ff), and Mill-
stein (2016, pp. 612ff.). Yet, there are some significant differences. While all 
these authors emphasise the plurality of expectations, and how fitness cannot be 
reduced to either short or long term, the CNF emphasises the plurality of chance 
itself, and how a set of propensities in a chance setup may give rise to differ-
ent probabilities in different environments, both short and long term. 20 An issue 
undoubtedly remains regarding the explanatory nature of the relation between the 
underlying propensities, on the one hand, and the probabilities of reproductive 
success that they give rise to, on the other. But nothing particularly hinges on 
whether success is short or long term, as both can be accommodated within CNF.

19 Defenders of the most sophisticated recent versions of (PIF) are not always entirely clear whether they 
mean to identify fitness with a long run propensities or single-case ones. One may take my argument 
above as confirming that they must mean the single case.
20 Sober comes perhaps close to this view when he asserts (2013, p. 337): “Mixing is routine in models 
of evolution where some probabilities represent actual frequencies and others do not”. While agreeing 
with the need to mix different probabilities, CNF would nonetheless go beyond it in explicitly distin-
guishing the propensities (dispositional properties) from probabilities (single case chances).
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6  The Explanatory Role of Fitness

The generic CNC account takes propensities to be dispositional properties of systems 
or chance setups with probabilistic manifestations that can be tested against frequency 
data. The possession conditions for propensities are thus not the same as those for 
the properties that manifest them, as is more generally the case for any dispositional 
property (think of the possession conditions for the fragility of an object, typically 
describing its internal composition and architecture, which do not coincide with the 
conditions, typically including environmental factors, for the breaking of the object). 
But, in addition, propensities – unlike sure-fire dispositions—, manifest themselves 
only probabilistically. It is then possible to test the probabilities manifested against 
frequency data – and this provides reasons, typically of an abductive sort, as is com-
mon for theoretical properties, for or against the ascription of the propensities.

The CNC account fits in better with the practice of statistical modelling, including 
in biology, where parametrization of the phenomena plays a critical role. 21 It is easier 
to see the practice of parametrization as reliant upon propensities understood as dis-
positional properties; the probability distributions as the emergent properties that get 
modelled by means of the probability distributions; and the experimental outcomes 
as the frequency data that can be used to test them (Suárez, 2017, 2020). 22 The sorts 
of model explanations that are typical in statistical modelling fall out as applications 
of the parametrizations of the probability distributions to the frequency data. It is a 
plausible conjecture that all explanatory uses of evolutionary fitness in practice can be 
understood in this way, as cases of statistical model explanations. If so, I suggest that 
fitness properly speaking is not merely propensity, but it is rather to be identified with 
the whole complex nexus of chance, involving fully the tripartite distinction between 
propensities, probability distributions, and frequency data.

It would be beyond the scope of this paper to attempt a complete analysis and 
study of the modelling methodologies in evolutionary biology that bear the conjec-
ture out. I will more modestly explore some of the relative advantages of the concep-
tion of propensities within the CNF as regards some of the recent controversies in 
the philosophical literature. CNF accepts that dispositional properties play a role, so 
it bears superficial similarities with causal dispositional accounts of fitness. The crit-
ical difference is that CNF rejects any reduction of fitness to dispositions, embracing 
instead a tripartite conception of fitness. 23 More generally, ‘causal dispositionalism’ 

21 Abrams (2012, forthcoming), while not necessarily endorsing the CNF, are excellent accounts of 
the practice of parametrization in evolutionary biology. Rice (2008) puts parametrization to work in the 
development of a stochastic version of Price’s equation.
22 The idea again finds a correlate in evolutionary biology modelling practice, for instance, explicitly in 
the calculation of relative and marginal fitnesses (Rice, 2004, pp. 7ff), which assumes a primitive prob-
ability for an allele to be found in a certain genotype. As noted above, the present paper is devoted to 
introducing the CNF framework, and to placing it within the philosophy of probability literature. And 
while the paper is a call for further study of the modelling practice, any more detailed application must 
await subsequent publications.
23 Triviño and de la Rosa (2016) defend causal dispositionalism, which Drouet and Merlin (2015) rightly 
reject. Sober (1984, 2013) is implicitly a defence of propensities as distinct from frequencies, hence 
incompatible with causal dispositionalism, yet closest to my views.
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(Mumford & Anjum, 2011) is a monistic doctrine about the metaphysics of disposi-
tions, which attempts to reduce probability to causal dispositions. By contrast, the 
complex nexus of chance (CNC) and its application to fitness (CNF) take a pluralis-
tic view of chancy phenomena, attempting no reduction of either fitness to probabil-
ity, or of probability to dispositions (or propensities).

CNF instead recommends considering fitness a generalisation over all those 
physical and biological properties that make some organisms ‘fitter’. The prob-
ability distributions over offspring – and their statistical moments – supervene 
upon those dispositional properties, or propensities.24 But, as noted earlier, the 
properties are not the cause of the probability distributions, which are merely 
the grounded representations of the overall expectation of reproductive success. 
What the properties of organisms do cause (at least partly) is of course further 
properties in themselves and other organisms as they evolve (they can also influ-
ence their environments, as is nowadays accepted to be the norm in niche con-
struction). There has been a tendency in the literature to identify fitness with 
either the frequencies of observed reproductive success (as in early circular con-
ceptions of fitness); the probability distributions or their expectations (as in the 
PIF we just reviewed in previous sections), or the underlying properties in the 
supervenience base (as is the case amongst defenders of causal dispositional-
ism). I urge the view that fitness properly understood is all of these taken together 
– and moreover taken in their very productive connection in the practice of mod-
elling the phenomena. 25

I have argued that the pluralism inherent in CNF is the key to its distinct way 
of answering some recalcitrant objections to PIF. CNF recommends explicitly 
embracing propensities not as an interpretation of evolutionary probabilities, but 
an explanation of how they come about. The best way to illustrate the explana-
tory power of fitness on the CNF account is then precisely to run through its way 
of responding to some of these issues. I will consider here only two issues, but 
the conjecture is that other discussions and issues in the field may take a differ-
ent form in view of CNF, thus casting the approaches that have been proposed 
in response in an interesting new light. I first consider the argument that the PIF 
does not capture the proper objects of fitness (whether they are token organ-
isms or genes, or token traits or populations). Then I move to the objection that 

24 For overall fitness as a supervenient property, see Sober (1984, Ch.3). Peter Godfrey-Smith (2009, p. 
30) also recommends thinking of fitness as “a compression of a full specification of causal factors”.
25 CNF chimes in with a number of recent accounts in the philosophy of biology literature that there is 
no space here to discuss in full. Besides being on board with Elliott Sober’s pluralism regarding prob-
abilities (Sober, 2013) and sympathetic to his minimalism about single case chances (Sober, 2010), CNF 
was noted to chime in well with the pluralism in Beatty and Finsen (1989), and Millstein (2003, 2016). 
True, it does not restrict it to propensities in the way they do (one could say that Beatty and Finsen, and 
Millstein, embrace horizontal pluralism only as regards different probability distributions; while CNF 
pluralism is in addition vertical, since it distinguishes three layers in one complex notion of fitness). Still, 
as we shall see, the CNF echoes Millstein’s (2006) prising apart of ‘causalist’ and ‘statisticalist’ claims. 
I also believe that Marshall Abrams’ (2012, 2014, 2015) nuanced distinctions between tendential / para-
metric fitness, mathematical / statistical fitness, and measurable fitness can be subsumed under the tri-
partite conception in the CNF. Finally, CNF is also evidently in line with Peter Godfrey Smith’s (2009) 
emphasis on the plural practices of modelling fitness.
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population level properties affect reproductive success rates, yet cannot be said to 
cause them, which would see PIF fail too. 26 In neither case do I claim priority for 
the way the CNF resolves the issues, but I do urge that casting proposed solutions 
to these issues in terms of the CNF has the promise to resolve tensions, answer 
objections, and provide greater detail regarding the explanatory role of propensi-
ties in fitness.

6.1  The objects of fitness

Mills and Beatty (1979) distinguished between fitness1 and fitness2, where the former 
is the fitness of an organism, and the latter is the fitness of the type of organisms that 
share some trait. They then identified  fitness1 with the expectation or expected value 
of the organism’s offspring distribution – a definition we rejected in section three 
(following Beatty and Finsen’s (1989) own subsequent arguments). Nevertheless, if a 
trait T is defined extensionally as the set of organisms that share T (call this set {T}), 
then the  fitness2 of trait T is simply the average of the  fitnesses1 of the organisms 
in the set {T}. As Sober (2013, p. 336) puts it: “the fitness of a trait is the average 
fitness of the individuals that have that trait”. The full definition makes it explicit 
that  fitness1 is relative to a population P and an environment E, and therefore so is 
 fitness2 since it is built upon it. Sober (2013) then goes to argue that neither  fitness1 
nor  fitness2 can be understood as propensities, but changes or variations in  fitness2 
may be. For only the latter exhibit the required causal asymmetries, and sensitivity to 
population and environmental conditions. The starting point of CNF, by contrast, is 
that neither  fitness1 nor  fitness2 can be identified with propensities – on pain of run-
ning propensities and probabilities together in a way that conflicts with the tripartite 
distinctions within CNC. Rather Mills and Beatty’s  fitness1 and  fitness2 are in my 
terminology the displays (or manifestations) of underlying propensities. But are they 
displaying the underlying propensities of organisms, sets of organisms, or traits?

The question is whether traits are just averages over the properties of the individ-
uals that make up the set of those organisms that share the trait. If so, since a set is 
extensionally merely the collection of the elements that compose it, only individual 
organisms may be said to display propensities – the ‘propensities’ of traits would be 
merely epiphenomenal. 27 Mills and Beatty’s ‘fitness1’ and ‘fitness2’ are then simply 

26 Amongst the many other issues that may be cast in a new light, those regarding causation in evolu-
tionary biology naturally stand out. For instance, Walsh (2010) has recently objected that PIF entails 
Simpson-like paradoxes (reversals of conditional probability in subpopulations) and that fitness – and 
natural selection to boot – can therefore not be said to be a cause of evolution. From a CNF perspective 
such Simpson reversals are innocuous, since they only affect the probability distributions that emerge in 
distinct contexts, and not the underlying propensities and their causal effects.
27 This relies on the above extensional definition of traits as types of organisms. Sober himself makes it 
clear that the mathematical models of trait fitness variation introduce selection coefficients in modeling 
the strength of selection that are not themselves functions of expectations; only the responses to selec-
tion are expected values (Sober, 2013, p. 340). So Sober does not really think of ‘traits’ extensionally, 
as merely the set of the organisms that share them, but rather claims that different traits may well be co-
extensive.
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the expectation values of the distributions for token organisms, and for sets of token 
organisms, respectively, and they all answer to the underlying propensities of indi-
vidual organisms. The CNF would go along with this and ascribe all relevant pro-
pensities to the individual organisms. If, on the other hand, traits are alternatively 
defined non-extensionally to be primitive token properties, the CNF would apply 
the tripartite distinction directly on traits, invoking separate (emergent) propensi-
ties, their manifestations in single chances for those traits, and the observed frequen-
cies of such traits, without attempting any further reduction. 28 And since we are no 
longer defining fitness in terms of expected value, or expectation – but rather as a 
complex nexus of propensities, probabilities, and frequencies, as modelled relative 
to a population and environment –, it no longer follows that the fitness of the trait is 
the average of the fitness of the member organisms.

The same argument goes through mutatis mutandis for genes. We can again 
consider  fitness1 (G) to be a property of some token allele G, and  fitness2 ({G}) 
to be a property of the population of organisms {G} that carry a given genotype. 
Since CNF no longer defines  fitness1 to be simply the expectation of the offspring 
distribution for G, it follows that  fitness2 is neither the arithmetic average of the 
expectations. Rather the fitness of an individual allele, or a genotype, when it can 
be defined at all, is a complex three-layered notion that includes the propensities 
of the token allele or genotype, the probabilities (single case chances) generated 
by them in their given context, and the frequency data it gives rise to when experi-
mentally probed. 29

To sum up, CNF is neutral on the issue of whether fitness applies to individual 
organisms or traits, whether at type or token level. It can be freely applied to token 
organisms, and to traits regarded as types with emergent properties of their own. On 
the other hand, if traits are treated extensionally, as mere statistical collections, then 
naturally CNF ascribes propensities to the token organisms, or individual alleles, only. 
But that latter option seems uncalled for, since traits are better thought of non-exten-
sionally anyway.

6.2  Properties of Populations and Reproductive Success

Ariew and Ernst (2009) argue that the Gillespie examples discussed in section three, 
which show sensitive dependence on higher moments of the offspring distribution, 
already by themselves demonstrate that evolutionary fitness cannot be understood as a 

28 This assumes that Beatty and Mill’s definition of trait fitness as the average of the organisms’ fit-
nesses, follows through regardless of whether traits are defined extensionally or not. Indeed, Sober (2013, 
p. 336) derives their definition from independent premises, namely i) the identity of an organism’s fitness 
with the fitness of its total trait complex, and ii) that at least some of the single case chances be identical 
to measurable frequencies, as befits the fact that they are testable. (I thank a referee for pressing me to 
state this explicitly).
29 Except perhaps for fitness regarded as a property of an arbitrary population, which by necessity must 
be defined as some statistical function over the arbitrary set of elements in the population. However, the 
concept of fitness as applied to an arbitrary population – unlike populations naturally defined by traits – 
is of no use in understanding evolution by natural selection.
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propensity. 30 On their account PIF requires fitness to be “a function of the properties 
of individual members of the population within their local environmental conditions” 
(what they refer to as desiderata (C) on any viable PIF). 31 It follows, on their account, 
that Darwinian natural selection (of the fittest) is not an explanatory cause, but merely 
a statistical phenomenon. Their reasoning is straightforward: Since variance is a popu-
lation level property, which critically depends on population size, it cannot be under-
stood to lie in any individual organism. Gillespie (1977) showed fitness wi to rely on 
population size n according to what we may call Gillespie’s equation: wi = �i −

�2
i

/
n
 , 

where μi is the fitness in reproductive output, and σi is the variance within a genera-
tion. This entails that we can increase population size – and therefore variance – by 
adding members even if they “do not causally interact with the existing members of 
the population at all” (Ariew & Ernst, 2009, p. 294). Yet variance can have a decisive 
role in determining reproductive success, so it follows that the explanation of natural 
selection involves non-causal, merely statistical features of populations at large.

The argument does not apply to CNF, which is not committed to (C). It is firstly, 
as just noted, not committed to only taking token organisms as the recipients or units 
of propensity ascriptions. But, in addition, even when applied to individual organ-
isms as the appropriate units, CNF is not committed to identifying fitness with any 
one physical property of those organisms, at the expense of the probability distri-
butions, and the frequencies observed. Rather CNF takes fitness to be the complex 
combination of all of them, and their interconnections.

Nevertheless, Ariew and Ernst make the additional point that even if (C) is aban-
doned as a desideratum, there are two other essential desiderata on PIF that can-
not be jointly satisfied in any case, namely (A): “a fitness concept must be able to 
explain why one trait is expected to be better represented in a population under the 
influence of natural selection”; and (B): “a fitness concept must enable us to com-
pare the degree to which natural selection will favour the spread of one trait over 
another, alternative trait” (Ariew & Ernst, 2009, p. 290). Yet, their reasons for think-
ing that (A) and (B) are not co-satisfiable is the fact that for any given evolutionary 
explanation of reproductive success, there is more than one statistic, even more than 
one distribution, that is appropriate in different cases, depending on the environ-
ment, the population, and the trait or type of organism considered. 32 Since there 

30 See also Matthen and Ariew (2002, 2009) for related arguments, and Millstein (2006) for a perceptive 
response that emphasises natural selection at the population level. The CNF largely agrees with Millstein 
here, except for her claim that population-level propensities are causal, since, as explained earlier, on the 
tripartite conception within the CNC, generally, propensities do not cause but rather ground single case 
chances.
31 Ariew & Ernst (2009, p. 291).  Okasha (2006) provides a good overview of population genetics.
32 As they write: “no single unified account of fitness that satisfies conditions A and B can be found” 
(Ariew & Ernst, 2009, p. 298). This is echoed in another well-known paper by Ariew and Lewontin 
(2004, p. 348): “any attempt to introduce a unitary analogous concept of ‘reproductive fitness’ into 
dynamical models as a scalar ordinal, which will explain or predict quantitative changes in the frequency 
of types, must fail”. If by ‘unitary’ it is meant an account that identifies fitness precisely with one and 
only one property of the organisms involved in each case, I agree. However, such an account of fitness 
would be anathema to the plural character of CNF explored here. It does not follow though that there are 
no propensities involved in fitness, or that they do not have an explanatory role.
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can be no unique comparison, there is no univocal explanation. Ariew and Ernst are 
therefore reading (B) in a particular robust way, as implying that any comparative 
measure must be unique, at any rate for any given set of environmental conditions.

By contrast, CNF embraces pluralism for the statistical distributions that mani-
fest underlying propensities – the tripartite conception is in fact of a piece with the 
thought that differences in the environmental conditions, and within populations, 
bring out different probabilistic manifestations of the underlying propensities. An 
arbitrary change in the membership of the population would not affect the underly-
ing propensities of the organisms already included in the population, but it would 
alter their probabilistic manifestation in the group as well as obviously their rela-
tive frequencies in the set. Ariew and Ernst’s critique relies on conflating such dis-
tinctions. If, by contrast, desideratum (B) is understood to already imply pluralism 
then the CNF naturally fulfils it, since it enables many different comparisons of the 
degrees to which natural selection favours one trait over another, depending sen-
sitively on trait, population, environment, and underlying propensity ascriptions to 
either organisms, genotypes, or traits (or any of their sets). Ariew and Ernst’s diffi-
culties with the explanatory character of fitness are thus seen to be a consequence of 
their underlying identification of fitness with the probability distributions that make 
up only a part of a necessarily more complex concept.

7  Conclusions

In this paper I have defended a new approach to evolutionary fitness in terms of 
what I call the complex nexus of chance (CNC). The resulting complex nexus of fit-
ness (CNF) clarifies some of the commitments of a propensity account of fitness. It 
does not attempt to reduce fitness to the concept of propensity, nor does it think of 
propensity as a mere interpretation of probability. Nevertheless, propensities play a 
critical explanatory role in the account, and the tripartite distinction at the heart of 
the CNF is in close agreement with modelling practice. I first showed that the CNF 
overcomes the ‘momentous objection’ regarding the influence of higher moments of 
the offspring distribution. I then argued that it renders superfluous the debate over 
whether fitness is properly long or short term. I finally argued that the explanatory 
power of fitness as a complex chancy nexus is revealed by a careful application to 
a range of issues and contemporary debates within the philosophy of biology; and I 
provided two such instances in the debates surrounding the objects of selection and 
the effects of population size on fitness.
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