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ABSTRACT
We propose a contemporaneous bilinear transformation for a p × q matrix time series to alleviate
the difficulties in modeling and forecasting matrix time series when p and/or q are large. The resulting
transformed matrix assumes a block structure consisting of several small matrices, and those small matrix
series are uncorrelated across all times. Hence, an overall parsimonious model is achieved by modeling
each of those small matrix series separately without the loss of information on the linear dynamics. Such
a parsimonious model often has better forecasting performance, even when the underlying true dynamics
deviates from the assumed uncorrelated block structure after transformation. The uniform convergence
rates of the estimated transformation are derived, which vindicate an important virtue of the proposed
bilinear transformation, that is, it is technically equivalent to the decorrelation of a vector time series of
dimension max(p, q) instead of p × q. The proposed method is illustrated numerically via both simulated
and real data examples. Supplementary materials for this article are available online.
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1. Introduction

Let Xt = (Xt,i,j) be a p × q matrix time series, that is, there
are p × q recorded values at each time from, for example,
p individuals and over q indices or variables. Data recorded
in this form are increasingly common in this information age,
due to the demand to solve practical problems from, among
others, signal processing, medical imaging, social networks, IT
communication, genetic linkages, industry production and dis-
tribution, economic activities and financial markets. Extensive
developments on statistical inference for matrix data under iid
settings can be found in Negahban and Wainwright (2011),
Rohde and Tsybakov (2011), Xia and Yuan (2019), and the
references therein. Many matrix sequences are recorded over
time, exhibiting significant serial dependence which is valuable
for modeling and future prediction. The surge of development
in analyzing matrix time series includes bilinear autoregressive
models (Hoff 2015; Chen, Xiao, and Yang 2021; Xiao, Han,
Chen 2022), factor models based on Tucker’s decomposition for
tensors (Wang, Liu, and Chen 2019; Chen, Tsay, and Chen 2020;
Chen et al. 2020; Han et al. 2020; Chen, Yang, and Zhang 2022;
Han, Chen, and Zhang 2022), and factor models based on the
tensor CP decomposition (Chang et al. 2021; Han, Zhang, and
Chen 2021; Han and Zhang 2022).

A common feature in the aforementioned approaches is
dimension-reduction, as the so-called “curse-of-dimensionality”
is more pronounced in modeling time series than iid observa-
tions, which is exemplified by the limited practical usefulness
of vector ARMA (VARMA) models. Note that an unregularized
VAR(1) model with dimension p involves at least p2 parameters.
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Hence, finding an effective way to reduce the number of
parameters is of fundamental importance in modeling and
forecasting high dimensional time series. In the context of
vector time series, most available approaches may be divided
into three categories: (i) regularized VAR or VARMA methods
incorporating LASSO or alternative penalties (Basu and
Michailidis 2015; Guo, Wang, and Yao 2016; Lin and Michailidis
2017; Zhou and Raskutti 2018; Gao et al. 2019; Ghosh, Khare,
and Michailidis 2019; Han and Tsay 2020; Han, Chen, and Wu
2020; Han, Tsay, and Wu 2023), (ii) factor models of various
forms (Pena and Box 1987; Bai and Ng 2002; Forni et al.
2005; Lam and Yao 2012), (iii) various versions of independent
component analysis (Back and Weigend 1997; Tiao and Tsay
1989; Matteson and Tsay 2011; Huang and Tsay 2014; Chang,
Guo, and Yao 2018). Note that the literature in each of the
three categories is large, it is impossible to list all the relevant
references here.

In this article we propose a new parsimonious approach for
analyzing matrix time series, which is in the spirit of inde-
pendent component analysis. It transforms a p × q matrix
series into the new matrix series of the same size by a con-
temporaneous bilinear transformation (i.e., the values at differ-
ent time lags are not mixed together). The new matrix series
is divided into several submatrix series and those submatrix
series are uncorrelated across all time lags. Hence, an overall
parsimonious model can be developed as those submatrix series
can be modeled separately without the loss of information on
the overall linear dynamics. This is particularly advantageous
for forecasting future values. In general cross-serial correla-
tions among different component series are valuable for future
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prediction. However, the gain from incorporating those cross-
serial correlations directly in a moderately high dimensional
model is typically not enough to offset the error resulted from
estimating the additional large number of parameters. This is
why forecasting a large number of time series together based on
a joint time series model can often be worse than that forecast-
ing each component series separately by ignoring cross-serial
correlations completely. The proposed transformation alleviates
the problem by channeling all cross-serial correlations into the
transformed submatrix series and those subseries are uncorre-
lated with each other across all time lags. Hence, the relevant
information can be used more effectively in forecasting within
each small models. Note that the transformation is one-to-one,
therefore, the good forecasting performance of the transformed
series can be easily transformed back to the forecasting for the
original matrix series. Our empirical study in Section 4 also
demonstrates that, even when the underlying model does not
exactly follow the assumed uncorrelated block structure, the
decorrelation transformation often produces superior out-of-
sample prediction, as the transformation enhances the within
block autocorrelations, and the cross-correlations between the
blocks are weaker or too weak to be practically useful.

The basic idea of the proposed transformation is similar to
the so-called principal component analysis for time series (TS-
PCA) of Chang, Guo, and Yao (2018). Actually one might be
tempted to stack a p × q matrix series into a (pq)×1 vector time
series, and apply TS-PCA directly. This requires to search for a
(pq) × (pq) transformation matrix. In contrast, the proposed
bilinear transformation is facilitated by two matrices of size,
respectively, p × p and q × q. Indeed our asymptotic anal-
ysis indicates that the proposed new bilinear transformation is
technically equivalent to a TS-PCA transformation with dimen-
sion max(p, q) instead of (p × q); see Remark 6 in Section 3.
Furthermore the bilinear transformation does not mix rows
and columns together, as they may represent radically different
features in the data. See, for example, the example in Section 4.2
for which the bilinear transformation also outperforms the vec-
torized TS-PCA approach in a post-sample forecasting.

The rest of the article is organized as follows. The targeted
bilinear decorrelation transformation is characterized in Sec-
tion 2. We introduce a new normalization under which the
required transformation consists of two orthogonal transforma-
tions. The orthogonality allows us to accumulate the informa-
tion from different time lags without cancelation. The estima-
tion of the bilinear transformation boils down to the eigenanal-
ysis of two positive-definite matrices of sizes p × p and q × q,
respectively. Hence, the computation can be carried out on a
laptop/PC with p and q equal to a few thousands. Theoretical
properties of the proposed estimation are presented in Section 3.
The non-asymptotic error bounds of the estimated transfor-
mation are derived based on some concentration inequalities
(e.g., Rio 2000; Merlevède, Peligrad, Rio 2011); further leading
to the uniform convergence rates of the estimation. Numerical
illustration with both simulated and real data is reported in Sec-
tion 4, which shows superior performance in forecasting over
the methods without transformation and TS-PCA. Once again
it reinforces the fact that the cross-serial correlations are impor-
tant and useful information for future prediction for a large
number of time series, and, however, it is necessary to adopt the

proposed decorrelation transformation (or other dimension-
reduction techniques) in order to use the information effectively.
All technical proofs are relegated to a supplementary material.

2. Methodology

2.1. Decorrelation Transformations

Again, let Xt = (Xt,i,j) be a p × q matrix time series. We assume
that Xt is weakly stationary in the sense that all the first two
moments are finite and time-invariant. Our goal is to seek for a
bilinear transformation such that the transformed matrix series
admits the following segmentation structure:

Xt = BUtA�, Ut =

⎛⎜⎜⎜⎝
Ut,1,1 Ut,1,2 · · · Ut,1,nc
Ut,2,1 Ut,2,2 · · · Ut,2,nc

...
...

...
...

Ut,nr ,1 Ut,nr ,2 · · · Ut,nr ,nc

⎞⎟⎟⎟⎠ ,

(1)
where A and B are unknown, respectively, q × q and
p × p invertible constant matrices, and random matrix
Ut is unobservable, Ut,i,j is a pi × qj matrix with unknown
pi and qj,

∑nr
i=1 pi = p, and

∑nc
j=1 qj = q. Furthermore,

cov{vec(Ut+τ ,i1,j1), vec(Ut,i2,j2)} = 0 for any (i1, j1) �= (i2, j2)
and any integer τ , that is, all those submatrix series are
uncorrelated with each other across all time lags.

Remark 1. (i) The decorrelation bilinear transformation (1) is
in the same spirit as TS-PCA of Chang, Guo, and Yao (2018)
which transforms linearly a vector time series to a new vector
time series of the same dimension but segmented into several
subvector series, and those subvectors are uncorrelated across all
time lags. Thus, as far as the linear dynamics is concerned, one
can model each of those subvector time series separately. It leads
to appreciable improvement in future forecasting, as the trans-
formed process encapsulates all the cross-serial correlations into
the auto-correlations of those uncorrelated subvector processes.

(ii) In the matrix time series setting, one would be tempted
to stack all the elements of Xt into a long vector and to apply TS-
PCA of Chang, Guo, and Yao (2018) directly, though it destroys
the original matrix structure. This requires to search for the
(pq) × (pq) decorrelation transformation matrix � such that
vec(Xt) = �vec(Ut). The proposed model (1) is to impose a
low-dimensional structure � = A ⊗ B, where ⊗ denotes the
matrix Kronecker product, such that the technical difficulty is
reduced to that of estimating two transformation matrices of size
p × p and q × q, respectively, with significant faster convergence
rate; see Remark 6 in Section 3. The empirical results in Section 4
also demonstrate the benefit of maintaining the matrix structure
in out-sample prediction performance.

(iii) The segmentation structure in (1) may be too rigid and
the division of the submatrices may not be that regular. In
practice a small number of row blocks and/or column blocks
may be resulted from applying the estimation method proposed
in Section 2.3. Then applying the same method again to each
submatrix series Ut,i,j may lead to a finer segmentation with
irregularly sized small blocks.

(iv) Similar to TS-PCA, the desired segmentation structure
(1) may not exist in real applications. Then the estimated bilin-
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ear transformation, by the method in Section 2.3, leads to an
approximate segmentation which encapsulates most significant
correlations across different component series into the seg-
mented submatrices while ignoring some small correlations.
With enhanced auto-correlations, those submatrix processes
become more predictable while those ignored small correlations
are typically practically negligible. Consequently the improve-
ment in future prediction still prevails in spite of the lack of
an exact segmentation structure. See Chang, Guo, and Yao
(2018), and also a real data example in Section 4.2 in which
the three versions of segmentation (therefore, at least two of
them are approximations) uniformly outperform the various
methods without the transformation. A simulation study in
Section 4.1 also shows that when the underlying true model
deviates from the desired segmentation structure by a moderate
amount, the approximated segmentation model produces supe-
rior out-sample prediction performance than those without the
transformation.

(v) The use of bilinear form in (1) is common in matrix and
tensor data analysis. For example, it is used in regression with
matrix-type covariates (Basu et al. 2012; Zhou, Li, Zhu 2013;
Wang, Zhang, and Dunson 2019), matrix autoregressive model
(Hoff 2015; Chen, Xiao, and Yang 2021) and matrix factor model
(Wang, Liu, and Chen 2019; Chen, Tsay, and Chen 2020; Chen,
Yang, and Zhang 2022).

(vi) For dealing with time series with structural changes, it is
possible to allow A and B to be time varying, which is technically
more demanding and will be explored elsewhere.

2.2. Normalization and Identification

To simplify the statements, let E(Xt) = 0. This amounts to
center the data by the sample mean first, which will not affect the
asymptotic properties of the estimation under the stationarity
assumption. Thus, E(Ut) = 0.

The terms A, B, and Ut on the RHS of (1) are not uniquely
defined, and any A, B, and Ut satisfying the required condition
will serve the decorrelation purpose. Therefore, we can take the
advantage from this lack of uniqueness to identify the “ideal” A
and B to improve the estimation effectiveness. More precisely, by
applying a new normalization, we identify A and B to be orthog-
onal, which facilitates the accumulation of the information from
different time lags without cancelation. To this end, we first list
some basic facts as follows.

1. (B, Ut , A�) in (1) can be replaced by (BD1, D−1
1 UtD−1

2 , D2A�)

for any invertible block diagonal matrices D1 and D2 with
the block sizes, respectively, (p1, . . . , pnr ) and (q1, . . . , qnc).
In particular, D1 and D2 can be the permutation matrices
which permute the columns and rows within each block. In
addition, D1 and D2 can be the block matrices that permute
nr row blocks and nc column blocks, respectively. Note both
(p1, . . . , pnr ) and (q1, . . . , qnc) are defined by (1) only up to
any permutation.

2. The q columns of BUt can be divided into nc uncorrelated
blocks of sizes (q1, . . . , qnc), that is, the columns of BUt
resemble the same pattern of the uncorrelated blocks as those
of Ut . Thus, �

(u)
1 ≡ E(U�

t B�BUt)/p is a block diagonal
matrix with the block sizes (q1, . . . , qnc). In the same vein,

�
(u)
2 = E(UtA�AU�

t )/q is a block diagonal matrix with the
block sizes (p1, . . . , pnr ).

3. Put B = (B1, . . . , Bnr ) and A = (A1, . . . , Anc), where Bi is
p×pi and Ai is q×qi. Then linear spacesM(B1), . . . ,M(Bnr )

and M(A1), . . . ,M(Anc) are uniquely defined by (1) up to
any permutation, though B and A are not, where M(G)

denotes the linear space spanned by the columns of matrix
G. Note that for any q × q positive definite matrix �1 and
p × p positive definite matrix �2,

�
−1/2
1 A = (�

−1/2
1 A1, . . . , �−1/2

1 Anc),

M(Ai) = �
1/2
1 M(�

−1/2
1 Ai) i = 1, . . . , nc,

�
−1/2
2 B = (�

−1/2
2 B1, . . . , �−1/2

2 Bnr ),

M(Bi) = �
1/2
2 M(�

−1/2
2 Bi) i = 1, . . . , nr .

Put �
(x)
1 = E(X�

t Xt)/p and �
(x)
2 = E(XtX�

t )/q. Propo-
sition 1 indicates that if we replace Xt in (1) by a normalized
version {�(x)

2 }−1/2Xt{�(x)
1 }−1/2, we can treat both A and B in

(1) as orthogonal matrices. This orthogonality plays a key role in
combining together the information from different time lags in
our estimation (see the proof of Proposition 2 in the Appendix,
supplementary materials).

Proposition 1. Let both �
(x)
1 and �

(x)
2 be invertible. Then it holds

that

Xt = {�(x)
2 }1/2B∗U∗

t A�∗ {�(x)
1 }1/2, (2)

where U∗
t admits the same segmentation structure as Ut in (1),

and A∗ and B∗ are, respectively, q × q and p × p orthogonal
matrices. More precisely,

U∗
t = {�(u)

2 }−1/2Ut{�(u)
1 }−1/2,

A∗ = {�(x)
1 }−1/2A{�(u)

1 }1/2, B∗ = {�(x)
2 }−1/2B{�(u)

2 }1/2. (3)

The proof of Proposition 1 is almost trivial. First note that
both �

(u)
1 , �

(u)
2 are invertible. Then (2) follows from (1) and

(3) directly. The orthogonality of, for example, B∗ follows from
equality E[{�(x)

2 }−1/2XtX�
t {�(x)

2 }−1/2]/q = Ip, (2) and (3).
Also note that {�(u)

2 }−1/2 and {�(u)
1 }−1/2 are of the same block

diagonal structure as, respectively, �
(u)
2 and �

(u)
1 . This implies

that U∗
t admits the same segmentation structure as Ut .

Write A∗ = (A∗1, . . . , A∗nc), B∗ = (B∗1, . . . , B∗nr ), where
A∗j has qj columns and B∗i has pi columns. Then U∗

t,i,j =
A∗j{�(x)

2 }−1/2Xt{�(x)
1 }−1/2B∗i. Note that (B∗, U∗

t , A�∗ ) in (2)
are (still) not uniquely defined, similar to the property (i)
above. In fact, only the linear spaces M(B∗1), . . . ,M(B∗nr )

and M(A∗1), . . . ,M(A∗nc) are uniquely defined. Proposition 2
shows that we can take the orthonormal eigenvectors of two
properly defined positive definite matrices as the columns of
A∗ and B∗. With A∗ and B∗ specified, the segmented U∗

t can be
solved from (2) directly. Let

V(1)
τ ,i,j = {�(x)

1 }−1/2
E(X�

t+τ Ei,jXt){�(x)
1 }−1/2,

V(2)
τ ,i,j = {�(x)

2 }−1/2
E(Xt+τ Ei,jXt

�){�(x)
2 }−1/2,
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where Ei,j is the unit matrix with 1 at position (i, j) and 0
elsewhere, and Ei,j is p × p in the first equation, and q × q
in the second equation. For a prespecified integer τ0 ≥ 1, let

W(1) =
τ0∑

τ=−τ0

p∑
i=1

p∑
j=1

V(1)
τ ,i,j

(
V(1)

τ ,i,j
)�

p2 ,

W(2) =
τ0∑

τ=−τ0

q∑
i=1

q∑
j=1

V(2)
τ ,i,j

(
V(2)

τ ,i,j
)�

q2 . (4)

Proposition 2. Let both �
(x)
1 and �

(x)
2 be invertible, and all the

eigenvalues of W(i) be distinct, i = 1, 2. Also let τ0 ≥ 1. Then the
q orthonormal eigenvectors of W(1) can be taken as the columns
of A∗, and the p orthonormal eigenvectors of W(2) can be taken
as the columns of B∗.

The proposition above does not give any indication on how
to arrange the columns of A∗ and B∗, which should be ordered
according to the latent uncorrelated block structure (1). We
address this issue in Section 2.3.

Remark 2. The representation (1) suffers from the indetermi-
nacy due to the fact that the column blocks and row blocks
can be permuted, and the columns and rows within each block
can be rotated, see property (i) above. However, this indetermi-
nacy does not have material impact on identifying the desired
structure (1), as any one of such representations will serve the
purpose. The developed asymptotic theory guarantees that the
proposed estimator converges to a representation which fulfills
the conditions imposed on (1).

Remark 3. In case that W(1), W(2) have tied eigenvalues and
the corresponding eigenvectors across different blocks, Propo-
sition 2 no longer holds. Then the blocks sharing the tied
eigenvalues cannot be separated. To avoid the tied eigenvalues,
we may use different values of τ0, or different form of W(i). For
example, we may replace W(1) by

W(1,f ) =
τ0∑

τ=−τ0

p∑
i=1

p∑
j=1

f
(

V(1)
τ ,i,jV

(1)�
τ ,i,j

)
p2 ,

where f (V) is a function of a symmetric matrix V in which
f (V) = �D(f )��, V = �D�� is the eigen-decomposition for
V, and D(f ) = diag(f (d1), . . . , f (dq)) is the diagonal-element-
wise transformation of the diagonal matrix D of the eigenvalues.

In fact the condition that all eigenvalues of W(i) are different
can be relaxed. For example, we only require any two eigenvalues
of W(i) corresponding two different blocks to be different while
the eigenvalues corresponding to the same black can be the
same. See also a similar condition in the eigen-gap � in (14)
in Section 3.

Remark 4. In practice, we need to specify τ0 in (4). In principle
any τ0 ≥ 1 can be used for the purpose of segmentation.
A larger τ0 may capture more lag-dependence, but may also
risk adding more “noise” when the dependence decays fast.
Since autocorrelation is typically at its strongest at small lags,
a relatively small τ0, such as τ0 ≤ 5, is often sufficient (Lam,

Yao, and Bathia 2011; Chang, Guo, and Yao 2018; Wang, Liu,
and Chen 2019; Chen, Yang, and Zhang 2022).

2.3. Estimation

The estimation for A∗ and B∗, defined in (3), is based on the
eigenanalysis of the sample versions of matrices defined in (4).
To this end, let

�̂
(x)
1 = 1

Tp

T∑
t=1

X�
t Xt , �̂

(x)
2 = 1

Tq

T∑
t=1

XtX�
t , (5)

V̂(1)
τ ,i,j = {�̂(x)

1 }−1/2
T−τ∑
t=1

X�
t+τ Ei,jXt

T − τ
{�̂(x)

1 }−1/2,

V̂(2)
τ ,i,j = {�̂(x)

2 }−1/2
T−τ∑
t=1

Xt+τ Ei,jXt�

T − τ
{�̂(x)

2 }−1/2, (6)

Ŵ(1) = 1
p2

τ0∑
τ=−τ0

p∑
i=1

p∑
j=1

V̂(1)
τ ,i,j

(
V̂(1)

τ ,i,j
)�,

Ŵ(2) = 1
q2

τ0∑
τ=−τ0

q∑
i=1

q∑
j=1

V̂(2)
τ ,i,j

(
V̂(2)

τ ,i,j
)�. (7)

Performing the eigenanalysis for Ŵ(1), and arranging the order
of the resulting q orthonormal eigenvectors γ̂1, . . . , γ̂q by the
algorithm below, we take the reordered eigenvectors as the
columns of Â∗. The estimator B̂∗ is obtained in the same manner
via the eigenanalysis for Ŵ(2). Then by (2), we obtain the
transformed matrix series

Û∗
t = B̂�∗ {�̂(x)

2 }−1/2Xt{�̂(x)
1 }−1/2Â∗. (8)

Note that the estimation for A∗ and that for B∗ are carried out
separately. They do not interfere with each other.

Now we present an algorithm to determine the order of the
columns for Â∗. By (2), the columns of Zt ≡ Xt{�(x)

1 }−1/2A∗
are divided into the nc uncorrelated blocks. Define

Ẑt ≡ (̂zt,i,j) = Xt{�̂(x)
1 }−1/2(γ̂1, . . . , γ̂q). (9)

We divide the columns of Ẑt into uncorrelated blocks accord-
ing to the pairwise maximum cross-correlations between the
columns. Specifically, the maximum cross-correlation between
the kth and �th columns is defined as

ρ̂k,� = max
1≤i,j≤p, |τ |≤τ1

∣∣ĉorr(̂zt+τ ,i,k, ẑt,j,�)
∣∣

= max
1≤i,j≤p, |τ |≤τ1

∣∣γ̂ �
k V̂(1)

τ ,i,jγ̂�

∣∣{
γ̂ �

k V̂(1)
0,i,iγ̂k γ̂ �

� V̂(1)
0,j,jγ̂�

}1/2 (10)

The second equality above follows from (6), (7), and (9). In the
above expression, τ1 ≥ 1 is a user-defined tuning parameter
(See Remark 5). To determine all significantly correlated pairs
of variable, rearrange ρ̂k,�, 1 ≤ k < � ≤ q, in the descending
order: ρ̂(1) ≥ · · · ≥ ρ̂(q0) and define

r̂ = arg max
1≤j≤q0

ρ̂(j) + δT

ρ̂(j+1) + δT
, (11)
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where δT > 0 is a small constant. We take the r̂ pair of columns
corresponding to ρ̂(1), . . . , ρ̂(̂r) as correlated pairs, and treat the
rest as uncorrelated pairs. The intuition is that ρ(r)/ρ(r+1) is ∞
if ρ(r) > 0 but ρ(r+1) = 0. The use of δT is to smooth out the
large variation of ρ̂(j)/ρ̂(j+1) when both ρ(j) and ρ(j+1) are small.
Similar ideas have also been used in determining the number of
factors in Lam and Yao (2012), Ahn and Horenstein (2013), and
Han, Chen, and Zhang (2022).

With the r̂ identified significantly correlated pairs, a connec-
tion graph is built, with the column indexes as the vertices and
the edges between the identified correlated column pairs. The
number of unconnected sub-graphs is the estimated number of
blocks n̂c, and each of maximum connected sub-graphs forms
the estimated groups Ĝi, i = 1, . . . n̂c. The corresponding
n̂c groups of γ̂1, . . . , γ̂q are taken as the columns of Â∗i, i =
1, . . . , n̂c. Algorithmically, start with q groups with one column
in each group; then iteratively check all pairs of groups and
merge two groups together if there exists at least one pair of
columns (one in each group) are significantly correlated; and
stop when no groups can be merged.

The finite sample performance of the above algorithm can be
improved by prewhitening each column time series of Ẑt . This
makes ρ̂k,�, for different (k, �), more comparable. See Remark
2(iii) of Chang, Guo, and Yao (2018). In practice the prewhiten-
ing can be carried out by fitting each column time series a VAR
model with the order between 0 and 5 determined by AIC. The
resulting residual series is taken as a prewhitened series.

Remark 5. (i) The ratio estimator in (11) picks the r̂ most
correlated pairs of columns, and ignores the other small corre-
lations in constructing the segmentation structure. Theorem 3
in Section 3 shows that the partition of Â∗ into {Â∗1, . . . , Â∗̂nc},
determined by the above algorithm, provides a consistent esti-
mation for the column segmentation of A∗.

(ii) There are two tuning parameters used in the procedure,
the maximum lag τ0 used in constructing W(1) and W(2) in (4)
and the maximum lag τ1 used in measuring the dependency
between two columns (rows) in (10). Lag τ1 is usually a suf-
ficiently large integer, for example, between 10 and 20, in the
spirit of the rule of thumb of Box and Jenkins (1970). Different
values of τ0 and τ1 may, or may not, lead to different segmenta-
tion. However, the impact on, for example, future prediction is
minimum, as the most information on linear dynamics is encap-
sulated in the most correlated pairs, as indicated by numerical
examples in the Appendix, supplementary materials.

The ordering for columns of B̂∗ is arranged, in the same
manner as above, by examining the pairwise correlations among
the columns of

X�
t {�̂(x)

2 }−1/2(γ̂ (2)
1 , . . . , γ̂ (2)

p ),

where γ̂
(2)
1 , . . . , γ̂ (2)

p are now the p orthonormal eigenvectors of
Ŵ(2).

3. Theoretical Properties

To gain more appreciation of the methodology, we will show the
consistency of the proposed detection method of uncorrelated

components. We mainly focus on the estimation error and the
ordering of Â∗, as those for B̂∗ are similar. Denote by Xt,i,· the
ith row of Xt, and Xt,i,j the (i, j)th element of Xt. For matrix
V = (Vij), let ‖V‖op denote the spectrum norm, and ‖V‖max =
maxi,j |Vij|. We introduce some regularity conditions first.

Assumption 1. Assume exponentially decay coefficients of the
strong α-mixing condition, α(k) ≤ exp

( − c0kr1
)

for some
constant c0 > 0 and 0 < r1 ≤ 1, where

α(k) = sup
t

{∣∣∣P(E1 ∩ E2) − P(E1)P(E2)
∣∣∣ : E1 ∈ σ(Xs, s ≤ t),

E2 ∈ σ(Xs, s ≥ t + k)
}

. (12)

Here for any random variable/vector/matrix X, σ(X) is
understood to be the σ -field generated by X. Assumption 1
allows a very general class of time series models, including
causal ARMA processes with continuously distributed inno-
vations; see Bradley (2002), and also Section 2.6 of Fan and Yao
(2003). The restriction r1 ≤ 1 is introduced only for simple
presentation.

Assumption 2. Assume EXt = 0. There exist certain finite
constants c∗, c∗, such that

sup
i≤p,‖u‖2=1

var
(

Xt,i,·u
)

≤ c∗, inf‖u‖2=1
E‖Xtu‖2

2/p ≥ c∗. (13)

Note that sup‖u‖2=1 var
(

X�
t,i,·u

)
= ‖EX�

t,i·Xt,i·‖op and

E‖Xtu‖2
2/p = u��

(x)
1 u. Assumption 2 on the eigenvalues is

a common assumption in the high dimensional setting, for
instance, Bickel and Levina (2008a, 2008b) and Xia, Cai, and
Cai (2018).

Assumption 3. For any x > 0, max1≤i≤p,1≤j≤q P
(|Xt,i,j| ≥ x

) ≤
c1 exp (−c2xr2) , for some constant c1, c2 > 0 and 0 < r2 ≤ 2.

Assumption 3 requires that the tail probability of each indi-
vidual series of Xt decay exponentially fast. In particular, when
r2 = 2, each Xt,i,j is sub-Gaussian.

Write the eigenvalue-eigenvector decomposition of W(1) as

W(1) = �(1)D
(
�(1)

)�,

where D = diag(λ1, . . . , λq) with λ1 ≥ · · · ≥ λq, and �(1) =
(γ1, . . . , γq). By the structure assumption in (1), the index set
{1, . . . , q} is partitioned into nc subsets G1, . . . , Gnc such that

the columns of different sub-matrices Xt
(
�

(1)
1

)−1/2
�

(1)
Gi

, i =
1, . . . , nc, are uncorrelated with each other across all time lags.
Define eigen-gap

� = min
1≤i<j≤nc

min
k∈Gi,�∈Gj

|λk − λ�| . (14)

The following theorem provides the nonasymptotic bounds
for the estimators of V(1)

τ ,i,j, W(1) and A∗j, 1 ≤ i, j ≤ q under
both exponential decay α mixing condition and exponential tail
condition of Xt.
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Theorem 1. Suppose Assumptions 1–3 hold with constants
c∗, c∗, r1, r2, and τ0 is a finite constant. Let 1/β1 = 1/r1 + 2/r2
and 1/β2 = 1/r1 + 1/r2. Then,∥∥V̂(1)

τ ,i,j − V(1)
τ ,i,j

∥∥
op ≤ C1ηT,p,q,

∀1 ≤ τ ≤ τ0, 1 ≤ i, j ≤ p, (15)∥∥Ŵ(1) − W(1)
∥∥

op ≤ C1ηT,p,q, (16)

in an event �T with probability at least 1 − εT , where

ηT,p,q = q

(√
log(pq/εT)

T
+ [log(Tpq/εT)]1/β1

T

+[log(Tpq/εT)]2/β2

T2

)
, (17)

C1 is a constant depending on c∗, c∗, r1, r2 only. Moreover, there
exists Ã∗ ≡ (Ã∗1, . . . , Ã∗nc) of which the columns are a permu-
tation of (γ̂1, . . . , γ̂q) such that∥∥Ã∗jÃ�∗j − A∗jA�∗j

∥∥
op ≤ C2ηT,p,q for 1 ≤ j ≤ nc (18)

in the same event �T provided C1ηT,p,q ≤ �/2, where C2 is a
constant depending on c∗, c∗, r1, r2 only.

Remark 6. (i) Let PG be the projection operator onto the column
space of G, which can be written as PG = G(G�G)−1G�.
Under the conditions of Theorem 1, we can obtain ‖PÃ∗j⊗B̃∗i

−
PA∗j⊗B∗i‖op = OP(max{p, q}[(log(pq)/T)1/2+log(Tpq)1/β1/T])
for each sub-group 1 ≤ i ≤ nr , 1 ≤ j ≤ nc, where the columns
of B̃∗ are a permutation of the orthonormal eigenvectors of
Ŵ(2). If we stack all the elements of Xt into a long vector such
that vec(Xt) = �vec(Ut) and apply TS-PCA of Chang, Guo,
and Yao (2018) directly, the estimation of the decorrelation
transformation matrix would satisfy ‖P�̃k

− P�k‖op =
OP(pq[(log(pq)/T)1/2 + log(Tpq)1/β1/T]) for 1 ≤ k ≤ nrnc
and � = (�1, . . . , �nrnc). Obviously, ‖PÃ∗j⊗B̃∗i

− PA∗j⊗B∗i‖op
has much sharper rate which is equivalent to that for the TS-
PCA estimation with dimension max(p, q).

(ii) The consistency of Ŵ(1) requires max(p, q) = o(
√

T).
When A and B, or equivalently W(1) and W(2), have certain
sparsity structures, this condition can be further relaxed. In
TS-PCA, threshold estimator of Bickel and Levina (2008a) is
employed to construct a sparse Ŵ(1), and then the convergence
rates are improved to allow the dimension to be much larger
than T (Chang, Guo, and Yao 2018). The similar extension can
be established in our setting.

When the decays of the α-mixing coefficients and the tail
probabilities of Xt are slower than Assumptions 1 and 3, we
impose the following Assumptions 4 and 5 instead. These con-
ditions ensure the Fuk-Nagaev-type inequalities for α-mixing
processes; see also Rio (2000), Liu, Xiao, and Wu (2013), Wu
and Wu (2016), and Zhang and Wu (2017).

Assumption 4. Let the α-mixing coefficients satisfy the condi-
tion α(k) ≤ c0k−r1 , where α(k) is defined in (12), c0 > 0 and
r1 > 1.

Assumption 5. For any x > 0, max1≤i≤p,1≤j≤q P
(|Xt,i,j| ≥ x

) ≤
c1x−2r2 , for some constant c1 > 0 and r2 > 1.

Theorem 2 presents the uniform convergence rate for V̂(1)
τ ,i,j

and Ŵ(1), 1 ≤ i, j ≤ q. It is intuitively clear that the rate is much
slower than that in Theorem 1.

Theorem 2. Suppose Assumptions 2, 4, and 5 hold with con-
stants c∗, c∗, r1, r2, and τ0 is a finite constant. Let β3 = r2(r1 +
1)/(r1 + r2) > 1. Then, (15) and (16) hold in an event �T with
probability at least 1 − εT , where

ηT,p,q = q

(
(Tpq/εT)1/β3

T
+

√
log(pq/εT)

T

)
, (19)

and C1 depends on c∗, c∗, r1, r2 only. Similarly, if C1ηT,p,q ≤
�/2, then there exists Ã∗ ≡ (Ã∗1, . . . , Ã∗nc) of which the
columns are a permutation of (γ̂1, . . . , γ̂q) such that (18) holds
in the same event �T for some positive constant C2 depending
on c∗, c∗, r1, r2 only.

Theorem 3 implies that the partition of Â∗ into {Â1∗, . . . , Â∗̂nc}
in Section 2.3 provides a consistent estimation for the column
segmentation of A∗ = (A∗1, . . . , A∗nc). To this end, let

ρk,� = max
1≤i,j≤p,|τ |≤τ1

∣∣γ �
k V(1)

τ ,i,jγ�

∣∣{
γ �

k V(1)
0,i,iγk γ �

� V(1)
0,j,jγ�

}1/2 . (20)

See also (10). By (2), the columns of Zt ≡ Xt{�(x)
1 }−1/2A∗ are

divided into the nc uncorrelated blocks. We assume that those
nc blocks can also be obtained by the algorithm in Section 2.3
with ρ̂k,� replaced by ρk,� · I(ρk,� ≥ ρ) for some constant
ρ > 0. Denote by G1, . . . , Gnc , respectively, the indices of
the components of Zt in each of those nc blocks. Denote by
Ĝ1, . . . , Ĝn̂c , respectively, the indices of the components of Ẑt in
each of the n̂c uncorrelated blocks identified by the algorithm in
Section 2.3. Rearrange of the order of Ĝ1, . . . , Ĝn̂c if necessary.
Then the theorem below implies that P(n̂c = nc) → 1 and
P(Ĝi = Gi|n̂c = nc) → 1 for 1 ≤ i ≤ nc.

Theorem 3. Suppose conditions of Theorems 1 or 2 hold and τ1
is a finite constant. Suppose

κ1ηT,p,q < �, κ2ηT,p,q < ρ∗, (21)

where κ1, κ2 are certain positive constants depending on
c∗, c∗, r1, r2 only, ηT,p,q is defined in (17) or (19) and depends on
εT. Then in an event �T with probability at least 1−εT , we have

n̂c = nc and Ĝi = Gi, 1 ≤ i ≤ nc.

Remark 7. The first inequality in (21) requires that the min-
imum eigen-gap � between different uncorrelated groups is
sufficiently larger than the estimation error ηT,p,q, such that all
the groups are identifiable. The second inequality in (21) ensures
that there are no cross-group edges among G1, . . . , Gnc . The
constants κ1 and κ2 are specified in the proof of the theorem.
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Table 1. Example 1—Means and standard errors (SE) of D(̂A∗ , A∗) and D(̂B∗ , B∗) in a simulation with 1000 replications.

D(̂A∗ , A∗) D(̂B∗ , B∗) D(̂A∗ , A∗) D(̂B∗ , B∗)

T (q, p) Mean SE Mean SE (q, p) Mean SE Mean SE

100 (4, 4) 0.135 0.103 0.116 0.094 (4, 8) 0.124 0.096 0.169 0.056
500 0.081 0.080 0.052 0.065 0.074 0.078 0.089 0.047
1000 0.048 0.062 0.050 0.063 0.057 0.066 0.056 0.037
5000 0.021 0.042 0.020 0.042 0.019 0.039 0.032 0.027

100 (8, 8) 0.172 0.057 0.172 0.055 (16, 16) 0.204 0.031 0.206 0.032
500 0.098 0.048 0.086 0.044 0.132 0.032 0.131 0.031
1000 0.074 0.045 0.070 0.041 0.097 0.027 0.093 0.026
5000 0.034 0.029 0.035 0.030 0.041 0.017 0.042 0.018

100 (32, 32) 0.224 0.018 0.225 0.018 (100, 16) 0.251 0.006 0.187 0.032
500 0.162 0.019 0.161 0.020 0.212 0.008 0.127 0.031
1000 0.127 0.018 0.125 0.018 0.185 0.009 0.099 0.028
5000 0.058 0.013 0.058 0.013 0.106 0.008 0.044 0.019

4. Numerical Properties

4.1. Simulation

We illustrate the proposed decorrelation method with simulated
examples. We always set τ0 = 5 in (7), and τ1 = 15 in (10).
The prewhitening, as stated at the end of Section 2.3, is always
applied in determining the groups of the columns of Â∗ and B̂∗.
As the true transformation matrices A∗ and B∗ defined in (3)
cannot be computed easily even for simulated examples, we use
the following proxies instead

A∗ = {�̂(x)
1 }−1/2A{�̂(u)

1 }1/2, B∗ = {�̂(x)
2 }−1/2B{�̂(u)

2 }1/2,

where �̂
(x)
1 , �̂

(x)
2 are given in (5), and

�̂
(u)
1 = 1

Tp

T∑
t=1

U�
t B�BUt , �̂

(u)
2 = 1

Tq

T∑
t=1

UtAA�U�
t .

To abuse the notation, we still use A∗, B∗ to denote their
proxies in this section since the true A∗, B∗ never occur in our
computation. For each setting, we replicate the simulation 1000
times.

Example 1. We consider model (1) in which all the component
series of Ut are independent and ARMA(1, 2) of the form:

zt = bzt−1 + εt + a1εt−1 + a2εt−2, (22)

where b is drawn independently from the uniform distribution
on (−0.98, −0.5) ∪ (0.5, 0.98), a1, a2 are drawn independently
from the uniform distribution on (−0.98, −0.3) ∪ (0.3, 0.98),
and εt are independent and N(0, 1). The elements of A and B
are drawn independently from U(−1, 1). For this example, we
assume that we know nr = p and nc = q in (1). The focus is
to investigate the impact of p and q on the estimation for B and
A.

Performing the eigenanalysis for Ŵ(1) and Ŵ(2) defined in
(7), we take the resulting two sets of orthonormal eigenvectors
as the columns of Â∗ and B̂∗, respectively. To measure the
estimation error, we define

D(Â∗, A∗) = 1
2q(

√q − 1)

q∑
j=1

( 1
maxi |di,j| + 1

maxi |dj,i| − 2
)
,

where di,j is the (i, j)-h element of matrix Â�∗ A∗. Note that
D(Â∗, A∗) is always between 0 and 1, and D(Â∗, A∗) = 0 if
Â∗ is a column permutation of A∗.

We set T = 100, 500, 1000, 5000, and p, q = 4, 8, 16, 32, 100.
The means and standard errors of D(Â∗, A∗) and D(̂B∗, B∗)
over the 1000 replications are reported in Table 1. As expected,
the estimation errors decrease as T increases. Furthermore the
error in estimating A∗ increases as q increases, and that in
estimating B∗ increases as p increases. Also noticeable is the fact
that the quality of the estimation for A∗ depends on q only and
that for B∗ depends on p only, as D(Â∗, A∗) is about the same
for (q, p) = (4, 4) and (q, p) = (4, 8), and D(̂B∗, B∗) is about
the same for (q, p) = (4, 8) and (q, p) = (8, 8). When (q, p) =
(32, 32), each A and B contains 1024 unknown parameters. The
quality of their estimation with T = 100 is not ideal, but not
substantially worse than that for (q, p) = (16, 16), and the
estimation is very accurate with T = 5000. For (q, p) = (100, 16),
matrix time series Xt contains 1600 component series. The
estimation for A∗ is not accurate enough as q = 100, while the
estimation for B∗ remains as good as that for (q, p) = (16, 16),
and is clearly better than that for (q, p) = (32, 32).

Example 2. To examine the performance of the proposed
method for identifying uncorrelated blocks, we consider now
a only column-segmentation model

Xt = UtA�,

where Xt , Ut are p × q matrix time series. Note that adding the
row transformation matrix B in the model entails the application
of the same method twice without adding any new insights on
the performance of the method, as the estimation for A∗ and
that for B∗ are performed separately. See Section 2.3.

The transformation matrix A in the above model is generated
in the same way as in Example 1. All the element time series
of Ut , except those in columns 2, 3, and 5, are simulated inde-
pendently from ARMA(1,2) model (22). Denoted by Ut,j the jth
column of Ut , we let

Ut,2 = Ut+1,1, Ut,3 = Ut+2,1, Ut,5 = Ut+1,4.

Hence, the first three columns of Ut forms one block of size
3, columns 4 and 5 forms a block of size 2, and the rest of the
columns are uncorrelated with each other, and are uncorrelated
to the first two blocks.
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Table 2. Example 2—Relative frequencies correct and incorrect segmentation in a simulation with 1000 replications.

T (q, p) Correct Merging Splitting Other (q, p) Correct Merging Splitting Other

100 (6, 3) 0.369 0.274 0.299 0.058 (6, 6) 0.371 0.207 0.208 0.214
500 0.659 0.237 0.056 0.048 0.639 0.218 0.071 0.072
1000 0.721 0.220 0.031 0.028 0.706 0.219 0.030 0.045
5000 0.837 0.142 0.008 0.013 0.815 0.156 0.011 0.018
100 (10, 6) 0.103 0.087 0.270 0.540 (10, 10) 0.116 0.091 0.249 0.544

500 0.323 0.148 0.141 0.388 0.299 0.195 0.116 0.390
1000 0.369 0.227 0.086 0.318 0.363 0.218 0.067 0.352
5000 0.542 0.248 0.014 0.196 0.495 0.269 0.019 0.217

We set T = 100, 500, 1000, 5000. For each sample size, we
set (p, q) = (3, 6), (6, 6), (6, 10) and (10, 10). Hence, the
number of groups is nc = 3, 3, 7, and 7, respectively. For each
setting, we perform the eigenanalysis for Ŵ(1) defined as (7).
We then apply the algorithm in Section 2.3 to arrange the orders
of the q resulting orthonormal eigenvectors to form estimator
Â∗, for which the number of the correlated pairs of columns
is determined by (11). Table 2 reports the relative frequencies
of the correct specification of all the nc uncorrelated blocks.
We also report the relative frequencies of two types of wrong
segmentation: (a) Merging with n̂c = nc−1, that is, nc−2 blocks
are correctly specified, and the remaining two blocks are put into
one; (b) Splitting with n̂c = nc + 1, that is, nc − 1 blocks are
correctly specified, and the remaining block incorrectly splits
into two. Table 2 indicates that the relative frequency of the cor-
rect specification increases as the sample size T increases, and
it decreases as q increases while the performance is much less
sensitive to the increase of p. It is noticeable that the probability
of the event {̂nc = nc + 1} is very small especially when T is
large. With q = 6, the probability for the correct specification is
not smaller than 64% with T = 500, and is greater than 70% with
T = 1000. Furthermore the probability for n̂c = nc or nc − 1 is
over 92% for T ≥ 500. Note that when n̂c = nc − 1, an effective
dimension reduction is still achieved in spite of missing a split.

For the instances with the correct specification, we also cal-
culate the estimation errors for the nc subspaces. More precisely,
put A∗ = (A1, . . . , Anc) and Â∗ = (Â1, . . . , Ânc). We measure
the estimation error by

D1(Â∗, A∗) = 1
nc

nc∑
j=1

{
1 − 1

rank(Aj)
trace

(
AjA�

j ÂjÂ�
j
)}

.

Note that {rank(Aj)}−1trace
(
AjA�

j ÂjÂ�
j
)

is always between 0
and 1. Furthermore it is equal to 1 if M(Aj) = M(Âj), and
0 if the two spaces are perpendicular with each other; see, for
example, Stewart and Sun (1990) and Pan and Yao (2008). The
boxplots of D1(Â∗, A∗) presented in Figure 1 indicate that the
estimation errors decrease when T increases, and the errors with
large q are greater than those with small q.

Example 3. In this example we examine the gain in post-sample
forecasting due to the decorrelation transformation. Now in
model (1) all the elements of A and B are drawn independently
from U(−1, 1), with (p, q) equal to (6, 6), (6, 8), (8, 8), and
(10, 10). For each (p, q) combination, the first three rows (or
columns) form one block, the next two rows (or columns) form
a second block, and all the other row (or column) is independent

of the rest of the rows (or columns). Table 3 shows the configu-
ration of Ut for (p, q) = (8, 8).

Each univariate block of Ut (e.g., Ut,6,6) is an AR(1) process
with the autoregressive coefficient drawn from the U[0.1, 0.3]
and independent and N(0, 1) innovations. For each block of
size (3, 1), (1, 3), (2, 1), and (1, 2), a vector AR(1) model is used.
All elements of the coefficient matrix is drawn independently
from U[0, 1], then normalized so its singular values are within
[0.1, 0.3]. The vector innovations consist of independent and
N(0, 1) random variables. Each of the remaining four blocks
follow a matrix AR(1) (i.e., MAR(1)) model of Chen, Xiao, and
Yang (2021), that is,

Ut,i,j = λi,j�1,i,jUt−1,i,j�
�
2,i,j + Et,i,j, i, j = 1, 2, (23)

where �1,i,j and �2,i,j are the coefficient matrices with unit
spectral norm, all elements of Et,i,j are independent and N(0, 1).
Matrices �1,i,j and �2,i,j are constructed such that their singular
values are all one and the left and right singular matrices are
orthonormal, and the scalar coefficient λi,j controls the level of
auto-correlation and its values for the four blocks are marked in
Table 3.

We set sample sizes T = 500, 1000, 2000, 5000, and (p, q) =
(6, 6), (8, 6), (8, 8), (10, 10). For each setting, we simulate a
matrix time series of length T + M with M = 10. To perform one-
step ahead post-sample forecasting, for each i = 0, 1, . . . , M−1,
we use the first T observations for identifying the uncorrelated
blocks and for computing Â∗, B̂∗ and Û∗

t defined in (8).
Depending on its shape/size, we fit each identified block in Û∗

t
with an MAR(1), VAR(1), or AR(1) model. The fitted models
are used to predict U∗

T+i+1. The predicted value for XT+i+1 is
then obtained by

X̂T+i+1 = (
�̂

(x)
2

)1/2B̂∗Û∗
T+i+1Â�∗

(
�̂

(x)
1

)1/2,
i = 0, 1, . . . , M − 1. (24)

We then compute the mean squared error:

MSE = 1
pq

p∑
i=1

q∑
j=1

(X̂s,i,j − μs,i,j)
2, (25)

where X̂s,i,j denote the one-step ahead predicted value for the (i,
j)th element Xs,i,j of Xs, and μs,i,j = E(Xs,i,j|Xs−1, Xs−2, . . .). We
compare X̂s,i,j with μs,i,j, instead of Xs,i,j, to remove the impact of
the noise in the observed Xs,i,j. We report overall the mean and
the standard deviation of MSE over 1000 replications.

For the comparison purpose, we also include several other
models in our simulation: (i) VAR(1) model, that is, Xt is stacked
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Figure 1. Example 2—boxplots of D1 (̂A∗ , A∗) in a simulation with 1000 replications.

Table 3. Example 3: Block configuration of Ut for the case of (p, q) = (8, 8).

1 2 3 4 5 6 7 8

1

2 0.81 0.64

3

4
0.25 0.25

5

6

7

8

into a vector of length pq and a VAR(1) is fitted to the vector
series directly, (ii) MAR(1) model, that is, MAR(1) of Chen,
Xiao, and Yang (2021), is fitted directly to Xt, and (iii) TS-PCA,
that is, all the elements of Xt are stacked into a long vector
and the segmentation method of Chang, Guo, and Yao (2018)
is applied to the vector series. In addition, we also include two
oracle models: (O1) the true segmentation blocks are used to
model Û∗

t ; and (O2) True �
(x)
1 , �(x)

2 and true A∗, B∗ are used
and the true segmentation blocks are used to model Û∗

t .
The mean and standard deviations (in bracket) of the MSEs

are listed in Table 4. It is clear that the forecasting based on the
proposed decorrelation transformation is more accurate than
those based on MAR(1), VAR(1), and TS-PCA directly. The

improvement is often substantial. The only exception is the case
of (p, q) = (6, 6) and T = 5000: the 36-dimension VAR(1)
performs marginally better (i.e., the decrease of 0.002 in MSE)
than the transformation based method. On the other hand, the
improvement of the transformation based forecast over VAR(1)
for sample size T ≤ 2000 is more significant. The relative poor
performance of MAR(1) is due to the substantial discrepancy
between MAR(1) model and the data generating mechanism
used in this example. Note that there are (p+q)2 free parameters
in VAR(1) while there are merely (p2 + q2) parameters in
MAR(1). With large T, VAR(1) is more flexible than MAR(1).
TS-PCA performs poorly, due to the large error in estimating the
large transformation matrix of size pq × pq. See also Remark 6.
In addition, TS-PCA also requires to fit VAR models for several
large blocks of size 9, 6, 6 and etc.

Table 4 indicates that the oracle model O1 performs only
slightly better than segmentation when sample size T = 500
or 1000. Oracle Model O2 only deviates from the true model
in terms of the estimation error of the coefficients in the AR
models, hence, performs the best. The MSE of O2 is very close to
0, since the only source of error in MSE is the estimation error of
the AR models for each blocks of Ut, which goes to zero quickly
as T increases since these models are of small dimensions.
When T is large, the VAR(1), proposed segmentation and O1
all perform about the same, which is worse than O2.
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Table 4. Example 3—One-step ahead post-sample forecasting: means and standard deviations (in bracket) of MSEs in a simulation with 1000 replications.

MSEs and standard deviations

T = 500 T = 1000 T = 2000 T = 5000

(p, q)= (6, 6) MAR(1) 0.515(0.333) 0.501(0.304) 0.513(0.305) 0.482(0.280)
VAR(1) 0.369(0.142) 0.231(0.065) 0.137(0.037) 0.044(0.014)
TS-PCA 0.492(0.232) 0.278(0.094) 0.149(0.043) 0.048(0.018)
segmentation 0.257(0.180) 0.144(0.098) 0.087(0.094) 0.046(0.051)
model O1 0.207(0.173) 0.098(0.079) 0.046(0.033) 0.018(0.012)
model O2 0.018(0.010) 0.009(0.005) 0.004(0.003) 0.002(0.001)

(p, q)= (6, 8) MAR(1) 0.981(0.496) 0.977(0.491) 0.947(0.488) 0.942(0.485)
VAR(1) 0.549(0.235) 0.323(0.111) 0.179(0.058) 0.095(0.022)
TS-PCA 0.787(0.359) 0.442(0.168) 0.197(0.068) 0.096(0.023)
segmentation 0.329(0.262) 0.166(0.125) 0.097(0.073) 0.061(0.049)
model O1 0.233(0.120) 0.127(0.064) 0.078(0.041) 0.051(0.035)
model O2 0.032(0.015) 0.016(0.007) 0.008(0.004) 0.003(0.001)

(p, q)= (8, 8) MAR(1) 0.971(0.434) 0.924(0.363) 0.915(0.391) 0.908(0.384)
VAR(1) 0.861(0.304) 0.447(0.148) 0.275(0.079) 0.121(0.033)
TS-PCA 0.965(0.420) 0.564(0.215) 0.290(0.106) 0.129(0.036)
segmentation 0.499(0.276) 0.271(0.158) 0.176(0.131) 0.091(0.092)
model O1 0.399(0.189) 0.252(0.154) 0.193(0.137) 0.120(0.133)
model O2 0.040(0.015) 0.019(0.007) 0.010(0.004) 0.004(0.001)

(p, q)= (10, 10) MAR(1) 1.244(0.512) 1.214(0.521) 1.207(0.481) 1.218(0.509)
VAR(1) 1.920(0.654) 1.151(0.353) 0.646(0.191) 0.354(0.078)
TS-PCA 1.822(0.711) 1.216(0.413) 0.726(0.211) 0.365(0.128)
segmentation 0.967(0.505) 0.664(0.326) 0.465(0.240) 0.312(0.224)
model O1 0.852(0.403) 0.617(0.307) 0.446(0.235) 0.341(0.233)
model O2 0.062(0.022) 0.030(0.010) 0.016(0.005) 0.006(0.002)

Table 5. Sensitivity of the Kronecker product structure using different N and c.

MSEs and standard deviations

c = 0 c = 0.05 c = 0.15 c = 0.2 c = 0.3

N = 10 VAR(1) 0.861(0.304) 0.877(0.327) 0.872(0.314) 0.874(0.291) 0.869(0.306)
segmentation 0.499(0.276) 0.490(0.241) 0.620(0.303) 0.732(0.399) 0.859(0.504)

N = 100 VAR(1) 0.861(0.304) 0.856(0.295) 0.860(0.303) 0.874(0.326) 0.878(0.317)
segmentation 0.499(0.276) 0.570(0.314) 0.721(0.458) 0.856(0.530) 0.976(0.689)

NOTE: The results are the means and standard deviations (in bracket) of MSEs of one-step ahead post-sample forecasting based on 1000 replications.

Example 4. Next, we assess the sensitivity of the proposed
matrix segmentation method with respective to the Kronecker
product structure (vec(Xt) = (A⊗B)vec(Ut)). We use the same
model setting in Example 3 and choose (p, q) = (8, 8), T =
500. Instead of model (1), we consider vec(Xt) = (A ⊗ B +
�)vec(Ut), where � is a perturbation matrix with N none-zero
elements. We also set each nonzero element of � to be c‖A ⊗
B‖F/(pq) × ω, ω

iid∼ Rademacher distribution. Table 5 shows
MSEs and standard deviations of VAR(1) and the proposed
matrix segmentation method over 1000 replications, for several
combinations of N and c. Again, N controls the number of
nonzero perturbations and c controls the level of the perturba-
tions, comparing to the average size of the elements in A ⊗ B.
When c = 0, it becomes the original case in Table 4. From Table 5,
it is seen that the segmentation is still useful in prediction when
the model is deviated from the assumed block structure within
certain perturbation. The prediction performance of the VAR
model is not affected by the perturbation since it does not
assume any block structure. It is seen that the segmentation
outperforms the VAR model when c < 0.3 when N = 10 and
c < 0.2 when N = 100. This feature demonstrates the benefit
of dimension reduction through segmentation, even when the
underlying model does not have the exact Kronecker product
structure.

4.2. Real Data Analysis

We now illustrate the proposed decorrelation method with a
real data example. The data concerned is a 17×6 matrix time
series consisting of the logarithmic daily averages of the six air
pollutant concentration readings (i.e., PM2.5, PM10, SO2, NO2,
CO, O3) from the 17 monitoring stations in Beijing and its
surrounding areas (i.e., Tianjin and Hebei Province) in China.
The sampling period is January 1, 2015–December 31, 2016 for
a total of T = 731 days. The readings of different pollutants at
different locations are crossly correlated.

We first remove the seasonal mean of the 17 × 6 matrix time
series. Setting τ0 = 5 in (7), we apply the proposed bilinear
transformation to discover the uncorrelated block structure.
The finding is stable: with 5 ≤ τ1 ≤ 30 in (10), the transformed
matrix series admits n̂c = 4 uncorrelated column blocks with
sizes 3, 1, 1, 1, respectively, and n̂r = 15 uncorrelated row blocks
with two blocks of size 2 and the rest of size 1. Overall there are
15 × 4 blocks, among which there are 2 blocks of size 2 × 3,
13 blocks of size 1 × 3, 6 blocks of size 2 × 1 and 39 blocks of
size 1 × 1.

To check the post-sample forecasting performance, we calcu-
late the rolling one-step, and two-step ahead out-sample fore-
casts for each of the daily readings in the last three months in
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Table 6. One-step and two-step ahead post-sample forecasting for the air pollution data: means and standard deviations (in bracket) of MSPEs , regrets and adjusted ratios
of the various methods.

Method One-step forecast Two-step forecast

Raw forecast Regret Adjust ratio Raw forecast Regret Adjust ratio

MAR(1) 0.351 (0.208) 0.154 1.305 0.516 (0.303) 0.319 1.340
VAR(1) 0.400 (0.272) 0.203 1.720 0.717 (0.406) 0.520 2.185
Univariate AR 0.346 (0.205) 0.149 1.263 0.501 (0.286) 0.304 1.277
TS-PCA 0.332 (0.188) 0.135 1.144 0.450 (0.247) 0.253 1.063
Segmentation with 15×4 blocks 0.315 (0.182) 0.118 1.000 0.435 (0.246) 0.238 1.000
Segmentation with 14×3 blocks 0.319 (0.185) 0.122 1.034 0.446 (0.256) 0.249 1.046
Segmentation with 16×5 blocks 0.318 (0.183) 0.121 1.025 0.443 (0.247) 0.246 1.034

2016 (total 92 days). The methods included in the compari-
son are (i) the forecasting based on the segmentation derived
from the proposed decorrelation transformation by fitting an
MAR(1), VAR(1) or AR(1) to each identified block according
to its size and shape; (ii) MAR(1) for the original 17 × 6 matrix
series; (iii) VAR(1) for the vectorized original series, (iv) uni-
variate AR(1) for each of the 17 × 6 original series, and (v) the
TS-PCA (Chang, Guo, and Yao 2018) for the vectorized original
series. The TS-PCA leads to the segmentation consisting of one
group of size 3, three groups of size 2, and 93 groups of size 1.
For each group, a VAR(1) model is used for prediction.

For the two segmentation approaches, we fix the needed
transformation obtained using data up to September 30, 2016,
and the corresponding segmentation structure. The time series
model for each individual block is updated throughout the
rolling forecasting period.

In addition to the identified segmentation with 15×4 blocks,
we also compute the forecasts based on two other segmenta-
tions: one with 14×3 blocks, and another with 16×5 blocks.
The former is obtained by merging two most correlated single
row blocks in the discovered segmentation into one block and
two most correlated single column blocks into one block. The
latter is obtained by splitting one of the two blocks with two
rows in the discovered segmentation into two single row blocks
and splitting the block with three columns into two blocks.
This will reveal the impact of slightly “wrong” segmentations on
forecasting performance.

Let the mean squared forecast error for sth observation be

MSPEs = 1
pq

p∑
i=1

q∑
j=1

(X̂s,i,j − Xs,i,j)
2, (26)

where X̂s,i,j denote the one-step ahead predicted value for the
(i, j)th element Xs,i,j of Xs. Two-step ahead MSPEs is defined
similarly. The means and the standard deviations of MSPEs
of one-step and two-step ahead post-sample forecasts for the
pollution readings in the last 92 days are listed in Table 6. The
prediction based on the bilinear decorrelation transformation
(even using “wrong” segmentations) is clearly more accurate
than those without transformation as well as that of the TS-PCA.
Using the “wrong” segmentation deteriorates the performance
only slightly, indicating that a partial (instead of total) decorre-
lation still leads to significant gain in prediction. Applying TS-
PCA to the vectorized series requires to estimate a 102 × 102
transformation matrix (instead of the 17 × 17 and 6 × 6
matrices by using the matrix time series structure). It leads to

2 4 6 8 10 12
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Figure 2. Weakly averaged one-step forecast errors of the univariate AR(1) models
for each component series (AR), the matrix AR(1) model (MAR(1)), the vector AR(1)
for vectorized series (VAR(1)), the method based on the bilinear decorrelation
transformation (segmentation).

larger estimation errors (see Remark 6 in Section 3). Neverthe-
less it still provides more accurate predicts than those without
transformation. Also note that fitting each of the original 17 × 6
time series with a univariate AR(1) separately leads to a better
performance than those from fitting MAR(1) and VAR(1) to the
original matrix series jointly. This indicates that the cross-serial
correlation is useful and important information for future fore-
casting. However, to make efficient use of the information, it is
necessary to adopt some effective independent component anal-
ysis or dimension-reduction techniques such as the proposed
decorrelation transformation which pushes correlations across
different series into the autocorrelations of some transformed
series.

Also included in the table are “regret” defined as the differ-
ence between MSPE and the in-sample residual variance of the
fitted VAR(1) model for the vectorized data (i.e., a vector time
series of dimension 17 × 6 = 102), and “adjusted ratio” defined
as the ratio of the regret to the regret of the best prediction model
(i.e., the segmentation with 15 × 4 blocks). The regret tries to
measure the forecasting error on the predictable signal, remov-
ing the impact from unpredictable noise in the model. Since
the fitted VAR(1) model uses more than 10,000 parameters, its
sample residual variance underestimates the noise variance in
the model, and is taken as a proxy for the latter. The adjusted
ratios shows that the “regret” of TS-PCA is 14.4% worse than
the 15 × 4 segmentation for one-step ahead forecast, and 6.4%
worse than the 15 × 4 segmentation for two-step ahead forecast.

To further evaluate the forecasting stability, Figure 2 shows
weekly average of one-step rolling forecast MSPE within the
forecasting period under various models. It is seen that the



12 Y. HAN ET AL.

proposed segmentation outperforms the other three methods in
most of the periods in terms of prediction.

In this example, the identified segmentation of (̂nr , n̂c) =
(15, 4) for the original 17×6 matrix series is more likely to be an
approximation of the underlying dependence structure rather
than a true model. The fact that the two “wrong” segmentation
models (though quite close to the discovered one) as well as the
aggressive segmentation via vectorized TS-PCA transformation
provide comparable, though inferior, post-sample forecasting
performance lends further support to the claim that the pro-
posed decorrelation method makes the transformed series more
predictable than the original ones, regardless model (1) holds or
not. See Remark 1(iv) in Section 2.1.

Supplementary Materials

The supplemental material contain additional simulation results, additional
information on the air pollutant example and all proofs.
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