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Abstract: We investigate logarithmic price returns cross-correlations at different time horizons for a
set of 25 liquid cryptocurrencies traded on the FTX digital currency exchange. We study how the
structure of the Minimum Spanning Tree (MST) and the Triangulated Maximally Filtered Graph
(TMFG) evolve from high (15 s) to low (1 day) frequency time resolutions. For each horizon, we test
the stability, statistical significance and economic meaningfulness of the networks. Results give a deep
insight into the evolutionary process of the time dependent hierarchical organization of the system
under analysis. A decrease in correlation between pairs of cryptocurrencies is observed for finer time
sampling resolutions. A growing structure emerges for coarser ones, highlighting multiple changes
in the hierarchical reference role played by mainstream cryptocurrencies. This effect is studied both
in its pairwise realizations and intra-sector ones.

Keywords: complex systems; network science; econophysics; economics; financial markets;
cryptocurrencies

1. Introduction

Financial markets are complex systems [1]. The main source of complexity comes
from the intricate interaction of heterogeneous actors following various strategies designed
to impact at different time scales. They are highly stochastic environments with a low
signal to noise ratio, dominated by strong non-stationary dynamics and characterized by
feedback loops and non-linear effects [2–4]. Despite their complexity, financial systems
are governed by a rather stable and partially identified framework of rules [5]. This last
characteristic, jointly with the possibility to continuously monitor them across time, makes
financial systems well suited for statistical characterization [6] and a good playground for
the study of complex systems in general. In this paper, we analyse the behaviour of cryp-
tocurrency market. A cryptocurrency is defined as a digital instrument for value transfer
that exploits cryptography and distributed ledgers for security and decentralization [7].
As currencies, they have properties similar to fiat currencies [8]. The main differences being
the exclusion of financial institutions as intermediaries [9] and not being controlled and
regulated by any central authority [10]. Thanks to the above mentioned characteristics,
cryptocurrency market is available 24 h a day, 7 days a week, and transactions take place
between individuals with different physical locations across the globe [8]. Standard features
of financial systems joined with peculiarities listed above, make cryptocurrencies highly
volatile instruments. Finding assets with similar behaviours responding to endogenous
or exogenous events is, hence, a challenging, but extremely valuable, exercise both from
theoretical and applicative perspectives (e.g., risk management and investment). The ready
access availability of large volumes of market data ease research on these instruments
with respect to classical financial ones. Indeed, one of the main limits faced by research in
the field of financial applications is the lack of easy access and share of high-quality data.
In most cases they are sensible data, owned and managed by private financial institutions.
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Cryptocurrencies are traded on digital currency exchanges (DCEs) which, differently from
traditional exchanges, allow to easily access both online and historical data. Exploiting this
and using instruments provided by network science, one can successfully build models
able to capture and describe individual and collective behaviours in cryptocurrency market.

A network (or graph) represents components of a system as nodes (or vertices) and
interactions among them as links (or edges). The number of nodes defines the size of the
network. The number of links defines the sparsity (or, conversely, density) of the network.
Reversible interactions between components are represented through undirected links,
while non-reversible interactions are represented as directed links. Networks have been
successfully used in many application domains. Some examples are social networks [11,12],
security [13], epidemiology [14,15], neuroscience [16], drug design [17], management [18],
and economic forecasting and modelling [6,19–25]. Many of the above cited works share
the peculiarity to study networks with a size varying as a function of time. In the current
research work, on the contrary, we focus on networks with a fixed size. Starting from a set of
25 liquid cryptocurrencies, we exploit the power of state-of-the-art network-based informa-
tion filtering approaches (i.e., MST [26] and TMFG [27]) to build robust models capturing
strong interactions among assets and pruning, at the same time, weakest ones. We hence
investigate dependency structures of the networks at 6 different time horizons spanning
from 15 s to 1 day. For each time horizon, we test the stability, statistical significance, and
economic meaningfulness of the graphs. Such a research effort is led by two main motiva-
tions. The first one is the will to describe core dependency structures of the cryptocurrency
market in a systematic way, providing a detailed characterization of the reference role
played both by mainstream cryptocurrencies and by peripheral ones. The second is related
to the possibility to do this at a wide range of time scales including intra-minute resolutions.
Such a characterization is relevant for many reasons. Cryptocurrency market is affected by
daily changes related to the introduction of new coins, collapse of existing ones, updates
on existing protocols, etc. Having a stable framework able to robustly handle this intrinsic
mutability, highly eases investment, and risk management decisions and provide a ductile
instrument for research purposes. Such a framework should be also able to handle dynam-
ics of cryptocurrencies showing similar characteristics and behaviours (i.e., belonging to
the same sector). Dependency structures are, hence, investigated, both at an intra-sector
and pairwise level. Unfortunately, there is no consensus on a unique mapping between
cryptocurrencies and sectors. We adopt the taxonomy proposed by Kraken [28] digital
currency exchange. Results give a deep insight into the evolutionary process of the time
dependent hierarchical organization of the chosen system of cryptocurrencies. As a further
step toward robustness, we compare our results with the ones achieved in the past 20 years
of similar research in the field of stock market, uncovering comparable behaviours between
the two systems. From an economic and financial perspective, the study of dependency
structures among cryptocurrencies at different time-scales is relevant both from a theoretical
and an applicative point of view. In the first case, comparing properties of time dependent
hierarchical organization of the cryptocurrency market (a relatively young market) with the
ones of the equity market (a consolidated market), (i) allows to measure its degree of matu-
rity (ii) keeping track, at the same time, of the main evolutionary phases. In the second case,
such an analysis is useful as a support instrument toward the achievement of different goals
spanning from portfolio construction tasks (e.g., diversification purposes) to development
of multi-assets trading strategies acting at different time-scales. Our contribution to the
existing literature is threefold: (i) we are the first to use TMFG as an information filtering
approach to model dependency structures among crypto-assets, (ii) we propose a rigorous
network-based study of cryptocurrency market allowing to compare emerging dynamics
to the ones observed on traditional financial markets (e.g., the “Epps effect”), and (iii) we
are the first to describe the evolution of dependency structures among cryptocurrencies at
time scales spanning from intra-minute to daily resolution.

The rest of the paper is organised as follows. In Section 2, we review the previous
research on applications of network science to financial systems modelling. In Section 3.1,
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we discuss the data acquisition and transformation pipeline. In Sections 3.3–3.5, we
characterise cross-correlation between cryptocurrencies as a measure of similarity and
dependency. We show how to obtain a dissimilarity measure based on cross-correlation and
we review the building process and properties of MSTs, PMFGs and TMFGs. In Section 4,
we present results obtained applying methods reported in Section 3. In Section 5, we conclude
by discussing the economic and financial interpretation of our findings.

2. Related Work

Networks have been extensively used in order to model economic and financial
systems. The work by [19] can be identified as a foundational one. It demonstrates
the possibility to find a hierarchical arrangement of stocks traded in a financial market
by investigating the daily time series of logarithmic price returns. A graph is obtained,
exploiting information contained in the correlation matrix computed between all pairs of
stocks of the portfolio by considering the synchronous time evolution of the logarithmic
returns. Building on the work by [19], the paper by [29] shows that sets of stock index
time series can be used to extract meaningful information about the links between different
economies across the world. This goal is successfully achieved provided that the effects
of the non-synchronous nature of the time series and of the different currencies used to
compute the indices are properly taken into account. The work by [22] further extends
the research by [19], studying modifications of the hierarchical organization of a set of
stocks switching from high- to low-frequency time scales. As a first step, authors report a
decrease in correlation between pairs of assets switching from coarser to finer time sampling
resolutions. Such a phenomenon is known as “Epps effect” [30]. This analysis is extended,
investigating both pairwise and intra-sector dynamics. They show the emergence of a more
complex network structure at coarser time sampling resolutions, highlighting multiple
changes in the hierarchical reference role played by sectors’ representative assets. The work
by [20] tests the robustness of the findings of the previously cited research works for longer
periods of investigation and demonstrates that networks describing the financial domain
cannot be reproduced by a random market model [31,32] and by the one-factor model [33].
Such results are also investigated in [21] which specifically shows how the topology of the
networks in financial systems can be used to validate or falsify simple, although widespread,
market models. This work also extends the previously cited ones introducing an analysis
of the networks built on the volatility of financial time series. More recently, the work
by [6] shows vulnerabilities of MST [26] in representing complex systems and proposes
the usage of a planar graph, the PMFG [34], as an alternative. This research work also
presents a set of methods to validate the statistical significance and robustness of achieved
empirical results. The centrality role of specific financial sectors is finally investigated and
the evolution of the Financial sector as a reference one is analysed over a period of 10 years.
Recently, some of the network-based information filtering approaches have been sparsely
applied to the cryptocurrency market. Results consistent with the ones described in our
paper have been recently described by [35], adopting a different methodology. In this
research, exploiting the index cohesive force [36], the author describes the changes in
the hierarchical order of the most influential cryptocurrencies over a period of five years.
He shows how Ethereum gradually becomes the most influential cryptocurrency at the
detriment of Bitcoin. It is also useful to mention the work by [37], where, for the first time,
the authors suggest a network-based approach to study the interdependencies between
log-returns of cryptocurrencies, with a special focus on Bitcoin. They use the MST method
in order to group assets into hierarchical clusters and they highlight the potential existence
of topological properties of the cryptocurrency market. This work is extended by [38],
where, the authors adopt the MST and the PMFG to study the change in cryptocurrency
market’s network structure before and after the COVID-19 outbreak. The last work to
be mentioned is the one by [39], where the author points out how most of the studies on
cryptocurrency market are focused only on daily data without considering other options.
Using a range of frequencies spanning from one minute to weekly data, he shows how it is
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possible to detect different profitable frequencies and underlines the relevance of analysing
frequencies different from daily ones.

3. Methods
3.1. Data

The vast majority of digital currency exchanges provide a free Rest API (or a Web-
socket) allowing users to access both historical OHLCV (open, high, low, close, volume)
data and online Limit Order Book- and trades-related data. In addition to this, there is a
growing number of services providing out of the box, unified APIs which support many
exchanges and merchant APIs. The work by [8] reports a comprehensive and detailed
overview of the services currently available for data retrieving. In the current work, we
use data from the FTX [40] digital currency exchange. They are entirely accessed through
the CCXT [41] Python package. We use OHLCV data for 25 cryptocurrencies (see Table 1)
sampled at time horizons ∆t ∈ [15 s, 1 min, 15 min, 1 h, 4 h, 1 day]. For each time horizon,
a sample can be defined as a “time bin”. Opening and closing prices are, respectively,
the first and the last price of the time bin, high and low price are, respectively, the highest
and the lowest price of the time bin and can technically happen in any order, and the volume
is is defined as the sum of the volumes traded in the time bin. In the rest of the paper, we
will use a second-based definition of time horizons. This means that we will refer them as
∆t ∈ [15, 60, 900, 3600, 14,400, 86,400]. Qualitatively, we will often speak about finer and
coarser time horizons. In the first case, we want to indicate elements nearer to the lower
bound of the set of time sampling resolutions, while, in second case, we want to indicate
elements nearer to the upper bound of the set of time sampling resolutions.

Table 1. List of the 25 cryptocurrencies analysed in this paper. For each asset, the name, the symbol,
the market capitalization at 29 March 2022 and the corresponding sector according to the taxonomy
proposed by [42] is reported. There is no consensus on a unique mapping between cryptocurrencies
and sectors. The chosen taxonomy is the one adopted by one of the main DCEs: Kraken [28].
Looking at the market capitalization column, it is worth noting that the least capitalized asset is
Cream ($31.68M), while the most capitalized one is Bitcoin ($903B). Sectors’ grouping is balanced.
Cryptocurrencies being the only representative of a specific sector are grouped together in analyses
reported in Appendices A and B.

Cryptocurrency Symbol Capitalization Sector

Aave AAVE $2.47B Lending
Bitcoin Cash BCH $7.13B Currencies
Binance Coin BNB $72.17B Centralized Exchanges

Bitcoin BTC $903B Currencies
Cream CREAM $31.68M Lending

Ethereum ETH $412B Smart Contract Platforms
FTX Token FTT $7.11B Centralized Exchanges

Helium HNT $2.78B IoT
Huobi Token HT $1.46B Centralized Exchanges

Hxro HXRO $129M Centralized Exchanges
Litecoin LTC $9.11B Currencies
Polygon MATIC $13.21B Scaling
Maker MKR $2.10B Lending

OMG Network OMG $818M Scaling
PAX Gold PAXG $609M Stablecoins

THORChain RUNE $3.96B Decentralized Exchanges
Solana SOL $36.09B Smart Contract Platforms
Serum SRM $458M Decentralized Exchanges

SushiSwap SUSHI $521M Decentralized Exchanges
Swipe SXP $800M Payment Platforms
TRON TRX $7.24B Smart Contract Platforms
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Table 1. Cont.

Cryptocurrency Symbol Capitalization Sector

Tether USDT $81.37B Currencies
Waves WAVES $5.77B Smart Contract Platforms
XRP XRP $42.05B Currencies

yearn.finance YFI $836M Asset Management

All the considered cryptocurrencies are liquid with a medium-to-high market capi-
talization. An exception is Cream, which has a low capitalisation. The only constraint in
the selection process of cryptocurrencies is their historical availability on the FTX digital
currency exchange. Indeed, it is worth noting that each digital currency exchange allows to
access historical data only starting from the date a specific asset has been quoted on the
exchange itself. The period under analysis spans between 1 January 2021 to 28 February
2022. Despite the high-quality of data, rare missing values are detected at the finest time
sampling resolution (i.e., ∆t = 15). In this case, they are filled using the nearest valid
observation. Logarithmic returns (named in the rest of the paper as log-returns) x of closing
prices p at time t for a given cryptocurrency c, are computed as follows:

xc(t) = log(pc(t))− log(pc(t− ∆t)). (1)

The assumption of returns’ stationarity is validated for each xc(t) through the Aug-
mented Dickey Fuller (ADF) [43] test.

3.2. Correlation-Based Filtering

Understanding how variables evolve, influencing the collective behaviour, and how
the resulting system influences single variables is one of the most challenging problems
in complex systems. In order to extract such an information from the set of synchronous
time series discussed in Section 3.1, we proceed by determining their Pearson’s correlation
coefficient at each time horizon ∆t. The Pearson’s estimator of the correlation coefficient,
for non-overlapping increments, between two synchronous data series with length T∆t is:

ρi,j(∆t) =
1
T ∑T

u=1(xi(u∆t)− µi)(xj(u∆t)− µj)

σiσj
(2)

where µi(j) and σi(j) are, respectively, the sample mean and the sample standard deviation
of the data series xi(j)(t). The Pearson’s correlation coefficient is a widespread measure
efficient at catching similarities between the evolution process of financial assets’ prices [6].
By definition, ρi,j(∆t) has values between−1 (meaning that the two synchronous time series
are completely, linearly anti-correlated) and +1 (meaning that the two synchronous time
series are completely, linearly correlated). When ρi,j(∆t) = 0, the two synchronous time
series are linearly uncorrelated. The correlation matrix C is n× n (where n is the number
of variables) symmetric, with elements on the diagonal equal to one (i.e., ρi,i(∆t) = 1).
For each time horizon ∆t, n(n− 1)/2 correlation coefficients completely characterize the
correlation matrix. From a network science perspective, the correlation matrix can be
considered as a fully connected graph where each asset is represented by a node and each
pair of assets is joined by an undirected edge representing their correlation.

3.3. Minimum Spanning Tree (MST)

Based on the correlation matrix, we want to build an undirected graph whose topology
captures dependency structures among cryptocurrencies’ log-returns time series and that is
greatly reduced in the number of edges with respect to a complete graph. In such a network,
all the relevant relations must be represented. At the same time, the network should be
kept as simple as possible. The simplest connected graph is a spanning tree. Minimum
spanning trees (MSTs) [26] are largely used in multivariate analysis; they represent a class
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of networks that connect all the vertices without forming cycles (i.e., closed paths of at least
three nodes). MSTs are often computed with respect to a distance metric, so that minimizing
the metric corresponds to linking assets that are close to each other. As a product of their
building process, MSTs retain the maximum possible number of distances [19] minimizing,
at the same time, the total edge distance. In [19], MSTs are computed using the Euclidean
distance [44]:

di,j =
√

2(1− ρi,j). (3)

This definition is however too restrictive disfavouring negatively correlated variables
that are equally important as the positive ones for the representation of the dependency
structure [45]. In order to mitigate this limitation, we use the power dissimilarity measure:

di,j = 1− ρ2
i,j (4)

The work [46] provides a complete pedagogical exposition of the determination of
the MST in the context of synchronous financial time series. A general approach to the
construction of the MST is to connect the less dissimilar vertices while constraining the
graph to be a tree as follows:

1. Make an ordered list of edges i, j, ranking them by increasing dissimilarity (first
the edge expressing the highest similarity and last the edge expressing the highest
dissimilarity).

2. Pop the first element of the ordered list and add it to the spanning tree.
3. If the added edge creates a cycle then remove the edge, otherwise skip to step 4.
4. Iterate the process from step 2 until all pairs have been exhausted.

Such an algorithm for the construction of the MST is known as the Prim’s algo-
rithm [47]. The resulting network has n − 1 edges. Considering that the system of
cryptocurrencies analysed in the current paper is made of n = 25 assets (i.e., nodes),
the resulting MST contains 24 edges (the code used to compute MSTs can be retrieved at
https://github.com/shazzzm/topcorr; last access on 27 October 2022).

3.4. Planar Maximally Filtered Graph (PMFG)

The MST is a powerful method to capture meaningful relationships in a network
structure describing a complex system. However, this method presents some aspects
that can be unsatisfactory. The main constraint is that it has to be a tree (i.e., it cannot
contain cycles). This characteristic makes impossible to represent relationships among more
than two variables showing strongly correlated behaviours in their dynamics. In order to
maintain the same powerful filtering properties of the MST and adding, at the same time,
extra links, cycles, and cliques (i.e., complete subgraphs) in a controlled manner, it has
been proposed to use the Planar Maximally Filtered Graph (PMFG) [48–51]. PMFG can
be viewed as the first incremental step towards complexity after the MST. Indeed, instead
of being a tree, the algorithm impose planarity. A graph is said to be planar if it can be
embedded in a sphere without edges crossing. The foundational work by [6] provides
a comprehensive pedagogical exposition of the determination of the PMFG. A general
approach to the construction of the PMFG can be resumed as follows:

1. Make an ordered list of edges i, j, ranking them by increasing dissimilarity (first
the edge expressing the highest similarity and last the edge expressing the highest
dissimilarity).

2. Pop the first element of the ordered list and add it to the graph.
3. If the resulting graph is not planar, then remove the edge, otherwise skip to step 4.
4. Iterate the process from step 2 until all pairs have been exhausted.

It has been proved that the MST is always a sub-graph of the PMFG [48]. PMFG has
3× (n− 2) edges and a number of 3-cliques larger or equal to 2n− 4. We remark that also
4-cliques can be present in this kind of graph.

https://github.com/shazzzm/topcorr
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3.5. Triangulated Maximally Filtered Graph (TMFG)

The PMFG presents two main limits: it is computational costly and it is a non-chordal
graph. A graph is said to be chordal if all cycles made of four or more vertices have a
chord which reduces the cycle to a set of triangles. A chord is defined as an edge that is not
part of the cycle but connects two vertices of the cycle itself. In order to bypass these two
constraints, the Triangulated Maximally Filtered Graph (TMFG) [27] has been proposed.
A general approach to the construction of the TMFG can be resumed as follows:

1. Make an ordered list of edges i, j, ranking them by increasing dissimilarity (first
the edge expressing the highest similarity and last the edge expressing the highest
dissimilarity).

2. Find the 4 nodes with the lowest sum of edge weights with all other nodes in the
graph and connect them forming a tetrahedron with 4 triangular faces.

3. Identify and add the node that minimize the sum of its connections to a triangle face
already included in the graph, forming three new triangular faces.

4. If the graph reaches a number of edges equal to 3n− 6, then stop, otherwise go to
step 3.

Such an algorithm extracts a planar subgraph which optimises an objective function
quantifying the gain of adding a new vertex to the existing tetrahedron. Compared to the
PMFG, the TMFG is more efficient to be computed and is a chordal graph. The chordal
structural form allows to use the filtered graph for probabilistic modeling [52,53]. A TMFG
has 3× (n − 2) edges (with n representing the number of nodes) and contains both 3-
cliques and 4-cliques. Considering that the system of cryptocurrencies analysed in the
current paper is made of n = 25 assets (i.e., nodes), the resulting TMFG contains 69 edges,
88 3-cliques, and 22 4-cliques (The code used to compute TMFGs can be retrieved at
https://github.com/shazzzm/topcorr; last access on 27 October 2022.).

4. Results

Figures 1a and 2a report the MST and the TMFG computed at horizon ∆t = 15.
Figures 1b and 2b report the MST and the TMFG computed at horizon ∆t = 86,400. Full
set of MSTs computed following the procedure described in Section 3.3 is reported in
Appendix A. Full set of TMFGs computed following the procedure described in Section 3.5
is reported in Appendix B.

BTC/USD

ETH/USD

(a)

ETH/USD

FTT/USD

LTC/USD

(b)

Figure 1. Minimum Spanning Tree representing log-returns time series’ dependency structure
computed at (a) 15 s and (b) 1 day. Only hub nodes are labelled. The adopted colour mapping scheme
follows the sectors’ taxonomy by [42] (see Appendix A).

https://github.com/shazzzm/topcorr
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BTC/USD
ETH/USD

LTC/USD

(a)

ETH/USD

LTC/USD

(b)

Figure 2. Triangulated Maximally Filtered graphs representing log-returns time series’ dependency
structure computed at (a) 15 s and (b) 1 day. Only hub nodes are labelled. The adopted colour
mapping scheme follows the sectors’ taxonomy by [42] (see Appendix B).

As a preliminary step into the study of the information level carried by the two network-
based information filtering approaches, Figure 3 shows how pairwise (see Figure 3a) and the
intra-sector (see Figure 3b) average Pearson’s correlation coefficient 〈ρ〉 evolves as a function
of time horizon ∆t. Figure 3a reports the mean Pearson’s correlation coefficient computed
averaging over the n(n − 1)/2 = 300 off-diagonal elements of the whole correlation
matrix C at different time horizons. In order to give a more comprehensive view of the
evolutionary dynamics of the mean pairwise correlation coefficient, we also report three
meaningful percentile intervals. We observe that the average correlation coefficient 〈ρ〉
increases with time horizon ∆t from a value equals to 0.19 at ∆t = 15 to a value equals to
0.47 at ∆t = 86,400. The value at ∆t = 15 corresponds to the minimum average correlation
coefficient across time horizons. On the other hand, the maximum average correlation
coefficient does not coincide with the one computed at the maximum time horizon. It is
instead detected at horizon ∆t = 14,400, which corresponds to an intra-day resolution
(i.e., 4 h). On average, the most prominent pairwise correlation weakenings are observed
for most correlated pair of assets (i.e., those pairs of cryptocurrencies having a correlation
coefficient included into highest percentiles).

15 60 900 3600 14,400 86,400
Horizon (seconds)

0.0

0.2

0.4

0.6

0.8

C
or

re
la

ti
on

co
effi

ci
en

t
(ρ

)

〈ρ〉
1% - 99%

10% - 90%

25% - 75%

(a)

15 60 900 3600 14,400 86,400
Horizon (seconds)

0.2

0.3

0.4

0.5

0.6

0.7

C
or

re
la

ti
on

co
effi

ci
en

t
(ρ

)

Currencies

Smart Contracts

Centralised Exchanges

(b)

Figure 3. Evolutionary dynamics of the average correlation coefficient as a function of the time
horizon ∆t. (a) reports the horizon-related mean Pearson’s correlation coefficient and three meaning-
ful percentiles computed averaging over the n(n− 1)/2 = 300 off-diagonal elements of the whole
correlation matrix C. (b) reports the horizon related mean Pearson’s correlation coefficients computed
averaging over the ns(ns − 1)/2 correlation coefficients of the ns assets belonging to one of three of
the most relevant sectors defined by [42]: Currencies, Smart Contracts, Centralised Exchange sectors.
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Figure 3b reports mean Pearson’s correlation coefficient computed averaging over the
ns(ns − 1)/2 correlation coefficients of the ns assets belonging to one specific sector [42] at
different time horizons. Specifically, we report dynamics for Currencies, Smart Contracts,
and Centralized Exchanges sectors. This choice is completed considering the relevance of
the three sectors. The relevance of sectors is defined in relation to results discussed later
in this section. An intra-sector scenario shows trends comparable to the ones observed
in pairwise context. All the previously discussed dynamics are here more pronounced.
In both cases, we observe the “Epps effect”, i.e., a decrease in pair correlations at finer
time sampling resolutions. This effect has been extensively studied in equity markets
by [22,30]. Results reported in Figure 3 show how, also in the cryptocurrency market,
the intra-sector correlation increases faster than pairwise one. The “Epps effect” is, hence,
more pronounced within each sector than outside it. Going deeper, in Appendix C, we
compare the probability distribution of correlation coefficients in the empirical correlation
matrix C with the probability distribution of correlation coefficients filtered, respectively,
by the MST and by the TMFG at different time horizons. We also report the probability
distribution of correlation coefficients for surrogate multivariate time series obtained by
randomly shuffling log-returns time series of the 25 cryptocurrencies listed in Table 1.
This step is performed in order to evaluate the null hypothesis of uncorrelated returns for
the considered portfolio of cryptocurrencies. Results give us the possibility to asses the
statistical significance of average correlation coefficients chosen both by MST and by TMFG
networks. These findings are reported in a synthetic way in Table 2. The extended count
and the corresponding statistical meaning of links having a value higher than the minimum
and lower than the maximum correlation coefficient detected by shuffling log-returns time
series at different time horizons for the three scenarios are reported in Appendix D.

Table 2. Average absolute correlation coefficient 〈|ρ|〉 and quantiles (25–75%) computed on the
empirical correlation matrix C, on the links filtered by MST and on the ones filtered by TMFG at
different time horizons. Statistical significance of the average correlation coefficient is represented
though asterisks. p-values > 0.05 are not marked. p-values ≤ 0.05 are marked as ∗. p-values ≤ 0.01
are marked as ∗∗. p-values ≤ 0.001 are marked as ∗∗∗. The filtering power of the MST and TMFG is
evident considering that the related mean correlation coefficients are always greater than the ones
computed on the whole correlation coefficient matrix C. Results for both MST and TMFG are always
robust across time horizons.

∆t C MST TMFG

〈|ρ|〉 25% 75% 〈|ρ|〉 25% 75% 〈|ρ|〉 25% 75%

15 0.20 0.02 0.31 0.35 ∗∗∗ 0.26 0.49 0.31 ∗∗ 0.22 0.42
60 0.31 0.05 0.46 0.47 ∗∗∗ 0.42 0.63 0.44 ∗∗∗ 0.38 0.57
900 0.44 ∗∗ 0.22 0.62 0.60 ∗∗∗ 0.57 0.76 0.57 ∗∗∗ 0.55 0.69

3600 0.46 ∗∗ 0.28 0.63 0.62 ∗∗∗ 0.59 0.76 0.59 ∗∗∗ 0.56 0.70
14,400 0.49 ∗ 0.38 0.65 0.65 ∗∗∗ 0.64 0.77 0.62 ∗∗∗ 0.58 0.72
86,400 0.48 0.38 0.62 0.66 ∗∗ 0.64 0.77 0.61 ∗∗ 0.57 0.72

Average correlation coefficients for MSTs and TMFGs are always greater than the ones
computed on the empirical correlation matrix C. The difference between cross-horizons
mean of average correlation coefficients filtered by MSTs and cross-horizons mean of av-
erage correlation coefficients in C, is equal to 0.16. The difference between cross-horizons
mean of average correlation coefficients filtered by TMFGs and cross-horizons mean of
average correlation coefficients in C, is equal to 0.12. Correlation coefficients filtered by
TMFGs are always lower than the ones filtered by MSTs. This depends on the fact that,
as reported in Section 3.5, the TMFG contains, by construction, more information than the
MST. The mean difference between average correlation coefficients filtered by MSTs and the
ones filtered by TMFGs, is equal to 0.03. Results reported in Table 2 confirm that the two fil-
tering approaches prune weakest correlations among considered cryptocurrencies keeping
only the strongest ones. Differently from what happens for the empirical correlation matrix
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C, results for both MST and TMFG are always statistical significant across time horizons.
These results enforce the evidence that both MST and TMFG carry information about
strongest interactions observed in the system, disregarding most of the links consistent
with the null hypothesis of uncorrelated data. It is worth noting that such an analysis does
not tell much about the statistical robustness of links selected by the two network-based
information filtering approaches. In order to perform such an investigation, we adopt the
technique proposed by [54]. For each time horizon ∆t, we sample 1000 bootstrap replicas
r = 1, . . . , 1000 of the empirical log-returns time series data. The length of empirical data
and the one of each replica is kept equal. We compute the MST*(r) and the TMFG*(r) for
each replica r. For each time sampling resolution, we map each link of the original MST
and TMFG to an integer number and we count the number of links present both in the
MST and TMFG and in each of the MST*(r) and TMFG*(r). Table 3 reports, for each time
sampling interval ∆t, the number of links of the empirical MST and TMFG with a bootstrap
value larger than 95%.

Table 3. Percentage of links contained in empirical MST and TMFG at time horizon ∆t with a
bootstrap value larger than 95%. In the case of the MST, it is possible to notice how the robustness
of the network structure decreases for coarser time sampling intervals. In the case of TMFG, on the
contrary, the robustness is maintained across time horizons with low oscillations.

∆t MST TMFG

15 62.5% 28.9%
60 58.3% 37.7%

900 54.2% 36.2%
3600 58.3% 36.2%

14,400 41.6% 40.6%
86,400 25.0% 27.5%

Results in Table 3 show how, in the case of the MST, the robustness of the underlying
network structure decreases for coarser time sampling resolutions. A consistent result has
been observed by [50] in equity markets. This finding can be explained in two different
ways. The first and most straightforward explanation is the statistical one and can be
resumed as follows: the higher number of samples at finer time sampling resolutions
implies higher statistical significance, while the lower number of samples at coarser time
sampling resolutions imply lower statistical significance. A second explanation can be given
looking at the structure of the networks reported in Appendix A. At finer time sampling
resolutions, we observe less structured networks where numerous small-degree nodes
(spokes) coexist with few anchor ones (hubs) characterised by an exceptionally high number
of links. At coarser time sampling resolutions we observe more structured networks with a
less imbalanced degree distribution. Such a topological change directly implies a loss in
the links’ statistical robustness. The case of TMFG is different. Statistical robustness of the
network is maintained across horizons without significant draw-downs. Indeed, during the
optimization phase of the objective function, TMFG tends to be marginally exposed to local
minima, being robust to dramatic topological changes.

These last findings can be formally characterised studying the evolution of the average
shortest path in MST and in TMFG as a function of time sampling resolution. Figure 4
reports the significant different behaviour in compactness’ evolutionary dynamics of the
two network-based information filtering approaches. In the case of MST, the minimum
length of the average shortest path is equal to 2.46 and is detected at ∆t = 15, while the
maximum length is equal to 3.05 and is detected at ∆t = 86,400. In the case of TMFG, we
observe a strong compactness across time horizons. The minimum length of the average
shortest path is equal to 1.83 and is detected at ∆t = 3600, while the maximum length
is equal to 1.9 at ∆t = 60. In the case of MST, at the finest time sampling resolution
(i.e., ∆t = 15), we observe a structurally simple network with two cryptocurrencies (i.e.,
Ethereum and Bitcoin) acting as a hierarchical reference for the majority of other assets.
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This topological structure persists switching to time horizon ∆t = 60. Several changes in
nodes’ reference roles can be observed for networks sampled at time horizons ∆t = 900
and ∆t = 3600.
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Figure 4. Average length of the shortest path in MST and TMFG as function of the time horizon at
which log-returns are computed. We observe a decreasing compactness of MST networks at coarser
time sampling resolutions. Instead, the compactness of the TMFG turns out to be stable across time
horizons with low oscillations.

In both cases Ethereum maintains its reference role even reducing its centrality. Bitcoin,
on the contrary, is gradually replaced in its role by Litecoin and FTX token (both part of
the Bitcoin’s cluster at time horizon ∆t = 60). This structural transition is evident at
∆t = 14,400 and fully realised at ∆t = 86,400.

In the case of TMFG representations, it is harder to graphically detect similar dynam-
ics. Figure 5 offers a comparative perspective between behaviours of the two network-
based information filtering approaches. It shows horizon dependent evolutionary dy-
namics of degree centrality (i.e., measurement of the number of connections owned by a
node) [55–57] for Ethereum, Bitcoin, Litecoin, and FTX Token both for MST and for TMFG.
Cross-assets similarities can be detected between the two types of graphs. In the case of
MSTs, degree centrality is less sensitive to minor changes in reference roles played by main-
stream cryptocurrencies across time horizons, amplifying only ‘extreme’ ones. In the case of
TMFGs, on the contrary, the same centrality measure is able to capture even small variations
in network structure. This observation can be easily explained considering the amount of
information the two representations are able to express. This study can be further extended
looking at sectors of cryptocurrencies instead of at singular assets. Figure 6 reports the
evolution of degree centrality for the three sectors Ethereum, Bitcoin, Litecoin, and FTX
Token belong to: the Currencies sector, the Smart Contracts sector, and the Centralized
Exchanges sector. We remark that there is no consensus on a unique mapping between
cryptocurrencies and sectors. The taxonomy adopted in the current paper is described
in [42] and corresponds to the one used by Kraken [28].

Figure 6a shows how, in the case of MST, the average degree centrality for the Smart
Contracts sector strongly decreases starting from time horizon ∆t = 3600, following the
trend of its leading representative: Ethereum cryptocurrency. The Currencies sector, on the
other hand, does not experience a decreasing trend and tends to remain stable across time
horizons with low level of oscillations. In this case the loss of centrality of Bitcoin after time
horizon ∆t = 900, is immediately compensated by Litecoin, which reaches a hierarchical
reference role at coarser time sampling resolutions. The case of Centralized Exchanges
sector is different. It is stable across time horizons, without experiencing any change
in intra-sector reference role dynamics and always following the behaviour of its main
representative, FTX token (see Figure 5a). This last finding can be explained considering
the source of the data used in the current research work. As explained in Section 3.1, we
fetch data from the FTX digital currency exchange. This can cause, on the one hand an
over-estimation of the role played by the exchange specific token, FTX Token, in the whole
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ecology of the system under investigation, and, on the other hand, can give a potentially
biased stability to the sector the asset belongs to.
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Figure 5. Degree centrality computed on MST (a) and on TMFG (b) as a function of time sam-
pling resolution. Results on the TMFG highlight the switch in the reference roles of mainstream
cryptocurrencies.
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Figure 6. Group degree centrality computed on MST (a) and on TMFG (b) for Currencies sector,
Smart Contracts sector, and Centralized Exchanges sector. Group degree centrality of a set of nodes
is defined as the fraction of non-group members connected to group members. Sectors are defined
following the taxonomy by [42].

5. Conclusions

We investigate how cryptocurrency market’s dependency structures evolve passing
from high to low frequency time sampling resolutions. Starting from the log-returns of
25 liquid cryptocurrencies traded on the FTX digital currency exchange at 6 different time
horizons spanning from 15 s to 1 day, we investigate pairwise correlations demonstrating
that cryptocurrency market has an “Epps effect” which is comparable to the one widely
studied in the equity market. Indeed, we show that the average correlation among assets
increases moving from high to low frequency time horizons and we demonstrate how this
dynamic is even more evident grouping cryptocurrencies into sectors. Using the concept
of power dissimilarity measure, we review the building process of two network-based
information filtering approaches: MST and TMFG. If, on the one hand, MST has been
historically used in the description of dependency structures of different financial markets,
on the other hand, this is the very first time TMFG is used to study interactions between
digital assets at different time scales. Studying topologies of MSTs at finer time sampling
resolutions, we observe structurally simpler networks characterised by an hub-and-spoke
configuration with statistically robust links. We observe an increase in the complexity
of the networks’ shape for coarser time sampling resolutions with a decrease in links’
statistical robustness. Such an horizon-dependent structural change is reflected by the
average path length of the networks, characterised by an increasing trend moving from
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high to low frequencies. TMFG offers a different perspective for the same problem. In this
case, we do not observe dramatic changes in networks’ topologies across time horizons.
Graphs are more compact and statistical robustness of links is maintained across time with
negligible oscillations. As a consequence of this, the average path length is lower and almost
constant across time horizons. Studying the relative position of assets in both MSTs and
TMFGs through the usage of degree centrality measure, we outline the presence of multiple
changes in the hierarchical reference role among the considered set of cryptocurrencies.
These changes strongly characterise singular cryptocurrencies. We find that Ethereum acts
as a hierarchical reference node for the majority of other assets and maintains this role
across time, gradually losing its centrality at coarser time horizons. There is not a clear
economic explanation for this result. We know that lots of other cryptocurrencies are based
on the Ethereum’s blockchain technology but we do not think this represents a sufficient
explanation to our finding. Other cryptocurrencies play a similar role with respect to smaller
clusters of assets at specific time horizons. We refer specifically to Bitcoin, Litecoin, and
FTX Token. Differently from Ethereum, their role does not emerge at finer time sampling
resolutions and should be considered as the result of a structured evolutionary process
across time horizons. We conclude stating that sectors’ dynamics captured by the chosen
network-based information filtering approaches are poorly affected by the ones of their
main representatives, efficiently absorbing horizon-dependent changes in cryptocurrencies
dynamics. This is true especially for TMFG. Indeed, looking at the evolution of the degree
centrality of the Smart Contracts and Currencies sectors, one can observe that dynamics
captured by MST are strongly influenced by the ones of Ethereum and Bitcoin. This does
not happen in the case of TMFG where sectors’ dynamics are typically detached from the
ones of specific cryptocurrencies.
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Appendix A
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Figure A1. Minimum Spanning Tree representing log-returns time series’ dependency structure
computed at (a) 15 s, (b) 1 min, (c) 15 min, (d) 1 h, (e) 4 h, and (f) 1 day. The adopted colour mapping
scheme follows the sectors’ taxonomy by [42]: red→ currencies, green→ smart contract platforms,
blue→ stablecoins, pink→ centralized exchanges, orange→ scaling, turquoise→ decentralized
exchanges, fuchsia → lending, and yellow → all the other sectors. Dashed, red edges represent
negatives linear correlations among pairs of cryptocurrencies. Only hub nodes are labelled.
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Appendix B
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Figure A2. Triangulated Maximally Filtered Graphs representing log-returns time series’ depen-
dency structure computed at (a) 15 s, (b) 1 min, (c) 15 min, (d) 1 h, (e) 4 h, and (f) 1 day. The adopted
colour mapping scheme follows the sectors’ taxonomy by [42]: red→ currencies, green→ smart
contract platforms, blue→ stablecoins, pink→ centralized exchanges, orange→ scaling, turquoise
→ decentralized exchanges, fuchsia→ lending, and yellow→ all the other sectors. Dashed, red
edges represent negatives linear correlations among pairs of cryptocurrencies. Only hub nodes
are labelled.
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Appendix C
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Figure A3. Probability distribution of correlation coefficients for the empirical correlation matrix C,
MST, TMFG, and correlation matrix of shuffled log-returns time series computed at (a) 15 s, (b) 1 min,
(c) 15 min, (d) 1 h, (e) 4 h, and (f) 1 day.
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Appendix D

Table A1. Number of links of the empirical correlation matrix C, of the MST and of the TMFG having
a value higher than the minimum and lower than the maximum correlation coefficient detected by
shuffling log-returns time series at different time horizons. Shuffling operation is repeated 100 times.
Results can be interpreted as p-values of the average correlation coefficient computed for C, for the
MST and for the TMFG.

∆t C MST TMFG

15 36 0 1
60 28 0 0

900 2 0 0
3600 2 0 0

14,400 16 0 0
86,400 34 1 3
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